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RIGIDITY OF COMPACT SUBMANIFOLDS

IN A UNIT SPHERE

GUANGHUA CHEN AND XIAORONG ZOU

Abstract

In this paper, we prove a Pinching theorem for compact submanifolds
with non-zero parallel mean curvature, which improve the Pinching constant
in [5]. For lower dimensional compact submanifolds we obtain a strong result.
Meanwhile, we study the Pinching problem for the sectional curvatures of
minimals submanifolds, and obtain the best Pinching constant so far.

§ 1. Introduction

Let Mn be a smooth compact n-dimensional Riemann manifold immersed in
a unit sphere Sn+P of dimension (n+p), and let 5 be the square of the length
of the second fundamental form. S. T. Yau [5] proved that if

(1.1) S < , ,- " 1 W

everywhere on M, then Mn lies in a totally geodesic Sn+1. An estimate of the

value for S next to r ,-=— TΓ-Γ should be of intetest. We give the best
ό+ Vn — (/> —1)

Pinching constant so far in Theorem 1.
On the other hand, we know from [2] that if M is a minimal submanifold

in Sn+P and S<(2/3)n, then either M is totally geodesic or M is the Verovese
surface in S\ For submanifolds of lower dimension which have non-zero
parallel mean curvatures, we have similar results written as Theorem 2.

Simons [4] proved that if the average of the sectional curvatures of a

compact minimal submanifold in Sn+P is greater than 1 — ~~-—γτη-~^, then

it must be totally geodesic. Later, S. T. Yau [5] proved that if the sectional
curvatures of the submanifold are greater than (p — l/2p — l), then the same
conclusion holds. This paper will give an improvement of the Pinching con-
stant which will be explained in our Theorem 3.

Now, our main results are showed as follows:
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THEOREM 1. Let Mn be an n-dimensional compact submanifold in S1l+P with
non-zero parallel mean curvature. If either of the following conditions is satisfied,
then Mn lies in a totally geodesic Sn+1:

(1.2) Srgminfl-n, — ^ = 4 , p>2 and nΦS,
13 i+V1

(1.3) S£ min^ ^ p - , , - k />>1 αwd (w, />)^(8, 3).
l 9 _ _ J _ 1_L n }

1 p-1 i + V"2"

THEOREM 2. Let Mn be an n-dimensional (2<n^7) compact submanifold in
Sn+P with p>2 which has non-zero parallel mean curvature. If S^(2/3)n, then
Mn is totally umbilical.

THEOREM 3. Let Mn be a compact minimal submanifold in the sphere Sn+P

with p>l. Suppose the sectional curvatures of Mn are everywhere not less than
(1/2—1/3/?). Then either Mn is a totally geodesic sphere or the Verovese surface
in S\

Remark 1. It is clear that the constants in (1.2) and (1.3) are some im-
provements of the constant in (1.1).

Remark 2. It is easy to see that the Pinching constant for the sectional
curvature in Theorem 3 is always less than (p — l/2p — l), once p>\.

% 2. Preliminaries

Let Mn be a compact n-dimensional submanifold of unit sphere Sn+P. We
choose a local field of adapted orthonormal frames eu •••, en+p in Sn+P such
that, restricted to M, elf •••, en are tangent to M. We shall make use of the
following convention on the ranges of indices:

^ Λ B, C, ••• <n + p l£i, j , k, ••• ̂ n

n + l^a, β, γ, •

and we shall agree that repeated indices are summed over the respective ranges
with respect to the frame field of Sn+P chosen above. Let ωu •••, ωn+p be the
field of dual frames. Then the structure equations of Sn+P are given by

(2.1) dωA—
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(2.2) ΦAB = — Σ KABCDωc/\ωD
I CD

KABCD+KABDC — O <

We restrict these forms to M. Then we have

(2.3) ωa=0

(2.4) ω

(2.5) dωi—

Ci k i

(2.6)

(2.7)

(2.8)

(2.9)

Let B=Σtι>J>a hfjWiWjea be the second fundamental form of M, and S = |
=Σι.j.α(Λ&)2 be the square length of B. We denote //« the matrix (A?y). We
call η=(l/n)Σiatr Haea the mean curvature vector, and its length of called the
mean curvature, i.e. H=\\η\\.

An immersion is said to be minimal if

(2.10) trHa=0, n+l£a^n+p .

If the vector η is not zero and parellel in the normal bundle of M, letting
en+i = η/\\rj\\f we obtain that H is a non-zero constant and

(2.11) tr// β =O, α ^ n + 1, tr

(2.12) ΣAfty*=O,

where Afr^ is defined as in [5].

O)an + 1 — 0 ,

(2.13) HaHn+ι=Hn+ίHa.

We define ΔA?; by
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From [5], we have

(2.14) ΔA?,=ΣAfw+Σ(ΣA&*Λm^ + ΣAf«/?m*i*+ Σ
k k m m aΦn +

§3. Proof of Theorems

L E M M A 1. Suppose bx> b2, •••, bn dre n real numbers such that Σ?=i ̂ i—0.

(3.1) 2 i3 6f

/w particular if n=2, the equality holds.

Proof. The proof is based on induction on n as follows.
(i) When w=2, the inequality (3.1) holds obviously.
(ii) Suppose the inequality (3.1) holds for n—m—l. Then we only need to

established the inequality (3.1) for n—m.
For fixed / and j such that l^i<j^m, from our assumption, we have

2[ Σ &p+(&t+&; )
4 ] ^ [ Σ

( m \ 2 m

Σi6ί)+4WJΣ6
So

m / m \ 2 m

(3.2) 2 Σ &4

P^( Σ 6J) +46,6, Σ 65-861&J-86,6J-86i6,.
p=l \p=l / p=l

By summing up (3.2) over index i, j (1^2, j^m), we have

m / m \ 2 m

2CI ΣSfti^C^ Σbή + 4 Σ M ; Σ ^ - 8 Σ « - 8 | b^-S^blb,

which implies from the symetry of i and j,
m / m \2 m

4C^ Σ bp£2C2J Σ &p ) +4 Σ M, Σ δ|-8 Σ WJ-16 Σ btb)
p=ί \p=i / t^j p=i ι^; î ^

=(2Ct-12)(Σ6}Y+24Σ6J.
\p=l / p=l

So we have (3.1) for n=m. Q. E. D.

L E M M A 2. Suppose au a2, •••, an; bu b2, •••, bn are I n real numbers satis-
fying
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n

1 = 1

2

n

Σ
ι=i

n

1 = 1

bi=O.

Then we have

(3.3) ^ Σ

Proof. The inequality (3.3) follows if we can prove:

Let atJ=bi+bj, so we get a symmetric matrix τ4=(α^ ) and

a2=(α, α2 ••• an)A\ .

aj
It is easy to see

ft! i l / i l ••• l

.M 1 .
i N b̂ - bϋ

which means rank ^4^2. Therefore what we need to prove is

(3.4)

where λXy λ2 are two possiblely non-zero eigenvalues of A.
On the other hand, it is well known that

λ,λ2= Σ

So we obtain from Lemma 1 that

ι<J
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So (3.4) is correct and therefore we complete the proof of Lemma 2.
From Lemma 1 and Lemma 2, we can easily obtain

L E M M A 3 . Suppose a u •••, a n ; b l f •••, 6 n a r e r e a l n u m b e r s , and

/w particular, if n—2, then the equality holds iff ai~a2 or ^ = 0 .

Since the following inequality holds:

I Σ α t α / f t i - ^ I ^ Σ I f l t l l α KAt-A.)2.

So we can easily obtain:

L E M M A 4 . Suppose a ί t ••-, a n ; b l f •••, ^n c r ^ r ^ α / n u m b e r s , and
Then

particular, if n=2, then the equality holds iff ai — a^ or bι—0.

In [2], Li proved that

LEMMA 5. Suppose Aly •••, ^4P are symmetric with p>2, denoting

Then w

(3.5)

In the equality holds, then at most two of the matrices are non-zero, and these
two matrice can be transformed simultaneously by an orthogonal matrix in scalar
multiples of A and B respectively where

Ό 1 0 ••• 0\ / I 0 0 ••• 0\

0 0 ••• 0 I β__| 0 — 1 0 ••• 0

.0 0 0 ••• 0/ \0 0 0 ••• 0/

LEMMA 6. Let Mn be a compact hypersurface of the unit sphere Sn+1 with
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non-zero constant mean curvature H. If S<2\/n—l for n>2 and S<2-f4i/2 for
n=2, then Mn is totally umbilical.

Proof. It is proved in [3], if

(3.6)

M has to be totally umbilical. We denote

and considering the minimum of g(H), we can deduce that the minimum of

g(H) is 2-Vn—l for n>2. Thus we complete the proof of Lemma 6.
Now we begin the proof of Theorem 1.
Based on (2.12), the equation (2.19) gives

(3.7) Ahξj= Σ hβ

kmRmιjk + Σ hβ

mιRmkJk- Σ h"kιRβajk, βΦn + 1
k,m k,m k, aφn + l

The Gauss equation (2.7) and the Ricci equation (2.9) then imply

(3.8) ΔΛ?,= Σ hLha

mjh«k- Σ ΛLΛ™*Λ&+ Σ hβ

mih
a

mjh
a

kk
k k ka,k,m a,k,m

a, k, 7n ocφn + l, k, τίi cxφn+i
k, m

βφn+l.

So we can give the following equality immediately

(3.9) Σ ft&ΔΛ?,= Σ tr (Hn+ιHβY- Σ ίtr(Hn+ιHβ)γ
β^n+l βφn + l βφn + l

t.J
Γ* 4-f / U U 2\ S Π f r ( U 2 t / 2 \ _\_n/t SΓy (Ur\2

>j tr {Jin + ιΓi β)— 2 J tΓ^/7 n + i/l J -t-72 2J \"Ί])
-r-n^

+ Σ tr(HttHβ-HβHay- Σ (tr(HaHβ)y.
a,βφn + l a,βφn + l

Following (2.13), Lemma 4 and Lemma 5, one can then prove

(3.10) Σ hζjAhζ^nH Σ tr(Hn+1H
2

β)- Σ ίtr(Hn+ιHβ)γ
βφn+l βφn+l βφn+l

+ n Σ (h?j)2— — [ Σ (^5)2]2 •

Now fix a vector ^^ (^8#=w+l). From (2.11) and (2.13), Hn+ι and Hβ are dia-
gonalized simultaneously. Then we have
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(3.11) nHtr (//B + ι//J)-[tr (Hn+ιHβ)J

I,] I

V* VU n+ίLn+i/ hβ \2 Ln+iuβ Un + i uβ

Notice that (2.11), from Lemma 4 we have

(3.12) nHtr ( f f n + ι # J ) - [ t r {Hn

Substituting (3.12) into (3.10), we can straightly see that

3 ra-M p ^ π + i L Z \ V Z ' < i Z ,- - .
' i. J ι,J y iJ

^ Σ

where M=max{1/2(1 +Vn/2), 3/2}. If S£n/M, we have

(3.14) 4 Δ Σ (hβ

tJ)
2= Σ (Afy*)2+ Σ hζjAhζj^O.

Z /9:*7l + l JS 71 + 1 )S v 7l + l
t . J t.J.k ι,j

So, it follows that ΣιβΦn+ι(hij)2 is constant by the Hopf maximum principle.
x . j

Then (3.14) becomes equality, and the right hand side of (3.14) must be zero.
In particular

Σ {hχj)\n — MS)—^.

If

Σ+i(Λ&)8=0 (*)

it is well known that M lies in a totally geodesic Sn+1 from Theorem 1 of [5].
We will prove that the equality (*) always holds. Now we assume Σ(hij)2¥=0.
Then we have the following two cases.

CASE (1). Where n > 8 . It is easy to deduce the equlity (*) holds.

CASE (2). Where w<8. Combining with Lemma 4, we obtain Σt./CΛf/1)2
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= 0 and # = 0 .

The case (1) is a contradiction to the assumption and the result deduced in
the case (2) is contradictory to the hypothesis of HφO.

On the other hand, by Simons' approach in [1], we can substitute the num-
ber 3/2 above by (2—(l//>—1)), using the same argument as above and Theorem
1 of [5], we can also prove the equality (*) holds.

This completes the proof of Theorem 1.

The proof of Theorem 2 is based on Theorem 1 and Lemma 6. In fact
when 2^n<7, we have

2 2n ) 2

By Theorem 1, if S^(2/3)n, it follows that the codimension is reduced to 1,
i.e. M lies in Sn + 1. The square of the length of the second fundamental form
as a hypersurface still equals S. Lemma 6 tell us that M has to be totally
umbilical.

Let us now turn to the proof of Theorem 3. It follows from (2.14) and
(2.7) that

(3.15) Σ hίjAh?j= Σ h?jh^kRmtjk + Σ h?jh?mRmkJk
x,],a a,ι,j,k,m a,ι,j,k,m

- Σ h'uhUhtMu-htM,).
a, β,ι,j, k, I

The first two terms together on the right hand side of (3.15) is equal to

(3.16) Σ tr(H2

aH
2

β)- Σ t r(H a H β ) z - Σ (tr HaHβY
a,β a,β a,β

+ Σ (tr Hβ)[tr(HlHβ)]--Σ(tx Haf+nS .
a, β a

Hence for any real number a, we can get

(3.17) Σ A&ΔA&=(l + fl) Σ Λg,A&*#m>* + (l + α) Σ h?jh?mRmkjk
ι,j,a a, ι,j, k,m a,ι,j, k,m

-( l-α) Σ tr(/f*//|)+(l-α) Σ tr(HaHβγ+a Σ (tr HaHβf
a,β a.β a.β

-a Σ (tr Hβ)ltτ(H*Hβ)'] + a'Σ(tr Ha)
2-naS .

a, β a

For a fixed a, let at be the eigenvalues of the matrix Ha. Then

(3.18) Σ h?jh&kRm%Jk+ Σ h?jh?mRmkJk

t.j.k.m ι,j,k,m
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where KM denote the function which assigns to each point of M the infinimum
of the sectional curvature of M at that point.

We can choose adapted frame en+1, •••, en+P, so that matrix (Saβ)=(tr (HaHβ))
is diagonalized, i.e.

(3.19) Saβ=Saδaβ.

It is easy to see

(3.20) Σ(tr//l)2^|s.
p

From Lemma 5, we have

(3.21) Σ tr ( # ; / 7 | ) - Σ tr (HaHβγ
a.β a.β

L a, β

= 4s
4

and the equality holds if and only if at most two matrices Ha and Hβ are not
zero, and these two matrices can be transformed simultaneously by an ortho-
gonal matrix into multiples of A and B as in Lemma 5 respectively.

Hence from (3.18M3.21), by taking O ^ α ^ l in (3.17), we obtain

(3.22) Σ h?jAhZ^a + a)nKMS(la)
t . J . α 4

If α=l-(4/3/> + 2), the right hand side of (3.21) is

It the hypothesis of Theorem 3 is satisfied, then

and hence (3.21) and (3.22) become equalities, SΞcont. So suppose S^O. Then

(3.23) K*=ΠΪΓ-
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Substituting (3.23) into (10.1) in [5], we obtain immediately S<;(2/3)n.

By the hypothesis SφQ and [2], we know S must be (2/3)n, and M is a

Veronese surface in S\

Now it is the end of the proof of Theorem 3.
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