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MINIMAL IMMERSIONS OF S* INTO S**(1)
WITH DEGREE 2m+2

XINGXIAO LI

1. Introduction

In a previous paper [1], by solving completely the totally isotropic condition,
we obtained explicit repressentations for all full minimal immersions with area
2x[m(m+1)+2] of the 2- sphere S? into the 2m-dimensional Euclidean sphere
S?™(1) of radius 1, from which we get a classification theorem. It turned out
that all those immersions are of degree 2m-+2 (for definition, see Section 2
below). Naturally one asks: Are there any more full minimal immersions x :
S?—S?™(1) of degree 2m+2 other than those of area 2z[m(m+1)+2]? How
would they be like?

To answer these questions, it needs further analysis. Using the method
developed in [1] we first give, in Section 4 of the present paper, much more
concrete examples, and then obtain the corresponding explicit representations
in terms of independent parameters. At the same time we complete, in Section
5, the classification of the minimal immersions of degree 2m-2.

2. Preliminaries

Barbosa [2] established a bijection between the set of all full, generalized
minimal immersions x: S?*—S?™(1) and that of all linearly full, totally isotropic
curves & : S2—CP?™, where CP?™ is the 2m-dimensional complex projective space
of constant holomorphic curvature 4, with such immersions corresponding to
their directrices.

Therefore, we can naturally define the degree of a minimal immersion x :
S?—S?™(1) to be the degree of its directrix 5 as a holomorphic curve in CP*™,
and denote it by deg(x)=degZ.

Denote by C the field of complex numbers, and fix a stereo-graphic projec-
tion of S%*1) onto C to get a local complex coordinate z, z&C, such that the
induced metric by x can be written as ds?*=2F|dz|2. It is well known that
each holomorphic curve 5: S*—CP?™ has a local representation (or lift) as
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where a,,1=0, 1, 2, ---, n, are vectors in C?™*', and if & has no zero on C,
then n=degX. In what follows we always agree to this.

If (-, -) is the canonical symmetric product of C?™*!, then the total isotropy
of £ is equivalent to that [2]

(&, ¢)=0, 0=i+y<2m—1, 2.1)
where & :=£®=d*¢/dz".

Let 5,: S'~CP", N=( 2:.":11 )i

curves of &£ [3], which are determined by

=0,1, 2, ---, 2m—1, be the associated

ENE'N-NE L STP— CVi*', =0, 1,2, -, 2m—1.

Obviously &,=25.

In the remains of this paper, we denote for each z, 0</<2m—1, by ¢, the
stationary index of &,, and J; the stationary multiplicity of 5 at any fixed
point of S%. Then we have (one can see [2] for details):

degE=2m+ "ij ., degEme-i—Z"S:Bi. 2.2)
LEMMA 2.1 [1]. Let &: S2—CP* be a linearly full curve of degree 2m--2.

If §=310"Fa,z" is a local lift of E, then 5 is totally isotropic if and only 1f
the following hold :

(1) (a,, a;)=0, except i+5=2m+p, 0<p=4, 2.3)
- ” (m!)?
(2) (am—r’ am+f)——(~1) (m_r) !(m+r)! (a’ﬂh am)) (2‘4)
1y @Cr+1L)m !(Lﬂ—i—l)!_
@) (@n-r Amsrs)=(—1) =) mt14r)1 (@m, amsr), 2.5)
4) (@ms1-s5) Cmyres)=(—1)*"" (m—l—l—s) |1(m+1+s)—“ {s*m!im+2) am, Gmy2)
+(P=DIm+D I ans1, Qnan)}, s=1, 2, -, m+1, (2.6)

@r+1m(m-+1)!

(5) (am+l—7‘) am+2+1‘):(_1)r (m_r) !(m+1+r)! (am+]) am+2): (2'7)
() (mD?
(6) (am+2-—n am+2+r)—(—'1) (m_r) '(m—l—r)' (am+2; am+2): (28)

where r=1, 2, ---, m.

LEMMA 2.2 [1]. Let é=3%ya;z" be a C*™*'walued polynomial, N a non-
negative integer. If we denote by p the multi-indices (po, pi, -, pPn) Such that
0= po<p< - <pyEn, then
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E/\S’/\-~~/\§N=§iI>I](Pi—P;)z“mapo/\ ApiA\- Ny

= 2[ > H(pi_‘pj)apo/\am/\"’/\apN]Zk,

E20LL(p)=Fk i>)

where I(p)=2>l1s.sv pi—NIN+1)/2.

LEMMA 2.3 [1] Let N =2 be an integer, and a,, a,, -, ay., be vectors in
a complex space C*. Then, a,, a,, -, ay,, are linearly related if and only if
the exterior vectors a,/\---Aay and a,;/\---Nay_1/\ay,, are parallel in NYC™.

3. Fundamental lemmas

This section will be devoted to proving some lemmas that are essential in
the present paper.

LEMMA 3.1. Let &: S*—>CP* be a linearly full, totally isotropic curve with
degree 2m~+2. If z=0 s one stationary point of an associated curve 5, for some
7, 0<i<m—1, and £=302"2a;2’ is a local lift of 5, then there are numbers 1,
meEC, 0=7<i, 05U<0 or 14+-251<2m—1, such that

al+l:"4:l-:l)’zja]; (31)
P am—1
aZm+l—1:J§’fliai+]=§2#ia]' (32)

Also we have,
(1) Aa,, 1%, 2m+1—1i} is a basis for C*™*,

(2) (a,, ap)=0, except y+k=2m+2, 2m+3, 2m-+4, 3.3)

= oy LmAD1TP[s?—(m—1)"]
3) (@msi-s, Amsr1rs)=(—1) (m4+-1—3s) m-+1+s) (m—i)? (@ms1, Qmsr),

s=1,2, -, m+1, (3.4)

(4) (am+1-—r; am+1+r)
@Cr+D[(m+1) 17122

:(‘l)r (m_l)z(2m+2_z-)(m_r) '(m+1+7’)! (am+l) am+l)y (3'5)
1y [Om+1)1)*
(5) (am+2-n am+2+r)—'(—1) (m—z)z(z+2)(m—7’)!(m+7’)‘
2m—3—2( 4(m—1—1)
X[ml#zm—i‘*‘T#2n;—1-z](am+1y Ami1), (3.6)

where r=0, 1, ---, m, and A=A4,.
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Proof. By Barbosa [2], for any j, 0<j<m—1, the associated curves, =,
and H,,._,_, have the same stationary points and the same multiplicity at each
point. So z=0 is a stationary point of Z,._._,. On the other hand, it is easily
seen from the inequality in (2.2) that z=0 is not the stationary point of %, if
7+#1, 2m—1—7 and that 0;=0,n_,=1 at z=0.

First, the fact that z=0 is not the stationary point of 5,_, and Lemma 2.3
give

ENE'N---NEN0)#0. 3.7

Second, the fact that z=0 is the stationary point of &, gives

ENE N NEFH0)=0. (3.8)

(3.7) and (3.8) are equivalent to that a,, a,, ---, a, are linearly independent
and a,, a,, -+, a,, a,,, are linearly related. Thus we get (3.1).
Now using (3.1) and Lemma 2.2 we can obtain

ENE N NE=0 mod(z77Y), ISj<2m—1—1. (3.9)

So,
{:] ::21~JE/\EI/\.../\EJ

is a nonzero local lift of 5, around z=0, :<;<2m—1—:.
Since z=0 is not the stationary point of 5,,_,_,. We see that

52111-—2-—1, /\S;m—z—i(o):ﬁo . (310)

On the other hand, &,,_;_, has z=0 as one of its stationary points, so

Szm—l—1/\$ém—l~i(0):0~ (3.11)
(3.10) and (3.11) imply, in view of Lemma 2.3, that a,, a, ---, @, Gyis, -,
Qym-, are linearly independent and a,, @, -, G, Qyss, *, Gom—1, Qoms1-, Are
linearly related, and hence we get (3.2).
Now the fullness of & implies that a,, ay, =+, Gy, Qursy * Gomr, Gomrss

Qomy+e must hull C*™*! and so they form a basis for C*™*'

Finally, it is not hard to see, by direct calculations, that (3.3) follows from
(2.3), (2.4), (2.5) and (3.1); (3.4) from (2.6), (3.1) and (3.3); (3.5) from (2.7), (3.1),
(3.3) and (3.4); (3.6) from (2.8) and (3.2)-(3.5). For example, we derive (3.6)
as follows:

From (3.2)-(3.5) we find

(G143 Qoms1os)

:ﬂ2m-i(az+3: aZm~z)+ﬂ2m—1-i(az+3y Qom-1-1)

= o y(— 1y L2 —i=2)+1][(m+1) 1]*2
Mam—s (m—1)2Cm~+-2—5)G+2) (2m—i—1)

v (@m+1, Amst)
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m-s-y LM A1) L Om—i =2)*—(m—)*]
+ptom-1-:(—1) (m—0)G+3)2m—1—i)! (Ams1, Gmsr)
_ (~DmfmADI 2m—2i-3
T (m—iGE+2)12m—i—1)! [2m+2—z‘ Ham—
4(m—i—1)

+ ‘—;_,_3 T Mem-1-1

But from (2.8) we know that

A

](am+h am+1)~ (3.12)

! 2
(@urn Gamar- ) == D" gt s G, (B13)
Comparing the right hand sides of (3.12) and (3.13) we get
[m4+1)17% 2m—2/—3
12 —w\marl)r]l | emmarTo
D@, o)== o o | sy~ hem 2
dm—i—1

+'"_(J:n7__‘71§*l‘ﬂ2m—l—z](a m+1y am+1)' (3-14)

Insert (3.14) into (2.8) one can obtain (3.6). Q.E.D.

LEMMA 3.2. Let &: S?—CP?™ be a linearly full curve of degree 2m--2.
If & is totally isotropic, then there exists some integer i, 0<i<m—1, such that
a;=2, and other ¢,=0 for 0<j<m—1, y%i. That is, all associated curves 5,,
0<7<m—1, except some 5,, are immersions.

Proof. By the assumption and (2.2), we have
00+01+"'+0m—1:2- (3.15)
So only two cases can occur:

CASE 1. For some 7, 05/<m—1, ¢;=2, and so ¢,=0 for other ;, 0<;<m
—1;

CAse 2. For some 7, j, 0<i<j<m—1, g,=0,=1, 6,=0 for other [, 0<I/<
m—1.

Thus to prove Lemma 3.2, we need only to show that Case 2 is impossible.
To this end, we suppose the contrary. Let p, ¢ be the stationary points of &,
and 5, respectively. Then the inequality in (2.2) implies that p+¢. Change
the complex coordinate z if necessary, we can make p, ¢ be the points z=0
and z=oo respectively. By Lemma 3.1, 5 has a local lift as

2m+2
8: E alZLy
=0
satisfying (3.1) and (3.2) for some complex numbers Ao, -, Ay, fo, =+, is Mise,

oy Mem-ae
On the other hand, if we set w=1/z, then w is a new complex coordinate
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such that w=0 is the stationary point of 5,. So applying Lemma 3.1 again to
the local lift of 5 :

2m+2

N= 2 Gamie W',
i=o0
we know that there are numbers g, ---, 45, po, -+, ¢}, fysa, =, ptam_, Such that
J
Qom1-7= g}%azmw—l; (3.16)
, LTI
Ay = Z.‘.(y)#zazmw_z'i‘ l§2ﬂ102m+2_z- 3.17)
If /2;.“:0, then (3.16) indicates that Qomi1-3 Qomiz—p "5 Qam-y, Qomiz—z, **°

Qym4e are linearly related, contradicting (1) in Lemma 3.1.
So, 4;,:#0. Without loss of generality, we can assume A;,,=—1. Then
(3.16) says

oslsy ,
azm+1_1:’—02m+l—j+ 2 Zlazmn—l;
l#1+1
which with (3.2) gives
2m—1
Aomi1-2=— > HiQr—Camyi-g - (318)
l=2m+2-j
If y:H:O, then Qyp1y Qyae, 05 Qom-jyy, Qomyz—y 5 Qom—yy Qomys—q, *°, Qoms2

are linearly related, contradicting (1) in Lemma 3.1.
So pi.1#0. Take, for example, p;,;=—1. Then (3.17) can be rewritten as

0sls) , 2m—y ,
(121n+1—1:—a_7+1+’Zlﬂla2m+2—l+lZ*QﬂlaﬂlnPl—I)
=7

Fi+

which compared with (3.2) implies

2m-1 2m-—

azm+1—z=_a;+1+l=2m2 ﬂzat+12+iﬂzaz- (3.19)

to-j <7
(3.18) and (3.19) give us that

2m-j

Qys1—Qamy1-;= 2 tag,
l=7+2

that is, @,,1, -**, @am_;, @ams+1-, are linearly related, which also contradicts (1)
in Lemma 3.1. This completes the proof. Q.E.D.

LEMMA 3.3. Under the conditions of Lemma 3.1, the complex numbers A,
tr, 057<i, and p,, i+2=j7=<2m—i are uniquely determined by the number A=A4,.
In fact we have

i) I
@Cm+2—i+7r)12 0<r<i, (3.20)

Aer =D i \@m 2= @mt 2= 1 =
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—(_1)*T (2m+2—7)! A gmttoorf 1 )
=T (2m+2—i> [(ng:-:;ﬁ
1 .
~Gmmrint) == 3.21)

(2m+2—s)' (wyw,zmiA_)Zmﬂ—z—s
@E+D1@2m~+1—i—s)! \2m~+2— ’

i+25s<2m—i. (3.22)

pr=(=1

Proof. First we calculate pom-,. By (3.2)-(3.4),

(az +2 aZm+1—z):ﬂ2m—i(at+2; azm-z)

[(m+1)11*(2m—2i—1)

:l’CZm—i('—1)m_l+1 (i+2) !(Zm_i) !(m_l')z (am+1) amq—l)' (3-23)
But by (3.5),
e [20m—i— DALt D1
(@142, Gomyr—)=(—1) m—i)2G+1) 1@m+2—i)(2m—i)] (@ms1y Qmyr) -
(3.24)

If (@m+1, Qms1)=0, then the (m-+1)-dimensional subspace spanned by a,, a,,
', @y, Qyye *, Gmyr 1S totally isotropic by (3.3), contradicting the general fact
that the totally isotropic subspace in C?™*! is at most m-dimensional. Thus
(@ms1, Gms)#0. Comparing (3.23) and (3.24) we find

22
,u27n—1,— 27n+2~*l . (325)

Second, we turn to the other complex numbers. By Lemma 3.2, the sta-
tionary index ¢,=2. But it is obvious from the inequality in (2.2) that §;=1
at z=0. So 5, also has a stationary point z,#0. Since z, is possibly co, we
would rather change the coordinate z to w=1/z, and consider

2m+2
n= lgo am+2_lw’,

-
=)

the local lift of & around w=0 (z=). Let w,=1/z,. Since w, is not a sta-
tionary point of Z,_;, but a stationary point of Z,, it is not hard to see that

PAD N\t (w,) #0, PAD N (we)=0. (3.26)
(3.26) implies that there are numbers ¢, ¢, -, ¢,, such that
" w,e)= E’Cﬂ]l(wo) . (3.27)

Now using (3.1) and (3.2) we can express %’(w,), 0<I/<i{+1, in terms of

Aoy, @1, vy Aoy Qoyay 5 Qamoyy Q2maz—y, ", Qamya @S
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g i U Gy
o T s G v

_-(Z+2)‘ _qpite-l A_(Z+1)'__ 1+1-1
“”‘“[ Gha—pt W0 ey ]

7!
l
+ Aamag—y 7(\717.?777# 103

)!

|
+"'+azm+2—(6%l‘)7w3_l, 0=i<i+1, (3.28)

where we put p!/g!=0 in case ¢<0.
From (3.27) and (3.28) we see that ¢;=0 for 0</<7, so

771+1(w0>:0 ’

which, by (3.28) with /=7+1, is equivalent to the following identities :

@mi2—D! L . @mild!
fora ey L ey
FmGH)1=0,  0<i<i, (3.29)
—N!
_(z(i—’r—;%é)—l')—,wgm“-"lwl(iJrl)!:o, P42 I<om—i. (3.30)
Set [=2m—: in (3.30) and use (3.25) we get
—_._/fi"j:_‘__-_vvj,*, 3
=T T dma—i 33D

Thus (3.30) gives (3.22).
To prove (3.20), we first note from (3.3) that for each r, 0<r<;—2,

(au»ly azm+4+r—z):O’
which, with (3.1), implies

]((I,, a2m+4+r—z)+/21,—1(a1.-1y a2m+4+r—t)+"'+/zt—r—2(at—‘r—2’ aZm+4+T—t):O-

This identity and Lemma 3.1 give us
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I S (2m~+-5—21+2r)4, ;1A
@Cm+2—20)2m~+2—i+7r)!  Cm4+2—i)2m~+3—i+7r)!
(r+3)(r+3+2m—20)4, r» _
T Gt =0. (3.32)

On the other hand, we know from Lemma 3.1 that

(al+1) a2m+8~z):li(au a2m+3—1)+11—1(az—1y a2m+3~1)

=(—Dmr [(m+D!]? [_2m+3—2i 2
o (m—0)?2m~+2—0)\¢—1! L 2m+2—7

(s [om+1)17° A
(@ Gomes-)=(= D™ s D) (@A 1=
[(2m~3—-2i)(z’+2)22 A(m—1—i)

2m—+-2—1)* i+3

ﬂzm—z-l](amn; Q).

Comparing these two identities and using (3.22) we get

(2m+3—1)A?
T 2@m42—0)
(3.33) indicates that (3.20) holds for »=1. An induction using (3.32) then
proves (3.20) for all », 0=r=<i.
Finally, we can derive (3.21) readily from (3.29), (3.31) and (3.20), thus
complete the proof. Q.E.D.

/21—1:

(3.33)

By (3.22), (3.6) in Lemma 3.3 can be rewritten as

[(m+1)1122%
@2m~+2—0)*(m—i)*(m—r) (m-+7)!

(@ms1y Cmsr).

(3.34)

(am+2—ry am+2+7):(—1)r

4. Examples

This section devotes itself to constructing concrete examples. For this, we
need the following result:

PROPOSITION 4.1. For each integer i satisfying 0<i<m—1 and each complex
number 2, let numbers Ay, -+, A, and po, -+, pi, Pise 5 pamse be determined by
(3.20)-(3.22). Then the holomorphic polynomial

2m+2

§= 3 a;&
2=0

satisfying (3.1)-(3.5) and (3.34) is totally isotropic, and thus defines a totally 1iso-
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tropic curve in CP*™,

Proof. 1t is readily verified that, under the restrictions of the proposition,
all the conditions (2.3)~(2.8) are satisfied, and so Lemma 2.1 proves our conclusion.

Examples 4.2. Let e={ey, ey, -, em, @, €m, €m+1, ***, €am} "’ be an orthonormal
basis for R®>™*!, and set

EJ:71_21(ej+\/:ie1n+]>; 1§]§m, Ey=e,. (4.1)

Then E={E,, -, En, Eo, E,, -, E»}! is a unitrary basis for C*™*! the com-
plexication of R*™*!, Fix one integer 7, 0</<m—1, and a complex number A.
Let the numbers A, -, A, o, ***, s sz =, fam-. be as in Section 3. To
construct an example of totally isotropic curves in CP?*™, we need to find a

suitable set of C*™*'-valued vectors a,, a,, ---, @,m.. Satisfying the conditions
of Proposition 4.1. In terms of the basis E, we can write Q={a,, a,, -, a,,
Ayrzy 5 Qoam-1y Qomyn-1, azrn+2}t as

Q=T -E, (4.2)

where T is a nonsingular matrix of order 2m-+1. Thus we need only to find
a special value of T.
Write T in a block form as
Ty % %
T={V % =* (4.3)

Ty #5 %
with Ty, T,, *, and %, being mXm-matrices, *, a number. Set

e [mD 1[5t (m—i)*] i
am+1—s'*( l) (m+1_s) !(m+1+s) !(m_l-)z ’ s_l) 2) ’ m+1 )
~ @r+Dm+1)17°4
(m—0)22m~+2—i)(m—r)(m+14+r)!"’

. [on+1) 1722
Tmver = e R m— D m—P T * OST=M

In order that the conditions in Proposition 4.1 be satisfied, we put

0<r<m,

ﬁmﬂ—r:("‘l)r

0 0 D
@ Q9= 0 1 D,
D3 D,; D5

where
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0 0 a
0 0 a B
Q 0 a 52 T2
0 0 a B n '
D=0 0 QAyiz Yrse 0
0 0 s fuss O ’
Q 0 2P ﬂ1+4 Ta+a 0
0 @nor Bmor Fma 0 o 0
‘@n B T 0o - 0
D2:(,8m+1, Tm+1s 0, -,0), D,= 5, D= é;
and
Tm+2 0 -0
| 0 0 - 0
=
0 0 0/
Since
0 0 I,
(E,EH=[ 0 1 0 |,
I, 0 0

where I, is the identity matrix of order m, we see from (4.2) and (4.3) that

sg Tl 4T - %5=0, *go Vs kg +T1-Ti=0,
sy Th4a, - #f+T1 - #{=Dy, w0 VIV -#f=1, (4.5)
#y - Thtug 44V - #i=D,, ko Th4s5 %l 4+ Ty xb=Djy .

To simplify @, we put V=#!=x,=0, %,=0, and *;=1. Then (4.5) becomes
Ti#b=D,, g Thtxs-%t+Ty%=D;, *;=Dj. (4.6)

Suppose also that *x¢=1I,, and that 7', is symmetric, then
1
T,=D, Tzz'é‘(Ds’Dé‘Dz) . (4.7)

Thus we obtain a value T'(7, ) of the matrix 7T, or, a special solution Q(, 2)
of @ as

Go=aoEn, alzalEm—1+,BlEmy Q=0 E o s+ BeEm_1+72Em, -,
az:azEm—i+ﬁzEm—z+1+T1,Em—z+2y az+2:az+2Em—1—l+T1+2Em-z;

3= 3Em 2t BivsEmoiy, Gus=a B s+ BiniEn it riiiEn 1,



362 XINGXIAO LI
" am:amE1+}3mE2+rmE3; Am1=E,,
= 1 1
am+2:E1+'2_(Tm+2"‘,8$n+l)El_§‘,BM+1Tm+1E2+,Bm+1E0;

1

= 1
am+3=E2— ?ﬁmﬂrmq-lEl— '_2"7'%71+1E2+rm+1E0 »

am+4=E3r v Geme,=FEn_, iy, a2m+2—z:E1n—u ) a2m+2:Em~

Now we define
A1 =A0y+ -+ Aia,,
a2m+1—z=ﬂoao+"'+ﬂiai+#z+2a1+2+"'+‘U2m—ia2m—r, .

Then it is directly verified that the polynomial

2m+2

§= 2 a;7
i

satisfies all conditions of Proposition 4.1, therefore defines a totally isotropic
curve 5(, A). Also, when 0<:<m—1, 5(i, 2) corresponds to a minimal immersion
x(z, A): S?—S5*™(1), the degree of which is, by definition, 2m-2.

Remark 4.3. By a change of order of E,, -, E, as E,, -+, E,, it is
easily seen that the special curve Z(0, 2) is nothing but the curve 5, given
in [1].

5. Explicit representations and the classification theorem

By the methods used in [1], we can obtain explicit representations for all
full minimal immersions x: S?*—S?™(1) of degree 2m+42, which we state briefly
as follows:

For any of such immersion x, let & be the directrix of it. Then & is a
totally isotropic curve in CP?™ of degree 2m-+42. Recall the discussions in
Section 3, there exist an integer ¢ with 0</<m—1, a complex coordinate z on
S2, and a complex number A, such that & has a local lift

2m+2
= X a;z’,
7=0
in which, (@ms1, @ne)=1, @={ay, ', @y, Cris, **, Qamos, Cames—ss 5 Qzmye}® IS
a basis for C*™*!, and (3.1)-(3.5), (3.34) hold for numbers A, -, 4, fo, =+, s,
Liver 5 Mem—, given by (3.20)-(3.22). Let A be in GL(2m+1, C), such that
Q=A4(Q(, 1),

and A the matrix of 4 with respect to E. Then
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Q=AQG, ))=T3G, DAE)=[T@E, A)-AJE . 6.1
On the other hand, by Lemmas 3.1 and 3.3, we know that
(QG, 1), Q'G, N)=(Q, @")=(A(Q(, 1), AQ'G, 1)),
which is equivalent to

(A*-AQG, A), Q'G, )=(QU, 4), Q'G, A)
or,

(A" A-I)QG, 4), QG, 2)=0,

with I the identity of GL2m-+1, C). Since Q@, A) is a basis for C*™*!, we
can get easily that
At-A=1. (5.2)

Using (5.2) and suitably choosing E, one finds (for details, see [1]):

A, 0 0
A=+ V 1 0 (5.3)
Ay (ATEVE (A7)

with A, a lower triangular matrix of order m, V a row vector of dimension m,
and A, determined by

Azz—%(Aw-VtVJrC»AI, (5.4)

where C is an antisymmetric (m Xm)-matrix.

Conversely, given arbitarily an integer / with 0</<m—1, a complex number
A, a nonsingular, lower triangular matrix A, of order m, an m-dimensional
vector V and an antisymmetric (mXm)-matrix C, we obtain by (5.3) and (5.4)
a matrix A of order 2m-+1, and then a basis for C*™*! by (5.1). A direct
verification using Proposition 4.1 shows that the polynomial

2m+2
E: 2 aJZ]
1=0

defined by @, (3.1), (3.2) and (3.20)-(3.22) is totally isotropic, therefore gives a
minimal immersion x: S*—S?™(1) of degree 2m+2.
Thus (5.1), (5.3) and (5.4) define an explicit representation of full minimal
immersions x: S?*—S%?"(1) of degree 2m-2, in terms of independent parameters.
Finally, for each /=0, 1, ---, m—1, we can use the same arguments as in
Remark 5.8 of [1] to obtain the following result:

PROPOSITION 5.1. Up to isometries, the set of all totally isotropic, linearly
Sfull curves 5 : S*—>CP? of degree 2m—+2, of which only the i-th associated curve
fails to be an immersion, has a natural structure diffeomorphic to the trivial bundle
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S0@2m+1, C)
SO0@m+1, R)’

with &, the quotient space of &=S?XC by an action of the modulo group Z,=
{—1, 1}.

GB=&2 X

As for the directrices of the full minimal immersions x of S? into S?™(1),
the case /=m—1 can not occur. Hence, combining Lemma 3.2 and Proposition
5.1, we complete our classification. The conclusion is,

THEOREM 5.2. The set of full munimal immersions x : S*—S*™(1) of degree
2m+-2 is, modulo isometries, diffeomorphic to a disjoint umon of m—1 copies of
the trivial bundle GB.

Remark 5.3. The area formula (See [1, 2]) gives the area of immersions
x in Theosem 5.3 as

Ax)=2x[m(m-+1)+2(6+1)], 0<is<m—2. (5.5)

So the case /=0 is just that discussed in [1].
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