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MINIMAL IMMERSIONS OF S2 INTO S2lΛ(l)

WITH DEGREE 2m+2

XlNGXIAO Ll

1. Introduction

In a previous paper [1], by solving completely the totally isotropic condition,
we obtained explicit repressentations for all full minimal immersions with area
2τr[m(ra-hl)-f-2] of the 2- sphere S2 into the 2m-dimensional Euclidean sphere
S2m(l) of radius 1, from which we get a classification theorem. It turned out
that all those immersions are of degree 2m+2 (for definition, see Section 2
below). Naturally one asks: Are there any more full minimal immersions x:
S2-+S2m(l) of degree 2m+2 other than those of area 2π[m(m+l)+2]? How
would they be like?

To answer these questions, it needs further analysis. Using the method
developed in [1] we first give, in Section 4 of the present paper, much more
concrete examples, and then obtain the corresponding explicit representations
in terms of independent parameters. At the same time we complete, in Section
5, the classification of the minimal immersions of degree 2m+2.

2. Preliminaries

Barbosa [2] established a bijection between the set of all full, generalized
minimal immersions x : S2—>S2m(l) and that of all linearly full, totally isotropic
curves Ξ: S2-+CP2m, where CP2m is the 2m-dimensional complex projective space
of constant holomorphic curvature 4, with such immersions corresponding to
their directrices.

Therefore, we can naturally define the degree of a minimal immersion x :
S2—>S2m(l) to be the degree of its directrix 3 as a holomorphic curve in CP2m,
and denote it by deg(x)=degS.

Denote by C the field of complex numbers, and fix a stereo-graphic projec-
tion of S2(l) onto C to get a local complex coordinate z, z^C, such that the
induced metric by x can be written as ds2—2F\dz\2. It is well known that
each holomorphic curve B: S2~>CP2m has a local representation (or lift) as
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where at, i—0, 1, 2, •••, n, are vectors in C2nι+ί, and if ξ has no zero on C,
then n—degΞ. In what follows we always agree to this.

If ( , •) is the canonical symmetric product of C2m+1, then the total isotropy
of Ξ is equivalent to that [2]

(f\ f)=0, 0^ι+;^2m-l, (2.1)

where ξ%:=ξ^ = dxξ/dz\

Let 5 , : S*-+CPN*, N i = ( 2 ? + 1 ), *=0, 1, 2, ••• , 2 m - l , be the associated

curves of Ξ [3], which are determined by

Λ r : S2 —» C**+1, ι=0, 1,2, - ,2m-l.

Obviously Ξo—Ξ.
In the remains of this paper, we denote for each z, 0<Li<^2m—1, by <τz the

stationary index of £\, and δi the stationary multiplicity of Ξ at any fixed
point of S2. Then we have (one can see [2] for details):

7 7 1 - 1 W - l

degΞ=2m+ Σ σ*, degS^2m+2 Σ ^ . (2.2)
1 = 0 1 = 0

LEMMA 2.1 [1]. Lei £ : S2-*CP2m be a linearly full curve of degree 2m+2.
If ί = Σ ! = o + 2 α ^ 1 is a local lift of Ξ, then Ξ is totally isotropic if and only if
the following hold:

(1) (fl», αy)=0, except i+j=2m+p, 0£p£4, (2.3)

(2) (flm . r,
 fl^r) = ( ~ D r

 ( m ; ) ! ( ^ + r ) ! ( f l m , flm), (2.4)

(3) (flm.Γ, fl^^i)=(-l)r-(^^yj^j(a^ fl^i), (2.5)

(4) (αm +i-β, gm + i + s )^(- l ) s " 1 / m + 1 s x ! ( m + 1 + s y r {s2^ !(wι+2) !(αTO, αm + 2)

s = l, 2, ••• , m + 1 , (2.6)

(5) (αm + 1. r, α m + 2 + r ) = ( - i r - ^ ± ^ g ^ ( f l T O + ^ αm+2), (2.7)

(m!)2

(6) ( β m + 2_r, flm + 2 + r ) ^ ( - l ) r - 7 - m _ r ) ! , + r ) ] (flm + 2, flm + 2 ) , (2.8)

where r=l, 2, ••• , m.

LEMMA 2.2 [1]. Lei f = Σ ? - o α i ^ ^ α C27ϊl+1-valued polynomial, N a non-
negative integer. If we denote by p the multi-indices (p0, pu ••- , pN) such that
O^ • <pN^n, then
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Σ U(Pi-pj)ap0Aapl/\-'AapN\zk

where i(p)=Σ1MNpt-N(N+ϊ)/2.

L E M M A 2.3 [1] Let N>2 be an integer, and alf a2, •••, aN+1 be vectors in
a complex space Cn. Then, alt a2, ••• , aN+ι are linearly related if and only if
the exterior vectors αiΛ AaN and aιA AaN^AaN+x are parallel in ANCn.

3. Fundamental lemmas

This section will be devoted to proving some lemmas that are essential in
the present paper.

LEMMA 3.1. Let Ξ: S2-+CP2m be a linearly full, totally isotropic curve with
degree 2m+2. // z=0 is one stationary point of an associated curve Ξx for some
i, 0<,i<Lm—l, and f=Σj=o + 2 β^ ; is a local lift of Ξ, then there are numbers λJt

l<i or ι+2<l<2m-i, such that

Σ U / , , (3.1)
.7 = 0

2TΠ-1 1

Σ μjdj. (3.2)

Also we have,

(1) {a,, jφi, 2m+l-i\ is a basis for C2m+1,

(2) (aj, α*)=0, except j + k=2m+2, 2m+3, 2m+4, (3.3)

s = l, 2, ••• , m + 1 , (3.4)

(4) (α m + i_ r , α^+i+r)

(2r+l)C(m+l)!]2^ Λ . n „

(5) (a-m + 2-r, flm + 2 + r ) - ( -U ^ Λ.WΛ i O \ ^ _ r

N

) |
\(m+r)!

X -o 4-2 — / ^ 2 m ~ ^ f Z 3 ^m-l-tJCflm + l, flm + l ) , (3.6)

where r — 0 , 1, ••• , m, and λ—λ%.
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Proof. By Barbosa [2], for any j , OfS/^m—1, the associated curves, Ξ3

and Ξ2m-i-j have the same stationary points and the same multiplicity at each
point. So z=0 is a stationary point of Ξ2m_1_ι. On the other hand, it is easily
seen from the inequality in (2.2) that z—Q is not the stationary point of ΞJf if
jψiy 2m—1—i and that 3<=δ2m-t=l at z=0.

First, the fact that z=0 is not the stationary point of Ξι_1 and Lemma 2.3
give

(3.7)

Second, the fact that z=0 is the stationary point of Ξt gives

Λf ι + 1(0)=0. (3.8)

(3.7) and (3.8) are equivalent to that a0, au •••, α* are linearly independent
and a0, a1} •••, alf at+1 are linearly related. Thus we get (3.1).

Now using (3.1) and Lemma 2.2 we can obtain

£Λ$'Λ Λ£'Ξ=0 modi*'*), i£j<2m-l-z. (3.9)

So,

is a nonzero local lift of Ξτ around z=Q, i<^j^2m—l—z.
Since z=0 is not the stationary point of iS ί

2 m_2_ ι. We see that

(3.10)

On the other hand, Ξ2m-ι-% has z=0 as one of its stationary points, so

£2m-l-tΛ«m-l-<(0) = 0. (3.11)

( 3 . 1 0 ) a n d ( 3 . 1 1 ) i m p l y , i n v i e w o f L e m m a 2 . 3 , t h a t a 0 , a l t •••, α t , α ι + 2 , ••• ,
a2m-ι are linearly independent and a0, alf -~ , alf aι+2, ~ , a2m-ι> a?.m+ι-ι are
linearly related, and hence we get (3.2).

Now the fullness of Ξ implies that a0, au •••, at, aι+2, •••, a2m-ι, a2m.ι+2, ••• ,
a2m+2 must hull C2m+ι and so they form a basis for C2m+1.

Finally, it is not hard to see, by direct calculations, that (3.3) follows from
(2.3), (2.4), (2.5) and (3.1); (3.4) from (2.6), (3.1) and (3.3); (3.5) from (2.7), (3.1),
(3.3) and (3.4) (3.6) from (2.8) and (3.2)-(3.5). For example, we derive (3.6)
as follows:

From (3.2)-(3.5) we find

-l-i(#t + 3> a2m-l-t)

[2(m-ι-2)+l]C(m+l)I]^
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a )

!(2m-/-l)! L
Γ 2 m - 2 / - 3
L 2m+2Γ^ 2 f t l ^

H " q ^ O J«2m-l- t (flm + l, flm + l ) . ( 3 . 1 2 )

But from (2.8) we know that

1f9 -I \ jΛ β ra + 2>

Comparing the right hand sides of (3.12) and (3.13) we get

( iw w C(m+1)!]2 [2m-2i-3
(m.)(am+2, ^ + 2 ) - - ^ m . ) 2 ( . + 2 ) | 2 m + - 2 Z . μ2

β + 2> #771 + 2) (ύ.lύ)

/ * j ( f l O ) (3.14)

Insert (3.14) into (2.8) one can obtain (3.6). Q.E.D.

LEMMA 3.2. Let Ξ: S2->CP2m be a linearly full curve of degree 2m+2.
If Ξ is totally isotropic, then there exists some integer i, O^i^m—1, such that
ύi~2y and other ^ = 0 for 0^j^m—l, jΦi. That is, all associated curves Ξ3,

m—1, except some ΞX, are immersions.

Proof. By the assumption and (2.2), we have

tfo+tfi + - l - ^ - ^ . (3.15)

So only two cases can occur:

CASE 1. For some /, 0 ^ / ^ m — 1 , σi=2, and so σ^O for other j , 0 ^ / ^

- 1 ;
CASE 2. For some /, , 0<i<j^m—l, ax — ad~\, σt—0 for other /, 0<^/g

m—1.
Thus to prove Lemma 3.2, we need only to show that Case 2 is impossible.

To this end, we suppose the contrary. Let p, q be the stationary points of Ξτ

and Ξj respectively. Then the inequality in (2.2) implies that pΦq. Change
the complex coordinate z if necessary, we can make p, q be the points z=0
and z— oo respectively. By Lemma 3.1, Ξ has a local lift as

2m + 2

ξ= Σ atz
ι,

1 0
Σ

1 = 0

s a t i s f y i n g ( 3 . 1 ) a n d ( 3 . 2 ) f o r s o m e c o m p l e x n u m b e r s Λo, ••• , λ%, μ 0 , ••• , μ ί t μ ί + 2 ,

"' f μ2m-ι

On the other hand, if we set w~l/z, then w is a new complex coordinate
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such that w=0 is the stationary point of Ξ3. So applying Lemma 3.1 again to
the local lift of Ξ:

2m + 2
37— Σ #2771 + 2 - ^ ,

w e k n o w t h a t t h e r e a r e n u m b e r s λ ' o , ••• , λ',, μΌ, ••• , μ , , μ ' J + i , ••• , / ί ί m - ; s u c h t h a t

fl2m + i-;— Σ ^i^2m + 2-i , (3.16)
zo

.7 2 m - ;

flj + l = Σ μΊCi2m + 2-l+ _ Σ μ'lO>im + *-l (3.17)

I f Λ ί + i = 0 , t h e n ( 3 . 1 6 ) i n d i c a t e s t h a t α 2 m + i - j , β 2 m + 2 - ; , ••• , a2m_ιy α 2 m + 2 _ z , ••• ,

2̂m+2 are linearly related, contradicting (1) in Lemma 3.1.
So, Λί+i^O. Without loss of generality, we can assume λ't+1= — l. Then

(3.16) says

which with (3.2) gives

2m-ι
+i-t= : Σ μιQ>ι — a2m+i-j (3.18)

Z2 + 2

I t ^ t + i = 0, t h e n fl^ + i, fl,; + 2> •" f 0>2m-j> ^2rn + 2-jt '" y &2m-ι> 0>2m + 2-ι> '" y &2m + 2

are linearly related, contradicting (1) in Lemma 3.1.
So μί+i^O. Take, for example, μί+i = — l. Then (3.17) can be rewritten as

2m-j
Σ

which compared with (3.2) implies

(3.18) and (3.19) give us that

2m-ί 2iϊi-;
Σ μzfli+ Σ i«z«i. (3.19)

ί= 2m+2-; Z- + 2

2m-j
Σ

2m
Clj + ι — Cl2m + i-j= Σ

l=j+2

that is, aJ+1, ••• , α2m-^ «2m+i-; are linearly related, which also contradicts (1)
in Lemma 3.1. This completes the proof. Q.E.D.

LEMMA 3.3. Under the conditions of Lemma 3.1, the complex numbers λr,
μr, 0^r<i} and μJy i+2<j^2m—i are uniquely determined by the number λ=λt.
In fact we have

! ( 2 w i+2-,r(2m+2-0! '
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r)l/ __J_ y—Γ _ ^ _ _ _
! \2m+2-i) l{2m-\~l-i~r)\

( 3 2 1 )

(2m+2-s)! J _γ
s)! V2m+2-ίV

ί. (3.22)

Proof. First we calculate μ2m-ι. By (3.2)-(3.4),

(flι + 2> #2m + l-ι) — ^ 2 m - i ( # ι + 2> #2m-ι)

-a ( n»-^i K^+l) 13a(2m-2»-l)

But by (3.5),

(α ΐ + 2, fl2m+i-J-( i; ( m - ί )«(l + i) !(2m+2-ι)(2m-V)!

(3.24)

If (αTO+i, αm+i)=0, then the (m+l)-dimensional subspace spanned by fl0, fli,
•••, at, aι+2> -" , am+1 is totally isotropic by (3.3), contradicting the general fact
that the totally isotropic subspace in C2m+1 is at most m-dimensional. Thus
(α m + 1 , an+1)Φθ. Comparing (3.23) and (3.24) we find

Second, we turn to the other complex numbers. By Lemma 3.2, the sta-
tionary index σt=2. But it is obvious from the inequality in (2.2) that ̂ = 1
at z—0. So Ξt also has a stationary point zoφ0. Since z0 is possibly oo, we
would rather change the coordinate z to w—\/z, and consider

2ra + 2

' 1=0

the local lift of Ξ around w—Q (^=oo). Let wQ=l/z0. Since iί/0 is not a sta-
tionary point of Bt_lr but a stationary point of BXi it is not hard to see that

ηΛη'Λ ηXwo)Φθ, ηΛη'Λ'- ηt+\w0)=0. (3.26)

(3.26) implies t h a t t h e r e a r e n u m b e r s c0, cu •••, ct, s u c h t h a t

^+ 1W=Σ^W. (3.27)

Now using (3.1) and (3.2) we can express η'(w0), 0 ^ / ^ z + l , in terms of
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rjι{w)-a\

( 2 m + 2 _ / ) !

(2W+1-QI

(3.28)

where we put p\/q\=O in case q<0.
From (3.27) and (3.28) we see that c ( =0 for 0^/^/, so

which, by (3.28) with / = / + l , is equivalent to the following identities:

(2m+2-/)! ...,„„_,_,, ,

+^(1+1)1=0, 0^/^/, (3.29)

" i. (3.30)

Set l=2m—i in (3.30) and use (3.25) we get

Thus (3.30) gives (3.22).
To prove (3.20), we first note from (3.3) that for each r, 0£r<i—2,

which, with (3.1), implies

λ(dι, fl2m + 4+r-i)4"Λι-l(flt-l> ^2m + 4+r-

This identity and Lemma 3.1 give us
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(2m+5-2t+2r)λt-r-1λ
(2m+2-z)2(2m+2-z-}-r)! (2m+2-ί)(2m+3-ί+r)!

+ = 0

On the other hand, we know from Lemma 3.1 that

Γ2m+3-2/
L

4(w+l-») ,
2m+3-ι ^ - '

,-.. - - „ - ._,- , 4(m-l-ί)
(2m+2-if ' ί+3 ^ 2

Comparing these two identities and using (3.22) we get

i-i-l (βro + l> flm + i)

A - 1 " " 2(2m+2-i) * { ό M )

(3.33) indicates that (3.20) holds for r—l. An induction using (3.32) then
proves (3.20) for all r, O^r^z.

Finally, we can derive (3.21) readily from (3.29), (3.31) and (3.20), thus
complete the proof. Q.E.D.

By (3.22), (3.6) in Lemma 3.3 can be rewritten as

, w_nr [(m+l)l]'Λ8 , ,
{ a m + 2 _ r , am+2+r)-{ i) ( 2 m + 2 - i ) ( m - ί ) ' ( m - r ) ! ( m + r ) ! { m + u m+l)'

(3.34)

4. Examples

This section devotes itself to constructing concrete examples. For this, we
need the following result:

PROPOSITION 4.1. For each integer i satisfying 0^i^m—l and each complex
number λ, let numbers Ao, •••, λt and μ0, •••, μu μi+2, •••, μ2m+2 be determined by
(3.20)-(3.22). Then the holomorphic polynomial

Σ
J=0

satisfying (3.1)-(3.5) and (3.34) is totally isotropic, and thus defines a totally tso-
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tropic curve in CP2m.

Proof. It is readily verified that, under the restrictions of the proposition,
all the conditions (2.3X2.8) are satisfied, and so Lemma 2.1 proves our conclusion.

Examples 4.2. Let e— {eu e2, , em, e0, em, em+ι, , e2m]ι be an orthonormal
basis for R*m+\ and set

^ , E0=e0. (4.1)

T h e n E={Elf ••• , £ m , £0> £ i , ••• , Em}1 is a unitrary basis for C 2 m + 1 , the com-
plexication of R2m+1. Fix one integer /, 0^i<m—1, and a complex number /I.
Let the numbers λ0, •••, Λt, μo> ••• > //t, μ i + 2 , •••, ̂ m - i be as in Section 3. T o
construct an example of totally isotropic curves in CP2m, we need to find a
suitable set of C 2 m + 1 -valued vectors a0, aly ••• , a2m+2 satisfying the conditions
of Proposition 4.1. In terms of the basis E, we can wri te Q—{a0, au •••, ax,
a t + 2 , •••, (i2τn-χ, a>2m+2-ι, ••• , 0 2 7 7 1 + 2 } * a s

Q^TE, (4.2)

where T is a nonsingular matrix of order 2m+1. Thus we need only to find
a special value of T.

Write T in a block form as

(4.3)

with Tίy T2, *2 and *6 being mXm-matrices, *3 a number. Set

a -f-lV-> [(m+l) ! ] 2 C^-(m- Z y]
«»+i-.-t 1) - ( m + 1 s ) ! ( m + i + s ) ! ( m 0 " ' ' ' ' '

-ιyjmί^m-r)| ( w ι + Γ)! '
In order that the conditions in Proposition 4.1 be satisfied, we put

/ 0 0 DΛ

(Q, Q')= 0 1 Z>, ,

\Dt Dt Dj

where
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and

Since

A =

0
0

0

0

0

, 0

0

0

A

0

0 α,H

βm fro 0

= (βm + u Ym + l, 0> "

17

\

(E, E')=

-1

0

0

/

0

aι+3

βl+t

0

0),

2 0

0

0

0

0

/

0

1

0

0

«t+2

βl + 3

ax

rt+2

0

0

A=ΰf,

• 0

• 0

• 0

0

0 i

\

I/

0
0 a,

(Λ sv Ω\J Ui2 p2

βr h -
0 •••

A=ΰί,

Γ2

0

0

where Im is the identity matrix of order m, we see from (4.2) and (4.3) that

= 1, (4.5)
*2.τ t

1+*1.*ί+τ1.*i=o,
*2 T|+* 1.*{+T 1 * ί=A,

To simplify Q, we put V=*l=*4—Q, * 2 =0, and * 3 = 1 . Then (4.5) becomes

Suppose also that *e=Im and that T2 is symmetric, then

Tι=Dl9
(4.7)

Thus we obtain a value T(i, λ) of the matrix T, or, a special solution Qii, λ)
of Q as

ao=aoEm, a1=aίEm.ι+β1Em} a2
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•••, am—amEι-\-βmE2-\-γmE^ am+ι =

flm+2 —•^l"hy(] 'm + 2 βm + l)Eι ^•pm + l)'m + i^'

Now we define

Then it is directly verified that the polynomial

2m + 2

ξ= Σ aμ=

satisfies all conditions of Proposition 4.1, therefore defines a totally isotropic
curve Ξ(i, λ). Also, when 0<i<^m—1, 8{iy λ) corresponds to a minimal immersion
x(i, λ): S2->S2W(1), the degree of which is, by definition, 2ra+2.

Remark 4.3. By a change of order of Eo, ••• , Em as E m , ••• , ^i, it is
easily seen that the special curve Ξ(0, λ) is nothing but the curve Ξ χ given
in [1].

5. Explicit representations and the classification theorem

By the methods used in [1], we can obtain explicit representations for all
full minimal immersions x : S2->S2m(l) of degree 2m+2, which we state briefly
as follows:

For any of such immersion x, let Ξ be the directrix of it. Then 8 is a
totally isotropic curve in CP2m of degree 2m+2. Recall the discussions in
Section 3, there exist an integer i with 0<^i<Lm—l, a complex coordinate z on
S2, and a complex number λ, such that 8 has a local lift

i n w h i c h , ( a n + 1 , a m + 1 ) = l , Q — { a Q , •••, a t , a ι + 2 , •••, a 2 m _ l } a 2 m + 2 _ t , •••, fl2m+2}
ί i s

a basis for C 2 m + 1 , and (3.1)-(3.5), (3.34) hold for numbers λ0, •••, Λ, ^o, - , /if,
Ki+2, ••• , j«2m-t given by (3.20)-(3.22). Let ^L be in GL(2m+l, C), such that

and A the matrix of A with respect to 2?. Then
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Q=A(Q(i, λ))=T(β, λ)A(E)=im, λ)Ά-]E . (5.1)

On the other hand, by Lemmas 3.1 and 3.3, we know that

(Q(f, λ), Q\i, X))=(Q, e t )=U(Q(i , X)), A(Q% λ))),

which is equivalent to

(A' AiQd, λ), Q\i, λ))=(Q(i, X), QKi, X))
or,

d, X)), Q(fi,X))=0,

with I the identity of GL(2m+l, C). Since Q(i, Λ) is a basis for C 2 m + 1, w
can get easily that

Aι-A=I. (5.2)

Using (5.2) and suitably choosing E, one finds (for details, see [1]):

(5.3)

with Ax a lower triangular matrix of order m, V a row vector of dimension m,
and A2 determined by

A^-jiAϊ'y.V'V + C A!, (5.4)

where C is an antisymmetric (mXm)-matrix.
Conversely, given arbitarily an integer i with 0^/^m—l, a complex number

yl, a nonsingular, lower triangular matrix Ax of order m, an m-dimensional
vector V and an antisymmetric (mXra)-matrix C, we obtain by (5.3) and (5.4)
a matrix A of order 2m+l, and then a basis for C2m+ι by (5.1). A direct
verification using Proposition 4.1 shows that the polynomial

2m+ 2

ξ= Σ a,z>

defined by Q, (3.1), (3.2) and (3.20)-(3.22) is totally isotropic, therefore gives a
minimal immersion x : S2-*S2m(l) of degree 2m+2.

Thus (5.1), (5.3) and (5.4) define an explicit representation of full minimal
immersions x: S2->52m(l) of degree 2m+2, in terms of independent parameters.

Finally, for each i=0, 1, •••, m—1, we can use the same arguments as in
Remark 5.8 of [1] to obtain the following result:

PROPOSITION 5.1. Up to isometries, the set of all totally isotropic, linearly
full curves Ξ: S2-^CP2 of degree 2m+2, of which only the i-th associated curve
fails to be an immersion, has a natural structure dijfeomorphic to the trivial bundle
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S0(2m+l, C)
~~ 2 > < S0(2m+l, R) '

with &2 the quotient space of &—S2xC by an action of the modulo group Z2—

{-1,1}.

As for the directrices of the full minimal immersions x of S2 into S2m(l),
the case i=m—1 can not occur. Hence, combining Lemma 3.2 and Proposition
5.1, we complete our classification. The conclusion is,

THEOREM 5.2. The set of full minimal immersions x: S2-+S2m(l) of degree
2m+2 is, modulo isometries, diffeomorphic to a disjoint union of m—\ copies of
the trivial bundle GB.

Remark 5.3. The area formula (See [1, 2]) gives the area of immersions
x in Theosem 5.3 as

A(x)=2π[m(m+ϊ)+2(i+ϊ)2t 0^i£m-2. (5.5)

So the case ι=0 is just that discussed in [1].
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