HAYMAN DIRECTION OF MEROMORPHIC FUNCTIONS

Jinghao Zhu

Abstract

Let f be meromorphic in the plane. Then f has a Hayman direction provided that $$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{2}}=\infty
$$

1. Introduction

We define a Hayman direction of a meromorphic function $f(z)$ to be a ray $\arg z=\theta, 0 \leqq \theta \leqq 2 \pi$, such that for every positive integer l and positive $\varepsilon>0$,

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[n(r, \theta-\varepsilon, \theta+\varepsilon, f=a)+n\left(r, \theta-\varepsilon, \theta+\varepsilon, f^{(l)}=b\right)\right]=\infty \tag{1}
\end{equation*}
$$

holds for all $(a, b) \in C \times[C-0]$, where

$$
n(r, \theta-\varepsilon, \theta+\varepsilon, g=\beta)
$$

is the number of roots of $g-\beta=0$ in the region

$$
[|z|<r] \cap[|\arg z-\theta|<\varepsilon]
$$

Yang, Lo [1] proved that for given meromorphic function f there is a ray $\arg z=\theta$ which satisfies (1) provided that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{3}}=\infty \tag{2}
\end{equation*}
$$

A problem posed in [3] asks whether (2) could be replaced by the usual existing condition of classical Julia directions

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\lim \sup } \frac{T(r, f)}{(\log r)^{2}}=\infty \tag{3}
\end{equation*}
$$

In this paper we prove that there is a ray $\arg z=\theta$ satisfying (1) provided that (3) holds.

[^0]
2. Some lemmas

We use Ahlfors-Shimizu characteristic [2] for a given meromorphic function $f(z)$ as follows

$$
\begin{equation*}
T_{0}(r)=\int_{0}^{r} \frac{A(t)}{t} d t \tag{4}
\end{equation*}
$$

where

$$
A(r)=\frac{1}{\pi} \int_{0}^{2 \pi} t d t \int_{0}^{2 \pi} \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d \theta
$$

and a known result about the relationship between $T_{0}(r)$ and $T(r, f)$ as follows.
Lemma 1. Suppose that $f(z)$ is meromorphic in the plane. Then

$$
\left|T(r, f)-T_{0}(r)-\log ^{+}\right| f(0)\left|\left\lvert\, \leqq \frac{1}{2} \log 2\right.\right.
$$

(for a proof, see [2], pp. 12-13).
Lemma 2. Given positive integer l and meromorphic function $f(z)$ in $|z|<1$. Suppose that in $|z|<1, f \neq 0, f^{(l)} \neq 1$. Then in $|z|<1 / 32$ either $|f|<1$ or $|f|>C_{l}$ uniformly, where C_{l} is a positive constant only depending on l.
(for a proof, see [1]).
Lemma 3. Let $f(z)$ be meromorphic in the plane and $\alpha_{\nu}, \nu=1,2,3$, be three distinct finite complex numbers. Let F_{0} be

$$
\mathrm{S}^{2}-\left[\alpha_{\nu}, \nu=1,2,3\right],
$$

such that

$$
F_{0} \subset f(|z|<\infty) .
$$

Suppose that in $|z| \leqq R, f(z)$ has values in F_{0}. Then we have

$$
A(r)<h L(r),(0<r<R)
$$

where

$$
L(r)=\int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right| r}{1+\left|f\left(r e^{i \theta}\right)\right|^{2}} d \theta
$$

and for $0<r<R$, we have

$$
A(r)<\frac{2 \pi^{2} h^{2} R}{R-r}
$$

where h only depending on the geometric nature of conditions satisfied by $f(z)$.
(for a proof, see [2], pp. 137-144).

3. The main results

THEOREM 1. Let $f(z)$ be meromorphic in the plane. Suppose that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{2}}=\infty \tag{5}
\end{equation*}
$$

Then there is a real $\theta \in[0,2 \pi]$, such that for every $\varepsilon>0$, and positive integer l,

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left[n(r, \theta-\varepsilon, \theta+\varepsilon, f=a)+n\left(r, \theta-\varepsilon, \theta+\varepsilon, f^{(l)}=b\right)\right]=\infty \tag{6}
\end{equation*}
$$

for all $(a, b) \in C \times[C-0]$.
THEOREM 2. Let $f(z)$ be meromorphic in the plane. Suppose that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(2 r, f)}{T(r, f)}>1 \tag{7}
\end{equation*}
$$

Then the conclusion of Theorem 1 is still true.

4. The proof of the theorems

Proof of Theorem 1. By hypothesis (5) and using Lemma 1, we can get a ray $\arg z=\theta$, such that for arbitrary positive δ

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, \theta-\delta, \theta+\delta)}{(\log r)^{2}}=\infty \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
T(r, \theta-\delta, \theta+\delta)=\int_{0}^{r} \frac{A(t, \theta-\delta, \theta+\delta)}{t} d t \\
A(r, \theta-\delta, \theta+\delta)=\frac{1}{\pi} \iint_{\Delta_{r, \delta}} \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d x d y
\end{gathered}
$$

is the Ahlfors charachteristic of $f(z)$ in the angle area

$$
|\arg z-\theta|<\delta
$$

where

$$
\Delta_{r, \delta}=(z,|z|<r) \cap(z,|\arg z-\theta|<\delta) .
$$

We prove the ray $\arg z=\theta$ is desired for Theorem 1. Otherwise, without loss of generality, we have complexes $a, b(b \neq 0)$ and some $\varepsilon>0$, and $l>0$, such that

$$
\begin{equation*}
n(r, \theta-\varepsilon, \theta+\varepsilon, f=a)+n\left(r, \theta-\varepsilon, \theta+\varepsilon, f^{(l)}=b\right)=0 \tag{9}
\end{equation*}
$$

for any $r, 0<r<\infty$.
Now given a sequence of positive real c_{k} which tends to infinitive, we find
a sequence of circles $D_{k},(k=1,2, \cdots)$

$$
D_{k}:\left|z-z_{k}\right|<\eta\left|z_{k}, z_{k}=\left|z_{k}\right| e^{i \theta}, \lim _{k \rightarrow \infty}\right| z_{k} \mid=\infty
$$

with a sufficiently small $\eta>0$ such that

$$
\begin{gather*}
A\left(D_{k}\right)>c_{k} \log \frac{1}{1-\eta} . \tag{10}\\
(k=1,2, \cdots)
\end{gather*}
$$

We'll get D_{k} by induction.
After getting $D_{1}, D_{2}, \cdots, D_{k-1}$ if we cannot get D_{k} such that (10) holds, then for each $r>r_{k}^{*}=\operatorname{Max}\left(\left|z_{k-1}\right|, k\right)$, we have

$$
\begin{equation*}
A\left(\Delta_{0}\right) \leqq c_{k} \log \frac{1}{1-\eta}=c_{k} \log \frac{r_{0}}{r_{0}-\eta r_{0}}, \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
r_{0}=r \\
\Delta_{0}:\left|z-r_{0} e^{i \theta}\right|<\eta r_{0}
\end{gathered}
$$

and

$$
\begin{gather*}
A\left(\Delta_{m}\right) \leqq c_{k} \log \frac{1}{1-\eta}=c_{k} \log \frac{r_{m}}{r_{m}-\eta r_{m}}, \tag{12}\\
(m=1,2, \cdots)
\end{gather*}
$$

where

$$
\begin{gather*}
r_{m}=(1-\eta) r_{m-1} \\
\Delta_{m}:\left|z-r_{m} e^{i \theta}\right|<\eta r_{m} . \tag{13}
\end{gather*}
$$

Noting

$$
\begin{gather*}
r_{0}-r_{1}=\eta r_{0} \\
r_{1}-r_{2}=\eta(1-\eta) r_{0} \\
\cdots \cdots \cdots \tag{14}\\
r_{m-1}-r_{m}=\eta(1-\eta)^{m-1} r_{0}
\end{gather*}
$$

and

$$
\begin{equation*}
\eta\left[1+(1-\eta)+(1-\eta)^{2}+\cdots\right] r_{0}=r_{0} \tag{15}
\end{equation*}
$$

we see there is a positive integer m such that

$$
\begin{equation*}
r_{m} \geqq r_{k}^{*} \tag{16}
\end{equation*}
$$

and
i.e.

$$
r_{m+1}=r_{m}-\eta r_{m} \leqq r_{k}^{*}
$$

$$
\begin{equation*}
r_{m} \leqq\left(\frac{1}{1-\eta}\right) r_{k}^{*} \tag{17}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
E_{m}(r)=\left(z: r_{m}<|z|<r\right) \cap\left(z:|\arg z-\theta|<\frac{\eta}{2}\right) \subset \bigcup_{j=0}^{m} \Delta_{j} \tag{18}
\end{equation*}
$$

But by (11), (12), and (15), we have

$$
\begin{equation*}
\sum_{j=0}^{m} A\left(\Delta_{j}\right) \leqq c_{k} \sum_{j=0}^{m} \log \frac{r_{\jmath}}{r_{j+1}} \leqq c_{k} \log \frac{r_{0}}{r_{m}} \leqq c_{k} \log \frac{r}{r_{k}^{*}} \tag{19}
\end{equation*}
$$

Then by (16), (17), (18) and (19), we have
(20) $A\left(r, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)=A\left(r_{m}, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)+\frac{1}{\pi} \iint_{E_{m}(r)} \frac{\left|f^{\prime}\right|^{2}}{\left(1+|f|^{2}\right)^{2}} d x d y$

$$
\begin{aligned}
& \leqq A\left(\frac{1}{1-\eta} r_{k}^{*}, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)+\sum_{j=0}^{m} A\left(\Delta_{j}\right) \\
& \leqq A\left(\frac{1}{1-\eta} r_{k}^{*}, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)+c_{k} \log \frac{r}{r_{k}^{*}}
\end{aligned}
$$

Since $r>r_{k}^{*}$ is arbitrary, we have

$$
\begin{equation*}
A\left(r, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)=O[(\log r)] \tag{21}
\end{equation*}
$$

Then

$$
\begin{equation*}
T\left(r, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)=\int_{0}^{r} \frac{A\left(t, \theta-\frac{\eta}{2}, \theta+\frac{\eta}{2}\right)}{t} d t=O(\log r)^{2} \tag{22}
\end{equation*}
$$

and this yields a contradiction to (8).
Take a sequence of circles $D_{k}:\left|z-z_{k}\right|<64 \eta\left|z_{k}\right|,(k=1,2, \cdots)$. If $\eta<$ $(1 / 32 \pi) \varepsilon$, then $D_{k} \subset(z:|\arg z-\theta|<\varepsilon)$. By (9), functions

$$
g_{k}(t)=\frac{f\left(z_{k}+64 \eta\left|z_{k}\right| t\right)-a}{b\left(64 \eta\left|z_{k}\right|\right)^{l}}
$$

are meromorphic in $|t|<1$ and for each $k, g_{k}(t) \neq 0, g_{k}^{(l)}(t) \neq 1$. Then by Lemma 2 we have in $|t| \leqq 1 / 32$, either $\left|g_{k}(t)\right| \leqq 1$ or $\left|g_{k}(t)\right|>C_{l}$ uniformly.

There are two cases for each k as follows.
CASE 1. $\left|g_{k}(t)\right|>C_{l}$ holds uniformly in $|t|<1 / 32$.
Denoting

$$
f_{k}(t)=f\left(z_{k}+64 \eta\left|z_{k}\right| t\right)
$$

this deduces

$$
\begin{equation*}
\left|f_{k}(t)-a\right|>C_{l}|b|\left(64 \eta\left|z_{k}\right|\right)^{l} \tag{23}
\end{equation*}
$$

holds uniformly in $|t|<1 / 32$.

CASE 2. $\left|g_{k}(t)\right|<1$ holds uniformly in $|t|<1 / 32$, and this deduces

$$
\left|f_{k}(t)-a\right|<|b|\left(64 \eta\left|z_{k}\right|\right)^{l}
$$

for all t in $|t|<1 / 32$.
Now in case 1 we choose three distinct values $\alpha_{1}, \alpha_{2}, \alpha_{3}$, such that

$$
\alpha_{1}=a,\left|\alpha_{\nu}-a\right|=1, \quad \nu=2,3 .
$$

In case 2 , we let

$$
\begin{gathered}
\alpha_{1}=a, \alpha_{2}=e^{2 \pi / 2} \alpha_{3}, \\
\left|\alpha_{\nu}\right|=2\left(|a|+|b|\left(64 \eta\left|z_{k}\right|\right)^{l}\right), \quad(\nu=2,3) .
\end{gathered}
$$

At the same time, without loss of generality, we assume that $\left[\alpha_{\nu}, \nu=1,2,3\right]$ includes all values (at most two) which are not taken by $f(z)$ in the plane. Then by the method of Theorem 5.3 in [2], in order to use our Lemma 3, we choose

$$
F_{0}=S^{2}-\left[\alpha_{\nu}, \nu=1,2,3\right]
$$

and clearly

$$
F_{0} \subset f_{k}(|t|<\infty),
$$

since $f(z)$ is meromorphic in the plane and so is $f_{k}(t)$. Noting the geometric nature of conditions satisfied by $f(z)$ and α_{ν} on Riemann sphere, we have

$$
f_{k}\left(|t| \leqq \frac{1}{32}\right) \subset F_{0}
$$

for

$$
f_{k}(t) \neq \alpha_{\nu}, \nu=1,2,3,
$$

when $|t| \leqq 1 / 32$. Then by Lemma 3 we have

$$
\begin{gathered}
A\left(|t| \leqq \frac{1}{32}\right)<h L\left(|t|=\frac{1}{32}\right) \\
A\left(|t| \leqq \frac{1}{64}\right)<\frac{2 \pi^{2} h^{2} / 32}{1 / 32-1 / 64} \leqq 4 \pi^{2} h^{2},
\end{gathered}
$$

where h is independent of k, since for both cases we can properly construct Jordan arcs $\beta_{\nu}(\nu=1,2,3)$ to join $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in turn just like in [2] such that the length of β_{ν} and the sphere area of F_{0}^{\prime} and $F_{0}^{\prime \prime}$ are all greater than $C(a)$, where $C(a)$ is a positive constant only dependent of a, and

$$
F_{0}^{\prime} \cup F_{0}^{\prime \prime}=F_{0}
$$

are two Jordan domains divided by $\beta_{\nu}, \nu=1,2,3$.
Clearly

$$
A\left(|t|<\frac{1}{64}\right)=A\left(D_{k}\right) .
$$

So by (10), we have

$$
c_{k} \log \frac{1}{1-\eta}<A\left(D_{k}\right)<4 \pi^{2} h^{2}
$$

i. e.

$$
c_{k}<4 \pi^{2} h^{2}\left(\log \frac{1}{1-\eta}\right)^{-1} .
$$

But this violates that c_{k} tends to infinitive. We are done.
Proof of Theorem 2. Since

$$
T(r, f)=O(\log r)^{2}
$$

means

$$
T(2 r, f) \sim T(r, f),
$$

so by hypothesis of Theorem 2, we have

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{2}}=\infty
$$

Then we deduce Theorem 2 from Theorem 1 directly.

References

[1] Yang, Lo, Meromorphic functions and their derivatives, J. London Math. Soc. (2), 25 (1982), 288-296.
[2] W.K. Hayman, Meromorphic Functions, Oxford, 1964.
[3] K. Barth, D. Brannan and W. Hayman, Research problems in complex analysis, Bull. London Math. Soc., 16 (1984), 490-517.

```
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061
U.S. A.
```


[^0]: Received June 21, 1993 ; revised January 10, 1994.

