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SINGULAR VARIATION OF DOMAINS AND
CONTINUITY PROPERTY OF EIGENFUNCTION FOR

SOME SEMI-LINEAR ELLIPTIC EQUATIONS

SHIN OZAWA AND SUSUMU ROPPONGI

1. Introduction

Let M be a bounded domain in R2 with smooth boundary dM. Let w be

a fixed point in M. By B(e w) we denote the ball of center w with radius ε.

We remove B(ε w) from Mand we put Mε=M\B{e w). We write B(ε w)—Bε.
Fix k^O and />e(l, 5). We put

(l.l)β Λ(ε)=inf(T \Vu\2dx + k[ u2dσ),

where

Xε={uϊΞH\Mε): | |M|| j Lp+i ( 3 f f )=l, u=0 on dM, u>0 in Mε}.

Then, we know that there exists at least one solution uε which attains (l.l)e.
It satisfies

—Au ε—λ(ε)u p

ε in Mε

(1.2) ψ± + kue=0 on 3B£

ovx

uε—0 on 3M.

Here d/dvx denotes the derivative along the exterior normal direction.
One of the main results of this paper is the following.

THEOREM 1. Fix />e(l, 5). Then, there exists a constant C independent of
ε such that

sup sup \U£(X)\^C< + CΌ,
uε<ΞSε χς=Mε

where Se is the set of positive solutions of (1.2) which minimize (l.l) s.

Next we treat the asymptotic behaviours of λ(ε) and positive solutions uε
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of (1.2) which minimize (l.l) ε. We put

(1.3) λ(0)='mί[ \Vu\2dx,

where

X={ueΞHl(M); \\U\\LP+UM)=1, U^O in M}.

Then, there exists at least one solution u0 which attains (1.3) and satisfies

-AuQ=λ(O)uo

p in M
(1.4)

uo=O on dM.

We have the following theorems.

THEOREM 2. Fix />e(l, 5). TTzgw, there exists a constant C independent of
ε such that

holds for any sufficiently small ε>0.

THEOREM 3. Fix p^O , 5). Assume that the minimizer u0 of (1.3) is unique.
Then,

sup \uε(x)—uo(x)\ — > 0 as ε—>0
x<=Mε

holds for any uε

Remarks. When M is a bounded domain in R2, Theorem 1 is proved in
Ozawa-Roppongi [10].

When M is a ball, the uniqueness of the minimizer of (1.3) is shown in
Gidas, Ni, and Nirenberg [4]. See also Dancer [2]. On the other hand, we
do not know whether the minimizer uε of (l.l) e is unique or not in general
and even in the case when M is a ball. When the Robin boundary condition
on dBε in (1.2) is replaced by the zero Dirichlet condition, the uniqueness of uε

is proved in Dancer [3] for any sufficiently small ε>0 under the assumptions
that the minimizer u0 of (1.3) is unique, and that /ifer(Δ+ί^(0)M?"1)= {0}.

For related topics, the reader may be referred to Lin [5], Osawa-Ozawa
[6], Ozawa [7], [8], [9].

Section 2 contains preliminary material. We give the proof of Theorems
1, 2 and 3 in sections 3, 4 and 5, respectively. In Appendix we give an ex-
tension lemma for a function on Mε to M. We will follow the established
practice of using the same letter C (with or without subscript) to denote dif-
ferent constants independent of ε.
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2. Preliminary lemmas

LEMMA 2.1. Fix ξe(0, 1) and ae// ? (S 2 ). Then, there exists at least one
solution of

(2.1)

(2.2) ^

satisfying

(2.3)

Proof. Without loss of generality, we may assume that w—0. We put
x=rω (ίt)GS2) and ω=(sin0 coŝ >, sin# sin^>, cos#) (0^θ<.π, 0^φ<l2π). Let P7i(e)
be the Legendre polynomial and P%(z) be the associated Legendre function,
that is,

It is well known that {P^(cos^) cos mφ, PJt(cosθ)smmφ; 0^m< n\n=o is a
complete orthogonal system of L\S2) consisting of eigenfunction of the Laplace-
Bel trami operator Δs2 whose eigenvalues are —n(n+l), n=0, 1, 2, ••• .

Furthermore, we have the Parseval relation

(2.4) Σ ( 2 n + l ) - 1 ( < 0 + Σ ((n+m)!/2(n-m)I)(α5.m+6S.m))
n=0 \ m=l /

for a(a)) with the Fourier expansion

a(ω)= ΣiYn(θ,φ),

where

(2.5) Yn(θ, <p)= Έ(an,m cos mφ+bn,n sin nιφ)P™(cos θ).

We put

We see that
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<χ> / n

= Σ( Σ (an,
n=o\m=O

implies

for O^m^n, n^O. Then we have

(2.6) v.(x)=ε Σ (ε/r)»+\n+l + kεyΎn(θ, φ),
n=o

and it satisfies (2.1) and (2.2). By (2.5), and by using the Schwarz inequality
and the relation

Pn(co$θ)2+ Σ (2(n-m)\/(n+m)\)P%(cosθ)2=l,
771 = 1

we see that

(2.7) |Fn(0, φ)\2^a2

n m+ i3(n+m)!/2(n-m)!)(αS,m+65.m).
Γ m=i

From (2.6) and (2.7), we have

( oo /2

Σ (e/
for %eMε, f e(0, 1), where

( , 0 + Σ
l

By (2.4) and observing that j-th eigenvalue of — As2~Cj as —>oo, we can
easily see that K(ξ)1/2 is equivalent to the norm | |α | | ^ ( s

2 ) . Thus we get (2.3)
from (2.8). q.e.d.

By Lemma 2.1 and the same repeating construction of the function v(

ε

n) as
in Ozawa [7, Proposition 1, pp. 260-262], we have the following.

LEMMA 2.2. Fix £e(0, 1). Assume that wδGC°°(Mε) is harmonic in Mε, uε

= 0 on dM and

Then,
llM.llw

holds.

Next we want to show the following.
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LEMMA 2.3. Fix ?e[3/2, 2] and let ξ=2-(3/q). Then,

(2.9) Wui

holds for any u(=Wι>q{M).
Here \\u(ε )\\Hz(s

2) denotes the Hξ(S2)-norm of the function u(εω)

Proof. Fix #e[3/2, 2] and let ξ be as above. Then, the Sobolev embedd-
ing: Wι'\R*)dW{ll2)+ξ>\R*) holds (see, for example, Adams [1, Theorem 7.58,
p. 218]). Since the trace operator: Wσ/2)+ξ 2(R*)->Hξ(S2) is continuous,

(2.10) I N i Λ ^ C | | z ; | U i Λ * 3 )

holds for any v^Wι q(R3).
We take an arbitrary u<=Wι q(M) and take <peC°°(#3) satisfying O ^ ^ ^ l ,

φ=l on B2ε, φ=0 on R3\B3ε and IV^I^Cε" 1. We put vε(x)=u(εx)φ(εx). Then,
vε^Wl'q(B3). We extend vε to R* by defining z;ε=0 on R3\BZ. Then, z;3e
TF 1 ' 9^ 3) and

= ( \u(εx)φ{εx)\qdx

A \u(y)\«dy.
ε

Here we used the transformation of co-ordinates: y = εx. Let r =3#/(3—q).
Then, by the Sobolev embedding, \\u\\L

r

{M)^C\\u\\wι,<ι{M) holds. Using Holder's
inequality, we have

(2.11)

Therefore,

(2.12) l|

holds.
On the other hand, ]Vv,(x)\=εφ(εx)(Vu)(εx)+εu(εx)(Vφ)(εx) and \Vφ\ <

Cε-\

\(Vu)(εx)\"dx + c\ \u(sx)\"dx
JB3

\(Vu)(y)\qdy + CεA \u(y)\qdy
B JB

hold. Using (2.11) in the second term of the right hand side of the above
inequality, we have
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(2.13) llVt J l i ^ g C ε * - 3 ^

From (2.12) and (2.13),

(2.14) \\v εhv1 ,q (R'S)^ C ε1" {'i/q)

holds.

Notice that vε(x)=u(εx) for xeS 2 . Therefore, by (2.14) and using (2.10)
with v=vε, we can get (2.9). q.e.d.

3. Proof of Theorem 1

Let Ge(x, y) be the Green function of the Laplacian in Mε satisfying

-AxGε(x, y)=δ(x-y), x,

Ge(χ, y)=Q> x^dM, y^M

^Gε(x, y)+kGε(x, y)=0,

Let G(x, y) be the Green function of the Laplacian in M under the zero Dirichlet
condition on dM. We put

(Gεf)(x)=\ Gε(x, y)f(y)dy .

For the sake of simplicity we write || |Ur(jf>, || |Uro/e> as || ||r, || ||r,β, respec-
tively for r e [ l , oo].

We have the following.

LEMMA 3.1. Fix ?e(3/2, 2] and f^Lq(Mε). Then,

(3.1) l |G s /-G/|U, ε ^Cε 2 -^>| |/ | | g , ε

holds. Here f denotes the extension of f to M in Appendix of this paper.

Proof. Without loss of generality we may assume that w=0. We put
vε{x)={Gεf-Gf){x) for xeM ε . Then, Δz;ε=:0 in Mε, vε=0 on dM and

Let ξ be as in Lemma 2.3. Then ξe(0, 1). Thus, by Lemmas 2.2 and 2.3,

(3.2) Hi .IL
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(3.3)

and

(3.4)

hold.
Since

and

= I ω (VG/)(εα>)-ω' (VG/)(εω') I

^|(VG/)(eω)-(VG/)(eω')l

hold for any ω, ω'eS2. Thus we have

(3.5) " d

^ [ I (VG/)(εω) 1
J52

| (VG/)(εα/) |21 ω-α

>/) |21 ω-ω' |

Since |<Ξ(0, 1), we can easily see

(3.6) 1 ω-ω' \ ~2ξdω=

for any ω ' e S 2 . From (3.5) and (3.6), we have

321

I (VG/)(εω) | *dω+ [ [ I (VG/Xεα>)-(VG/)(ε«/) |21 ω-ω' \
J J S 2 S 2
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= Cf||(VG/)(ε )IIW>.

Notice that \\Gf\\w

2^{M)^C\\f\\q^C\\f\\q>ε hold by a priori estimate and Lemma
A in Appendix. Thus, by (3.3), (3.4) and (3.7),

(3.8)

hold. From (3.2) and (3.8), we get (3.1). q.e.d.

Now we are in a position to prove Theorem 1. We take an arbitrary w ε e
S.. We ήx ?e(3/2, 2]. Then, by the Sobolev embedding: W2 q(M)dC(M) and
a priori estimate,

(3.9) \\Gm\u,^c\\Gm\\w\^M^c\\m\\q

hold. Notice that u,=λ(ε)Gεu
p and 0<λ(ε)<C. Thus, by Lemma 3.1 and (3.9),

we have

(3.10) \\us\U.^\\λ{ε){Gεu
p

At first we treat the case />e(l, 2). We put q=(p+l)/p. Then, ^e(3/2, 2).

We recall that HM.UP+I.^1 . Therefore, by (3.10), \\uε\\O0>ε<C\\u$\\p

p+i.e=C hold.
Next we treat the case />e[2, 5). Since (/)+l)/(ί~-l)>3/2, we can take

,?<Ξ(3/2, 2] so that (p+l)/(p—l)>q. Notice that q>3/2>(p+l)/p. Thus we
have the interpolation inequality:

(3.11) llM.llpβ..^l|M.IIS+i.. l|M.lli>:f,

where a=(p+l)/(pq). By (3.10), (3.11) and the fact that ||M,||p+i,.=l,

hold for τ=(X-a)p = p-(p+l)/q. Since (p+l)>(p-l)>q, τ<l holds. This
implies ||ws||oo,ε^C

Thus we get the desired Theorem 1.

Remark. Since l|Mβ|U,s^C holds, we have the following by using Lemma
3.1 with f=up and q=2.

(3.12) \\Gεu
p
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4. Proof of Theorem 2

Since uo \\uo\\p\lt8^Xe, we see

(4.1) λ(ε)^\\uo\\-p%hΆ \Vuo\
2dx + k\ uldσ)

by (l.l)e. Notice that u,(=C\M), | |κ o | |P + i . s=l and >?(O)=||VMO||I. Therefore,

(4.2) ll«βl|Jίi..=l-( uV'dx^+Oiε3),
JBε

(4.3) f \VU<l\*dx=λ(0)-\ \VU(ί\*dx=λ(0)+O(εη,
JMε JBε

and

(4.4) [ u2

0dσ = O(ε2)
}dBε

hold. Summing up (4.1), (4.2), (4.3) and (4.4), we have the following.

(4.5) λ

We take ψε(ΞC°°(Rz) satisfying Og.φβ^l, ψβ=l on Rs\B2ε, ψε=0 on Bε, and
\Vψ£\<Cε~\ Since (ψεuε)>\\ψεuε\\γ+ι(=X, we see

(4.6) λ{ΰ)^\\ψεuε\\-v\X \V(ψεuε)\*dx
j M

by (1.3). We recall that | | M e | | p + 1 , ε = l . Thus, we have

(4.7) l|0.w.||$ίi=( u'.*1dx + [ (ψ'.*1-l)u1*1dx
J M ε J M ε

On the other hand, we see

where

Λ(β)=( ψl\Vuε\*dx,
J M

2(β)=2f ψεuεVψt'Vuεdx,
J M

/,(β)=( u\\Vψt\*dχ.
J M

We recall (l.l)β and Theorem 1. Thus, we have
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7i(e)^f \Vu8\*dx=λ(ε)-k[ u2

εdσ£λ
JMε JdBε

h(ε)<Cε and |/2(ε)| < {/1(ε)/3(ε)}1/2^Cε1/2. Summing up these facts, we have

(4.8) ί \V(ψεuε)\2dx=λ(ε)+O(ει>2).
J M

From (4.6), (4.7) and (4.8), we see that λ(0)^λ(ε)+Cε1/2. Combining this with
(4.5), we get Theorem 2.

5. Proof of Theorem 3

At first we want to show the following.

LEMMA 5.1. Let uε be an extension of uε to M as in Appendix. Assume
that the minimizer u0 of (1.3) is unique. Then,

uε — > u0 strongly in H\(M) as ε — > 0.

Proof. Since uε=u0 a.e. in Mε,

and

f \Vuε\
2dx=[ \Vut\*dx + [ \Vuε\

2dx
JMε jMε }Bε

hold. By (l.l) ε, Theorems 1 and 2, we see

f \Vu8\*dx=λ(ε)-k[ u2dσ^λφ)+O(ειι2).
JMε JdB£

On the other hand, \\Vuε\\l2

(M)£C holds from Theorem 1 and (A.3) of Lemma
A in Appendix. Thus, we have

\Vuε\
2dx = o(l) a s ε — > 0 .

Summing up these facts, we get the following.

(5.1) l l f l . lUi—>1 as ε — ^ 0

(5.2) IIV0J! — > I|VMOI||=^(O) as ε — > 0

Next we want to show the following.

(5.3) uε — > u0 weakly in H\(M) as ε — > 0

Assume that (5.3) does not hold. Then, there exist η>0, F G ( / / J ( M ) ) * , and a
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sequence {εn}^=0 satisfying εn j 0(n—>oo) such that

(5.4)

holds. Since {uSn} is bounded in H\(M), there exist a subsequence {uSn,} and
V<ELH\(M) satisfing

ύ£n, —>v weakly in H\(M)

(5.5) Uen,—>v strongly in LP+1(M)

ϋεn, — > v a.e. in M.

Since wβn,^0 a.e. in M, i ^O a.e. in M. From (5.1) and (5.2), ||wβn, ||p+1—>1 and

f||i-^l|VM0||i=^(0) as n'—oo. Thus, by (5.5), we have l |v | | p +i=l and

^rim inf ||Vβ.nf | | 2 ^
n'-*oo

Here we used the lower semi-continuity of the Z/J-norm. Therefore we have
VΪΞX and Λ(0)^||Vv||i^l|VM0||i^(0). Hence y is a minimizer of (1.3). Thus,
V—UQ must hold by the assumption. Letting n — n'-^^ in (5.4), we have 0—
\F(v)—F(uo)\>η. This contradicts η>0. Therefore we get (5.3).

From (5.2), (5.3) and the uniform convexity of HI, we get the desired result.
q.e.d.

Now we are in a position to prove Theorem 3. Since uε~λ(ε)Gεuε

p and
uo=λφ)Guo

p hold, we have

uε(x)-u0(x)= Σ/i(ε;
1 = 1

where

/ 2 (ε; x)=λ{ε)G{

/ 3 (ε; * ) = W e ) -

We recall that 0<^(ε)^C. Thus, by (3.12) and Theorem 2, \\J1(ε; O l k . ^
and | |/ 8(ε: ) lk . ^ Cε^llGwζlke ^ Cε1/2 hold. Furthermore, by the Sobolev
embedding: W2'6(M)dC°(M) and a priori estimate,

hold. Thus, by using Theorem 1 and Lemma 5.1,
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^C\\ύεu0\\H(

Summing up these facts, we get the desired Theorem 3.

6. Appendix

Let M, Mε be as in Introduction. Then we have the following.

LEMMA A. For a function u on Mε, there exists a function u satisfying the
following :

(A.I) u(x)=u(x) a.e. in Mε,

(A.2) \\U\\LSCM^C\\U\\LS(M£)

holds for any weL*(Mβ).

(A.3) \\u\\πUM^C\\u\\Hi(Mε ε

holds for any u^H\Mε)ίλLca{Mε).

Proof. Without loss of generality, we may assume that w=0. For a
function u on Mε, we put

u(x)

u(ε2x\x\-2)ηε(x)

where ηe(x) e C°°(RS) satisfies O^^ε^l, rje=l on Rs\Bε/2, ηε=0 on Bε/i and
IV^J^δε- 1 . Notice that both ^ ε (ε 2 x|x |" 2 ) and (Vηε)(e2x\x\-2) vanish on R*\B4ε.
Then, by using the Kelvin transformation of co-ordinates: y^=ε2x\x\~2', we have

\u(y)\srjε(ε2y\y\-2γ(ε\y\-ι)Gdy

^f \u(y)\'dy ( l ^ s < o o ) ,

where the term (ε\y\"1)6 comes from the absolute value of the determinant of
the Jacobian of the Kelvin transformation. And we have

\(Vu)(y)\*dy
M ε
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\(Vu)(y)\*dy.
ε

Thus we get the desired result. q.e.d.
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