
N.S. PAPAGEORGIOt;
KODAI MATH. J.
18 (1995), 169-186

A CONTINUOUS VERSION OF THE RELAXATION
THEOREM FOR NONLINEAR
EVOLUTION INCLUSIONS

BY NIKOLAOS S. PAPAGEORGIOU

Abstract

We consider parametric nonlinear evolution inclusions defined on an evolu-
tion triple of spaces. First we prove some continuous dependence results for
the solution sets of both the convex and nonconvex problem and for the set
of solution-selector pairs of the convex problem. Subsequently, we derive a
parametrized version of the Filippov-Gronwall estimate in which the param-
eter varies in a continuous fashion. Using that estimate, we prove a con-
tinuous version of the nonlinear relaxation theorem. An example of a non-
linear parabolic control system is worked out in detail.

1. Introduction

One of the fundamental results in the theory of differential inclusions (set-
valued differential equations), is the "retaxation theorem". It says that if the
orientor field (set-valued vector field) is /z-Lipschitz in the state variable, then
the solution set of the differential inclusion is dense in that of the convexified
problem (i.e. the system obtained by replacing the original vector field by its
closed, convex hull). We refer to the book of Aubin-Cellina [2] (theorem 2, p.
124) which treats differential inclusions in RN and the papers of Papageorgiou
[15] and Zhu [24], which deal with differential inclusions in Banach spaces.
Such a density result is important in control theory because it leads to nonlinear
versions of the "bang-bang" principle. Recently, the relaxation theorem was
extended to evolution inclusions by Frankowska [6] and Papageorgiou [20] for
semilinear systems, by Papageorgiou [17] for integrodifferential systems and by
Hu-Lakshmikantham-Papageorgiou [9] for nonlinear systems. Furthermore in
[16], we studied the relation between relaxability and performance stability for
nonlinear variational problems monitored by nonlinear evolution equations. We
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should point out that evolution inclusions model partial differential equations
with multivalued terms (like distributed parameter and boundary control prob-
lems) and so are more appropriate for the analysis of infinite dimensional set-
valued systems than the differential inclusions considered by Papageorgiou [15]
and Zhu [24], which do not allow for the presence of unbounded operators
(linear or nonlinear) and therefore can not be used in describing systems governed
by partial differential equations with multivalued perturbations.

Very recently, Fryszkowski-Rzezuchowski [7] considered differential inclu-
sions in a Banach space, depending on a parameter and established a continuous
version of the relaxation theorem. The purpose of this paper is to extend their
result to evolution inclusions. In this effort we also prove a continuous depen-
dence result extending Theorem 4.2 of Zhu [24] and a continuous version of
the Filippov-Gronwall inequality, extending this way to a large class of non-
linear systems, an analogous result for semilinear autonomous systems proved
by Frankowska [6] and for semilinear nonautonomous systems proved by Papa-
georgiou [20].

2. Mathematical preliminaries

Let (Ω, Σ) be a measurable space and X a separable Banach space. Through-
out this work we will be using the following notations:

Pf{c){X)— {Λ^X: nonempty, closed (convex)}

and P(w)k(c)(X)= {AQX: nonempty, (weakly-) compact, (convex)}.

A multifunction (set-valued function) F: Ω->Pf(X) is said to be measurable
if for all x e l , the /^-valued function ω-^d(x, F{ω))—'mί{x —z\\ : zeF(ω)} is
measurable. Next let μ(-) be a finite measure on (Ω, Σ). By S%, l<p^°o, we
will denote the set of selectors of F( ) that belong in the Lebesgue-Bochner
space LP(Ω, X) i. e. Sξ.= {f^Lv{Ω, X): f(ω)eF(ω)μ-a. e.}. In general, this set
may be empty. However it is easy to check using Aumann's selection theorem
(see Wagner [22], Theorem 5.10), that if F: Ω-^2X\{@] is a multifunction such
that GrF={(ω, X)ΪΞΩXX : x(ΞF(ω)} <ΞΣXB(X) (i.e. F( ) is graph measurable),
with B{X) being the Borel σ-field of X, then S£ is nonempty if and only if
ω->inf{||z|| : zGF(ω)}eLp(fl, R). Note that for a /^(ΛQ-valued multifunction,
we have that measurability implies graph measurability, while the converse is
true if Σ is ^-complete. Also remark that Sξ is decomposable in the sense
that for all (A, f, g)&ΣxS$xSξ> we have XΛf+XAcg^Sξ> (here XΛ(>) is the
characteristic function of a set A<=Σ).

On Pf{X) we can define a generalized metric (i.e., the distance function
can take the value +<χ>; cf. Choquet [25]), known in the literature as the
Hausdorff metric, by setting for A, B<=Pf(X)
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h(A, B)=max [ sup d(a, B), sup d(b, v4)]

where d(a, £)=inf{\\a-b\\ : &Gβ( and dψ, A)=mί{\\b-a\\ : a^A}. It is well-
known (see for example Klein-Thompson [10]), that the generalized metric space
(Pf(X), h) is complete. A multifunction F: X-»Pf(X) is said to be Hausdorff
continuous (/z-continuous), if it is continuous from X into the metric space

(Pχ(X), A).
If Y, Z are Hausdorff topological spaces and G:F-*2Z\{0}, we say that

G( ) is lower semicontinuous (l.s.c), if for every CQZ closed, G+(C) —
: G(y)^C) is closed (or equίvalently for every £/<=Z open, G~(U) =

Y : G(y)Γ\UφQ} is open). If Y, Z are metric spaces, then lower semi-
continuity is equivalent to saying that if yn^y in Y, then G(v)<Ξlim G(yn) —
{zt=Z:limdz(z, G(yn)) = 0} = {zt=Z: z = \imzn, zne£G(yn), n^l}, with dz{ , •)
being the metric on Z. Furthermore in this case the lower semicontinuity of
G( ) is equivalent to the upper semicontinuity of the distance functions y~>
dz(z, G(y))=mf{dz(zfz'):z'G:G(y)} for every z e Z . We say that G( ) is upper
semicontinuous (u.s.c.) if for every CQZ closed G~{C)—{y^Y:G{y)Γ\CΦ^}
is closed (or equivalently for every U^Z open G+(U)={y^Y: G(y)^U} is
open). A multifunction which is both /. s. c. and u, s. c. is said to be continuous
(or sometimes Vietoris continuous, to emphasize that on the hyperspace 2Z\{9}
we consider the Vietoris hyperspace topology). If Y, Z are metric spaces and
G( ) is Pk(Z)-valued, then continuity and /ι-contmuity coincide. For further
details we refer to DeBlasi-Myjak [5] and Klein-Thompson [10].

Let H be a separable Hubert space of norm | |. Let I be a reflexive,
separable Banach space embedding continuously and densely into H. Identifying
H with its dual (pivot space), we have that X^H^X*, with all injections being
continuous and dense. Such a triple of spaces is usually known in the litera-
ture as "evolution triple" (the names "Gelfand triple" or "spaces in normal posi-
tion" are also used). We will also assume that the embeddings are compact.
In concrete applications, evolution, triples are generated by Sobolev spaces (see
the example in section 6). By || || (resp. || ||#) will denote the norm of X (resp.
of X*). Also by < , •> we will denote the duality brackets for the pair (X, X*)
and by ( , •) the inner product of H. The two are compatible in the sense
that (., •) = <•, >lχχtf. Let T = [0, b~\, Kp, q<^, l/p + l/q = l and define
Wm(T)={xϊΞLp(T,X): χ(ΞLq(T,X*)\. The derivative involved in this defini-
tion is understood in the sense of vector-valued distributions. Furnished with
the norm \\x\\wpq{T) = (\\x\\LP(τ.χ)Jr\\x\\b(τ,x*)Y/2, Wpq(T) becomes a Banach space,
which is separable and reflexive. Furthermore Wpq(T) embeds continuously into
C(T, H) and compactly into LP(T, H). For further details, we refer to Zeidler
[23] (Proposition 23.23, pp. 422-423 and p. 450). When X is a Hubert space
too and p~q—2, Wpq(T) — W(T) is a separable Hubert space with inner product

A map A : X->X* is said to be hemicontinuous if and only if for all x, y, z
e l , the map λ-*(A(x+λy), z) is continuous from [0, 1] into R (i.e. x-^A(x)
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is continuous from X into X% along rays here X% denotes the space X* fur-
nished with the weak topology). If /1( ) is demicontinuous (i.e. when xn—>x
in X, we have A(xn) —> Λ(x) in X*), then A{-) is hemicontinuous (see Zeidler
[23], p. 596). We say that A(-) is monotone, if for all x, y^X, <A(x)—A(y),

Next let T = [ 0 , 6], A a complete metric space (the parameter space) and
(X, H, X*) an evolution triple of spaces with compact embeddings. The multi-
valued Cauchy problem under consideration is the following:

(1)
j , x(t))<=F(t, x(t), λ)a.e.)[

1 x(0)=v(λ), j

where v: Λ->H is given.
In conjunction with (1) we also consider its convexified counterpart:

(2)
(x(t) + A(t, x(t))tΞconvF(t, x(t), λ)a.eλ

\ xφ)=v(λ). J

Here convF(t, x, λ) denotes the closed, convex hull of the set F(t, x, λ).
By a solution of (1) (resp. of (2)), we mean a function x(-)^Wpq(T) such that
x(t)+A(t, x(f))=f(t) a.e., x(0)=v(λ), with f<=L«(T,H),f(t)ς=F(t,x(t),λ) a.e.
(resp. f(t)(ΞcόnvF(t, x(t), λ) a.e.). By S(λ)QWpq(T) we will denote the solution
set of (1) and by Sr(λ)QWpq(T) we will denote the solution set of (2).

The following hypothesis on the operator A(t, x) will be useful throughout
this work:

H(A)\ A: TxX-*X* is an operator such that
(1) t^A(t, x) is measurable,
(2) x-+A(t, x) is hemicontinuous, monotone,
(3) \\A(t, *)l |*^αi(f)+ci| |* | |p- 1α. e. with a£-)£=:LP(T, R)f d >

(4) c||*||p^CA(f, x), x> for all I G I and almost all t^T and with c>0.

Let h<=Lq(T, H). By w(h, λ)(')^Wpq(T)^C(T, H) we will denote the uni-
que solution of the Cauchy problem x(t)+A(t, x{t))—h(t) a.e., x(0)=v(λ). As-
suming hypothesis H(A) above, the existence and uniqueness of w{h, λ)( ) fol-
lows from Theorem 30.A, p. 771 of Zeidler [23].

Then let

T, H):x = w(h, λ),
and

i.e. the sets of solution-selection pairs for Cauchy problems (1) and (2) respec-
tively.
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3. Continuous dependence results

In this section we establish the continuity properties of the multifunctions
λ->Pr(λ), λ-+Sr(λ) and λ-+S(λ). To this end, we will need the following hypothesis
on the parametrized orientor field F(t, x, λ):

H(F)λ: F: TxHxA-^Pf(H) is a multifunction such that
(1) t—>F(t, x, λ) is measurable,
(2) h(F(t, x, λ), F(t, y, λ))<kB(t)\x~y\ a.e. for all λ^B^Λ compact

and with kB^Lq(T, R),
(3) \F{t, x, Λ)l=sup{|ι;| :vGF(ί, x, λ)\^aB(t)+cB(t)\x\2/q a.e. for all

λ<ΞBQΛ compact with aB, cB^Lq(T, R),
(4) λ-*convF(t, x, λ) is /. s. c.

Also we will make the following hypothesis concerning the initial datum
v(λ):

Ho: λ-+v(λ) is continuous from A into H.

From Hu-Lakshmikantham-Papageorgiou [9], we know that for all λ^Λ,
Sr(λ)(ΞPk(Lp(T, H)) and Sr(λ)=~S(λ)> the closure taken in LV(T, H) (in fact if X
is a Hubert space too and p=q=2, then Sr(λ)t=Pk(C(T, H)) and Sr(λ)=S(λ), the
closure taken in C(T, H) this follows from the compact embedding of W2oo(T)
into C(T, H), see Papageorgiou [11] and Simon [21]). Furthermore given X^ΞA,
Pr(λ) is a nonempty, compact subset of LP(T, H)xLq(T, H)w, where Lq(T, H)w

denotes the Lebesgue-Bochner space Lq(T, H) equipped with the weak topology.
Also it is easy to check that for all λ(=A< Pr(λ)^Pf(Lp(T, H)xLq(T, H)).

THEOREM 3.1. // hypotheses H(A), H(F\ and Ho hold,

then λ — Pr(λ) is l.s.c. from A into Pf(C(T, H)xLq(T, //)).

Proof. We need to show that if λn-*λ, then Pr(X)Q\JmPr(λn) (see section
2). To this end, let [JC, f]^Pr(λ). Then by definition we have

x(J)+A(t, x(t))=f(f) fl.e.|

x(0)=v(λ) I

with feΞLq(T, H), f(t)€ΞconϋF(t, x(t), λ) a.e.
Now let m(ί, λn)=proj(f(t);cδήvF(t, x(t), λn)) and u(t, z, λn)=proj{m{t, λn)

convF(t, z, λn)), where proj ( ΈδnvF(t, x, λ)) denotes the metric projection on
the closed convex set convF{t, x, λ)^H, (t, x, λ)^TxHxA. From Lemma a of
Papageorgiou [18], we know that t-^m{t,λn), u(t, z, λn) n^>l are measurable,
while z-^u(t, z, λn) n>l is continuous.

Let xn^WPq(T) be a solution of the Cauchy problem
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(Xn(t) + A(t, Xn(t)) = u(t, Xnit), λn) d.β.

Its existence follows from Theorem 3.1 of Papageorgiou [19], (see also
Theorem 3.1 of Hu-Lakshmikantham-Papageorgiou [9]). Clearly xn(-)^S(λn).
As before exploiting the monotoncity of the operator A(t, •), we have

2<(u(t, Xn(t), λn)-f(t), Xn(t)-X(t)) d.β.

«(s, xn(s), λn)-f(s)\ I x»(s)-*(s)| ds

n(t)-X(t) I < I V(λn)-V(λ) I + Γ I U(S, Xn(S), λn)-f(s) \ ds
Jo

(see Brezis [4], Lemma A.5, p. 157).
Observe that

[\U(S, Xn(s), λn)-f(s)\ds
Jo

\u(s, xn(s), λn)~m(s, λn)\ds + ̂ \m(s, λn)-f(s)\ds

, xn(s), λn), F(s, x(s), λn))ds+[\m(s, λn)-f{s)\ds
Jo

kB(s)\ xn(s)-x(s)\ ds-\-[d(f(s), cδm>F(s, x(s), λn))ds
o Jo

with B—{λn, λ}nil^A compact.
Since by hypothesis //(F)i(4), λ —* convF(s, x, λ) is l.s.c. =$ λ—> d(f(s),

cδnΰF(s, x(s), λ)) is u.s.c. (see section 2). Hence because f(s)^cδnvF(s, x(s), λ)
a.e., via Fatou's lemma, we get that

as\ d(f(s), convF(s, x(s), λn))ds-+
Jo

Thus, given ε>0, we can find wo(ε)^l such that for n^nQ(ε), we have

I xn{t)-x{t) I ^ε + \lkB(s) I Λn(s)- Λ (S) | ds
Joi (by GronwalΓs inequality)

=Φ xn—>x as n-̂ cxD in C(T, / / ) .

Next let £„(•)=«(-, Λ:»ί ), λn)^L\T, H), n^l. Then [xn, ^ n ] e P r ( i n ) , n ^ l .
Also we have
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\b\u(t, Xn(t),λn)-f(t)\qdtJo

t, xn(t), λn)-m(t, λn)\qdt+2q[b\7?ι(t, λn)-f(f)\qdt
Jo

t, xn(t), λn), F(t, x(t), λn))qdt+2q\bd(f(t), c~ωwF(t, x(t), λn))Ht
Jo

<2q [bkB(t)q\ xn(t)-x(t) \qdt+2q\bd(f{t), cδnvF(t, x(t), λn))qdt -> 0 as n-^oo.
Jo Jo

So [*„,£„]->[>, Ω in C(T,H)xLq(T,H) and [xn, gn]^Pr{λn) for all n ^ l .
Therefore we have proved that Pr(λ)Q\im Pr(λn)=$λ-+Pr(λ) is l.s.c. from A into
Pf(C(T, H) X L9(T, H)). Q. E. D.

From the above proof we also get the following result concerning multi-
function λ-*Sr(λ).

THEOREM 3.2. // hypotheses H(A\ H(F\ and Ho hold,

then λ->Sr(λ) ts l.s.c. from A into Pf{C{T, H)).

In addition, recalling that Sr(λ)=~S(λ), the closure taken in C(T, H) (see Hu-
Lakshmikantham-Papageorgiou [9]) and using Proposition 7.3.3, p. 85 of Klein-
Thompson [10], we also get:

THEOREM 3.3. // hypotheses H{A), H(F\ and Ho hold,

then λ — S(λ) ts l.s.c. from A into 2C(T'H)\{Θ}.

4. A continuous Filippov-Gronwall estimate

In this section we prove a parametric version of the Filippov-Gronwall in-
equality, with the dependence on the parameter being continuous. Recall that
the Filippov-Gronwall inequality produces estimates that are useful in the study
of the qualitative properties of differential inclusions (see Aubin-Cellma [2],
Theorem 1, pp. 120-121). For evolution inclusions, the only such results were
proved by Frankowska [6] (Theorem 1.2) and Papageorgiou [20] (Theorem 4.1),
for semi-linear systems with no parameter λ^A present.

We will need the following stronger hypothesis on the orientor field F(t, x):

H(F)2: F: TxHxA-+Pf(H) is a multifunction such that
(1) ί—>F(ί, x, λ) is measurable,
(2) h(F(t, x, X), F(t, y, λ))^k{t)\x-y\ a.e. for all λ^A and with £ e

Ll(T, R),
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(3) \F(t, x, ^)I = s u p { 1̂ 1 :vtEF(t, x , λ)\^a(t)+c(t)\x\2/q a.e. w i t h a,c
<ΞLq(T, R ) ,

(4) x->F(t, x, λ) is l.s.c.

Suppose λ-*[y(λ), g{λ)~\ is a contmuous map from A into C(T,H)xLq(T,H).
T h e n w e c a n find p g : A—>Lq{T, R) a c o n t i n u o u s m a p such t h a t

(3) d{g{λ)(t), F(t, y(λ)(t), λ))£pβ(λ)(t) a. e.

We can take, for example, pg(λχt)=\g(λ)(t)\+a(t)+c(t)\y(λ)(t)\2/q.

THEOREM 4.1. // hypotheses H(A), H(F)2 and Ho hold, λ->ly(λ), g(λ)~] is a
contmuous map from A into C(T, H)xLq(T, H) with y(λ)
= w(g(λ), λ), ε>0 and pg: A-»Lq(T, R) is a continuous map
satisfying (3) above,

then there exists λ—*\_x{λ), r{λ)~\ a continuous map from A into
C(T, H)xLq(T, H) such that for all λ^Λ, [x(λ),
P{λ) and

^pg(λ)(s)exp(θ(t)-θ(s))ds , teίT

with θ(t) = [k(s)ds.
Jo

Proof. Let EQ(λ)(jt) = \v^F{t, y{λ){t), λ): \v-g{λ){t)\<pg{λ)(t)+ε}. Clearly
E0(λ)(t)Φθ for almost all ί e T and by redefining £0(Λ)( ) on a Lebesgue null
subset of T, we may assume without any loss of generality that E0(λ)(t)φQ for
all ί e T . From hypotheses H(F)2 (1) and (2) and Theorem 3.3 of Papageorgiou
[13], we know that (t, x)->F(t, x, λ) is measurable =$t-»F(t, y(λ){t), λ) is meas-
urable = * G r £ 0 W ( •)={(*, v ) e = G r F ( . , y(λ)( ), λ): \v-g(λ)(t)\<pg(λ)(t)+ε} e X(T)

XB(H) with X(T) being the Lebesgue σ-field of T (i.e. the completion with
respect to the Lebesgue measure on T, of the Borel σ-field B(T)). So we can
apply Aumann's selection theorem (see Wagner [22], Theorem 5.10), to get
z:T-^H a measurable map such that z(t)^E0(λ)(t) for all ί e T . Then define
Ko: Λ-^2LHT'H) by

K*(λ) ={z<ΞSι

F{..yaπ.).λ)'. \z{t)-g{λ)(t)\<pg(λ)(t) + ε a.e.}.

From what was said above, we see that K0(λ)φQ for all λ^Λ. Also from
Proposition 4 of Bressan-Colombo [3], we know that λ—*K0(λ) is l.s.c. and has
decomposable values. So λ-*K0(λ) is /. s. c. with decomposable values from A
into L\T, H). Apply Theorem 3 of Bressan-Colombo [3], to get r 0 : Λ—
L\T, H) a contmuous map such that ro(λ)(=Ko(λ) for all λ^A. So |r0W)(ί)—
g(λ)(t)\£pg(λ)(t)+ε a.e. for all i e^ί . Let XiW(-)t=Wpq(T)QC(T, H) be the
unique solution of the Cauchy problem
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(x(t)+A(t, x(t))=rt(λ)(ί) a. e.

I xφ)=v(λ)

i.e. XiiXj—wixniλ), λ). Our claim is that inductively, we can produce two sequ-
ences {xn(λ)}nzιQWpq(T) and {rn-i(λ)}»*iZL*(T, H) such that

( i ) xn(λ)=w(rn.ι(λ), λ),
(ii) λ—*xn(λ) is continuous from A into C(T, H) and λ-^rn.λ{λ) is continuous

from A into L"(T, H),
(iii) r . . ,W)ft)eF(i , x»-itf)(f), /i) α.β.f

(iv) I r».,(i)(ί)-r».1W)(01 ^ *(ί)r»-iW)(O α β with

( n _ 2 ) ,

From the first part of the proof we know that this is true for n = l (declare
r^{λ){') to be equal to g(λ){-) and γQ(λ)(-) equal to pg(λ)(')+ε; without loss
of generality, we can assume that k(t)^l a.e.). Suppose we have obtained
{xk{λ)}U^Wm(T) and {rkM^U^L^T, H) satisfy (i)—(iv) with n > l (induc-
tion hypothesis). Let Kn{λ)={z^Sh^.xnaπ^λ) - \^t)-rn^(λ)(t)\<k(t)γn(t) a.e.}.
First we will show that for all λ^Λ, Kn(λ)φQ. Indeed, as before, via Aumann's
selection theorem, we can find <εeS><. iαrnu)(.)>/ϊ) such that

), F{t, xn(λ)(t), λ))

t, xn(λ)(t), λ), F(t, xn-i(λ)(t), λ))

Xt)\ a.e.

Also from the monotonicity of the operator Λ(t, •), we have

i XnW(t)-xnM)(t) I < (Ί rn.1W)(s)-rn. ίW)(s) I ds

Jo

rt

^ \ k(s)γn-i(X)(s)ds (by the induction hypothesis)

So we have

Hence for every ΛeΛ, /Cn(^)^0 and as before λ—>Kn(X) is/, s. c. with decom-
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posable values =) λ-*Kn(λ) is /. s. c. with decomposable values. Invoking Theorem
3 of Bressan-Colombo [3], we get rn: Λ-*Lι(T, H) a continuous map such that

r » t f ) e / O T for all ΛeΛ. So \\rn{λ){t)-rnMt)\\^k{t)γn(ί) a.e., rn{λ)(t)^
F(t, xnUXt), λ) a.e. Set xπ+i(Λ)=w(rπ(Λ), Λ). Since Λ-*rn(Λ) is continuous from
Λ into L^T, //) (hence into Lq(T, H) too, because of hypothesis //(F)2(3)) and
because w{-, •) is continuous from Lq(T, H)xA into C(T, H), we get that
A—*xn+i(λ) is continuous from J into C{T, H). So by induction we have esta-
blished the existence of two sequences {xn(λ)} n^Wvq{T) and {rn_1U)}n^1g
Lq(T, H) satisfying (i)-(iv) above. Then we have

Also for all (λ, t)<^ΛxT, we have

Hence we deduce that {xn(λ)\nilQC(T, H) and {rn^{λ)}n^QL\T, H) are
both Cauchy sequences. Furthermore, recall that λ—>pg{λ) is continuous from
A into Lq(T, H), hence locally bounded, and so the above Cauchy property is
uniform for λ<=BQΛ compact. So we get

XnW— x(λ) in C(T, H)

and rn(λ)->r(λ) in LHT, H) as n-^oo ,

and both λ-*x(λ) and λ-+r(λ) are continuous. In addition, note that because of
hypothesis //(F)2(2) r{λ)(t)(ΞF(t, x(λ)(t), λ) a. e. and so by hypothesis i/(F)2(3)
for all λ<=/l r(X)^Sjrc.,xa)(.),Z) and furthermore ^-*ry) is continuous from A
into Lq{T, H). In addition, if z{λ)—w{r{λ), λ), then as before, thanks to the
monotonicity of A(t, •), we have

n{λ){t)-z(λ){t) I ^ Γ
Jo

rfs -> 0 as

in

W ) W ) for all

So we have established that for all λ<=A, [x(X),
Next from the triangle inequality, we have
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Recall that

Summing up with respect to k, we get in the limit as n-*°o,

Q. E. D.

5. Continuous relaxation theorem

Using the parametric Filippov-Gronwall estimate established in section 4
(Theorem 4.1), we can now prove a continuous version of the relaxation theo-
rem. In this section the parameter space A is also separable (i. e. a Polish
space).

Let Li,(T, H) denote the space of equivalence classes of Bochner integrable

functions x : T-*H with the ("weak")-norm | |*IU=sup j \t2χ(s)ds : O^t^U^bl.
Ml w X

The notation • stands for convergence in Li(T, H). Also if h(ΞLq(Tf H),
let w(h)<=Wpq(T) be the unique solution of x(t)+A(t, x(t))=h(t) a.e., x(Q)=v0

for some given vo<=H. We will need the following continuity result concern-
ing W(').

L E M M A . // hypothesis H(Λ) holds, {hn, h}n^QLq(T, H), \hn(t)\, lh(t)\£ψ(t)

a.e. with ψ<=Lq(T, R) and hn —^> h as n-*oo,

then w{hn)->w{h) in C(T, H).

Proof. We know (see for example Lemma 3.1 of Aizicovici-Papageorgiou

[1]), that hn^h in Lq(T, H). As before, because of the monotoncity of

A(t, -), we get
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n(s)-h{s), wn(h\s)-w(h)(s))ds.

From the a priori bounds established in Papageorgiou [19] (see also Zeidler
[23]), we know that {w(hn)( )}nzi is bounded in Wpq(T), hence relatively com-
pact in LV{T, H) (recall that since X embeds compactly in H, Wpq(T) embeds
compactly in Lv(Ty H) see section 2). Thus by passing to a subsequence if
necessary, we may assume that w{hn)^u in Lv(Tf H). Then we have

i-v-π/w -v-/v-/i ==]ΛΊn(s)—h(s)fW(hn)(s)—u(s))ds

+ [\hn(s)-h(s), u(s)—w(h)(s))ds->0 as rc
Jo

By a standard contradiction argument we can show that w(hn)-^> w{h) in
C(Tf H). Q. E. D.

So now we can state and prove our continuous relaxation theorem.

THEOREM 5.1. // hypotheses H{A), H(F)2, Ho hold, λ-*[y(λ), g(λ)2 is a con-
tinuous map from A into C(T, H)xLq(T, H) such that for
all λ<=ΞΛ ly(λ), gW]<=Pr(X) and ε>0,

then there exists λ —* x(λ) a continuous map from A into
C{T, H) such that for all λ e A, x(λ) <Ξ S(λ) and
\\x(λ)-y(λ)\\cιτ.H)<ε.

Proof. From the a priori estimates established in [19], we know that without
any loss of generality, we may assume that \F(t, x, λ)\ =sup{|v | : v^F(t, x, λ)}^
^φit) a.e. with ψ<=Lq(T, R). Also from the lemma above we know that we
can find <5>0 such that if h<=Lq(T, H) with \h(t)\<ψ(t) a.e. and \\g(λ)-h\\w£δ,
then we have \\y{λ)—w{h, Λ)ll(7(z\i/)^ε/4Mέ, where M—eHb) and έ=max[fr, 1].

Divide T into subintervals Tk = [tkt ί Λ + 1 ], k = 0, 1, 2, ••• , N such that

\ ψ(s)ds<δ/4 with ^>0 as above. The existence of such partition of T is

guaranteed by the absolute continuity of the Lebesque integral. Let u(λ)(f)=

Then M(^( ) G C ( T , H) and by hypothesis λ-+u(λ)(jtk+i)—u(λ)(tk) is a
J o ^ r
continuous selector of the parametric set-valued integral \ convF(tf y(λ)(t), λ)dt

which belongs in Pwkc(H) (see the Corollary to Proposition 3.1 of Papageorgiou
[12]). Recall (see for example Hiai-Umegaki [8], Corollary 4.3) that

I cδnvF(t, y(λ)(t), λ)dt—cl[ F(f, y(λ)(t), λ)dt. Then consider the multifunction

Vk: A->Pf{Lι{Tk) H)) defined by VP*W)=S>(. iy<Λ)(.)^). From Theorem 4.1 of
[14], we know that λ->Vk{λ) is l.s.c. and of course has decomposable values.
So we can apply Theorem 1 of Fryszkowski-Rzezuchowski [7], to get rk: A—*
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L\TkyH) a continuous map such that rk{λ)^Vk(λ) and \ g(λ)(t)dt-
r N I J r *

rk(λ){t)dt <δ/2N, k=0, 1, 2, •••, N. Set f(λ)= Σ^rΛr*W)eL«(T, //) and ^ )

—w(f{λ), λ). Our claim is that \\g{λ)—f(λ)\\w<,δ. Indeed by definition we have

For ί e T m , me{0, 1, 2, •••, N}, we have

Observe the f(λ)(t)&F(t, y(λ)(t), λ) a.e. So using hypothesis H(F)Z(2) we
get d(f(λ)(t), F(t, z(λ)(t\ λ))<k(t)(ε/4Mh). Then apply Theorem 4.1, with pf(λ)( )
— k(')(ε/4Mb) to get a continuous map λ-^x(λ) from J into C(T, H) such that
x(λ)GS(X) for all ^e/ i and

εAl-e~Ht)) (since

So finally we have

Q. E. D.

6. Application

As an application we consider a parametric controlled diffusion equation
with nonlinear friction. We convexify its control constraint set (relaxed system)
and examine whether we can approximate every relaxed trajectory by trajec-
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tories of the original system, uniformly in the time variable and continuously
with respect to the parameter. So let T = [ 0 , b~] and Z a bounded domain in
RN with smooth boundary Γ. The system under consideration is the following :

— Δ x - ^ Σ f l ^ / ί , \\Dx\\*-*)D,x)=f{t, z, x(t, z), λ)u(t, z) a.e.

x\rχΓ=0, xφ, z)=xo(z, λ)

u(t, ')£ΞU(t, λ) a.e., p^2.

(4)

Here Di=d/dzι, i—\, 2, •••, N and Dx—gr^άx—(D1x} ••• , DNx). In connec-
tion with (4), we consider the same system, but with convexified control con-
straints; i.e.

(5)

-^r-Ax- Σ Di{rιj{t, WDxW^Dμ^fit, z, x(t, z), λ)u(t, z) a.e. }
OX t,j=i

x | Γ x Γ — 0 , xφ, z)=xo(z) a.e.

u(t, ')^convU(t, λ) a.e., p^2 .

We will need the following hypotheses on the data:

H(r): r: TxR+->Λ(RN) is an NxAΓ-matrix valued map such that

(1) t -» r(t, v) is measurable,
(2) v -^ r(t, v) is continuous,
(3) \\r(t,v)\\x^a\v\ with α>0,
(4) (r(t, \\ξ\\p-2)ξ-r(t, \\ξ'\\p-)ξ',ξ-ξ')*»^O for all (t,ξ,ξ')^TxRNxR",
(5) c\\ξ\\p<(r(t, \\ξ\\p-2)ξ, ξ)RN for all {t, ξ)^TxRN and with c>0.

H(f): f: TxZxRxΛ->R is a function such that
(1) (t, z) -> f(t, z, x, λ) is measurable,
(2) \f(t,z,x,λ)-f(t,z,x',λ)\^k(t,z)\x-x'\ a.e. with k^L\TχZ,R)y

(3) \f{t,z,x,X)\^al(t, z)+cι{z)\x\m a.e.
with a1^Lq(TxZ, R), ^ G L ^ Z , JB) .

H(U): U:TxΛ-^ Pwk(L2(Z, R)) is a multifunction such that
(1) t —> ί/(ί, ̂ ) is measurable,
(2) iί —> ί/(ί, A) is continuous,
(3) |ί/(ί, λ)|=sup{||Ml|2: wei/(i, ^)}^M, M>0.

As in section 5, the parameter space Λ is a Polish space.
In this case, the evolution triple consists of X~WlιP(Z), H—L2{Z) and

X*=W~ltq(Z). From the Sobolev embedding theorem we know that XQH^X*
with all embeddings being continuous, dense and compact

Consider the following two Dirichlet forms:

a1:TxWl'*(Z)xW1o*(Z)-*R defined by
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βi(ί, x, y)=\ Σ rtj(t, WxP-t)DιxDiydz
JZ i,j—\

r(t, \\Dx\\p-*)Dx, Dy)RNdz

and a2:Wl'p(Z)xWl'p(Z)->R defined by

a*(x, y)=\ Σ DtxDtydz=\ (Dx, Dy)RNdz .
JZ ι=l JZ

Note that because of hypothesis H{r) (3), we have

N

Using Holder's inequality and recalling that ||Z)*||g= Σ l|£t*ll? is an equi-

valent norm for Wl'p(Z), we get that

aλ{t, x, y)\ύd\\x\\pΊ*piZ) \\y\\ i , p ( Z ) f o r s o m e α > 0 .

So there exists A,: TxWl'p{Z) — W~1'q{Z) such that

and H^tf, ^11^1.

From Fubini's theorem, we know that t-->aι(t, x, y) is measurable =$t—*
(Aχ{ty x), y} is measurable for all x, y^Wl'p(Z)=$t-^A1(t, x) is weakly meas-
urable from T into W~ι'q(Z). Since W'ι-q{Z) is a separable reflexive Banach
space (a separable Hubert space if p—q—2), from the Pettis measurability
theorem, we have that t-^A/j, x) is measurable. Also if xn-»x in Wl'p(Z)=3
Dxn~>Dx in Lp(Z, RN)=$r(t, \\Dxn(z)\\p-2) — r(t, \\Dx(z)\\p~2) in measure (cf.
hypothesis H{r){2)) and so by the dominated convergence theorem, we have

that ( r{t, \\Dxn{z)\\p-2)DxnDydz^[ r(t, \\Dx(z)\\p-2)Dx Dydz- ^ <A&, *»), y>->
JZ JZ

(AiityX), yy^A^t, •) is demicontinuous, hence hemi-continuous (see Zeidler [23],
p. 596). Also note that because of hypothesis //(r)(4), we have

<Ax(t, xϊ-Aβ, y\ x-y>

= f (r(t, \\Dx\\p-*)Dx-r(t, | | ^ l l p " 2 ) ^ , Dx-Dy)ΛNdz^0
JZ

=Φ x-^A^t, x) is monotone.
Finally from hypothesis H(r)(S), we get

c1\\x\\p£<Aι(t, x), x> with ^ > 0 .

Next for Dirichlet form a2(x, y), via the Cauchy-Schwartz inequality and
since Lp(Zy R)QL2(Z, R) with continuous injection (because 2<p<oo)f we get
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\a2(x, y)\^η\\x\\wi.p{Z)\\y\\wι.P{Z) ίor some τ?>0.

So there exists ^ 6 / ( 1 , X*) such that

a*(x, y)=<Λ2χ, y>

and from Poincare's inequality, we have that

c*\\x\\*wi.piZ^<A2, χy x> .

Thus if we set A(t, x)=Ai(t, x)+Az(t, x), we see that A(t, x) satisfies hy-
pothesis H(A).

Next let / : TxHxΛ-+H be defined by

f(t,x,XX )=f(t, - , x ( ' ) , λ )

i. e. f(t, x, λ) is the Nemitsky (superposition) operator corresponding to /.
Let F: TxHxΛ->Pwk(H) be defined by

F(t, x, λ)=f(t, x} λ)U(t, λ)={f(t, x, λ)u ue=U(t, λ)}.

Using hypotheses H{f) and H(U), we can easily check that F(t, x, λ) satisfies
hypothesis H(F)2. A straight forward application of Aumann's selection theorem
shows that (4), is equivalent to the following abstract evolution inclusion (i. e.
control free problem):

(*(t)+A(t, x{t))tEF(t, x(t), λ) a.e.
(4)'

with &o(X)(')=Xo(-, λ)<EL2(Z)=H. Similarly (5) is equivalent to

(&(t)+A(t, x(t))<=cδπϋF(t, x(t), λ) a. e.)

(sy
{ χ(Q)=χo(λ) J

the convexified version of (4)'.
We will make a final hypothesis concerning xo(-, λ).

H'o: λ~^ xo(', λ)=%0(λ) is continuous from A into H—L\Z).

Applying Theorem 5.1 on the pair of systems (4)' and (5)' which is equi-
valent to the pair (4) and (5), we get the following parametric approximation
result for the latter:

THEOREM 6.1. // hypotheses H{r), //(/), H(U) and H'Q hold, λ-+lx(λ)9 u(λ)~]
is a continuous map from Λ into C(T, L\Z))X L\TXZ, R)
such that for every λ<=Λ, the pair \_x(λ), u{λ)~] satisfies (5)
{i.e. is an admissible "state-control" pair for (5)) and ε>0,
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then we can find λ->y{λ) a continuous map from Λ into
COT, L\Z)) so that for every XΪΞΛ, y(λ)(>) is a state tra-
jectory of (4) and

sup [ \x(λ)(t, z)-y{λ){t, z)\2dz<ε .
«er jz
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