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SINGULAR VARIATION OF DOMAINS AND
CONTINUITY PROPERTY OF EIGENFUNCTION FOR
SOME SEMI-LINEAR ELLIPTIC EQUATIONS

SHIN OZAWA AND SUSUMU ROPPONGI

1. Introduction

Let M be a bounded domain in R® with smooth boundary oM. Let w be
a fixed point in M. By B(e; w) we denote the ball of center w with radius e.

We remove B(e; w) from M and we put M. =M\B(e; w). We write B(e; w)=B..
Fix k=0 and p={,5). We put

(1.1 Z(e)zigef(gﬂls IV 2dx+k§m wd7),
where
X={ucHM.,): |ulr+ urp=1, u=0 on oM, u=0 in M;}.

Then, we know that there exists at least one solution u. which attains (1.1)..
It satisfies

—Au.=A(e)u? in M.

ou.
v,

u.=0 on oM.

(1.2) +ku.=0 on 0B,

Here 0/0v, denotes the derivative along the exterior normal direction.
One of the main results of this paper is the following.

THEOREM 1. Fix pe(l,5). Then, there exists a constant C independent of
e such that
sup sup |u(x)| <C<+oo,
M

ULES TEM

where S is the set of positive solutions of (1.2) which minimize (1.1)..

Next we treat the asymptotic behaviours of A(¢) and positive solutions u.
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of (1.2) which minimize (1.1).. We put
(1.3) ,2(0)=infg |Vu|2dx,
X JM

where
X={ucHiM); lullLr+tan=1, u=0in M}.
Then, there exists at least one solution u, which attains (1.3) and satisfies

—Au,=20)u,? in M
(1.4)
=0 on oM.

We have the following theorems.

THEOREM 2. Fix p=(1,5). Then, there exists a constant C independent of
€ such that

[4(e)—2(0)| = Ce'
holds for any sufficiently small ¢>0.

THEOREM 3. Fix pe(l,5). Assume that the minimizer u, of (1.3) is unique.
Then,

sup |u(x)—uy(x)| —>0 as ¢ —>0
zeM,
holds for any u.€S..

Remarks. When M is a bounded domain in R?, Theorem 1 is proved in
Ozawa-Roppongi [10].

When M is a ball, the uniqueness of the minimizer of (1.3) is shown in
Gidas, Ni, and Nirenberg [4]. See also Dancer [2]. On the other hand, we
do not know whether the minimizer u. of (1.1). is unique or not in general
and even in the case when M is a ball. When the Robin boundary condition
on 0B, in (1.2) is replaced by the zero Dirichlet condition, the uniqueness of u,
is proved in Dancer [3] for any sufficiently small ¢>0 under the assumptions
that the minimizer u, of (1.3) is unique, and that Ker(A+pA(0)u%1)={0}.

For related topics, the reader may be referred to Lin [5], Osawa-Ozawa
[6], Ozawa [7], [8], [9].

Section 2 contains preliminary material. We give the proof of Theorems
1, 2 and 3 in sections 3, 4 and 5, respectively. In Appendix we give an ex-
tension lemma for a function on M. to M. We will follow the established
practice of using the same letter C (with or without subscript) to denote dif-
ferent constants independent of e.
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2. Preliminary lemmas

LEMMA 2.1. Fix £€(0, 1) and a=H¥(S?). Then, there exists at least one
solution of

@.1) Av(x)=0 xeR\B.

2.2) g;’i (X)+hv(x)=a), r=w+ewcdB, (WsS?)
satisfying

(2.3) max lve(x)| = Cella] ufes? -

Proof. Without loss of generality, we may assume that w=0. We put
r=ro (0€S*?) and w=(sinf cosp, sinf sinp, cosf) (0=0<x, 0=¢p<2x). Let P,(2)
be the Legendre polynomial and P¥(z) be the associated Legendre function,
that is,

dm

Po(z), (lz|=1, 0=m=n).
dz™
It is well known that {Pp(cos@)cosme, Pr(cosf)sinme; 0<m=<n}5- is a
complete orthogonal system of L2(S?) consisting of eigenfunction of the Laplace-
Beltrami operator Ag? whose eigenvalues are —n(n+1), n=0,1, 2, ---.

Furthermore, we have the Parseval relation

PR(2)=(1—2")""

@4 B @n+1)7(adot 3 (n+m)1/2n—m) @k n+b5n))

=@m) Yl Z2cs2)

for a(w) with the Fourier expansion

(@)= 2 Y40, 9),

where
2.5) Y.(0, ¢)= go(an, m COS M@~+by, m Sin mp)PT(cos ).
We put

ve(x)= éo(éo(sn, m COSMQP+Ln, m SiN m<p)P,’;’(cosﬁ))r‘<““> .
We see that

v,
5y (D) RV 2con, = @)
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= éo(éo(an, m COSMQP—+bn, m sinmgo)P,':‘(cosﬁ))
implies
A m=e"""D(n+14+ke)sy n
{ ba, m=e"""D(n41+4ke)tn, n
for 0<m<n, n=0. Then we have

(2.6) vs(x)zegﬂ(e/r)”“(n+1+ke)‘1Yn(0, ®),

and it satisfies (2.1) and (2.2). By (2.5), and by using the Schwarz inequality
and the relation

Pa(cosf)+ 33 @n—m)!/(n-+m) DPT(cosO)=1,
we see that
@.7) 1Ya(0, o)1’ af nt mZZ}l(n—Fm) Ve(n—m)H(az, m+03,m).
From (2.6) and (2.7), we have
2.8 )| S Cetrt( 5 e/ +1)7¢) K5 Cee K@)
for xeM,, £(0, 1), where
K@= 3 @n+17nf(akot 3 (nm)1/2n—m) N}, n+b3m))-
By (2.4) and observing that j-th eigenvalue of —Ag2~C; as j—oco, we can
easily see that K(&)? is equivalent to the norm ||| x%s?. Thus we get (2.3)
from (2.8). q.e.d.

By Lemma 2.1 and the same repeating construction of the function v{™ as
in Ozawa [7, Proposition 1, pp. 260-262], we have the following.

LEMMA 2.2. Fix £(0, 1). Assume that u,=C=(M.) is harmonic in M., u,
=0 on M and

ou,

PS (x)+ku(x)=L(w) r=w+ewcoB (wES?).

Then,
luellzoary < Cell Ll gt s?)

holds.

Next we want to show the following.



SEMI-LINEAR ELLIPTIC EQUATIONS 319
LEMMA 2.3. Fix qe[3/2, 2] and let §=2—(3/q). Then,
2.9) lu(e )l afsn= Coe' ™ lullw, 201,

holds for any uesW*y(M).
Here |u(e-)| gfcs?) denotes the HE(S®)-norm of the function u(ew) (s S?).

Proof. Fix ¢=[3/2, 2] and let & be as above. Then, the Sobolev embedd-
ing: WH(RHCW V»+42(R®) holds (see, for example, Adams [1, Theorem 7.58,
p. 218]). Since the trace operator: W¢/2+¢.2(R*)—H4(S?) is continuous,

(2.10) vl afesth = Cllvlwt ars

holds for any veW'4R?).

We take an arbitrary ueW"%M) and take = C=(R?®) satisfying 0=¢<1,
=1 on B, ¢=0 on R*\B,, and |Vp|<Ce'. We put v.(x)=u(ex)p(cx). Then,
v.€W§YB;). We extend v. to R® by defining v.=0 on R*\B,. Then, v;&
W*(R?) and

Iodeces, =), [u(ex)p(en)|tdx

:e‘SSBge lu(y)p(y)|%dy §5_3S335 )%y

Here we used the transformation of co-ordinates: y =ex. Let »=3¢/(3—¢).
Then, by the Sobolev embedding, [u|z7x) <Cllu]lwt, 2, holds. Using Holder’s
inequality, we have

@.11) I, leotedy=(], juomiray) ([, 1eay)”
< Cetlullyran < Cetluli s

Therefore,

2.12) et < Cev~lullynzcn

holds.

On the other hand, |Vv.(x)|=ep(ex)(Vu)(ex)+eu(ex)(Vp)ex) and [Vo| =
Ce™?,

Voo < Cet] | [(Vu)ex) tdz+C| | lu(ex)|2dx

=cer| (TwItdy+Ce] ju(y)itdy

hold. Using (2.11) in the second term of the right hand side of the above
inequality, we have
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(2.13) [Vvell3ae® < Ce® || Vu | Lo+ Cet lullfr, 200 < Ce? ¥l 2an.

From (2.12) and (2.13),

(2.14) lvellwr2gs) = Cel /P
holds.

Notice that v.(x)=u(ex) for x&S®% Therefore, by (2.14) and using (2.10)
with v=v,, we can get (2.9). q.e.d.

3. Proof of Theorem 1

Let G.(x, y) be the Green function of the Laplacian in M, satisfying
—A:G(x, y)=0(x—y), %, yEM.
G.(x, v)=0, xedM, yeM.

o Gu(x, HRGAx, =0, xdB, yEM,,

Let G(x, y) be the Green function of the Laplacian in M under the zero Dirichlet
condition on dM. We put

G Ar0)={,Gx, 2y,

GN@=], Gulx, Gy

For the sake of simplicity we write ||-|zron, I*llz7ary as |+l Il +ll-. respec-
tively for r&[1, <o].
We have the following.

LEMMA 3.1. Fix ¢q=(3/2, 2] and f€L(M.). Then,
3.1 IGef =G fllw, < Ce® 12| f,,
holds. Here J denotes the extension of f to M in Appendix of this paper.

Proof. Wishout loss of generality we may assume that w=0. We put
v(x)=(G.f—Gf)(x) for x&M,. Then, Av.=0 in M,, v.=0 on M and

(Gt J=—(gCT+6T Yew)  x=s0S0B0ES),

Let & be as in Lemma 2.3. Then £€=(0, 1). Thus, by Lemmas 2.2 and 2.3,

(3.2) [Vello o= csu(%cfwcf)@-)]}

més2)’
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(3.3) G F(e ) mes < Ce= PG Fllwr, 2,
and
(3.4) VG Fe )l me sty = Cel ™2 VG Iy,
hold.

Since

(%‘Gf)@w):uz-<VGf><ew>=—w-<VGf><ew> r=ewEIB; (0ESY),

|(,£;G F)ew)| =1V o)

I
and

|( o GF e (——— GF )ew)
=|w-(VGf)ew)—a (VG f)(ea)|
= |- {(VG [)(ew)—(VG f)(ew)} +(0—0) (VG f)(ew")]
< (VG F)ew)— (VG F)ew')| +|o—a' | (VG f)(ew)|

hold for any w, o &S% Thus we have

o5 (o

=ls.

Jo—o' | ¥ dede’

HE(S?)

(5 67 oo do+{|

§2x.82

<[ IFC P o rdot2l] | 176 P ew) oo |¥dodar

T2, VO e~ (V6 Pew) 0w |+ dudar.

Since £€(0, 1), we can easily see

3
(3.6) Sszsw—w’;-%dw: ali

1-¢

for any o’€S% From (3.5) and (3.6), we have

o0 Jeryel

HE(82)

( P Gf)(ew) ( (eco’)]2

321

.s_ce(SS;(VGf)(ew)l2dw+ggszxszl<v0f><sw>—<VGf)<ew’>|2|w—co'|—2-25dwdw')
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=Cell(VG )& 3rtcs? -
Notice that |G fllwz2un=<C|fllq=Cllflq. hold by a prior: estimate and Lemma
A in Appendix. Thus, by (3.3), (3.4) and (3.7),

3.8) H(@-—f-;anLkGf)(e-)H

HES?)
S Ce = SD(|VG fllws,2an+RIG Flwtaan)
SCe |G fllwraan<Ce =D £, .

hold. From (3.2) and (3.8), we get (3.1). q.e.d.

Now we are in a position to prove Theorem 1. We take an arbitrag TR
S.. We fix ¢=(3/2, 2]. Then, by the Sobolev embedding: W*¥M)CC(M) and
a priori estimate,

3.9 1G#%]w, .= ClIGUE w2 e0n = Cllikll,

hold. Notice that u.=A(¢e)G.u? and 0=<4(e)<C. Thus, by Lemma 3.1 and (3.9),
we have

(3.10) [elleo, e = [4(eNG el —GUR)+A(e)G R |, ¢
SC|Gut—Gitw, A ClGaL]w,.
SO Dk ]lg, = Clluelifg, -

At first we treat the case p=(l, 2). We put g=(p+1)/p. Then, ¢=(3/2, 2).
We recall that J|ucllp..,.=1. Therefore, by (3.10), |uellw < Clluclls,1,.=C hold.

Next we treat the case p<[2, 5). Since (p+1)/(p—1)>3/2, we can take
q=(3/2, 2] so that (p+1)/(p—1)>q. Notice that ¢>3/2>(p+1)/p. Thus we
have the interpolation inequality :

(3.11) Nuellpg e=lthell§ar e el s,
where a=(p+1)/(pg). By (3.10), (3.11) and the fact that [uc]p.1, =1,
elloo, e = Cllutel| g, e = Clluclls,

hold for z=(1—a)p =p—(p+1)/q. Since (p+1)>(p—1)>q, v<1 holds. This
implies ||#¢fle = C.
Thus we get the desired Theorem 1.

Remark. Since ||u,]lo,.<C holds, we have the following by using Lemma
3.1 with f=u? and ¢=2.

(3.12) |G Ul =Gt .S Ce'/?
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4. Proof of Theorem 2

Since u,-||uo 741, EXe, We see
@.1) z<s>§||u0||;2+1_e(SMSIVuO|de+k§aasuﬁda)

by (1.1).. Notice that u,eC* M), |[tollp.1..=1 and 2(0)=|Vu,|;. Therefore,

4.2) lolgtt =1-{, ut*dr=1+0),

4.3) SM |Vu0|2dx=2(0)—SB Vit 2d 2 =A(0)4+-0(e%) ,
and

(4.4) gaB wida=0(s?)

hold. Summing up (4.1), (4.2), (4.3) and (4.4), we have the following.
4.5) Ae)=A0)+C(ke?+¢?)

We take ¢.= C=(R?®) satisfying 0=¢.<1, ¢.=1 on R*\B,., ¢.=0 on B, and
[V |=Ce™t. Since (Pue):|Qulzi X, we see

(*6) KOS Ngalzal V@) dx

by (1.3). We recall that ||u.],.:;,.=1. Thus, we have

@7 Igalgii={, urride+{ @27 —Duridz=1+0).
On the other hand, we see

[, | V@ tde=Le)+ Leo)+14o),
where

1= gvulx,
12(5):2SM¢£u5v¢5 Vudx,

Ige)=| w2V, |dx.

We recall (1.1), and Theorem 1. Thus, we have
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11<e)ggM [Vu5|2dx:,2(s)——kg wide<A(e)=C,

aB

I;(e)<Ce and |1,(e)| = {I,(e)I5(e)}/?< Ce’®. Summing up these facts, we have

4.8) §M|v<¢eue>r2dx=z<e>+o<e“2>.

From (4.6), (4.7) and (4.8), we see that A(0)<A(e)+Ce'?. Combining this with

(4.5), we get Theorem 2.

5. Proof of Theorem 3

At first we want to show the following.

LEMMA 5.1. Let i, be an extension of u. to M as in Appendix.

that the minimizer u, of (1.3) is unique. Then,
e —> u, strongly in H{(M) as ¢ —>0.
Proof. Since #i.—u, a.e. in M.,
JepE=lalpii |, wrtdx=1+0(),
and
SMe[VﬁslzdngMEIVuel2dx+SBE|Vﬁe|2a’x

hold. By (1.1)., Theorems 1 and 2, we see

SMtVuelzdx:Z(a)-—/eS w.2da=A0)+0(s'"?).

aB

Assume

On the other hand, |V#.]|324,<C holds from Theorem 1 and (A.3) of Lemma

A in Appendix. Thus, we have
SB Vit |2dx=0(1) as ¢—>0.

Summing up these facts, we get the following.

6.1 ltellpsn—>1 as e—>0

(5.2) Vil — IVu,lli=40) as ¢—>0
Next we want to show the following.

(5.3) fle —> u, weakly in H}M) as ¢ —>0

Assume that (5.3) does not hold. Then, there exist >0, Fe(H{M))*, and a
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sequence {e,}5n-, satisfying ¢, | O(n—o0) such that
(5.4) |F(fie,)—F(uo)l 27

holds. Since {#.,} is bounded in H}(M), there exist a subsequence {#.,} and
veHYM) satisfing

fie,, —>v weakly in H}M)
(5.5) e, —>V strongly in L?*'(M)
e, —> v ae. in M.

Since #.,, =0 a.e. in M, v=0 a.e. in M. From (5.1) and (5.2), [, /l;.,—1 and )
Vi, |5—1Vu,ll3=40) as n’—oco. Thus, by (5.5), we have [jv],.,;=1 and

IVolle<lim inf||Vil. , [:<[|Violl,=2(0)'%.
Here we used the lower semi-continuity of the Hi-norm. Therefore we have
veX and A0)Z[Wl2<|Vu,)2<4(0). Hence v is a minimizer of (1.3). Thus,
v=u, must hold by the assumption. Letting n=n'—c in (5.4), we have 0=
|F(v)—F(u,)| 7. This contradicts n>0. Therefore we get (5.3).

From (5.2), (5.3) and the uniform convexity of H}, we get the desired result.
g.e.d.

Now we are in a position to prove Theorem 3. Since u.=21(e)G.u.” and
uo=A0)Gu,? hold, we have

uD—uD)= R Jue; ¥ xeM.,
where
Ji(e; )=Ae)Gaul—Gat)(x),
Joe; X)=Ae)G(@E—u)(x),
Jole; £)=(A(e)—A0)Guk(x).

We recall that 0<A(e)<C. Thus, by (3.12) and Theorem 2, ||J:(e; *)||e, < Ce'/®
and ||Js(e: o, e < Ce¥?|GuBll.. . < Ce'/? hold. Furthermore, by the Sobolev
embedding : W24(M)C C(M) and a prior: estimate,

NG —u®)llo= CIIG(HE—ub)llw2 5o < CIl AL —ub| 150,
hold. Thus, by using Theorem 1 and Lemma 5.1,
1T2(e; e, = CllAZ—uBl 80

< Cllte=uallzan sup max(fua|2™, |12
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é c”ﬁs-‘uo}iyé (M):O(l) .

Summing up these facts, we get the desired Theorem 3.

6. Appendix

Let M, M, be as in Introduction. Then we have the following.

LEMMA A. For a function u on M., there exists a function il satisfying the
following :

(A1) #(x)=u(x) a.e. in M.,
(A.2) lalsan=Clullrsa, (1=s=o)
holds for any ues L*(M.).
(A.3) Nl on=Cllullutory+Ce'?lull oo,
holds for any ue H (M )N L=(M,).
Proof. Without loss of generality, we may assume that w=0. For a
function » on M., we put
u(x) xeM.
fi(x)=
u(e®x| x| 7?)n(x) xeB.,

where 7.(x) & C=(R®) satisfies 0<7.<1, p.=1 on R*B.p, 7.=0 on B., and
|Vy.|<8¢7*. Notice that both p.(e?x|x|~?) and (Vy.)(e®x|x|~?) vanish on R*\B,..
Then, by using the Kelvin transformation of co-ordinates: y=¢%x|x|"% we have

[, ol de={ | 1u)l ety ]yl rdy

<, oty ass<eo),

where the term (e|y|™')° comes from the absolute value of the determinant of
the Jacobian of the Kelvin transformation. And we have

[, Vit rdz=C]_ luetx 111 Ty
+Cl, (612141 (Va1 2 2l 2

éCe‘*EM lu(y)lzly]“6dy+CSM |(Vu)(y)|2dy
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< Celultmary +C| , (V)| .

Thus we get the desired result. q.ed.
REFERENCES

[1] R. Apawms, Sobolev Spaces, Academic Press, New York, 1975.

[27 E.N. Dancer, The effect of domain shape on the number of positive solutions
of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.

[3] E.N. Dancer, On the positive solutions of some weakly nonlinear equations on
annular region, Math. Z., 206 (1991), 551-562.

[47] B. Gipas, W.M. N1 anDp L. NIRENBERG, Symmetry and related properties via
the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.

[57 S.S. Liv, Semilinear elliptic equation on singularly perturbed domains, Comm.
Partial Differential Equations, 16 (1991), 617-645.

[6] T. Osawa aAND S. Ozawa, Singular variation of nonlinear eigenvalues, Proc.
Japan Acad., 69A (1993), 217-218.

[77 S. Ozawa, Spectra of domains with small spherical Neumann boundary, J. Fac.
Sci. Univ. Tokyo Sect. IA, 30 (1983), 259-277.

[8] S. Ozawa, L= boundedness of nonlinear eigenfunction under singular variation
of domains, preprint.

[9] S. Ozawa, Singular variation of the ground state eigenvalue for a sem-ilinear
elliptic equation, Téhoku Math. J., 45 (1993), 359-368.

[10] S. Ozawa aND S. RopponGI, Singular variation of domains and L% boundedness

of eigenfunction for some semi-linear elliptic equations, Proc. Japan Acad., T0A
(1994), 67-70.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

Tokyo INSTITUTE OF TECHNOLOGY
OH-OKAYAMA, MEGURO-KU, Tokyo, 152
Jaran





