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ON SINGULAR SOLUTIONS FOR A SEMILINEAR

ELLIPTIC EQUATION

SUSUMU ROPPONGI

1. Introduction

Let Ω be a bounded domain in Rn (w^2) with smooth boundary dΩ. And let
Σ be a C°°-compact submanifold of Ω of dimension m (0<Lm<in — 1). We take
an arbitrary a(x)<=C°°(Σ) such that a(x)>0 on Σ and consider the following
equation.

{ Σ in W\Ω) (p>\)
(1.1)

where <5j is the measure defined by

(1.2) <δΣ, η> =

for any
What can one say about the existence of a solution of (1.1) and the local

behaviour of its solution near Σ? We have the following.

THEOREM 1. There exists a solution of (1.1) if and only if l<p<(n — m)/
(n—m—2) (l<Cp<°° if n — m<2). And there exists a solution u of (1.1) satisfying

(1.3)

Cld(x)-in-m~2)^u(x)£Czd(x)~(n-m-2) near Σ (if m£n~3)

C.Wog d(x)\£u(x)£C2\\og d(x)\ near Σ (if m=n~2)

U(X)<=ΞC\Ω) (if m = n - l ) ,

where d(x) denotes the distance between x and Σ. Here Cx and C2 denote some
positive constants.

THEOREM 2. Assume that p<n/(n—2) (p<oo if n—2). Then the same
bounds as in (1.3) hold for any u satisfying (1.1) and, in addition,

(1.4) u^Lfoc(Ω) ifm=n-l.
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Remarks. 1. It is curious to the author that the exponent p such that
(1.1) has a solution depends on the dimension of Σ. When Σ— {a point}, Lions
[6] has proved the above results. Therefore we may assume that m>\ here-
after. When />e(l, («+2)/(w—2)) (w^3), the following holds immediately from
Gidas and Spruck [5, Theorem 3.1, pp. 540-541], since —Au = up in Ω\Σ.

(1.5) w(%)^C26ί(%)-2/(p-1) near J

Since p<{n — m)/{n — m—2), the upper bounds in (1.3) is more sharp than that
in (1.5). When p^>n/(n—2), we do not know the more sharp estimates than
(1.5). Furthermore, when p^>(n+2)/(n—2), we do not know the behaviour of
the solution of (1.1) in general.

2. In the case m<ίn—2, uGLfoc(i3) holds for any u satisfying (1.1) [see

Lemma 2.1 in section 2"\, We suspect that the assumption (1.4) is not necessary.
3. For the related papers we see Aviles [1], Brezis and Lions [3], Gidas

and Spruck [5], Serrin [7] and the references in the above papers.
The other case where up is replaced by — \u\p~ίu is discussed in, for ex-

ample, Brezis and Veron [4], Vazquez and Veron [8], Veron [9], [10].

2. Asymptotics

Let Ω, Σ} a(x) be as before. Let G{x, y) be the Green function of —Δ in
Ω associated with the Dirichlet boundary condition. Then,

( Kn\x-y\*-n (if π ^
G(x, y)-S(x, y)=\

{ -(1/2*0 log I * - y I (if n = 2 ) ,
where S(x, y)^C°°(ΩxΩ) and

Here | S n - 1 | denotes the surface area of the unit sphere of Rn.
We put

(2.1) £(*)=ί G(x, σ)a{a)dσ.

Then 0£g^C°°(Ω\Σ) and g satisfies

-Ag=aδΣ in W'(Ω)
( 2 2 ) • -

on dΩ .

By Propositions A.2 and A.3 in Appendix, we have

(if mt^n—3)

(2.3) Cι\logd(x)\-D1^g(x)^C2\\ogd(x)\+D2 (if m=n-Σ
(x)eC(Ω) (if m=n-ί)



46 SUSUMU ROPPONGI

ί g^L\QC(Ω) for ^ e [ l , (n — m)/(n — m—2)) (if rargrc —
(2.4) \

{ g£L<}oc(Ω) for qsΞ[_{n~m)/(n-m-2), oo) (if m ^ n -

(2.5) £<ΞL?oc(β) for ^ e [ l , oo) ( i f m = n - 2 ) .

Here Cx, C2, A and Z)2 denote some positive constants.

LEMMA 2.1. Assume that m^n—2 and u satisfies

Au = up in Ω\Σ {p>\)(2.6)

Then UEΞLIC(Ω).

Proof. We take a C°°-convex function Φ on [0, oo) such that φ(0)=l, Φ(ί)
= 0 for t^l and put

f Φ C C l ^ - ^ ^ g M + A ) ) (if m<n—3)

i Φ(Cγ1 | logε|~1(^ r(^)+^i)) (if m=n—2).

Here Cx and Z)i denote the same constants as in (2.3). Then, by (2.2) and (2.3),
we can easily get

fε(x)<ΞC°°(β), 0<Lξ,(x)^l on Ω

£*(#)—"1 as ε—>0 a. e. in Ω

(2.7) €.(x)=0 if d(x)<ε

Vfβ(^)-^0 as ε->0, uniformly on any compact subsets of Ω\Σ

Δ£ε(%)^0 a. e. in β .

Let η^C°S{Ω) such that ( K T ^ I , >y = l near I7. Since ηξε^C™(Ω\Σ), we have

(2.8)

Notice that both v?? and Δ37 vanish near Σ. Thus, by using (2.7) and Fatou's
Lemma with (2.8), we get

\ upηdx< — \
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Since M6C2(β\I), this implies MGLfoc(fl). q.e.d.

Now we can get the lower bounds of u satisfying (1.1) and (1.4).

LEMMA 2.2. Fix an arbitrary smooth domain Ωf satisfying Σ^Ω'(^Ω.
Then, for any u satisfying (1.1) and (1.4),

(2.9) u(x)^g(x)-C XZΞΩ'\Σ

holds for a positive constant C.
Moreover p<(n—m)/(n—m—2) holds if (1.1) has a solution and if m^n — 3.

Proof. By (1.1), (1.4), (2.2), (2.3), (2.4), (2.5) and Lemma 2.1,

(2.10) 0^-A(u-g)£ΞL\oc(Ω), u-gEΞL\oc(Ω),

and u—g^C\Ω\Σ). Thus we get (2.9) by the maximum principle.

Assume that p^(n — m)/(n — m—2) holds. Since 0<g(x)£u(x)+ C (= Lvoc(Ω)t

g(ΞL\oc(Ω) holds with q={n-m)/{n-m-2). But this contradicts (2.4). There-

fore p<(n—m)/(n — m—2) holds if m^n — 3. q.e.d.

Next we consider the upper bounds of u satisfying (1.1) and (1.4). We
recall (2.10). Therefore, by using L^elliptic regularity theory (see, for example,
Benilan, Brezis and Crandall [2, Appendix, pp. 547-555]), we get the following.

LEMMA 2.3. For any u satisfying (1.1) and (1.4), weL?Oc(β) holds for any

<7GΞ[1, n/(n-2)) fo€=[l, oo) if n=2).

LEMMA 2.4. Assume that n—2 and m—l. Then, for any u satisfying (1.1)
and (1.4), u(=C°(Ω) holds.

Proof. We fix an arbitrary q>p. By (1.1), (1.4), (2.2) and Lemma 2.3,
-A(M-^)=MpGL^(i3). Thus, by using the Sobolev embedding, u-g<=:W\£lv{Ω)
dC\Ω). Since g^C\Ω)y ut=C\Ω) holds. q.e.d.

We introduce the following function h(x) for the case n ^

(2.11) h(x)=\ \x—σ\~τdσ x^Ω\Σ (n>3),

where

m—2+(n — m—2)p (if m£n-3)

τ = . m-1/2 (if m^n-2)

. m-3/2 (if m = n - l ) .

Then we have the following.
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LEMMA 2.5. Let h(x) be as in (2.11). Assume that n^3 and that p<(n —
/(n-m-2) if m^n-3. Then

(2.12)

h(x)<=ΞC\Ω) {if m>n-2, or if m=n-3 and />(=(1, 2))

h(x)£C\logd(x)\+~D (if m^n-3 and ί = 2 )

h(x)^Cd(x -{n-m-2)V (if m^n—i, or if m—n—3 and p^(2, 3)),

Cd(x)~*/2 (if ra=n-2)

Cd(x)-1'2 (if m=n-l),

(2.13)

and

(2.14)

hold for x^Ω\Σ. Here C and D denote some positive constants.

Proof. We can immediately get (2.12) from (2.11) and Proposition A.2 in
Appendix. Differentiating (2.11), we see

(2.15)

where

-ΔΛ(x)=τ(n-2-r)ί \x-σ\-<τ+

τ(n-2-τ) =
((n-m-2)p-\-m-2)(n-m-p(n-m-2)) (if

(if m—n—2, or if m—n—1).

We recall that m>λ and p>l. Thus τ(n—2—τ)>0 holds. And we can easily
get (2.13) from (2.15) and Proposition A.2. Furthermore (2.14) easily follows
from (2.3) and (2.13). q.e.d.

Now we have the following.

LEMMA 2.6. Assume that n>3 and p<n/(n—2). Fix an arbitrary smooth
domain Ω' satisfying Σ^Ω^Ω. Then, for any u satisfying (1.1) and (1.4),

(2.16) u(x)^g(x)+Ch(x)+C

holds for some positive constant C.

Proof. We fix an arbitrary q^(p, n/(n~2)). Then, by Lemma 2.3,
L«(Ω'). We put

(2.17) u = uo+g,

where u0 satisfies
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f -Auo=up in Ω'
(2.18)

( uo—u on oΩ/.

Since 0^u^C%Ω'\Σ) and upt=V«0KQ') with q(O)=q/p>l, (2.18) has a unique
non-negative solution WoePP'^ 0 ^ ' ) . By the Sobolev embedding,

where

Let Mi be the solution of

- Δ M 1 = ( M 0 ) P in β /

(2.19)
I i = M on 9£?'.

Since woeZ,r(O)(£?') holds with r(0)>n/(n—2)>p, the same argument as above
implies

where

Furthermore, by (2.14), (2.17), (2.18) and (2.19),

§ ) a.e. in Ω'
and

u,-Cuλ-Ch = -(C-l)u-Ch^<d on 3β/

hold, where C>1 denotes some positive constant. Thus, by the maximum
principle,

^u,{x)<Cιuι{x)Λ-Cιh{x) a.e. in Ω'

hold for some positive constant CΊ>1.
By (2.3) and (2.12), Λ(*)^const. g{x) holds for x ε f l M Observing this

fact and (2.14), we have

(2.20) O^Uoix^CjUjW+CjKx) a.e. in

for y ^ l , where C ; denotes some positive constant and a sequence of functions
{Uj\jzi is defined oy letting M;+I be a unique solution of

Δ M ; + 1 = ( W J - ) P in Ω'

uJ+ι = u on 9i3r
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inductively for / ^ 0 . Furthermore,

hold for /:>0, where q(0)=q/p and

qU)=r(j-ϊ)/P > rU)=nqU)/(n-2g(j))

for /:>1. Since q>p, we can easily see

for y^O. We recall that p<n/(n—2). Thus, 2q{k)>n holds for some positive
integer k. By the Sobolev embedding,

(2.21)

By (2.17), (2.20) and (2.21), we get (2.16). q.e.d.

Now we are in a position to prove Theorem 2. From (2.3), Lemmas 2.2,
2.4, 2.5 and 2.6, we can immediately get (1.3) for the case m^n—2 or the case
n—2 and m—\. Therefore we only treat the case m—n—1 and n^3. We take
an arbitrary u satisfying (1.1) and (1.4). Then, by (2.2), Lemmas 2.5 and 2.6,

-A(u-g)=u*ϊΞLZc(Ω), u-gt=C\Ω\Σ).

Thus u-g<=C\Ω) holds. Since g<=C°(Ω) by (2.3), U<=ΞC\Ω). NOW we get the
desired Theorem 2.

3. Existence of a solution

Let u be a solution of (1.1) satisfying (1.3). We take an arbitrary λ>0 and
put v^λ-ί/(p-χ)u, β=λ-p/(p-1}a. Then v satisfies

-Av=λ(vp+βδΣ) in W'(Ω)
(3.1)

i Ω l, λ>0)

and the same bounds as in (1.3). Therefore we treat (3.1) hereafter. We put

(3.2) g(x)=\ΣG(x, σ)β(σ)dσ.

Then 0£g(ΞC°°(Ω\Σ) and g satisfies
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-Ag=βδΣ in ®\Ω)

g=0 on dΩ

and the same properties as in (2.3), (2.4) and (2.5).
At first we construct a supersolution of (3.1).

LEMMA 3.1. Let n>3 and h(x) be as in (2.11). Then there exist λ>0 and
v satisfying

(3.3)

(3.4) -Av^λ(vp+βδΣ) in ®\Ω).

Furthermore v satisfies the same bounds as m (1.3).

Proof. We only treat the case m^n—4, since the other cases can be
treated similarly. We put

(3.5) v(x)=A(g(x)+h(x)) XΪΞΩ\Σ ,

where ^4>0 is some constant which will be defined later. Then v satisfies (3.3)
and

(3.6) ~Av=A(βδΣ-Ah) in ®'(Ω).

By Lemma 2.2, we may assume that p<{n—m)/(n — m—2) holds. Thus, by
(2.3), (2.12), (2.13) and (3.5),

(3.7)

£ C,Apd(x)-'n-m-2)p^BAp(-Ah(x))

hold for xei5\2T, where C, C2, C3 and B denote some positive constant inde-
pendent of A. By (3.6) and (3.7) we have

-Av>BAι-pvp+AβδΣ in S)\Ω).

Therefore we get (3.4) if we choose λ=A=B1/p. q.e.d.

LEMMA 3.2. Assume that n—2 and m = l . Then there exist λ>0 and v
satisfying

{ -Av^λ(vp+βδΣ) in ®\Ω)
(3.8)

I 0<VΪΞC\Ω).

Proof. We put
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(3.9) w(x)

Here R denotes the diameter of Ω. By Proposition A.3 in Appendix, 0<Lw(x)
Differentiating (3.9), we have

\x-σ\-\\og{R\x-σ\-ι)Y"i'ίdσ
Σ

for XΪΞΩ\Σ. Since 0<log^3ί 1 / 3 hold for any f>l,

hold for any x<=Ω\Σ and any σ<=Σ. Thus, by Proposition A.2 in Appendix,
we have

(3.10)

for x<=Ω\Σ. Here Clf C2 and C3 denote some positive constants.
We put

(3.11) v(x)=A(g(x)+w(x)) XEΞΩ\Σ ,

where A>0 is some positive constant which will be defined later. Since O^g
ΪΞC0(Ω), 0<V<=C\Ω) and v(x)p£ApC (x(=Ω) hold for some positive constant C
independent of A. By (3.10) and (3.11), we have

—Av=A(βδΣ—Aw)

in 0'(Ω).

Therefore we get (3.8) if we choose λ=A=(C3/C)1/p. q.e.d.

Now we are in a position to prove Theorem 1. Let v be as in Lemma 3.1
(resp. Lemma 3.2) for the case n>3 (resp. n—2 and m=1). We define a sequence
of functions \VJ}J>0 by vo=O and by letting vJ+i be a unique solution of

-ΔvJ+ι=λ((v,)*+βδΣ) in ω\Ω)

vJ+i=0 on dΩ,

inductively. It is easy to see by induction that

a. e. in Ω

for y^O. Thus, vj(x)—*v(x) (j-*°°) a. e. in Ω, which is a solution of (3.1) and
satisfies

(3.12) λgix^vM^vix^vix) a.e. in Ω.
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From (2.3), (3.12), Lemmas 3.1 and 3.2, we can easily get Theorem 1.

4. Appendix

Let Ω, Σ be as in Introduction. At first we consider the following integral.

(A.I) I(x)=^Σ\x-σ\-*dσ, XELΩ\Σ (SGΞ(O, «>)).

Then we have the following.

LEMMA A.I. We fix an arbitrary G G I . Then there exists a small ε>0
such that

(A.2) C1d(x)m-s^I(x)£C2d(x)m~s+D2 (if sΦm)

(A.3) -CΛlog d(x))-Dι<I(x)

<-C2(\og d(x))+D2 (if s=m)

hold for any x ε β (ε a). Here Cu C2, D1 and D2 are some positive constants
independent of x, ε and B(ε a) denotes the ball of radius ε with the center a.

Proof. When m—n—2, the first inequality in (A.3) is proved in Vazquez
and Veron [8, Lemma 2.3, pp. 129-130]. Therefore we use the same notations
as in [8],

We fix G E I and set Bv — B(η; a), Ση—Σr\Bη for η>0. And we put

(A.4)

where

/,(*)= ί \x-σ\-dσ
J 2 W

/ 8 (jc)=ί \x-σ\~sdσ.
jΣ\Σγj

There exists a local diffeomorphism from an open subset GcRn onto Bη

such that Ψ(0)=a and Ψ(ω)=Σv if ω=GΓ\Rm. And the restriction Ψ of Ψ to
ω is a parametrization of Ση. If j/=C?, p)tΞRmxRn-m, Ψ(y)=ψ(y, 0). Thus
we have

(A.5) Λ(*)=( / ( Λ I ^ - ^ ( Λ I - ^ ,

where

/δf 3f\ 1/2

J(y)z=z det ( — , — —)

As Ψ is a parametrization of Ση, we may assume that
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(A.6) Ψ and Ψ~ι are uniformly Lipschitz continuous

(A.7)

(A.8)

Here d , C2, b and c denote some positive constants.
We take ε>0 such that 0<ε<)?/2. And we take an arbitrary X<BB£ and

write x—Ψ{zf p), z^Rm, p^Rn'm. If ε is small enough,

(A.9) \z\2+\p\2<ψ/2)2

holds. By (A.8) and (A.9), we have the following.

(A.10) {y(ΞRm; \y\<b/2}d{y^Rm \y-z\<b]

(A.11) {ytΞR™; \y-z\<c\CZ{y^Rm i^l<2ί:}

Summing up (A.5), (A.β), (A.7), (A.10) and (A.ll),

(A. 12) Czh(x)<h(x)< C4I4(x)

hold, where C3 and C4 are some positive constants and

Ϊ
b/2

JO

Since | ̂ o | <6/2<2c hold from (A.8) and (A.9),
rm~s'ldr

JO J\p\

C\p\m~s+D (if

Clog (2c/\p\)+D (if s=t

(A. 14) h(x)^[p]rm-ι(r2+\p\2ys/2dr
Jo

rm-1ί/r^m-12- s/2 | ior-5
 (SG(0,

Jo

and

S b

\
) \p\

Γb/2S b/2

rm-s-idr=z2-™/z log (ft/21 Λ I) (if s=m)
\p\

hold for some positive constants C and D. By the way, from (A.β),
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hold for some positive constants CB and C6.
By (A. 12), (A. 13), (A. 14), (A. 15) and (A. 16), we can see that lx(x) satisfies

the same bounds as in (A.2) and (A.3) for any i 6 5 ( s ; a). On the other hand,

0<I2(x)<(2/η)s\Σ\

hold for any x<=B(ε; a), since 0<ε<^/2 and

\x-σ\^\σ-a\-\x-a\^η-ε>η/2

hold for any x<=B(ε;a) and any σ<=Σ\Σv. Therefore we get the desired
results. q. e. d.

Now we have the following.

PROPOSITION A.2. Let I(x) be as in (A.I),
i) // s>m,

I<=Lq(Ω) for any $e(0, (n-m)/{s-m)),

Ω) for any q<Ξ[_(n — m)/{s — m), oo).

ii) // s—m,

C1\\og d(x)\-Dί^I(x)<C2\\og d(x)\+D2

β ) for any tf<=(0, oo).

iii) // s<m,
Here Cίf C2, Dx and D2 denote some positive constants.

Proof. At first we treat the case s<m. Fix an arbitrary α e J . Then,
by (A.2), 0<I(x)£C holds for any x^B(ε; a). Here C is a positive constant
independent of x and ε. Thus, by using Fatou's Lemma, I(x)->I(a) as x-»a,
Since α ε l is arbitrary, we get iii).

Next we treat the case s^ra. Using the compactness of Σ, (A.2) and (A.3)
remain valid in some neighbourhood of Σ. Since I(x)&C°°(Ω\Σ), (A.2) and
(A.3) remain valid in Ω.

Notice the following formula in Weyl [11].

(A.17) [ ldx=\Bι

n-m\\Σ\εn-m+o(εn-m+1) as ε—0.
Jd(x)<ε

Here \Bι

n~m\ denotes the volume of the unit ball in Rn~m.
From (A.2), (A.3) and (A. 17), we can easily get i) and ii). q. e. d.

Next we consider the following integral.
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(A.18) K(x)=\(\og{R\x-σ\~ι))sdσ X<ΞΩ\Σ (SG(0, oo)),

where i? denotes the diameter of Ω.

Since | x—* |</? for α e J , x e i 5 and O^log t£2st1/(2s) for ί^l, we get

We fix an arbitrary α e l . Then, by (A.I), (A.2) and (A.19),

hold for any x^B(ε a). Here C denotes some positive constant. Therefore

the same argument as in the proof of Proposition A.2 yields the following.

PROPOSITION A.3. Let K{x) be as in (A.18). Then, K(X)<=ΞC%Ω) holds for

any se(0, oo).
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