S. OZAWA AND S. ROPPONGI KODAI MATH. J. 18 (1995), 315-327

SINGULAR VARIATION OF DOMAINS AND CONTINUITY PROPERTY OF EIGENFUNCTION FOR SOME SEMI-LINEAR ELLIPTIC EQUATIONS

SHIN OZAWA AND SUSUMU ROPPONGI

1. Introduction

Let M be a bounded domain in \mathbb{R}^3 with smooth boundary ∂M . Let w be a fixed point in M. By $B(\varepsilon; w)$ we denote the ball of center w with radius ε . We remove $\overline{B(\varepsilon; w)}$ from M and we put $M_{\varepsilon} = M \setminus \overline{B(\varepsilon; w)}$. We write $B(\varepsilon; w) = B_{\varepsilon}$.

Fix $k \ge 0$ and $p \in (1, 5)$. We put

(1.1)_{\varepsilon}
$$\lambda(\varepsilon) = \inf_{X_{\varepsilon}} \left(\int_{M_{\varepsilon}} |\nabla u|^2 dx + k \int_{\partial M_{\varepsilon}} u^2 d\sigma \right),$$

where

$$X_{\varepsilon} = \{ u \in H^{1}(M_{\varepsilon}) \colon \|u\|_{L^{p+1}(M_{\varepsilon})} = 1, u = 0 \text{ on } \partial M, u \ge 0 \text{ in } M_{\varepsilon} \}.$$

Then, we know that there exists at least one solution u_{ε} which attains $(1.1)_{\varepsilon}$. It satisfies

(1.2)
$$\begin{aligned} -\Delta u_{\varepsilon} = \lambda(\varepsilon) u_{\varepsilon}^{p} & \text{in } M_{\varepsilon} \\ \frac{\partial u_{\varepsilon}}{\partial \nu_{x}} + k u_{\varepsilon} = 0 & \text{on } \partial B_{\varepsilon} \\ u_{\varepsilon} = 0 & \text{on } \partial M. \end{aligned}$$

Here $\partial/\partial \nu_x$ denotes the derivative along the exterior normal direction.

One of the main results of this paper is the following.

THEOREM 1. Fix $p \in (1, 5)$. Then, there exists a constant C independent of ε such that

$$\sup_{u_{\varepsilon}\in S_{\varepsilon}}\sup_{x\in M_{\varepsilon}}|u_{\varepsilon}(x)|\leq C<+\infty,$$

where S_{ε} is the set of positive solutions of (1.2) which minimize $(1.1)_{\varepsilon}$.

Next we treat the asymptotic behaviours of $\lambda(\varepsilon)$ and positive solutions u_{ε}

Received January 25, 1994; revised August 19, 1994.

of (1.2) which minimize $(1.1)_{\varepsilon}$. We put

(1.3)
$$\lambda(0) = \inf_{X} \int_{\mathcal{M}} |\nabla u|^2 dx$$

where

$$X = \{ u \in H_0^1(M) ; \|u\|_{L^{p+1}(M)} = 1, u \ge 0 \text{ in } M \}.$$

Then, there exists at least one solution u_0 which attains (1.3) and satisfies

(1.4)
$$\begin{aligned} -\Delta u_0 = \lambda(0) u_0^p & \text{in } M \\ u_0 = 0 & \text{on } \partial M. \end{aligned}$$

We have the following theorems.

THEOREM 2. Fix $p \in (1, 5)$. Then, there exists a constant C independent of ε such that

$$|\lambda(\varepsilon) - \lambda(0)| \leq C \varepsilon^{1/2}$$

holds for any sufficiently small $\varepsilon > 0$.

THEOREM 3. Fix $p \in (1, 5)$. Assume that the minimizer u_0 of (1.3) is unique. Then,

$$\sup_{x \in M_{\varepsilon}} |u_{\varepsilon}(x) - u_{0}(x)| \longrightarrow 0 \qquad as \quad \varepsilon \longrightarrow 0$$

holds for any $u_{\varepsilon} \in S_{\varepsilon}$.

Remarks. When M is a bounded domain in \mathbb{R}^2 , Theorem 1 is proved in Ozawa-Roppongi [10].

When M is a ball, the uniqueness of the minimizer of (1.3) is shown in Gidas, Ni, and Nirenberg [4]. See also Dancer [2]. On the other hand, we do not know whether the minimizer u_{ε} of $(1.1)_{\varepsilon}$ is unique or not in general and even in the case when M is a ball. When the Robin boundary condition on ∂B_{ε} in (1.2) is replaced by the zero Dirichlet condition, the uniqueness of u_{ε} is proved in Dancer [3] for any sufficiently small $\varepsilon > 0$ under the assumptions that the minimizer u_{0} of (1.3) is unique, and that $Ker(\Delta + p\lambda(0)u_{0}^{p-1}) = \{0\}$.

For related topics, the reader may be referred to Lin [5], Osawa-Ozawa [6], Ozawa [7], [8], [9].

Section 2 contains preliminary material. We give the proof of Theorems 1, 2 and 3 in sections 3, 4 and 5, respectively. In Appendix we give an extension lemma for a function on M_{ε} to M. We will follow the established practice of using the same letter C (with or without subscript) to denote different constants independent of ε .

2. Preliminary lemmas

LEMMA 2.1. Fix $\xi \in (0, 1)$ and $\alpha \in H^{\xi}(S^2)$. Then, there exists at least one solution of

(2.1)
$$\Delta v_{\varepsilon}(x) = 0 \qquad x \in \mathbf{R}^{3} \setminus \bar{B}_{\varepsilon}$$

(2.2)
$$\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}(x) + k v_{\varepsilon}(x) = \alpha(\omega), \qquad x = w + \varepsilon \omega \in \partial B_{\varepsilon} \ (\omega \in S^{2})$$

satisf ying

(2.3)
$$\max_{x \in M_{\epsilon}} |v_{\varepsilon}(x)| \leq C \varepsilon \|\alpha\|_{H^{\xi}(S^{2})}.$$

Proof. Without loss of generality, we may assume that w=0. We put $x=r\omega$ ($\omega \in S^2$) and $\omega = (\sin\theta \cos\varphi, \sin\theta \sin\varphi, \cos\theta) (0 \le \theta < \pi, 0 \le \varphi < 2\pi)$. Let $P_n(z)$ be the Legendre polynomial and $P_n^m(z)$ be the associated Legendre function, that is,

$$P_n^m(z) = (1-z^2)^{m/2} \frac{d^m}{dz^m} P_n(z), \qquad (|z| \le 1, \ 0 \le m \le n).$$

It is well known that $\{P_n^m(\cos\theta)\cos m\varphi, P_n^m(\cos\theta)\sin m\varphi; 0 \leq m \leq n\}_{n=0}^{\infty}$ is a complete orthogonal system of $L^2(S^2)$ consisting of eigenfunction of the Laplace-Beltrami operator Δ_{S^2} whose eigenvalues are -n(n+1), $n=0, 1, 2, \cdots$.

Furthermore, we have the Parseval relation

(2.4)
$$\sum_{n=0}^{\infty} (2n+1)^{-1} \left(a_{n,0}^{2} + \sum_{m=1}^{n} ((n+m)!/2(n-m)!)(a_{n,m}^{2} + b_{n,m}^{2}) \right)$$
$$= (4\pi)^{-1} \|\alpha\|_{L^{2}(S^{2})}^{2}$$

for $\alpha(\omega)$ with the Fourier expansion

$$\alpha(\boldsymbol{\omega}) = \sum_{n=0}^{\infty} Y_n(\boldsymbol{\theta}, \boldsymbol{\varphi}),$$

where

(2.5)
$$Y_n(\theta, \varphi) = \sum_{n=0}^{\infty} (a_{n,m} \cos m\varphi + b_{n,m} \sin m\varphi) P_n^m(\cos \theta).$$

We put

$$v_{\varepsilon}(x) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} (s_{n,m} \cos m\varphi + t_{n,m} \sin m\varphi) P_n^m(\cos\theta) \right) r^{-(n+1)}.$$

We see that

$$\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}(x) + k v_{\varepsilon}(x)_{|x \in \partial B_{\varepsilon}} = \alpha(\omega)$$

SHIN OZAWA AND SUSUMU ROPPONGI

$$=\sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} (a_{n,m} \cos m\varphi + b_{n,m} \sin m\varphi) P_n^m(\cos \theta) \right)$$

implies

$$\begin{cases} a_{n,m} = \varepsilon^{-(n+2)}(n+1+k\varepsilon)s_{n,m} \\ b_{n,m} = \varepsilon^{-(n+2)}(n+1+k\varepsilon)t_{n,m} \end{cases}$$

for $0 \leq m \leq n$, $n \geq 0$. Then we have

(2.6)
$$v_{\varepsilon}(x) = \varepsilon \sum_{n=0}^{\infty} (\varepsilon/r)^{n+1} (n+1+k\varepsilon)^{-1} Y_n(\theta, \varphi),$$

and it satisfies (2.1) and (2.2). By (2.5), and by using the Schwarz inequality and the relation

$$P_n(\cos\theta)^2 + \sum_{m=1}^n (2(n-m)!/(n+m)!) P_n^m(\cos\theta)^2 = 1,$$

we see that

(2.7)
$$|Y_n(\theta, \varphi)|^2 \leq a_{n,m}^2 + \sum_{m=1}^n (n+m)!/2(n-m)!)(a_{n,m}^2 + b_{n,m}^2).$$

From (2.6) and (2.7), we have

(2.8)
$$|v_{\varepsilon}(x)| \leq C \varepsilon^{2} r^{-1} \Big(\sum_{n=0}^{\infty} (\varepsilon/r)^{2n} (n+1)^{-1-\xi} \Big)^{1/2} K(\xi)^{1/2} \leq C_{\xi} \varepsilon K(\xi)^{1/2}$$

for $x \in M_{\varepsilon}$, $\xi \in (0, 1)$, where

$$K(\xi) = \sum_{n=0}^{\infty} (2n+1)^{-1} n^{\xi} \Big(a_{n,0}^{2} + \sum_{m=1}^{n} ((n+m)!/2(n-m)!)(a_{n,m}^{2} + b_{n,m}^{2}) \Big).$$

By (2.4) and observing that *j*-th eigenvalue of $-\Delta_{S^2} \sim C_j$ as $j \to \infty$, we can easily see that $K(\xi)^{1/2}$ is equivalent to the norm $\|\alpha\|_{H^{\xi}(S^2)}$. Thus we get (2.3) from (2.8).

By Lemma 2.1 and the same repeating construction of the function $v_{\varepsilon}^{(n)}$ as in Ozawa [7, Proposition 1, pp. 260-262], we have the following.

LEMMA 2.2. Fix $\xi \in (0, 1)$. Assume that $u_{\varepsilon} \in C^{\infty}(M_{\varepsilon})$ is harmonic in M_{ε} , $u_{\varepsilon} = 0$ on ∂M and

$$\frac{\partial u_{\varepsilon}}{\partial v_{x}}(x) + k u_{\varepsilon}(x) = L(\omega) \qquad x = w + \varepsilon \omega \in \partial B_{\varepsilon}(\omega \in S^{2}).$$

Then,

$$\|u_{\varepsilon}\|_{L^{\infty}(M_{\varepsilon})} \leq C \varepsilon \|L\|_{H^{\xi}(S^{2})}$$

holds.

Next we want to show the following.

LEMMA 2.3. Fix $q \in [3/2, 2]$ and let $\xi = 2 - (3/q)$. Then,

(2.9)
$$\|u(\varepsilon \cdot)\|_{H}^{\xi} \leq C_{q} \varepsilon^{1-(3/q)} \|u\|_{W^{1,q}(M)}$$

holds for any $u \in W^{1,q}(M)$.

Here $\|u(\varepsilon \cdot)\|_{H^{\xi}(S^2)}$ denotes the $H^{\xi}(S^2)$ -norm of the function $u(\varepsilon \omega)$ ($\omega \in S^2$).

Proof. Fix $q \in [3/2, 2]$ and let ξ be as above. Then, the Sobolev embedding: $W^{1,q}(\mathbf{R}^3) \subset W^{(1/2)+\xi,2}(\mathbf{R}^3)$ holds (see, for example, Adams [1, Theorem 7.58, p. 218]). Since the trace operator: $W^{(1/2)+\xi,2}(\mathbf{R}^3) \rightarrow H^{\xi}(S^2)$ is continuous,

$$(2.10) \|v\|_{H^{\xi}(S^{2})} \leq C \|v\|_{W^{1,q}(R^{3})}$$

holds for any $v \in W^{1,q}(\mathbb{R}^3)$.

We take an arbitrary $u \in W^{1,q}(M)$ and take $\varphi \in C^{\infty}(\mathbf{R}^3)$ satisfying $0 \le \varphi \le 1$, $\varphi \equiv 1$ on $B_{2\varepsilon}$, $\varphi \equiv 0$ on $\mathbf{R}^3 \setminus \overline{B}_{3\varepsilon}$ and $|\nabla \varphi| \le C\varepsilon^{-1}$. We put $v_{\varepsilon}(x) = u(\varepsilon x)\varphi(\varepsilon x)$. Then, $v_{\varepsilon} \in W_0^{1,q}(B_3)$. We extend v_{ε} to \mathbf{R}^3 by defining $v_{\varepsilon} = 0$ on $\mathbf{R}^3 \setminus B_3$. Then, $v_3 \in W^{1,q}(\mathbf{R}^3)$ and

$$\|v_{\varepsilon}\|_{L^{q}(\mathbf{R}^{3})}^{q} = \int_{B_{3}} |u(\varepsilon x)\varphi(\varepsilon x)|^{q} dx$$
$$= \varepsilon^{-3} \int_{B_{3\varepsilon}} |u(y)\varphi(y)|^{q} dy \leq \varepsilon^{-3} \int_{B_{3\varepsilon}} |u(y)|^{q} dy$$

Here we used the transformation of co-ordinates: $y = \varepsilon x$. Let r = 3q/(3-q). Then, by the Sobolev embedding, $||u||_{L^{r}(M)} \leq C ||u||_{W^{1,q}(M)}$ holds. Using Hölder's inequality, we have

(2.11)
$$\int_{B_{3\mathfrak{s}}} |u(y)|^q dy \leq \left(\int_{B_{3\mathfrak{s}}} |u(y)|^r dy \right)^{q/r} \left(\int_{B_{3\mathfrak{s}}} 1^{3/q} dy \right)^{q/3} \\ \leq C \varepsilon^q \|u\|_{L^r(M)}^q \leq C \varepsilon^q \|u\|_{W^{1,q}(M)}^q.$$

Therefore,

$$\|v_{\varepsilon}\|_{L^{q}(\mathbf{R}^{3})}^{q} \leq C \varepsilon^{q-3} \|u\|_{W^{1,q}(M)}^{q}$$

holds.

On the other hand, $|\nabla v_{\varepsilon}(x)| = \varepsilon \varphi(\varepsilon x)(\nabla u)(\varepsilon x) + \varepsilon u(\varepsilon x)(\nabla \varphi)(\varepsilon x)$ and $|\nabla \varphi| \leq C \varepsilon^{-1}$,

$$\begin{split} \|\nabla v_{\varepsilon}\|_{L^{q}(\mathbb{R}^{3})}^{q} &\leq C \varepsilon^{q} \int_{B_{3}} |(\nabla u)(\varepsilon x)|^{q} dx + C \int_{B_{3}} |u(\varepsilon x)|^{q} dx \\ &\leq C \varepsilon^{q-3} \int_{B_{3}\varepsilon} |(\nabla u)(y)|^{q} dy + C \varepsilon^{-3} \int_{B_{3}\varepsilon} |u(y)|^{q} dy \end{split}$$

hold. Using (2.11) in the second term of the right hand side of the above inequality, we have

 $(2.13) \qquad \|\nabla v_{\varepsilon}\|_{L^{q}(\mathbb{R}^{3})}^{q} \leq C \varepsilon^{q-3} \|\nabla u\|_{L^{q}(M)}^{q} + C \varepsilon^{q-3} \|u\|_{W^{1,q}(M)}^{q} \leq C \varepsilon^{q-3} \|v\|_{W^{1,q}(M)}^{q}.$

From (2.12) and (2.13),

(2.14)
$$\|v_{\varepsilon}\|_{W^{1,q}(\mathbf{R}^{3})} \leq C \varepsilon^{1-(3/q)}$$

holds.

Notice that $v_{\varepsilon}(x) = u(\varepsilon x)$ for $x \in S^2$. Therefore, by (2.14) and using (2.10) with $v = v_{\varepsilon}$, we can get (2.9). q.e.d.

3. Proof of Theorem 1

Let $G_{\varepsilon}(x, y)$ be the Green function of the Laplacian in M_{ε} satisfying

$$\begin{aligned} -\Delta_x G_{\varepsilon}(x, y) &= \delta(x - y), \quad x, y \in M_{\varepsilon} \\ G_{\varepsilon}(x, y) &= 0, \quad x \in \partial M, y \in M_{\varepsilon} \\ \frac{\partial}{\partial \nu_x} G_{\varepsilon}(x, y) + k G_{\varepsilon}(x, y) &= 0, \quad x \in \partial B_{\varepsilon}, y \in M_{\varepsilon}, \end{aligned}$$

Let G(x, y) be the Green function of the Laplacian in M under the zero Dirichlet condition on ∂M . We put

$$(Gf)(x) = \int_{M} G(x, y) f(y) dy,$$
$$(G_{\varepsilon}f)(x) = \int_{M_{\varepsilon}} G_{\varepsilon}(x, y) f(y) dy.$$

For the sake of simplicity we write $\|\cdot\|_{L^{r}(\mathcal{M})}$, $\|\cdot\|_{L^{r}(\mathcal{M}_{\varepsilon})}$ as $\|\cdot\|_{r}$, $\|\cdot\|_{r,\varepsilon}$, respectively for $r \in [1, \infty]$.

We have the following.

LEMMA 3.1. Fix
$$q \in (3/2, 2]$$
 and $f \in L^{q}(M_{\varepsilon})$. Then,

$$||G_{\varepsilon}f - G\tilde{f}||_{\infty, \varepsilon} \leq C \varepsilon^{2^{-(3/q)}} ||f||_{q, \varepsilon}$$

holds. Here \tilde{f} denotes the extension of f to M in Appendix of this paper.

Proof. Without loss of generality we may assume that w=0. We put $v_{\varepsilon}(x)=(G_{\varepsilon}f-G\tilde{f})(x)$ for $x\in M_{\varepsilon}$. Then, $\Delta v_{\varepsilon}=0$ in M_{ε} , $v_{\varepsilon}=0$ on ∂M and

$$\left(\frac{\partial v_{\varepsilon}}{\partial \nu_{x}}+kv_{\varepsilon}\right)(x)=-\left(\frac{\partial}{\partial \nu_{x}}G\tilde{f}+kG\tilde{f}\right)(\varepsilon\omega) \qquad x=\varepsilon\omega\in\partial B_{\varepsilon}(\omega\in S^{2}).$$

Let ξ be as in Lemma 2.3. Then $\xi \in (0, 1)$. Thus, by Lemmas 2.2 and 2.3,

(3.2)
$$\|v_{\varepsilon}\|_{\infty,\varepsilon} \leq C \varepsilon \left\| \left(\frac{\partial}{\partial \nu_{x}} G \tilde{f} + k G \tilde{f} \right) (\varepsilon \cdot) \right\|_{H^{\xi}(S^{2})},$$

SEMI-LINEAR ELLIPTIC EQUATIONS

(3.3)
$$\|G\widetilde{f}(\varepsilon\cdot)\|_{H}\boldsymbol{\epsilon}_{(S^2)} \leq C\varepsilon^{1-(3/q)} \|G\widetilde{f}\|_{W^{1,q}(M)}$$

and

(3.4)
$$\|\nabla G\tilde{f}(\varepsilon \cdot)\|_{H} \boldsymbol{\epsilon}_{(S^2)} \leq C \varepsilon^{1-(3/q)} \|\nabla G\tilde{f}\|_{W^1, q_{(M)}}$$

hold.

Since

$$\begin{split} \Big(\frac{\partial}{\partial \nu_x} G\tilde{f}\Big)(\varepsilon \boldsymbol{\omega}) \!=\! \nu_x \cdot (\nabla G\tilde{f})(\varepsilon \boldsymbol{\omega}) \!=\! -\boldsymbol{\omega} \cdot (\nabla G\tilde{f})(\varepsilon \boldsymbol{\omega}) \quad x \!=\! \varepsilon \boldsymbol{\omega} \!\in\! \partial B_{\varepsilon} \left(\boldsymbol{\omega} \!\in\! S^2\right), \\ & \left| \Big(\!\frac{\partial}{\partial \nu_x} G\tilde{f}\Big)\!(\varepsilon \boldsymbol{\omega}) \right| \!\leq\! |\left(\nabla G\tilde{f})(\varepsilon \boldsymbol{\omega})| \end{split}$$

and

$$\begin{split} & \left| \left(\frac{\partial}{\partial \nu_x} G \tilde{f} \right) (\varepsilon \omega) - \left(\frac{\partial}{\partial \nu_x} G \tilde{f} \right) (\varepsilon \omega') \right| \\ &= |\omega \cdot (\nabla G \tilde{f}) (\varepsilon \omega) - \omega' \cdot (\nabla G \tilde{f}) (\varepsilon \omega')| \\ &= |\omega \cdot \{ (\nabla G \tilde{f}) (\varepsilon \omega) - (\nabla G \tilde{f}) (\varepsilon \omega') \} + (\omega - \omega') \cdot (\nabla G \tilde{f}) (\varepsilon \omega')| \\ &\leq | (\nabla G \tilde{f}) (\varepsilon \omega) - (\nabla G \tilde{f}) (\varepsilon \omega')| + |\omega - \omega'| | (\nabla G \tilde{f}) (\varepsilon \omega')| \end{split}$$

hold for any $\omega, \omega' \in S^2$. Thus we have

$$(3.5) \qquad \left\| \left(\frac{\partial}{\partial \nu_{x}} G \tilde{f} \right) (\varepsilon \cdot) \right\|_{H^{\xi}(S^{2})}^{2} \\ = \int_{S^{2}} \left| \left(\frac{\partial}{\partial \nu_{x}} G \tilde{f} \right) (\varepsilon \omega) \right|^{2} d\omega + \int_{S^{2} \times S^{2}} \left| \left(\frac{\partial}{\partial \nu_{x}} G \tilde{f} \right) (\varepsilon \omega) - \left(\frac{\partial}{\partial \nu_{x}} G \tilde{f} \right) (\varepsilon \omega') \right|^{2} \right|^{2} \\ \cdot |\omega - \omega'|^{-2 - 2\xi} d\omega d\omega' \\ \leq \int_{S^{2}} |(\nabla G \tilde{f}) (\varepsilon \omega)|^{2} d\omega + 2 \int_{S^{2} \times S^{2}} |(\nabla G \tilde{f}) (\varepsilon \omega')|^{2} |\omega - \omega'|^{-2\xi} d\omega d\omega' \\ + 2 \int_{S^{2} \times S^{2}} |(\nabla G \tilde{f}) (\varepsilon \omega) - (\nabla G \tilde{f}) (\varepsilon \omega')|^{2} |\omega - \omega'|^{-2 - 2\xi} d\omega d\omega'.$$

Since $\xi{\in}(0,\,1),$ we can easily see

(3.6)
$$\int_{S^2} |\omega - \omega'|^{-2\xi} d\omega = \frac{4^{\xi}}{1 - \xi} \pi$$

for any $\omega' \in S^2$. From (3.5) and (3.6), we have

$$(3.7) \quad \left\| \left(\frac{\partial}{\partial \nu_x} G \tilde{f} \right) (\varepsilon \cdot) \right\|_{H^{\xi}(S^2)}^2 \\ \leq C_{\xi} \left(\int_{S^2} |(\nabla G \tilde{f}) (\varepsilon \omega)|^2 d\omega + \int_{S^2 \times S^2} |(\nabla G \tilde{f}) (\varepsilon \omega) - (\nabla G \tilde{f}) (\varepsilon \omega')|^2 |\omega - \omega'|^{-2 - 2\xi} d\omega d\omega' \right)$$

 $= C_{\boldsymbol{\xi}} \| (\nabla G \tilde{f})(\boldsymbol{\varepsilon} \cdot) \|_{H}^{2} \boldsymbol{\xi}_{(S^{2})} \,.$

Notice that $\|G\tilde{f}\|_{W^{2,q}(M)} \leq C \|\tilde{f}\|_{q} \leq C \|f\|_{q,\varepsilon}$ hold by a priori estimate and Lemma A in Appendix. Thus, by (3.3), (3.4) and (3.7),

(3.8)
$$\left\| \left(\frac{\partial}{\partial \nu_x} G \tilde{f} + k G \tilde{f} \right) (\varepsilon \cdot) \right\|_{H^{\hat{\xi}}(S^2)} \\ \leq C \varepsilon^{1-(3/q)} (\|\nabla G \tilde{f}\|_{W^{1,q}(M)} + k \|G \tilde{f}\|_{W^{1,q}(M)}) \\ \leq C \varepsilon^{1-(3/q)} \|G \tilde{f}\|_{W^{2,q}(M)} \leq C \varepsilon^{1-(3/q)} \|f\|_{q,\varepsilon}$$

hold. From (3.2) and (3.8), we get (3.1).

Now we are in a position to prove Theorem 1. We take an arbitrary $u_{\varepsilon} \in S_{\varepsilon}$. We fix $q \in (3/2, 2]$. Then, by the Sobolev embedding: $W^{2,q}(M) \subset C(\overline{M})$ and a priori estimate,

$$\|G\widetilde{u}_{\varepsilon}^{p}\|_{\infty,\varepsilon} \leq C \|G\widetilde{u}_{\varepsilon}^{p}\|_{W^{2},q} \leq C \|\widetilde{u}_{\varepsilon}^{p}\|_{W^{2},q} \leq C \|\widetilde{u}_{\varepsilon}^{p}\|_{q}$$

hold. Notice that $u_{\varepsilon} = \lambda(\varepsilon)G_{\varepsilon}u_{\varepsilon}^{p}$ and $0 \leq \lambda(\varepsilon) \leq C$. Thus, by Lemma 3.1 and (3.9), we have

$$(3.10) \|u_{\varepsilon}\|_{\infty,\varepsilon} \leq \|\lambda(\varepsilon)(G_{\varepsilon}u_{\varepsilon}^{p} - G\tilde{u}_{\varepsilon}^{p}) + \lambda(\varepsilon)G\tilde{u}_{\varepsilon}^{p}\|_{\infty,\varepsilon} \\ \leq C\|G_{\varepsilon}u_{\varepsilon}^{p} - G\tilde{u}_{\varepsilon}^{p}\|_{\infty,\varepsilon} + C\|G\tilde{u}_{\varepsilon}^{p}\|_{\infty,\varepsilon} \\ \leq C(\varepsilon^{2^{-(3/q)}} + 1)\|\tilde{u}_{\varepsilon}^{p}\|_{q,\varepsilon} \leq C\|u_{\varepsilon}\|_{pq,\varepsilon}^{p}.$$

At first we treat the case $p \in (1, 2)$. We put q = (p+1)/p. Then, $q \in (3/2, 2)$. We recall that $||u_{\varepsilon}||_{p+1, \varepsilon} = 1$. Therefore, by (3.10), $||u_{\varepsilon}||_{\infty, \varepsilon} \leq C ||u_{\varepsilon}||_{p+1, \varepsilon}^{p} = C$ hold.

Next we treat the case $p \in [2, 5)$. Since (p+1)/(p-1) > 3/2, we can take $q \in (3/2, 2]$ so that (p+1)/(p-1) > q. Notice that q > 3/2 > (p+1)/p. Thus we have the interpolation inequality:

$$\|u_{\varepsilon}\|_{pq,\,\varepsilon} \leq \|u_{\varepsilon}\|_{p+1,\,\varepsilon}^{a} \cdot \|u_{\varepsilon}\|_{\infty,\,\varepsilon}^{1-a},$$

where a = (p+1)/(pq). By (3.10), (3.11) and the fact that $||u_{\varepsilon}||_{p+1,\varepsilon} = 1$,

$$\|u_{\varepsilon}\|_{\infty,\varepsilon} \leq C \|u_{\varepsilon}\|_{pq,\varepsilon}^{p} \leq C \|u_{\varepsilon}\|_{\infty,\varepsilon}^{\tau}$$

hold for $\tau = (1-a)p = p - (p+1)/q$. Since (p+1) > (p-1) > q, $\tau < 1$ holds. This implies $||u_{\varepsilon}||_{\infty, \varepsilon} \leq C$.

Thus we get the desired Theorem 1.

Remark. Since $||u_{\varepsilon}||_{\infty,\varepsilon} \leq C$ holds, we have the following by using Lemma 3.1 with $f=u_{\varepsilon}^{p}$ and q=2.

$$(3.12) \|G_{\varepsilon}u_{\varepsilon}^{p} - G\tilde{u}_{\varepsilon}^{p}\|_{\infty, \varepsilon} \leq C\varepsilon^{1/2}$$

322

q.e.d.

4. Proof of Theorem 2

Since $u_0 \cdot \|u_0\|_{p+1,\varepsilon}^{-1} \in X_{\varepsilon}$, we see

(4.1)
$$\lambda(\varepsilon) \leq \|u_0\|_{p+1,\varepsilon}^{-2} \left(\int_{M_{\varepsilon}} |\nabla u_0|^2 dx + k \int_{\partial B_{\varepsilon}} u_0^2 d\sigma \right)$$

by $(1.1)_{\varepsilon}$. Notice that $u_0 \in C^1(\overline{M})$, $||u_0||_{p+1,\varepsilon} = 1$ and $\lambda(0) = ||\nabla u_0||_2^2$. Therefore,

(4.2)
$$\|u_0\|_{p+1,\varepsilon}^{p+1} = 1 - \int_{B_{\varepsilon}} u_0^{p+1} dx = 1 + O(\varepsilon^3),$$

(4.3)
$$\int_{\mathcal{M}_{\varepsilon}} |\nabla u_0|^2 dx = \lambda(0) - \int_{B_{\varepsilon}} |\nabla u_0|^2 dx = \lambda(0) + O(\varepsilon^3),$$

and

(4.4)
$$\int_{\partial B_{\varepsilon}} u_0^2 d\sigma = O(\varepsilon^2)$$

hold. Summing up (4.1), (4.2), (4.3) and (4.4), we have the following.

(4.5)
$$\lambda(\varepsilon) \leq \lambda(0) + C(k\varepsilon^2 + \varepsilon^3)$$

We take $\phi_{\varepsilon} \in C^{\infty}(\mathbf{R}^3)$ satisfying $0 \leq \phi_{\varepsilon} \leq 1$, $\phi_{\varepsilon} = 1$ on $\mathbf{R}^3 \setminus B_{2\varepsilon}$, $\phi_{\varepsilon} = 0$ on B_{ε} , and $|\nabla \phi_{\varepsilon}| \leq C \varepsilon^{-1}$. Since $(\phi_{\varepsilon} u_{\varepsilon}) \cdot \|\phi_{\varepsilon} u_{\varepsilon}\|_{p+1}^{-1} \in X$, we see

(4.6)
$$\lambda(0) \leq \|\psi_{\varepsilon} u_{\varepsilon}\|_{p+1}^{-2} \int_{\mathcal{M}} |\nabla(\psi_{\varepsilon} u_{\varepsilon})|^2 dx$$

by (1.3). We recall that $||u_{\varepsilon}||_{p+1,\varepsilon}=1$. Thus, we have

(4.7)
$$\|\phi_{\varepsilon}u_{\varepsilon}\|_{p+1}^{p+1} = \int_{M_{\varepsilon}} u_{\varepsilon}^{p+1} dx + \int_{M_{\varepsilon}} (\phi_{\varepsilon}^{p+1} - 1) u_{\varepsilon}^{p+1} dx = 1 + O(\varepsilon^{3}).$$

On the other hand, we see

$$\int_{M} |\nabla(\psi_{\varepsilon} u_{\varepsilon})|^{2} dx = I_{1}(\varepsilon) + I_{2}(\varepsilon) + I_{3}(\varepsilon),$$

where

$$I_{1}(\varepsilon) = \int_{M} \psi_{\varepsilon}^{2} |\nabla u_{\varepsilon}|^{2} dx ,$$

$$I_{2}(\varepsilon) = 2 \int_{M} \psi_{\varepsilon} u_{\varepsilon} \nabla \psi_{\varepsilon} \cdot \nabla u_{\varepsilon} dx ,$$

$$I_{3}(\varepsilon) = \int_{M} u_{\varepsilon}^{2} |\nabla \psi_{\varepsilon}|^{2} dx .$$

We recall $(1.1)_{\ensuremath{\epsilon}}$ and Theorem 1. Thus, we have

SHIN OZAWA AND SUSUMU ROPPONGI

$$I_1(\varepsilon) \leq \int_{M_{\varepsilon}} |\nabla u_{\varepsilon}|^2 dx = \lambda(\varepsilon) - k \int_{\partial B_{\varepsilon}} u_{\varepsilon}^2 d\sigma \leq \lambda(\varepsilon) \leq C,$$

 $I_3(\varepsilon) \leq C \varepsilon$ and $|I_2(\varepsilon)| \leq \{I_1(\varepsilon)I_3(\varepsilon)\}^{1/2} \leq C \varepsilon^{1/2}$. Summing up these facts, we have

(4.8)
$$\int_{\mathcal{M}} |\nabla(\phi_{\varepsilon} u_{\varepsilon})|^2 dx = \lambda(\varepsilon) + O(\varepsilon^{1/2}).$$

From (4.6), (4.7) and (4.8), we see that $\lambda(0) \leq \lambda(\varepsilon) + C \varepsilon^{1/2}$. Combining this with (4.5), we get Theorem 2.

5. Proof of Theorem 3

At first we want to show the following.

LEMMA 5.1. Let \tilde{u}_{ε} be an extension of u_{ε} to M as in Appendix. Assume that the minimizer u_0 of (1.3) is unique. Then,

 $\tilde{u}_{\varepsilon} \longrightarrow u_0$ strongly in $H^1_0(M)$ as $\varepsilon \longrightarrow 0$.

Proof. Since $\tilde{u}_{\varepsilon} = u_0$ a.e. in M_{ε} ,

$$\|\tilde{u}_{\varepsilon}\|_{p+1}^{p+1} = \|u_{\varepsilon}\|_{p+1}^{p+1} + \int_{B_{\varepsilon}} u_{\varepsilon}^{p+1} dx = 1 + O(\varepsilon^{3}),$$

and

$$\int_{M_{\varepsilon}} |\nabla \widetilde{u}_{\varepsilon}|^{2} dx = \int_{M_{\varepsilon}} |\nabla u_{\varepsilon}|^{2} dx + \int_{B_{\varepsilon}} |\nabla \widetilde{u}_{\varepsilon}|^{2} dx$$

hold. By $(1.1)_{\varepsilon}$, Theorems 1 and 2, we see

$$\int_{M_{\varepsilon}} |\nabla u_{\varepsilon}|^{2} dx = \lambda(\varepsilon) - k \int_{\partial B_{\varepsilon}} u_{\varepsilon}^{2} d\sigma = \lambda(0) + O(\varepsilon^{1/2}).$$

On the other hand, $\|\nabla \tilde{u}_{\varepsilon}\|_{L^{2}(M)}^{2} \leq C$ holds from Theorem 1 and (A.3) of Lemma A in Appendix. Thus, we have

$$\int_{B_{\varepsilon}} |\nabla \tilde{u}_{\varepsilon}|^2 dx = o(1) \quad \text{as} \quad \varepsilon \longrightarrow 0.$$

Summing up these facts, we get the following.

(5.1) $\|\tilde{u}_{\varepsilon}\|_{p+1} \longrightarrow 1 \quad \text{as} \quad \varepsilon \longrightarrow 0$

(5.2)
$$\|\nabla \tilde{u}_{\varepsilon}\|_{2}^{2} \longrightarrow \|\nabla u_{0}\|_{2}^{2} = \lambda(0) \quad \text{as} \quad \varepsilon \longrightarrow 0$$

Next we want to show the following.

(5.3)
$$\tilde{u}_{\varepsilon} \longrightarrow u_0$$
 weakly in $H^1_0(M)$ as $\varepsilon \longrightarrow 0$

Assume that (5.3) does not hold. Then, there exist $\eta > 0$, $F \in (H_0^1(M))^*$, and a

sequence $\{\varepsilon_n\}_{n=0}^{\infty}$ satisfying $\varepsilon_n \downarrow 0(n \rightarrow \infty)$ such that

$$|F(\tilde{u}_{\mathfrak{s}_n}) - F(u_0)| \ge \eta$$

holds. Since $\{\tilde{u}_{\varepsilon_n}\}$ is bounded in $H^1_0(M)$, there exist a subsequence $\{\tilde{u}_{\varepsilon_{n'}}\}$ and $v \in H^1_0(M)$ satisfing

(5.5)
$$\widetilde{u}_{\varepsilon_n} \longrightarrow v$$
 weakly in $H^1_0(M)$
 $\widetilde{u}_{\varepsilon_n} \longrightarrow v$ strongly in $L^{p+1}(M)$
 $\widetilde{u}_{\varepsilon_n} \longrightarrow v$ a.e. in M .

Since $\tilde{u}_{\varepsilon_n} \ge 0$ a.e. in $M, v \ge 0$ a.e. in M. From (5.1) and (5.2), $\|\tilde{u}_{\varepsilon_n}\|_{p+1} \to 1$ and $\|\nabla \tilde{u}_{\varepsilon_n}\|_2^2 \to \|\nabla u_0\|_2^2 = \lambda(0)$ as $n' \to \infty$. Thus, by (5.5), we have $\|v\|_{p+1} = 1$ and

$$\|\nabla v\|_{2} \leq \liminf_{n' \to \infty} \|\nabla \widetilde{u}_{\varepsilon_{n'}}\|_{2} \leq \|\nabla u_{0}\|_{2} = \lambda(0)^{1/2}$$

Here we used the lower semi-continuity of the H_0^1 -norm. Therefore we have $v \in X$ and $\lambda(0) \leq \|\nabla v\|_2^2 \leq \|\nabla u_0\|_2^2 \leq \lambda(0)$. Hence v is a minimizer of (1.3). Thus, $v = u_0$ must hold by the assumption. Letting $n = n' \to \infty$ in (5.4), we have $0 = |F(v) - F(u_0)| \geq \eta$. This contradicts $\eta > 0$. Therefore we get (5.3).

From (5.2), (5.3) and the uniform convexity of H_0^1 , we get the desired result. q.e.d.

Now we are in a position to prove Theorem 3. Since $u_{\varepsilon} = \lambda(\varepsilon)G_{\varepsilon}u_{\varepsilon}^{p}$ and $u_{0} = \lambda(0)Gu_{0}^{p}$ hold, we have

$$u_{\varepsilon}(x) - u_{0}(x) = \sum_{i=1}^{3} J_{i}(\varepsilon; x) \qquad x \in M_{\varepsilon},$$

where

$$J_{1}(\varepsilon; x) = \lambda(\varepsilon)(G_{\varepsilon}u_{\varepsilon}^{p} - G\tilde{u}_{\varepsilon}^{p})(x),$$

$$J_{2}(\varepsilon; x) = \lambda(\varepsilon)G(\tilde{u}_{\varepsilon}^{p} - u_{0}^{p})(x),$$

$$J_{3}(\varepsilon; x) = (\lambda(\varepsilon) - \lambda(0))Gu_{0}^{p}(x).$$

We recall that $0 < \lambda(\varepsilon) \le C$. Thus, by (3.12) and Theorem 2, $||J_1(\varepsilon; \cdot)||_{\infty,\varepsilon} \le C\varepsilon^{1/2}$ and $||J_3(\varepsilon; \cdot)||_{\infty,\varepsilon} \le C\varepsilon^{1/2} ||Gu_0^p||_{\infty,\varepsilon} \le C\varepsilon^{1/2}$ hold. Furthermore, by the Sobolev embedding: $W^{2,6}(M) \subset C^0(M)$ and a priori estimate,

$$\|G(\tilde{u}_{\varepsilon}^{p}-u_{0}^{p})\|_{\infty} \leq C \|G(\tilde{u}_{\varepsilon}^{p}-u_{0}^{p})\|_{W^{2,6}(M)} \leq C \|\tilde{u}_{\varepsilon}^{p}-u_{0}^{p}\|_{L^{6}(M)}$$

hold. Thus, by using Theorem 1 and Lemma 5.1,

$$\|J_{2}(\varepsilon; \cdot)\|_{\infty,\varepsilon} \leq C \|\widetilde{u}_{\varepsilon}^{p} - u_{0}^{p}\|_{L^{6}(M)}$$
$$\leq C \|\widetilde{u}_{\varepsilon} - u_{0}\|_{L^{6}(M)} \sup_{\varepsilon > 0} \max(\|u_{0}\|_{\infty}^{p-1}, \|\widetilde{u}_{\varepsilon}\|_{\infty}^{p-1})$$

$$\leq C \| \tilde{u}_{\varepsilon} - u_0 \|_{H^1_0(M)} = o(1).$$

Summing up these facts, we get the desired Theorem 3.

6. Appendix

Let M, M_{ε} be as in Introduction. Then we have the following.

LEMMA A. For a function u on M_{ε} , there exists a function \tilde{u} satisfying the following:

(A.1)
$$\widetilde{u}(x) = u(x) \ a.e. \ in \ M_{\varepsilon},$$

(A.2) $\|\tilde{u}\|_{L^{s}(M)} \leq C \|u\|_{L^{s}(M_{\varepsilon})} \qquad (1 \leq s \leq \infty)$

holds for any $u \in L^{s}(M_{\varepsilon})$.

(A.3)
$$\|\tilde{u}\|_{H^{1}(M)} \leq C \|u\|_{H^{1}(M_{\varepsilon})} + C\varepsilon^{1/2} \|u\|_{L^{\infty}(M_{\varepsilon})}$$

holds for any $u \in H^1(M_{\varepsilon}) \cap L^{\infty}(M_{\varepsilon})$.

Proof. Without loss of generality, we may assume that w=0. For a function u on M_{ε} , we put

$$\widetilde{u}(x) = \begin{cases} u(x) & x \in M_{\varepsilon} \\ \\ u(\varepsilon^2 x | x |^{-2}) \eta_{\varepsilon}(x) & x \in B_{\varepsilon}, \end{cases}$$

where $\eta_{\varepsilon}(x) \in C^{\infty}(\mathbb{R}^3)$ satisfies $0 \leq \eta_{\varepsilon} \leq 1$, $\eta_{\varepsilon} = 1$ on $\mathbb{R}^3 \setminus \overline{B}_{\varepsilon/2}$, $\eta_{\varepsilon} = 0$ on $B_{\varepsilon/4}$ and $|\nabla \eta_{\varepsilon}| \leq 8\varepsilon^{-1}$. Notice that both $\eta_{\varepsilon}(\varepsilon^2 x |x|^{-2})$ and $(\nabla \eta_{\varepsilon})(\varepsilon^2 x |x|^{-2})$ vanish on $\mathbb{R}^3 \setminus B_{4\varepsilon}$. Then, by using the Kelvin transformation of co-ordinates: $y = \varepsilon^2 x |x|^{-2}$, we have

$$\begin{split} \int_{B_{\varepsilon}} |\tilde{u}(x)|^{s} dx = & \int_{R^{3} \setminus B_{\varepsilon}} |u(y)|^{s} \eta_{\varepsilon} (\varepsilon^{2} y |y|^{-2})^{s} (\varepsilon |y|^{-1})^{\varepsilon} dy \\ \leq & \int_{M_{\varepsilon}} |u(y)|^{s} dy \qquad (1 \leq s < \infty), \end{split}$$

where the term $(\varepsilon |y|^{-1})^6$ comes from the absolute value of the determinant of the Jacobian of the Kelvin transformation. And we have

$$\begin{split} \int_{B_{\varepsilon}} |\nabla \widetilde{u}(x)|^2 dx &= C \! \int_{B_{\varepsilon}} |u(\varepsilon^2 x |x|^{-2})|^2 |(\nabla \eta_{\varepsilon})(x)|^2 dx \\ &+ C \! \int_{B_{\varepsilon}} (\varepsilon |x|^{-1})^4 |(\nabla u)(\varepsilon^2 x |x|^{-2})|^2 |\eta_{\varepsilon}(x)|^2 dx \\ &\leq C \varepsilon^4 \! \int_{M_{\varepsilon}} |u(y)|^2 |y|^{-6} dy + C \! \int_{M_{\varepsilon}} |(\nabla u)(y)|^2 dy \end{split}$$

$$\leq C \varepsilon \|u\|_{L^{\infty}(M_{\varepsilon})}^{2} + C \int_{M_{\varepsilon}} |(\nabla u)(y)|^{2} dy$$

Thus we get the desired result.

References

- [1] R. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
- [2] E.N. DANCER, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.
- [3] E.N. DANCER, On the positive solutions of some weakly nonlinear equations on annular region, Math. Z., 206 (1991), 551-562.
- [4] B. GIDAS, W. M. NI AND L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
- [5] S.S. LIN, Semilinear elliptic equation on singularly perturbed domains, Comm. Partial Differential Equations, 16 (1991), 617-645.
- [6] T. OSAWA AND S. OZAWA, Singular variation of nonlinear eigenvalues, Proc. Japan Acad., 69A (1993), 217-218.
- S. OZAWA, Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sect. IA, 30 (1983), 259-277.
- [8] S. OZAWA, L^{∞} boundedness of nonlinear eigenfunction under singular variation of domains, preprint.
- [9] S. OZAWA, Singular variation of the ground state eigenvalue for a sem-ilinear elliptic equation, Tôhoku Math. J., 45 (1993), 359-368.
- [10] S. OZAWA AND S. ROPPONGI, Singular variation of domains and L^{∞} boundedness of eigenfunction for some semi-linear elliptic equations, Proc. Japan Acad., 70A (1994), 67-70.

Department of Mathematics Faculty of Science Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo, 152 Japan

q.e.d.