MINIMAL IMMERSIONS OF S^{2} INTO $S^{2 m}(1)$ WITH DEGREE $2 m+2$

Xingxiao Li

1. Introduction

In a previous paper [1], by solving completely the totally isotropic condition, we obtained explicit repressentations for all full minimal immersions with area $2 \pi[m(m+1)+2]$ of the 2 - sphere S^{2} into the $2 m$-dimensional Euclidean sphere $S^{2 m}(1)$ of radius 1 , from which we get a classification theorem. It turned out that all those immersions are of degree $2 m+2$ (for definition, see Section 2 below). Naturally one asks: Are there any more full minimal immersions x : $S^{2} \rightarrow S^{2 m}(1)$ of degree $2 m+2$ other than those of area $2 \pi[m(m+1)+2]$? How would they be like?

To answer these questions, it needs further analysis. Using the method developed in [1] we first give, in Section 4 of the present paper, much more concrete examples, and then obtain the corresponding explicit representations in terms of independent parameters. At the same time we complete, in Section 5 , the classification of the minimal immersions of degree $2 m+2$.

2. Preliminaries

Barbosa [2] established a bijection between the set of all full, generalized minimal immersions $x: S^{2} \rightarrow S^{2 m}(1)$ and that of all linearly full, totally isotropic curves $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2 m}$, where $\boldsymbol{C} P^{2 m}$ is the $2 m$-dimensional complex projective space of constant holomorphic curvature 4 , with such immersions corresponding to their directrices.

Therefore, we can naturally define the degree of a minimal immersion x : $S^{2} \rightarrow S^{2 m}(1)$ to be the degree of its directrix \boldsymbol{E} as a holomorphic curve in $\boldsymbol{C} P^{2 m}$, and denote it by $\operatorname{deg}(x)=\operatorname{deg} E$.

Denote by C the field of complex numbers, and fix a stereo-graphic projection of $S^{2}(1)$ onto \boldsymbol{C} to get a local complex coordinate $z, z \in \boldsymbol{C}$, such that the induced metric by x can be written as $d s^{2}=2 F|d z|^{2}$. It is well known that each holomorphic curve $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2 m}$ has a local representation (or lift) as

$$
\xi=\sum_{i=0}^{n} a_{i} z^{2}, \quad z \in \boldsymbol{C},
$$

Received April 12, 1994.
where $a_{2}, i=0,1,2, \cdots, n$, are vectors in $\boldsymbol{C}^{2 m+1}$, and if ξ has no zero on \boldsymbol{C}, then $n=\operatorname{deg} \Xi$. In what follows we always agree to this.

If (\cdot, \cdot) is the canonical symmetric product of $C^{2 m+1}$, then the total isotropy of E is equivalent to that [2]

$$
\begin{equation*}
\left(\xi^{2}, \xi^{j}\right) \equiv 0,0 \leqq i+\jmath \leqq 2 m-1, \tag{2.1}
\end{equation*}
$$

where $\xi^{2}:=\xi^{(i)}=d^{2} \xi / d z^{2}$.
Let $\boldsymbol{\Xi}_{2}: S^{2} \rightarrow \boldsymbol{C} P^{N_{2}}, N_{i}=\binom{2 m+1}{i+1}, i=0,1,2, \cdots, 2 m-1$, be the associated curves of Ξ [3], which are determined by

$$
\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{2}: S^{2} \longrightarrow C^{N_{i}+1}, i=0,1,2, \cdots, 2 m-1
$$

Obviously $\Xi_{0}=\Xi$.
In the remains of this paper, we denote for each $\imath, 0 \leqq i \leqq 2 m-1$, by σ_{2} the stationary index of Ξ_{2}, and δ_{i} the stationary multiplicity of Ξ at any fixed point of S^{2}. Then we have (one can see [2] for details):

$$
\begin{equation*}
\operatorname{deg} \Xi=2 m+\sum_{i=0}^{m-1} \sigma_{\imath}, \operatorname{deg} \Xi \geqq 2 m+2 \sum_{i=0}^{m-1} \delta_{i} \tag{2.2}
\end{equation*}
$$

Lemma 2.1 [1]. Let $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2 m}$ be a linearly full curve of degree $2 m+2$. If $\xi=\sum_{i=0}^{2 m+2} a_{i} z^{2}$ is a local lift of $\boldsymbol{\Xi}$, then $\boldsymbol{\Xi}$ is totally isotropic if and only if the following hold:
(1) $\left(a_{\imath}, a_{j}\right)=0$, except $i+j=2 m+p, 0 \leqq p \leqq 4$,
(2) $\quad\left(a_{m-r}, a_{m+r}\right)=(-1)^{r} \frac{(m!)^{2}}{(m-r)!(m+r)!}\left(a_{m}, a_{m}\right)$,
(3) $\left(a_{m-r}, a_{m+r+1}\right)=(-1)^{r} \frac{(2 r+1) m!(m+1)!}{(m-r)!(m+1+r)!}\left(a_{m}, a_{m+1}\right)$,
(4) $\quad\left(a_{m+1-s}, a_{m+1+s}\right)=(-1)^{s-1} \frac{1}{(m+1-s)!(m+1+s)!}\left\{s^{2} m!(m+2)!\left(a_{m}, a_{m+2}\right)\right.$

$$
\begin{equation*}
\left.+\left(s^{2}-1\right)[(m+1)!]^{2}\left(a_{m+1}, a_{m+1}\right)\right\}, \quad s=1,2, \cdots, m+1 \tag{2.6}
\end{equation*}
$$

(5) $\quad\left(a_{m+1-r}, a_{m+2+r}\right)=(-1)^{r} \frac{(2 r+1) m!(m+1)!}{(m-r)!(m+1+r)!}\left(a_{m+1}, a_{m+2}\right)$,
(6) $\quad\left(a_{m+2-r}, a_{m+2+r}\right)=(-1)^{r} \frac{(m!)^{2}}{(m-r)!(m+r)!}\left(a_{m+2}, a_{m+2}\right)$,
where $r=1,2, \cdots, m$.
Lemma 2.2 [1]. Let $\xi=\sum_{\imath=0}^{n} a_{i} z^{2}$ be a $C^{2 m+1}$-valued polynomial, N a nonnegative integer. If we denote by p the multi-indices ($p_{0}, p_{1}, \cdots, p_{N}$) such that $0 \leqq p_{0}<p<\cdots<p_{N} \leqq n$, then

$$
\begin{aligned}
\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{N} & =\sum_{p} \prod_{i>j}\left(p_{i}-p_{j}\right) z^{l(p)} a_{p 0} \wedge a_{p 1} \wedge \cdots \wedge a_{p N} \\
& =\sum_{k \geq 0}\left[\sum_{l(p)=k} \prod_{i>j}\left(p_{i}-p_{j}\right) a_{p 0} \wedge a_{p_{1}} \wedge \cdots \wedge a_{p N}\right] z^{k}
\end{aligned}
$$

where $l(p)=\sum_{1 \leqq \imath \leqq N} p_{i}-N(N+1) / 2$.
LEMMA 2.3 [1] Let $N \geqq 2$ be an integer, and $a_{1}, a_{2}, \cdots, a_{N+1}$ be vectors in a complex space \boldsymbol{C}^{n}. Then, $a_{1}, a_{2}, \cdots, a_{N+1}$ are linearly related if and only if the exterior vectors $a_{1} \wedge \cdots \wedge a_{N}$ and $a_{1} \wedge \cdots \wedge a_{N-1} \wedge a_{N+1}$ are parallel in $\wedge^{N} \boldsymbol{C}^{n}$.

3. Fundamental lemmas

This section will be devoted to proving some lemmas that are essential in the present paper.

LEMMA 3.1. Let $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2 m}$ be a linearly full, totally sotropic curve with degree $2 m+2$. If $z=0$ is one stationary point of an associated curve Ξ_{\imath} for some $i, 0 \leqq i \leqq m-1$, and $\xi=\sum_{j=0}^{2 m+2} a_{j} z^{j}$ is a local lift of Ξ, then there are numbers λ_{j}, $\mu_{l} \in C, 0 \leqq j \leqq i, 0 \leqq l \leqq i$ or $2+2 \leqq l \leqq 2 m-i$, such that

$$
\begin{gather*}
a_{\imath+1}=\sum_{j=0}^{\imath} \lambda_{j} a_{\jmath} \tag{3.1}\\
a_{2 m+1-\imath}=\sum_{j=0}^{\imath} \mu_{j} a_{j}+\sum_{\jmath=\imath+2}^{2 m-\imath} \mu_{j} a_{\jmath} \tag{3.2}
\end{gather*}
$$

Also we have,
(1) $\left\{a_{\jmath}, \jmath \neq i, 2 m+1-i\right\}$ is a basis for $\boldsymbol{C}^{2 m+1}$,
(2) $\left(a_{\jmath}, a_{k}\right)=0$, except $\jmath+k=2 m+2,2 m+3,2 m+4$,
(3) $\left(a_{m+1-s}, a_{m+1+s}\right)=(-1)^{s-1} \frac{[(m+1)!]^{2}\left[s^{2}-(m-i)^{2}\right]}{(m+1-s)!(m+1+s)!(m-i)^{2}}\left(a_{m+1}, a_{m+1}\right)$,

$$
\begin{equation*}
s=1,2, \cdots, m+1 \tag{3.4}
\end{equation*}
$$

(4) $\left(a_{m+1-r}, a_{m+1+r}\right)$

$$
\begin{equation*}
=(-1)^{r} \frac{(2 r+1)[(m+1)!]^{2} \lambda}{(m-i)^{2}(2 m+2-i)(m-r)!(m+1+r)!}\left(a_{m+1}, a_{m+1}\right) \tag{3.5}
\end{equation*}
$$

(5) $\quad\left(a_{m+2-r}, a_{m+2+r}\right)=(-1)^{r+1} \frac{[(m+1)!]^{2}}{(m-i)^{2}(i+2)(m-r)!(m+r)!}$

$$
\begin{equation*}
\times\left[\frac{2 m-3-2 i}{2 m+2-i} \lambda \mu_{2 m-i}+\frac{4(m-1-i)}{i+3} \mu_{2 m-1-i}\right]\left(a_{m+1}, a_{m+1}\right) \tag{3.6}
\end{equation*}
$$

where $r=0,1, \cdots, m$, and $\lambda=\lambda_{2}$.

Proof. By Barbosa [2], for any $\jmath, 0 \leqq j \leqq m-1$, the associated curves, $\boldsymbol{Z}_{\boldsymbol{j}}$ and $\Xi_{2 m-1-,}$ have the same stationary points and the same multiplicity at each point. So $z=0$ is a stationary point of $\Xi_{2 m-1-\imath}$. On the other hand, it is easily seen from the inequality in (2.2) that $z=0$ is not the stationary point of Ξ_{0}, if $j \neq i, 2 m-1-i$ and that $\delta_{i}=\delta_{2 m-i}=1$ at $z=0$.

First, the fact that $z=0$ is not the stationary point of $\Xi_{\imath-1}$ and Lemma 2.3 give

$$
\begin{equation*}
\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{2}(0) \neq 0 \tag{3.7}
\end{equation*}
$$

Second, the fact that $z=0$ is the stationary point of Ξ_{2} gives

$$
\begin{equation*}
\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{\imath+1}(0)=0 \tag{3.8}
\end{equation*}
$$

(3.7) and (3.8) are equivalent to that $a_{0}, a_{1}, \cdots, a_{\imath}$ are linearly independent and $a_{0}, a_{1}, \cdots, a_{\imath}, a_{\imath+1}$ are linearly related. Thus we get (3.1).

Now using (3.1) and Lemma 2.2 we can obtain

$$
\begin{equation*}
\xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{\prime} \equiv 0 \bmod \left(z^{\jmath-i}\right), \quad i \leqq j \leqq 2 m-1-i \tag{3.9}
\end{equation*}
$$

So,

$$
\xi_{j}:=z^{2-\jmath} \xi \wedge \xi^{\prime} \wedge \cdots \wedge \xi^{\jmath}
$$

is a nonzero local lift of Ξ_{\imath} around $z=0, i \leqq j \leqq 2 m-1-\imath$.
Since $z=0$ is not the stationary point of $\Xi_{2 m-2-\imath}$. We see that

$$
\begin{equation*}
\xi_{2 m-2-2} \wedge \xi_{2 m-2-i}^{\prime}(0) \neq 0 . \tag{3.10}
\end{equation*}
$$

On the other hand, $\Xi_{2 m-1-\iota}$ has $z=0$ as one of its stationary points, so

$$
\begin{equation*}
\xi_{2 m-1-2} \wedge \xi_{2 m-1-i}^{\prime}(0)=0 \tag{3.11}
\end{equation*}
$$

(3.10) and (3.11) imply, in view of Lemma 2.3, that $a_{0}, a_{1}, \cdots, a_{\imath}, a_{\imath+2}, \cdots$, $a_{2 m-\imath}$ are linearly independent and $a_{0}, a_{1}, \cdots, a_{\imath}, a_{\imath+2}, \cdots, a_{2 m-\imath}, a_{2 m+1-\imath}$ are linearly related, and hence we get (3.2).

Now the fullness of Ξ implies that $a_{0}, a_{1}, \cdots, a_{\imath}, a_{\imath+2}, \cdots, a_{2 m-\imath}, a_{2 m-\imath+2}, \cdots$, $a_{2 m+2}$ must hull $\boldsymbol{C}^{2 m+1}$ and so they form a basis for $\boldsymbol{C}^{2 m+1}$.

Finally, it is not hard to see, by direct calculations, that (3.3) follows from (2.3), (2.4), (2.5) and (3.1); (3.4) from (2.6), (3.1) and (3.3) ; (3.5) from (2.7), (3.1), (3.3) and (3.4); (3.6) from (2.8) and (3.2)-(3.5). For example, we derive (3.6) as follows:

From (3.2)-(3.5) we find

$$
\begin{aligned}
& \left(a_{\imath+3}, a_{2 m+1-\imath}\right) \\
& \quad=\mu_{2 m-i}\left(a_{\imath+3}, a_{2 m-\imath}\right)+\mu_{2 m-1-i}\left(a_{\imath+3}, a_{2 m-1-\imath}\right) \\
& \quad=\mu_{2 m-i}(-1)^{m-2} \frac{[2(m-i-2)+1][(m+1)!]^{2} \lambda}{(m-i)^{2}(2 m+2-i)(i+2)!(2 m-i-1)!}\left(a_{m+1}, a_{m+1}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\mu_{2 m-1-i}(-1)^{m-\imath-1} \frac{[(m+1)!]^{2}\left[(m-i-2)^{2}-(m-i)^{2}\right]}{(m-i)^{2}(i+3)(2 m-1-i)!}\left(a_{m+1}, a_{m+1}\right) \\
= & \frac{(-1)^{m-i}[(m+1)!]^{2}}{(m-i)^{2}(i+2)!(2 m-i-1)!}\left[\frac{2 m-2 i-3}{2 m+2-i} \mu_{2 m-2} \lambda\right. \\
& \left.+\frac{4(m-i-1)}{i+3} \mu_{2 m-1-2}\right]\left(a_{m+1}, a_{m+1}\right) . \tag{3.12}
\end{align*}
$$

But from (2.8) we know that

$$
\begin{equation*}
\left(a_{\imath+3}, a_{2 m+1-2}\right)=(-1)^{m-1-\imath} \frac{(m!)^{2}}{(i+1)!(2 m-1-i)!}\left(a_{m+2}, a_{m+2}\right) . \tag{3.13}
\end{equation*}
$$

Comparing the right hand sides of (3.12) and (3.13) we get

$$
\begin{align*}
(m!)^{2}\left(a_{m+2}, a_{m+2}\right)= & -\frac{[(m+1)!]^{2}}{(m-i)^{2}(i+2)}\left[\frac{2 m-2 i-3}{2 m+2-i} \mu_{2 m-2} \lambda\right. \\
& \left.+\frac{4(m-i-1)}{i+3} \mu_{2 m-1-2}\right]\left(a_{m+1}, a_{m+1}\right) \tag{3.14}
\end{align*}
$$

Insert (3.14) into (2.8) one can obtain (3.6). Q.E.D.
Lemma 3.2. Let $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2 m}$ be a linearly full curve of degree $2 m+2$. If Ξ is totally isotropic, then there exists some integer $i, 0 \leqq i \leqq m-1$, such that $\sigma_{i}=2$, and other $\sigma_{\jmath}=0$ for $0 \leqq j \leqq m-1, \jmath \neq i$. That is, all associated curves Ξ_{\jmath}, $0 \leqq j \leqq m-1$, except some Ξ_{\imath}, are immersions.

Proof. By the assumption and (2.2), we have

$$
\begin{equation*}
\sigma_{0}+\sigma_{1}+\cdots+\sigma_{m-1}=2 \tag{3.15}
\end{equation*}
$$

So only two cases can occur:
CASE 1. For some $i, 0 \leqq i \leqq m-1, \sigma_{i}=2$, and so $\sigma_{\rho}=0$ for other $\jmath, 0 \leqq j \leqq m$ -1 ;

CASE 2. For some $i, j, 0 \leqq i<j \leqq m-1, \sigma_{\imath}=\sigma_{\jmath}=1, \sigma_{l}=0$ for other $l, 0 \leqq l \leqq$ $m-1$.

Thus to prove Lemma 3.2, we need only to show that Case 2 is impossible. To this end, we suppose the contrary. Let p, q be the stationary points of Ξ_{2} and Ξ, respectively. Then the inequality in (2.2) implies that $p \neq q$. Change the complex coordinate z if necessary, we can make p, q be the points $z=0$ and $z=\infty$ respectively. By Lemma 3.1, Ξ has a local lift as

$$
\xi=\sum_{l=0}^{2 m+2} a_{t} z^{l}
$$

satisfying (3.1) and (3.2) for some complex numbers $\lambda_{0}, \cdots, \lambda_{2}, \mu_{0}, \cdots, \mu_{i}, \mu_{i+2}$, $\cdots, \mu_{2 m-2}$.

On the other hand, if we set $w=1 / z$, then w is a new complex coordinate
such that $w=0$ is the stationary point of Ξ_{\jmath}. So applying Lemma 3.1 again to the local lift of Ξ :

$$
\eta=\sum_{l=0}^{2 m+2} a_{2 m+2-l} w^{l}
$$

we know that there are numbers $\lambda_{0}^{\prime}, \cdots, \lambda_{j}^{\prime}, \mu_{0}^{\prime}, \cdots, \mu_{j}^{\prime}, \mu_{j+2}^{\prime}, \cdots, \mu_{2 m-\jmath}^{\prime}$ such that

$$
\begin{gather*}
a_{2 m+1-\jmath}=\sum_{l=0}^{\jmath} \lambda_{l}^{\prime} a_{2 m+2-l}, \tag{3.16}\\
a_{\jmath+1}=\sum_{l=0}^{\jmath} \mu_{l}^{\prime} a_{2 m+2-l}+\sum_{l=j+2}^{2 m-\jmath} \mu_{l}^{\prime} a_{2 m+2-l} . \tag{3.17}
\end{gather*}
$$

If $\lambda_{\imath+1}^{\prime}=0$, then (3.16) indicates that $a_{2 m+1-\jmath}, a_{2 m+2-\jmath}, \cdots, a_{2 m-\imath}, a_{2 m+2-\imath}, \cdots$, $a_{2 m+2}$ are linearly related, contradicting (1) in Lemma 3.1.

So, $\lambda_{\imath+1}^{\prime} \neq 0$. Without loss of generality, we can assume $\lambda_{\imath+1}^{\prime}=-1$. Then (3.16) says

$$
a_{2 m+1-l}=-a_{2 m+1-j}+\underset{l \neq \imath+1}{0 \leq l \leq j} \lambda_{l}^{\prime} a_{2 m+2-l}
$$

which with (3.2) gives

$$
\begin{equation*}
a_{2 m+1-2}=\sum_{l=2 m+2-j}^{2 m-2} \mu_{l} a_{l}-a_{2 m+1-\jmath} \tag{3.18}
\end{equation*}
$$

If $\mu_{\imath+1}^{\prime}=0$, then $a_{\jmath+1}, a_{\jmath+2}, \cdots, a_{2 m-\jmath}, a_{2 m+2-\jmath}, \cdots, a_{2 m-\imath}, a_{2 m+2-\imath}, \cdots, a_{2 m+2}$ are linearly related, contradicting (1) in Lemma 3.1.

So $\mu_{\imath+1}^{\prime} \neq 0$. Take, for example, $\mu_{\imath+1}^{\prime}=-1$. Then (3.17) can be rewritten as

$$
a_{2 m+1-2}=-a_{\jmath+1}+\sum_{l \neq l+1}^{0 \leq l \leq \jmath} \mu_{l}^{\prime} a_{2 m+2-l}+\sum_{l=j+2}^{2 m-\jmath} \mu_{l}^{\prime} a_{2 m+2-l}
$$

which compared with (3.2) implies

$$
\begin{equation*}
a_{2 m+1-2}=-a_{\jmath+1}+\sum_{l=2}^{2 m-2} \sum_{m+2-j} \mu_{l} a_{l}+\sum_{l=j+2}^{2 m-\jmath} \mu_{l} a_{l} \tag{3.19}
\end{equation*}
$$

(3.18) and (3.19) give us that

$$
a_{\jmath+1}-a_{2 m+1-\jmath}=\sum_{l=\jmath+2}^{2 m-\jmath} \mu_{l} a_{l}
$$

 in Lemma 3.1. This completes the proof. Q.E.D.

Lemma 3.3. Under the conditions of Lemma 3.1, the complex numbers λ_{r}, $\mu_{r}, 0 \leqq r \leqq i$ and $\mu_{\rho}, i+2 \leqq j \leqq 2 m-i$ are uniquely determined by the number $\lambda=\lambda_{2}$. In fact we have

$$
\begin{equation*}
\lambda_{\imath-r}=(-1)^{r} \frac{(2 m+2-i+r)!\lambda^{r+1}}{(r+1)!(2 m+2-i)^{r}(2 m+2-i)!}, 0 \leqq r \leqq i, \tag{3.20}
\end{equation*}
$$

$$
\begin{gather*}
\mu_{r}=(-1)^{2+r} \frac{(2 m+2-r)!}{(i+1)!}\left(\frac{\lambda}{2 m+2-i}\right)^{2 m+1-\imath-r}\left[\frac{1}{(2 m+1-i-r)!}\right. \\
\left.-\frac{1}{(2 m-2 i)!(i-r+1)!}\right], \quad 0 \leqq r \leqq i, \tag{3.21}\\
\mu_{s}=(-1)^{2+s} \frac{(2 m+2-s)!}{(i+1)!(2 m+1-i-s)!}\left(\frac{\lambda}{2 m+2-i}\right)^{2 m+1-\imath-s}, \\
i+2 \leqq s \leqq 2 m-i . \tag{3.22}
\end{gather*}
$$

Proof. First we calculate $\mu_{2 m-2}$. By (3.2)-(3.4),

$$
\begin{align*}
& \left(a_{\imath+2}, a_{2 m+1-\imath}\right)=\mu_{2 m-i}\left(a_{\imath+2}, a_{2 m-\imath}\right) \\
& \quad=\mu_{2 m-i}(-1)^{m-\imath+1} \frac{[(m+1)!]^{2}(2 m-2 i-1)}{(i+2)!(2 m-i)!(m-i)^{2}}\left(a_{m+1}, a_{m+1}\right) \tag{3.23}
\end{align*}
$$

But by (3.5),

$$
\begin{equation*}
\left(a_{\imath+2}, a_{2 m+1-\imath}\right)=(-1)^{m-\imath-1} \frac{[2(m-i-1)+1][(m+1)!]^{2} \lambda}{(m-i)^{2}(i+1)!(2 m+2-i)(2 m-i)!}\left(a_{m+1}, a_{m+1}\right) . \tag{3.24}
\end{equation*}
$$

If $\left(a_{m+1}, a_{m+1}\right)=0$, then the $(m+1)$-dimensional subspace spanned by a_{0}, a_{1}, $\cdots, a_{\imath}, a_{\imath+2}, \cdots, a_{m+1}$ is totally isotropic by (3.3), contradicting the general fact that the totally isotropic subspace in $\boldsymbol{C}^{2 m+1}$ is at most m-dimensional. Thus $\left(a_{m+1}, a_{m+1}\right) \neq 0$. Comparing (3.23) and (3.24) we find

$$
\begin{equation*}
\mu_{2 m-2}=\frac{(i+2) \lambda}{2 m+2-i} . \tag{3.25}
\end{equation*}
$$

Second, we turn to the other complex numbers. By Lemma 3.2, the stationary index $\sigma_{\imath}=2$. But it is obvious from the inequality in (2.2) that $\delta_{i}=1$ at $z=0$. So Ξ_{\imath} also has a stationary point $z_{0} \neq 0$. Since z_{0} is possibly ∞, we would rather change the coordinate z to $w=1 / z$, and consider

$$
\eta=\sum_{l=0}^{2 m+2} a_{2 m+2-l} w^{l}
$$

the local lift of Ξ around $w=0(z=\infty)$. Let $w_{0}=1 / z_{0}$. Since w_{0} is not a stationary point of $\Xi_{\imath-1}$, but a stationary point of Ξ_{\imath}, it is not hard to see that

$$
\begin{equation*}
\eta \wedge \eta^{\prime} \wedge \cdots \eta^{2}\left(w_{0}\right) \neq 0, \quad \eta \wedge \eta^{\prime} \wedge \cdots \eta^{2+1}\left(w_{0}\right)=0 . \tag{3.26}
\end{equation*}
$$

(3.26) implies that there are numbers $c_{0}, c_{1}, \cdots, c_{\imath}$, such that

$$
\begin{equation*}
\eta^{i+1}\left(w_{0}\right)=\sum_{i=0}^{i} c_{l} \eta^{l}\left(w_{0}\right) . \tag{3.27}
\end{equation*}
$$

Now using (3.1) and (3.2) we can express $\eta^{\prime}\left(w_{0}\right), 0 \leqq l \leqq i+1$, in terms of $a_{0}, a_{1}, \cdots, a_{\imath}, a_{\imath+2}, \cdots, a_{2 m-\imath}, a_{2 m+2-\imath}, \cdots, a_{2 m+2}$ as:

$$
\begin{align*}
\eta^{l}\left(w_{0}\right)= & a_{0}\left[\frac{(2 m+2)!}{(2 m+2-l)!} w_{0}^{2 m+2-l}+\lambda_{0} \frac{(2 m+1-i)!}{(2 m+1-i-l)!} w_{0}^{2 m+1-i-l}\right. \\
& \left.+\mu_{0} \frac{(i+1)!}{(i+1-l)!} w_{0}^{2+1-l}\right]+\cdots+a_{\imath}\left[\frac{(2 m+2-i)!}{(2 m+2-i-l)!} w_{0}^{2 m+2-\imath-l}\right. \\
& \left.+\lambda_{2} \frac{(2 m+1-i)!}{(2 m+1-i-l)!} w_{0}^{2 m+1-\imath-l}+\mu_{2} \frac{(i+1)!}{(i+1-l)!} w_{0}^{2+1-l}\right] \\
& +a_{\imath+2}\left[\frac{(2 m-i)!}{(2 m-i-l)!} w_{0}^{2 m-\imath-l}+\mu_{i+2} \frac{(i+1)!}{(i+1-l)!} w_{0}^{2+1-l}\right]+\cdots \\
& +a_{2 m-2}\left[\frac{(i+2)!}{(i+2-l)!} w_{0}^{2+2-l}+\mu_{2 m-2} \frac{(i+1)!}{(i+1-l)!} w_{0}^{2+1-l}\right] \\
& +a_{2 m+2-2} \frac{i!}{(i-l)!} w_{0}^{2-l} \\
& +\cdots+a_{2 m+2} \frac{0!}{(0-l)!} w_{0}^{0-l}, \quad 0 \leqq l \leqq i+1, \tag{3.28}
\end{align*}
$$

where we put $p!/ q!=0$ in case $q<0$.
From (3.27) and (3.28) we see that $c_{l}=0$ for $0 \leqq l \leqq i$, so

$$
\eta^{2+1}\left(w_{0}\right)=0
$$

which, by (3.28) with $l=i+1$, is equivalent to the following identities:

$$
\begin{gather*}
\frac{(2 m+2-l)!}{(2 m+1-i-l)!} w_{0}^{2 m+1-\imath-l}+\lambda_{l}-\frac{(2 m+1-i)!}{(2 m-2 i)!} w_{0}^{2 m-2 \imath} \\
+\mu_{l}(i+1)!=0, \quad 0 \leqq l \leqq i, \tag{3.29}\\
\frac{(2 m+2-l)!}{(2 m+1-i-l)!} w_{0}^{2 m+1-\imath-l}+\mu_{l}(i+1)!=0, \quad i+2 \leqq l \leqq 2 m-i . \tag{3.30}
\end{gather*}
$$

Set $l=2 m-i$ in (3.30) and use (3.25) we get

$$
\begin{equation*}
w_{0}=-\frac{\mu_{2 m-2}}{i+2}=-\frac{\lambda}{2 m+2-i} \tag{3.31}
\end{equation*}
$$

Thus (3.30) gives (3.22).
To prove (3.20), we first note from (3.3) that for each $r, 0 \leqq r \leqq i-2$,

$$
\left(a_{\imath+1}, a_{2 m+4+r-\imath}\right)=0,
$$

which, with (3.1), implies

$$
\lambda\left(a_{\imath}, a_{2 m+4+r-2}\right)+\lambda_{\imath-1}\left(a_{\imath-1}, a_{2 m+4+r-2}\right)+\cdots+\lambda_{\imath-r-2}\left(a_{\imath-r-2}, a_{2 m+4+r-\imath}\right)=0 .
$$

This identity and Lemma 3.1 give us

$$
\begin{gather*}
\frac{\lambda_{2-r} \lambda^{2}}{(2 m+2-i)^{2}(2 m+2-i+r)!}+\frac{(2 m+5-2 i+2 r) \lambda_{2-r-1} \lambda}{(2 m+2-i)(2 m+3-i+r)!} \\
+\frac{(r+3)(r+3+2 m-2 i) \lambda_{2-r-2}}{(2 m+4-i+r)!}=0 \tag{3.32}
\end{gather*}
$$

On the other hand, we know from Lemma 3.1 that

$$
\begin{aligned}
\left(a_{\imath+1}, a_{2 m+3-\imath}\right)= & \lambda_{i}\left(a_{\imath}, a_{2 m+3-\imath}\right)+\lambda_{\imath-1}\left(a_{\imath-1}, a_{2 m+3-\imath}\right) \\
= & (-1)^{m+1-\imath} \frac{[(m+1)!]^{2}}{(m-i)^{2}(2 m+2-i)!(i-1)!}\left[\frac{2 m+3-2 i}{2 m+2-i} \lambda^{2}\right. \\
& \left.+\frac{4(m+1-i)}{2 m+3-i} \lambda_{\imath-1}\right]\left(a_{m+1}, a_{m+1}\right), \\
\left(a_{\imath+1}, a_{2 m+3-2}\right)= & (-1)^{m-2} \frac{[(m+1)!]^{2}}{(m-i)^{2}(i+2)(i-1)!(2 m+1-i)!} \\
& \times\left[\frac{(2 m-3-2 i)(i+2) \lambda^{2}}{(2 m+2-i)^{2}}+\frac{4(m-1-i)}{i+3} \mu_{2 m-\imath-1}\right]\left(a_{m+1}, a_{m+1}\right) .
\end{aligned}
$$

Comparing these two identities and using (3.22) we get

$$
\begin{equation*}
\lambda_{\imath-1}=-\frac{(2 m+3-i) \lambda^{2}}{2(2 m+2-i)} . \tag{3.33}
\end{equation*}
$$

(3.33) indicates that (3.20) holds for $r=1$. An induction using (3.32) then proves (3.20) for all $r, 0 \leqq r \leqq i$.

Finally, we can derive (3.21) readily from (3.29), (3.31) and (3.20), thus complete the proof. Q.E.D.

By (3.22), (3.6) in Lemma 3.3 can be rewritten as

$$
\begin{equation*}
\left(a_{m+2-r}, a_{m+2+r}\right)=(-1)^{r} \frac{[(m+1)!]^{2} \lambda^{2}}{(2 m+2-i)^{2}(m-i)^{2}(m-r)!(m+r)!}\left(a_{m+1}, a_{m+1}\right) . \tag{3.34}
\end{equation*}
$$

4. Examples

This section devotes itself to constructing concrete examples. For this, we need the following result:

Proposition 4.1. For each integer i satisfying $0 \leqq i \leqq m-1$ and each complex number λ, let numbers $\lambda_{0}, \cdots, \lambda_{2}$ and $\mu_{0}, \cdots, \mu_{i}, \mu_{i+2}, \cdots, \mu_{2 m+2}$ be determined by (3.20)-(3.22). Then the holomorphic polynomial

$$
\xi=\sum_{j=0}^{2 m+2} a_{j} z^{j}
$$

satisfying (3.1)-(3.5) and (3.34) is totally isotropic, and thus defines a totally $\imath s o-$
tropic curve in $\boldsymbol{C} P^{2 m}$.
Proof. It is readily verified that, under the restrictions of the proposition, all the conditions (2.3)-(2.8) are satisfied, and so Lemma 2.1 proves our conclusion.

Examples 4.2. Let $\boldsymbol{e}=\left\{e_{1}, e_{2}, \cdots, e_{m}, e_{0}, e_{m}, e_{m+1}, \cdots, e_{2 m}\right\}^{t}$ be an orthonormal basis for $\boldsymbol{R}^{2 m+1}$, and set

$$
\begin{equation*}
E_{j}=\frac{1}{\sqrt{2}}\left(e_{j}+\sqrt{-1} e_{m+j}\right), \quad 1 \leqq j \leqq m, \quad E_{0}=e_{0} . \tag{4.1}
\end{equation*}
$$

Then $\boldsymbol{E}=\left\{E_{1}, \cdots, E_{m}, E_{0}, \bar{E}_{1}, \cdots, \bar{E}_{m}\right\}^{t}$ is a unitrary basis for $\boldsymbol{C}^{2 m+1}$, the complexication of $\boldsymbol{R}^{2 m+1}$. Fix one integer $i, 0 \leqq i \leqq m-1$, and a complex number λ. Let the numbers $\lambda_{0}, \cdots, \lambda_{2}, \mu_{0}, \cdots, \mu_{2}, \mu_{2+2}, \cdots, \mu_{2 m-2}$ be as in Section 3. To construct an example of totally isotropic curves in $\boldsymbol{C} P^{2 m}$, we need to find a suitable set of $\boldsymbol{C}^{2 m+1}$-valued vectors $a_{0}, a_{1}, \cdots, a_{2 m+2}$ satisfying the conditions of Proposition 4.1. In terms of the basis \boldsymbol{E}, we can write $\boldsymbol{Q}=\left\{a_{0}, a_{1}, \cdots, a_{2}\right.$, $\left.a_{\imath+2}, \cdots, a_{2 m-\imath}, a_{2 m+2-\imath}, \cdots, a_{2 m+2}\right\}^{t}$ as

$$
\begin{equation*}
\boldsymbol{Q}=T \cdot \boldsymbol{E}, \tag{4.2}
\end{equation*}
$$

where T is a nonsingular matrix of order $2 m+1$. Thus we need only to find a special value of T.

Write T in a block form as

$$
T=\left(\begin{array}{lll}
T_{1} & *_{1} & *_{2} \tag{4.3}\\
V & *_{3} & *_{4} \\
T_{2} & *_{5} & *_{6}
\end{array}\right)
$$

with $T_{1}, T_{2}, *_{2}$ and $*_{6}$ being $m \times m$-matrices, $*_{3}$ a number. Set

$$
\begin{gathered}
\alpha_{m+1-s}=(-1)^{s-1} \frac{[(m+1)!]^{2}\left[s^{2}-(m-i)^{2}\right]}{(m+1-s)!(m+1+s)!(m-i)^{2}}, \quad s=1,2, \cdots, m+1, \\
\beta_{m+1-r}= \\
=(-1)^{r} \frac{(2 r+1)[(m+1)!]^{2} \lambda}{(m-i)^{2}(2 m+2-i)(m-r)!(m+1+r)!}, \quad 0 \leqq r \leqq m \\
\gamma_{m+2-r}=(-1)^{r} \frac{[(m+1)!]^{2} \lambda^{2}}{(2 m+2-i)^{2}(m-i)^{2}(m-r)!(m+r)!}, \quad 0 \leqq r \leqq m .
\end{gathered}
$$

In order that the conditions in Proposition 4.1 be satisfied, we put

$$
\left(\boldsymbol{Q}, \boldsymbol{Q}^{t}\right)=\left(\begin{array}{ccc}
0 & 0 & D_{1} \\
0 & 1 & D_{2} \\
D_{3} & D_{4} & D_{5}
\end{array}\right)
$$

where

$$
\begin{aligned}
& D_{1}=\left(\begin{array}{ccccccccccc}
0 & \cdots & \cdots & & & & & & & 0 & \alpha_{0} \\
0 & \cdots & & & & & & & 0 & \alpha_{1} & \beta_{1} \\
0 & \cdots & & & & & & 0 & \alpha_{2} & \beta_{2} & \gamma_{2} \\
\vdots & \cdots & & & & 0 & \alpha_{2} & \beta_{2} & \gamma_{2} & \cdots & \vdots \\
0 & \cdots & & & & 0 & \alpha_{2+2} & \gamma_{2+2} & 0 & \cdots & \\
0 & \cdots & & & 0 & & \\
0 & \cdots & & 0 & \alpha_{\imath+3} & \beta_{\imath+3} & 0 & \cdots & & & \\
0 & \cdots & 0 & \alpha_{\imath+4} & \beta_{\imath+4} & \gamma_{\imath+4} & 0 & & & & \\
\vdots & & & & & \\
0 & \alpha_{m-1} & \beta_{m-1} & \gamma_{m-1} & 0 & \cdots & & & & & 0 \\
\alpha_{m} & \beta_{m} & \gamma_{m} & 0 & \cdots & & & & & & 0
\end{array}\right), \\
& D_{2}=\left(\beta_{m+1}, \gamma_{m+1}, 0, \cdots, 0\right), \quad D_{3}=D_{1}^{t}, \quad D_{4}=D_{2}^{t},
\end{aligned}
$$

and

$$
D_{5}=\left(\begin{array}{cccc}
\gamma_{m+2} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\cdots & \cdots & & \cdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

Since

$$
\left(\boldsymbol{E}, \boldsymbol{E}^{t}\right)=\left(\begin{array}{ccc}
0 & 0 & I_{m} \\
0 & 1 & 0 \\
I_{m} & 0 & 0
\end{array}\right)
$$

where I_{m} is the identity matrix of order m, we see from (4.2) and (4.3) that

$$
\left\{\begin{array}{lc}
*_{2} \cdot T_{1}^{t}+*_{1} \cdot *_{1}^{t}+T_{1} \cdot *_{2}^{t}=0, & *_{2} \cdot V^{t}+*_{1} \cdot *_{3}+T_{1} \cdot T_{4}^{t}=0 \tag{4.5}\\
*_{2} \cdot T_{2}^{t}+*_{1} \cdot *_{5}^{t}+T_{1} \cdot *_{6}^{t}=D_{1}, & *_{4} \cdot V^{t}+*_{3}^{2}+V \cdot *_{4}^{t}=1 \\
*_{4} \cdot T_{2}^{t}+*_{3} \cdot *_{5}^{t}+V \cdot *_{6}^{t}=D_{2}, & *_{6} \cdot T_{2}^{t}+*_{5} \cdot *_{5}^{t}+T_{2} \cdot *_{6}^{t}=D_{5}
\end{array}\right.
$$

To simplify \boldsymbol{Q}, we put $V=*_{1}^{t}=*_{4}=0, *_{2}=0$, and $*_{3}=1$. Then (4.5) becomes

$$
\begin{equation*}
T_{1} \cdot *_{6}^{t}=D_{1}, \quad *_{6} \cdot T_{2}^{t}+*_{5} \cdot *_{5}^{t}+T_{2} \cdot *_{6}^{t}=D_{5}, \quad *_{5}=D_{2}^{t} . \tag{4.6}
\end{equation*}
$$

Suppose also that $*_{6}=I_{m}$ and that T_{2} is symmetric, then

$$
\begin{equation*}
T_{1}=D_{1}, \quad T_{2}=\frac{1}{2}\left(D_{5}-D_{2}^{t} \cdot D_{2}\right) . \tag{4.7}
\end{equation*}
$$

Thus we obtain a value $T(i, \lambda)$ of the matrix T, or, a special solution $\boldsymbol{Q}(i, \lambda)$ of \boldsymbol{Q} as

$$
\begin{aligned}
& a_{0}=\alpha_{0} E_{m}, \quad a_{1}=\alpha_{1} E_{m-1}+\beta_{1} E_{m}, \quad a_{2}=\alpha_{2} E_{m-2}+\beta_{2} E_{m-1}+\gamma_{2} E_{m}, \cdots, \\
& a_{\imath}=\alpha_{\imath} E_{m-i}+\beta_{\imath} E_{m-\imath+1}+\gamma_{\imath} E_{m-\imath+2}, \quad a_{\imath+2}=\alpha_{\imath+2} E_{m-\imath-1}+\gamma_{\imath+2} E_{m-\imath}, \\
& a_{\imath+3}=\alpha_{\imath+3} E_{m-\imath-2}+\beta_{i+3} E_{m-\imath-1}, \quad a_{\imath+4}=\alpha_{\imath+4} E_{m-\imath-3}+\beta_{\imath+4} E_{m-\imath-2}+\gamma_{\imath+4} E_{m-\imath-1},
\end{aligned}
$$

$$
\begin{aligned}
& \cdots, \quad a_{m}=\alpha_{m} E_{1}+\beta_{m} E_{2}+\gamma_{m} E_{3}, \quad a_{m+1}=E_{0}, \\
& a_{m+2}=\bar{E}_{1}+\frac{1}{2}\left(\gamma_{m+2}-\beta_{m+1}^{2}\right) E_{1}-\frac{1}{2} \beta_{m+1} \gamma_{m+1} E_{2}+\beta_{m+1} E_{0}, \\
& a_{m+3}=\bar{E}_{2}-\frac{1}{2} \beta_{m+1} \gamma_{m+1} E_{1}-\frac{1}{2} \gamma_{m+1}^{2} E_{2}+\gamma_{m+1} E_{0}, \\
& a_{m+4}=\bar{E}_{3}, \cdots, \quad a_{2 m-2}=\overline{E_{m-2-1}}, \quad a_{2 m+2-2}=\overline{E_{m-2}}, \cdots, \quad a_{2 m+2}=E_{m} .
\end{aligned}
$$

Now we define

$$
\begin{aligned}
& a_{2+1}=\lambda_{0} a_{0}+\cdots+\lambda_{i} a_{\imath} \\
& a_{2 m+1-2}=\mu_{0} a_{0}+\cdots+\mu_{i} a_{i}+\mu_{2+2} a_{\imath+2}+\cdots+\mu_{2 m-i} a_{2 m-\imath}
\end{aligned}
$$

Then it is directly verified that the polynomial

$$
\xi=\sum_{j=0}^{2 m+2} a_{j} z^{j}
$$

satisfies all conditions of Proposition 4.1, therefore defines a totally isotropic curve $\Xi(i, \lambda)$. Also, when $0 \leqq i \leqq m-1, ~ \Xi(i, \lambda)$ corresponds to a minimal immersion $x(i, \lambda): S^{2} \rightarrow S^{2 m}(1)$, the degree of which is, by definition, $2 m+2$.

Remark 4.3. By a change of order of E_{0}, \cdots, E_{m} as E_{m}, \cdots, E_{1}, it is easily seen that the special curve $E(0, \lambda)$ is nothing but the curve Ξ_{λ} given in [1].

5. Explicit representations and the classification theorem

By the methods used in [1], we can obtain explictt representations for all full minimal immersions $x: S^{2} \rightarrow S^{2 m}(1)$ of degree $2 m+2$, which we state briefly as follows:

For any of such immersion x, let Ξ be the directrix of it. Then Ξ is a totally isotropic curve in $\boldsymbol{C} P^{2 m}$ of degree $2 m+2$. Recall the discussions in Section 3, there exist an integer i with $0 \leqq i \leqq m-1$, a complex coordinate z on S^{2}, and a complex number λ, such that Ξ has a local lift

$$
\xi=\sum_{j=0}^{2 m+2} a_{i} z^{\prime},
$$

in which, $\left(a_{m+1}, a_{m+1}\right)=1, \boldsymbol{Q}=\left\{a_{0}, \cdots, a_{\imath}, a_{2+2}, \cdots, a_{2 m-\imath}, a_{2 m+2-\imath}, \cdots, a_{2 m+2}\right\}^{t}$ is a basis for $C^{2 m+1}$, and (3.1)-(3.5), (3.34) hold for numbers $\lambda_{0}, \cdots, \lambda_{i}, \mu_{0}, \cdots, \mu_{i}$, $\mu_{i+2}, \cdots, \mu_{2 m-2}$ given by (3.20)-(3.22). Let \boldsymbol{A} be in $G L(2 m+1, \boldsymbol{C})$, such that

$$
\boldsymbol{Q}=\boldsymbol{A}(\boldsymbol{Q}(i, \lambda)),
$$

and A the matrix of \boldsymbol{A} with respect to \boldsymbol{E}. Then

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{A}(\boldsymbol{Q}(i, \lambda))=T(i, \lambda) \boldsymbol{A}(\boldsymbol{E})=[T(i, \lambda) \cdot A] \boldsymbol{E} \tag{5.1}
\end{equation*}
$$

On the other hand, by Lemmas 3.1 and 3.3 , we know that

$$
\left(\boldsymbol{Q}(i, \lambda), \boldsymbol{Q}^{t}(i, \lambda)\right)=\left(\boldsymbol{Q}, \boldsymbol{Q}^{t}\right)=\left(\boldsymbol{A}(\boldsymbol{Q}(i, \lambda)), \boldsymbol{A}\left(\boldsymbol{Q}^{t}(i, \lambda)\right)\right),
$$

which is equivalent to

$$
\left(\boldsymbol{A}^{t} \cdot \boldsymbol{A}\left(\boldsymbol{Q}(i, \lambda), \boldsymbol{Q}^{t}(i, \lambda)\right)=\left(\boldsymbol{Q}(i, \lambda), \boldsymbol{Q}^{t}(i, \lambda)\right)\right.
$$

or,

$$
\left(\left(\boldsymbol{A}^{t} \cdot \boldsymbol{A}-\boldsymbol{I}\right)(\boldsymbol{Q}(i, \lambda)), \boldsymbol{Q}(i, \lambda)\right)=0,
$$

with \boldsymbol{I} the identity of $G L(2 m+1, \boldsymbol{C})$. Since $\boldsymbol{Q}(i, \lambda)$ is a basis for $\boldsymbol{C}^{\boldsymbol{2 m + 1}}$, we can get easily that

$$
\begin{equation*}
\boldsymbol{A}^{t} \cdot \boldsymbol{A}=\boldsymbol{I} \tag{5.2}
\end{equation*}
$$

Using (5.2) and suitably choosing \boldsymbol{E}, one finds (for details, see [1]):

$$
A= \pm\left(\begin{array}{ccc}
A_{1} & 0 & 0 \tag{5.3}\\
V & 1 & 0 \\
A_{2} & \left(A_{1}^{-1}\right)^{t} \cdot V^{t} & \left(A_{1}^{-1}\right)^{t}
\end{array}\right)
$$

with A_{1} a lower triangular matrix of order m, V a row vector of dimension m, and A_{2} determined by

$$
\begin{equation*}
A_{2}=-\frac{1}{2}\left(A_{1}^{-1}\right)^{t} \cdot V^{t} \cdot V+C \cdot A_{1} \tag{5.4}
\end{equation*}
$$

where C is an antisymmetric ($m \times m$)-matrix.
Conversely, given arbitarily an integer i with $0 \leqq i \leqq m-1$, a complex number λ, a nonsingular, lower triangular matrix A_{1} of order m, an m-dimensional vector V and an antisymmetric ($m \times m$)-matrix C, we obtain by (5.3) and (5.4) a matrix A of order $2 m+1$, and then a basis for $C^{2 m+1}$ by (5.1). A direct verification using Proposition 4.1 shows that the polynomial

$$
\xi=\sum_{\imath=0}^{2 m+2} a_{\jmath} z^{\jmath}
$$

defined by $\boldsymbol{Q},(3.1),(3.2)$ and (3.20)-(3.22) is totally isotropic, therefore gives a minimal immersion $x: S^{2} \rightarrow S^{2 m}(1)$ of degree $2 m+2$.

Thus (5.1), (5.3) and (5.4) define an explicit representation of full minimal immersions $x: S^{2} \rightarrow S^{2 m}(1)$ of degree $2 m+2$, in terms of independent parameters.

Finally, for each $i=0,1, \cdots, m-1$, we can use the same arguments as in Remark 5.8 of [1] to obtain the following result:

PROPOSITION 5.1. Up to isometries, the set of all totally isotropıc, linearly full curves $\boldsymbol{\Xi}: S^{2} \rightarrow \boldsymbol{C} P^{2}$ of degree $2 m+2$, of which only the i-th associated curve fails to be an immersion, has a natural structure diffeomorphic to the trivial bundle

$$
G B=\&_{2} \times \frac{S O(2 m+1, \boldsymbol{C})}{S O(2 m+1, \boldsymbol{R})},
$$

with $\&_{2}$ the quotient space of $\&=S^{2} \times \boldsymbol{C}$ by an action of the modulo group $Z_{2}=$ $\{-1,1\}$.

As for the directrices of the full minimal immersions x of S^{2} into $S^{2 m}(1)$, the case $i=m-1$ can not occur. Hence, combining Lemma 3.2 and Proposition 5.1 , we complete our classification. The conclusion is,

Theorem 5.2. The set of full minimal immersions $x: S^{2} \rightarrow S^{2 m}(1)$ of degree $2 m+2$ is, modulo isometries, diffeomorphic to a disjoint union of $m-1$ copies of the trivial bundle $G B$.

Remark 5.3. The area formula (See $[1,2]$) gives the area of immersions x in Theosem 5.3 as

$$
\begin{equation*}
A(x)=2 \pi[m(m+1)+2(i+1)], \quad 0 \leqq i \leqq m-2 . \tag{5.5}
\end{equation*}
$$

So the case $i=0$ is just that discussed in [1].
Acknowledgement. The author is grateful to Professors An-Min Li and Guosong Zhao for their valuable suggestions and constant encouragement in the preparation of this paper.

References

[1] Xingxiao Li and An-Min Li, Explicit representations of mınımal ımmersions of the 2 -sphere into $S^{2 m}$, preprint.
[2] J. L. Barbosa, Minimal immersions of S^{2} into $S^{2 m}$, Trans. Amer. Math. Soc., 210 (1975), 75-106.
[3] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willy \& Sons, New York, 1978.

Department of Mathematics
Sichuan University
Chengdu 610064, Sichuan
P. R. China

Current Address

Department of Mathematics
Henan Normal University, Xinxiang 453002
Henan, P. R. China

