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ON RESOLUTION COMPLEXITY OF PLANE CURVES

LE DUNG TRANG AND MUTSUO OKA

Introduction

The embedded resolution of a plane curve is a known process which was
already known by Max Noether in [N]. One may find an elementary account
of this process in the book of E. Brieskorn and H. Knorrer [B-K].

When the plane curve is locally irreducible, it is easily observed that the
case of one Puiseux pair is solved by only one good toroidal blowing-up. More
generally with one good toroidal blowing-up one may eliminate the first Puiseux
pair. Therefore after g good toroidal blowing-ups, one can solve a curve
singularity with one branch and g Puiseux pairs.

In this paper we show that this phenomenon is general. Namely we prove
that the minimal number of required toroidal blowing-ups to resolve the curve
singularity is a topological invariant of the singularity that we have called the
complexity of the resolution (see Theorem (3.12)).

In fact the complexity of a plane curve singularity is expected to behave
like a depth. If we expect that a non-degenerate hypersurface singularity has
resolution complexity one, it is reasonable to prove that a general plane section
of that hypersurface is a curve which singularity has complexity at most equal
to the dimension of the hypersurface. This result was actually proved by the
second author in [04].

It remains to understand what is the resolution complexity of a hypersurface
singularity. We hope that this paper will draw the interest of the specialists
on this subject.

1. Choice of good coordinates

Let f(x, y) be a complex analytic function of two variables defined on an
open neighborhood U of the origin O of C2 and suppose that /(0)=O. Let

/(*, y)=Σϊca,βXayP

be the Taylor expansion of / at the origin 0=(O, 0). The Newton polygon
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2 Lt DUNG TRANG AND MUTSUO OKA

Γ+(f x, y) of / at the point O relatively to the coordinate system (x, y) is the
convex closure of the set

U {(a, β)+Rl)

The Newton boundary Γ(f x, y) of / at 0 is the union of compact faces of
the boundary of the Newton polygon of / at O. Notice that the boundary of
the Newton polygon differs from the Newton boundary by two non-compact
faces parallel to the coordinate axes. For each compact face Δ of Γ(f x, y)
we define the face function f & by

/Δ(*, y)= Σ
S

In the space R2 where the Newton polygon Γ+(f \ x, y) is contained, we call
(M, V) the coordinates. For any linear form P defined by P(u, v)—au+bv, where
(α, b) is a pair of positive relatively prime integers, we define d(P; f) to be
the smallest value of the restriction of P to the Newton polygon Γ+(f x, y)
and A(P; f) be the face where this smallest value is taken. For simplicity we
shall write P = ί ( α , b) and we simply denote fP instead of /Δ(P ;/>. Thus fP is
a weighted homogeneous polynomial of weight ι(a, b) and degree d(P; / ) . For
each face Δ of dimension 1 there is a unique linear form P defined by the
weight vector f(α, b) of positive relatively prime integers such that fP=f^ and
furthermore we have a factorization of f ^:

with d(P; f)=(ΣnVί)ab+ar+bs. We shall call P= e (α, b) the weight vector of
the face Δ.

There is a finite number of faces of dimension 1 in the boundary of the
Newton polygon (notice that two of these faces are non-compact and parallel
to the coordinate axes). We order the compact faces Δ t (l<i<m) of weights
Pi—

t(κaι, bi) by the slopes —di/bi of the lines which contain them. We index
such that — cχ3< — ai/bι< ••• < — am/bm<0. The case m—Q means that the
Newton boundary has one point, which means that f(x, y)=xrysu(x, y) where
u(x, y) is a unit at O.

Figure (l.A) (w-4)
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In the space N+ of positive dual vectors, we introduce an equivalence relation
^defined by P^Q if and only if A(P; f)=A(Q /) . The equivalence classes of
this equivalence relation define a conical subdivision of N+. By taking a line
section which does not pass through the origin and intersects N+ (e.g. the line
x+y=l)f we obtain a simplex with a simplicial decomposition (in this case, a
segment with a subdivision). We represent this simplex by the segment
[i?-oo, i?o] with the subdivision given by the vertices R-oo, Pίy •••, Pm> Ro We
call this graph the dual Newton diagram Γ*(f x, y) of / with respect to the
coordinates x and y. In this graph, the vertices correspond to the faces of the
Newton polygon and their names correspond to the unique element in their
equivalence class which is a primitive integral vector. So i?_oo=ί(l, 0), P t—
\aXy bi) (l^i£m) and |?0=*((), 1). The edges correspond to the vertices of the
Newton boundary. Because of its particular shape, this graph is called a bamboo,
i.e. a tree without branches, linking R^ and Ro through Ply •••, Pm. Let

f P . ( x , y)=ctx
r*ysi I I (ya*-rtt,x

bi)Vi>J, ί = 1, •••, m
3 = 1

DEFINITION (1.1). We say that the coordinate x is bad for / at the point
0 if the first face function fPχ satisfies one of the following conditions.
(1) m ^ l and fPl(x, y) is of the form c1y

Sl(yaι—γ1>ίx)Vl'1 i.e., ri=0, Px =
ι(alt 1) and k1=l.
(2) m = l and fPχ(x, y^Uy-γ^xγ^Ky-ϊi^xϊ1'2 i.e., r ^ s ^ O , Pi= £ (l, l) and
*χ=2.

Similarly 3; is called 6αύ( if the last face function fpm(x, y) satisfies either (1)'
or (2) where
(I)7 m ^ l and fPJx, y)=cmxrHy-rm,iXbm)Vm'1 i.e., sm=0, PTO =

 e(l, 6ro) and

We say that the coordinate x (resp. 3O is quasi-good for / at the point 0 if
it is not bad. We say that a coordinate system (x, y) is quasi-good for / at the
point 0 if both # and y are quasi-good for /. Notice that if m=0, the coodi-
nates x and y are always quasi-good. In case (2), both x and y are bad coodi-
nates.

We will see later that there exists a toric bowing-up π: X-^C2 which is
canonically associated with the dual Newton diagram Γ*(f x, y) (see (2.6)).
The corresponding dual graph of the exceptional divisors is a bamboo. Then
x is a bad coordinate if and only if the divisor E{PX) which corresponds to the
weight vector Pλ intersects at most two irreducible components of the divisor
(π*f) (see Lemma (2.12)).

Remark. In the case that the function / is analytically irreducible at O,
the Newton boundary has only one face and it touches to the both axis and
the coordinate x (respectively y) is bad for / if and only if the slope of the
Newton boundary (resp. the inverse of the slope of the Newton boundary) is an
integer.
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DEFINITION (1.2). We say that x is good if x is quasi-good and one of the
following condition is satisfied,
(i) m=0 or (ii) ra^l and bx>l or
(iii) m>l, b1 — l,

1 . 7 = 1

and for any change of coordinates xf — x—γϊ^yaι + h(y), y'=y with l ^ ^&i

and val/ι>αi such that xf is a quasi-good for / ' (# ' , ^/) =/(^/+7'ΓΛ3;/αi~"^(3;/), y ) ,
the number of compact faces of / \ / ' x', yr) is m.
Similarly we say that y is good if y is a quasi-good coordinate and
(i) m=0 or (ii)' ra^l and α m > l or (iii)' m ^ l , αm—1 and

and for any change of coordinates x' = x, yf=y—mfm,jXbmJrg(x) with l<j<km

and v a l £ > 6 m such that y' is a quasi-good for f'(xf, y') = f(x', y' +
7m,^/&7n—^r(^O), the number of compact faces of /"*(/' x', y') is m.

If both x and 3; are good, we say that (x, y) is a ^ 00ύ( system of coordinates.
As the coordinate change of type (iii) in definition (1.2) does not change the

other part of the Newton boundary Γ(f x, y)ΓΛ{u^rι) — {JJL2AJf the condition
(iii) implies that the face Δi does not split into more than two faces.

We will see later that x is a good coordinate for /(%, y) if and only if
OΊ, kx)Φφt 1) and for each 7 — 1, •••, kx there exists analytic functions hj(y)
with va\hj>ax such that (x—γτ,1

Jy
ai + hj(y)yi j divides f(x, y) (see Sublemma

(1.9)). Geometrically this implies that the function π*f has only normal cross-
ing singularities on the exceptional divisor E(Pλ) (Lemma (2.9)).

Example (1.2.1). We give two basic examples.
(A) Let us consider the case

f(χf y) = (χ-\-y2)2-{-χ3y

Then the Newton boundary has only one face and the corresponding face func-
tion is

As is easy to see, x is not even a quasi-good coordinate for /. We will see
later that C is irreducible but the strict transform of C on the total space X
of the toric blowing-up has a cusp singularity at the intersection with the ex-
ceptional divisor. To give an example of a curve C={k(x, 30=0} for which x
is a quasi-good but not good coordinate, we can simply take k(x, y)—f(x, y)
h(x> y) where Γ(h x, y) does not have any face whose slope is equal or sharper
than —2. Namely we assume that
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hP(x, y)=xayb for any P=£(/>, g), P/qύ-2

As an easiest example, we can take h(x, y)—x and let

k{x, y)=

Then the Newton boundary has only one face and the corresponding face func-
tion is

kPι(x, y)=x(x + y*γ

Thus it is easy to see that x, y are quasi-good coordinates for k. However x
is not a good coordinate. In fact, take the change of coordinate:

x'z=x + y2, yf — y

Then in this coordinate, / is written as

Now Γ(kf xr, yf) has two compact faces and the face function of the first
face is

k'p'Sx', / ) = / 2 ( - * / 8 + / 7 )

Thus it is easy to see that x' is a quasi-good (in fact a good) coordinate. Thus
x is not a good coordinate by the definition. For the geometrical interpretation,
see Example (2.10.1).

1

1 3 4 2 3

Figure (1.2.1.A)

(B) Let us consider the function

g(x, y)=(χ+y2)(χ-y2)(χ-y2+y2+m)

The Newton boundary has only one face and the curve g(x, y)=Q has three
irreducible components. Note that
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It is obvious that x is a quasi-good coordinate for g. We assert that x is not
a good coordinate. In fact, let

χ'=x—y2, y'=y

and let g\x*', y'):=g{x'+y'2, / ) . Then Γ(g' x'', / ) has two faces and the
first face has the weight vector P/=t(2+m, 1) and

g'(x', y')=x'(x'+2y'2)(x'+y'2+m)

g'P,(x'y y')=2x'y'2(x' + y'2+m)

g'p&', y')=x'\x'+2y'*)

x' is obviously a quasi-good coordinate for G. In fact, it is also a good coordi-
nate for / ' by Sublemma (1.9) as x' + yf2+m divides g'(x', yf). Let π: X~>C2

be the canonical toric blowing-up with respect to (x, y). Then the strict trans-
forms of the irreducible components x—y2—^ and x—y2-\-y2+m=0 are smooth
but they intersects with intersection multiplicity m at the point where they
intersect transversely with E(Pi).

3 1 2 3

Figure (I.2.I.B.)

See also Example (2.10.1). Let h(x, y) be as in (A). The same assertion is
true for

k(x, y)=(x+y2Xx-y2Xx-y2+y2+m)h(x, y)

We have the following fundamental lemma:

LEMMA (1.3). Assume that x is a bad coordinate for a given f(x, y) as above
and assume that

Then there exists an analytic change of coordinates (xf', y')\
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χ=χ'+rz\y'aι+Ky'), y=y'

where h(yf) is a germ of an analytic function of y' with val/ι>fli so that xf is
a quasi-good coordinate for f'(x'', y')'=zf(x'+Yϊ.\y'ai+h(y')> jΌ Here val is
the valuation of the corresponding series. Furthermore if y is quasi-good for
f(x, y), y' is also quasi-good for / ' ( * ' , y').

The similar assertion is true for the coordinate y if y is a bad coordinate.

COROLLARY (1.4). For any given f(x, y), there exists an analytic change of
coordinates

χ=φ(xu yι) y=ψ(xu y\)

where (xlf y{) ts a quasi-good coordinate system for fι(xι, yi)=f(φ(xι, yi), ψ(xi,
Furthermore if x (resp. y) is already quasi-good we can choose this change of
coordinates such that x = xt (resp. y—yι).

Proof of Corollary (1.4). Assume that x is a bad coordinates. If x is as
in Lemma (1.3), we apply Lemma (1.3). If x is bad and the condition (2) is
satisfied in Definition (1.1). Namely assume that m—\ and fpx(x, 3>)=
Cι(y—Yι,ιx)Vι<ι{y—yι,2x)VlΛ' Then we first take the coordinate change

If either x' or y' is still a bad coordinate, we come to a situation as in Lemma
(1.3). If x' or y is bad, we apply Lemma (1.3) (twice if necessary). This
proves the assertion.

Proof of Lemma (1.3). Suppose that x is a bad coordinate and we may
assume

for convenience. Note (v, s)<=Γ(f; x, y) be the first interior vertex of the
Newton boundary Γ(f x, y). (The first interior vertex of the Newton boundary
which has the minimal positive ^-coordinate.) We first consider the change of
coordinates:

Here h{y') is any germ of an analytic function of y' with val/ι>α, where val
is the valuation of the corresponding series. Let

ASSERTION (1.5). The intersection Γ(f x\ y)Π{w^p} equals to Γ(f x, y)
ΓMU^V} andff

a.(x', y')=fφ, y) for any i=2, •••, m. In Πf' x', y')ΓΛ{u£v},
either there are no faces or any new face is sharper than Δi. Let (ι/, S')ZΞ
Γ(f xf, y') be the first interior vertex. Then v'ikv If y ts quasi-good for
f, yf is also quasi-good for / ' .
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Proof. Let P=t(p, q)^N+ be a dual vector. Then we have

f'Ax', yf)={f{x'+Γιy'a + h{y'\ y'))P

fp(x', y') if P/q<a

fp(xf+Γιy'a, y')=cy'sx'v if p/g=a

Thus, for any dual vector P—ι{p, q) such that p/q<a, we have A(P; f)=A(P; /')
and f'p(x', y')=fp{x, y). This proves the first assertion. Assume that y is
quasi-good for /. Then we have to show that yr is also quasi-good. If the
number of faces in the Newton boundary m is greater than 1, yf is obviously
quasi-good for / ' by the above argument. Assume that m—\. Then fPχ{x, y)
=cys(ya+γx)v. In this case y is bad if and only if s=Q and a — I. If y is
quasi-good and s>0, it is easy to see that y/s divides / ' , so yf is also quasi-
good for / ' . If y is quasi-good and s=0, we must have α > l . By the above
argument, Γ(ff) does not have any face with the corresponding covector P—
ι(P> O) with plq^X and y' is quasi-good for / / . Thus in any case, the coordi-
nate function y' is quasi-good for / ' . This proves the above assertion. Q.E.D.

Now we use the preceding assertion to prove Lemma (1.3). Let g and h
be germs of analytic functions at the origin such that the ideal (g, h) generated
by g and h has a finite codimension in the ring of germs of analytic functions
O. Recall that the intersection multiplicity m(/, g 0) of {^=0} and {h=0} at
the origin is defined by dim O/(f, g).

Let

In the above notation, we have:

m(f, x;θ)=dimθ/(f, *)=val/(0, y)

, x-rιyΛ-h(y))

>s-\-a\j.

Thus we have

m(f, g 0)>m(f, x 0) for any

We consider the change of coordinates:

and let

/i(*i, yi):= fixi+r^yu yi)

Call this change of coordinates the canonical change of coordinates. If xx is not
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quasi-good for fu we take the canonical change of coordinates (x2, 3>2) and we
continue this operations. Note that a finite composition of canonical changes
of coordinates is a change of coordinates of the form:

as we have used in the above assertion. Thus we have two possibilities.
(a) There exists a j \ such that xJo is a quasi-good coordinate for fjQ(xJo, yJo).
(b) For any />0, x3 is not quasi-good for f 3.
In the case of (a), we can simply take X'=XJQ, y'=yjQ. Note that h(y) is a
polynomial in this case. In the case of (b), the first vertex of the Newton boundary
which we denote by (vJt sj) does not change after some ; 0 > 0 , so we may
assume that vj=vJ+ι and m(f, X}+i)>m(f, xj) for any j . In particular, this
implies that sup^s m(f, g)=oo. So, we assert

ASSERTION (1.6). Assume that $upgE:s m(f, g)—oo. Then there is a g(x, y)
e S such that g\f.

Assuming this assertion, we take x'=g(χt y) and y'=y to complete the
proof.

To prove the last assertion, we consider the intersection multiplicity. Let
f—k\ι ••• kl* be the factorization in the ring O of f into irreducible functions.
First by the linearity of the intersection multiplicity, m(f, g)=yΣUirim(kι, g).
So if sup^es m(/, g)=°o, there is i, l<i<s, such that suρ^ e 5 m{kl) g)—oo. Then
using the Puiseux expansion of kt and the equality

m(kt; x+γ-1ya + h(y))=^ysi\kι(-γ-1ya-h(y)> y) t

it is easy to see that sup g^ s m(kt, g)—^ if and only if in the complete ring ό
of formal power series, there is an element g of S (which is necessarily irre-
ducible in O) which divides kt. But being irreducible in O, kτ is irreducible in
its completion 6. Therefore {kι=0} is non-singular and ξk^S for some unit
ζ in O. Namely there exists a g<BS such that g divides /. Q.E.D.

This completes the proof of Lemma (1.3).
Now we extend Lemma (1.3) for good coordinates.

LEMMA (1.7). Assume that x is a quasi-good coordinate which is not good
and assume that fPί(x, y)—cιx

rιySιY\k

Jiι {yai~Ti,3x)Vl'J. Then there exists a j
(l^/^s&i) cmd a coordinate change (xf, yf)\

χ=χ'+π,ιjy'ai+Ky'), y=y'

with valΛ>αi and xf is good for / ' ( * V ) : = / ( * ' + Π ; j / α i + Λ(/), y'\ If y is
good, yr is also good. A similar assertion is true for y coodinates.
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COROLLARY (1.8). For any given f(x, y), there exists an analytic change of
coordinates

where (xlf yx) is a good coordinate system for fι(xu >Ί)—f(φ(xi, yi), φ(xi, 3>i))
Furthermore if x (resp. y) is already good we can choose this change of coordi-
nates such that x—xx {resp. y=yi)

To prove the assertion for the good coordinates, we first prove the follow-
ing criterion for the goodness.

SUBLEMMA (1.9). Let fPl(x, y)=c1x
riySlU.UΛyaί—ϊi,jχ)Vuj' The coordinate

x is good if and only if (rlt kx)Φ(0, 1) and for each 7 = 1, •••, k\ there exists
analytic functions hj(y) with val/^>fli such that (x—γϊ,1

Jy
ai+hj(y)yi J divides

fix, y).

Sublemma (1.9) and Lemma (2.9) give a geometrical interpretation for the
good coordinate.

Proof. Assume that x is good. Let x'=x—γϊ,1

Jy
ai, y'—y and let / ' (# ' , y'):

= f{xf+7ι,jy'aιy y')- As in the proof of Assertion (1.6), we can see easily that

Γ(Γ x\ y')Γ\{u2:r1+ Σ \>Λ=Γ{f x, y)Γ\\*Zrι+ Σ vΛ .

Obviously fpx(x, y) changes as

fW, y')=(χ'+r[WaιYιy"ιχ'Vι'> π(d-n,irrΛ)^/αi-ri.ιχ')Vl>ι

1*3

As x is assumed to be good, r i>0 if kx—\. Thus f'P is not a monomial. Let
Δί be the support of this polynomial. If Γ(f x', y')Γ^{u<vitJ}—Q, this implies
that x'Vl>i\f and the assertion is proved. Assume that Γ(f x', yf)Γ\{u^υιtj}
contains faces. Let them Δί.i, •••, Δί.t. Thus Δί.i, •••, Δί,t, Δί and Δ2, •••, Am

is the faces of Γ(f x', y'). By the goodness of x, xf is necessarily not quasi-
good. Thus we can write

f'*'ul(*', y')=c'y's'(ya'-γ'xΎ .

Note that a/>aι. Using Lemma (1.3), we can take a coordinate change

χ"=χ'-γ'-ιy'al + h(y'), y"=y'

so that x" is a quasi-good coordinate for f(x*', y"):= f'(xffJryf-ly"a^—h{yrf)y y")
and the faces Δίi2, •••, A'ltt, Δί, Δ2, •••, Δm are unchanged under this change of
coordinates. Again by the goodness of x, this is possible if and only if t—1
and Γ(f"'; x", j//)Π{w<vi(>7}=0. This implies that x"vi j\f. As we can write
x"=>x—γZ1jyai + h'(y), y"=y with val/ι'><Zi, the necessity is proved.
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Now we consider the sufficiency. Assume that for each j — 1, •••, ku there
exists some h3 with vz\h]>aι such that (x—γϊ,1

Jy
ai+hJ(y)yι>J divides /. Let

X^x-rύy'i+hjiy), Y^y and let F(X, F):= f(X+γftYai-hjy\ Y). The
assumption implies that Γ(F; X, Y)Γ\{u<vltj) =0. Note that the Newton
boundary Γ(F;X, Y) is same with Γ(f x, y) for w^7Ί+Σ*ii vi.j and

FPι(X, Y)=Cι{X^γ~^Y^)^Y^X^> Π ((Wi. iKlj)Yai-ri.iXY1-ι

Now let x/= x—YZ1

Jy
ai+φ(y), yf—y be an arbitrary change of coordinates with

val0>βi. Then the following assertion shows that x is a good coordinate
for /.

ASSERTION (1.9.1). Assume that x' is a quasi-good coordinate for

/'(* ' , / ) : = f(χ'+πSy'aι-Φ{y'), y')

Then φ(y')=hs(y') and x'=X.

Proof, It is easy to see that x'—X—hj{Y)+φ{Y), y'—Y'. Thus we have

/'(* ' , y')=F(x'-hW)+φ{y'), y')

Let φ{y'):— φ{y')—hj{y'). Assume that ψφQ and let

^(^/)=Γ/3'/α'4-(higher terms)

and let P=\a', 1). Note that a'>aγ. Thus it is easy to see that

with ξ=Si + aι(rί+'Σiφj vιΛ). Thus x' is not quasi-good which is a contradiction.
Therefore if xf is quasi-good for / ;, then x'—X. Q.E.D.

Proof of Lemma (1.7). Assume first that x is quasi-good and let

fpx{χ, ̂ )=ciχ r^ f l Π(y^-rujxY1'*
J = l

Assume that x is not good. By the definition, there exists a coordinate change

χ'=χ-rτ}iyaχ+Φ(y)> y'=y

for some / and φ(y) with val0>fli such that x' is quasi-good for

and in Γ(f *', y') Δi splits into more that two faces in Γ(f x', y'). If x'
is not good, we continue this operation. Such an operation strictly increases
the number of faces of the corresponding Newton boundary and only the first
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face Δi is changed into several faces. Note that the u coordinate of the right
end of the first face Δi is strictly decreasing under this operation. Thus this
operation stops after finite steps. Namely we obtain a quasi-good coordinate
system (xlt yλ) where xx is good. The composition of such changes of coordi-
nates is again a quasi-good coordinate change which we are considering: xx—
x~TT,1

Jy
ai+Ky), yι—y with val/z>αi.

Now assume that y is good from the beginning. We have to show that yx

is also good. Let fλ{xu yx):= f(x\+rϊSyϊι—Kyi\ 3Ί) and let

k m

> y)=cmχrmySm Π

Note that

i(χi+ϊϊΛyϊ1)riyl1χiι'jIliΦj((l—ΐi,ιϊϊ,1j)yti1--ϊi,ιXiyi ι> m=l

If α m > l , yι is good by the definition. Assume that am=l. By Sublemma (1.9),
for each l<Ll^km, there exists ht(x) with vdλht>bm such that (y — γm,ιχbmJr
h i( x\\vm,ι\ f(r v) T pf rff—r v/;—v — r , rbm-Lh J r) Δς r , — r — y, !»

and 3>i=3>, we have

where va\h'>bm. In the case of m—\ and ax—\, Px—\\y 1). By implicit func-
tion theorem, there exists an analytic function H(xx) with va\H>bm and a unit
U such that

S y r ) ) , m = l .

Thus by the assumption we see that

)y^^\f1(χlf y i ) , m = i , P - U i ) .

Thus by the above expression of fi,Pm(xi, yj and Sublemma (1.9), yγ is also
good for /. Q.E.D.

COROLLARY (1.10). Let f(x, y) be a given germ of function. Then there
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exists a change of coordinates (xu yC) which is a good coordinate system for

2. Non-degenerate plane curves

Consider as above a complex analytic function f(x, y) defined in a neigh-
borhood of O. We define (cf. [K], [V], [01]):

DEFINITION (2.1). Let Δ be a compact face of the Newton boundary of the
function /. The function / is non-degenerate on A if the quasi-homogeneous
function /Δ has no critical point in the torus (C*)2. The function / is non-
degenerate in the system of coordinates (x, y) if, for any compact face of
its Newton boundary, the function / is non-degenerate on this compact face.

Let Δi, •••, Am be the faces of Γ(f; x, y) and let Pι=\au W, •••, Pm=
'(a-my bm) be the corresponding weights. Let Pι—

t{aX} bx) and

w h e r e clt γltl, •••, γttk a r e n o n - z e r o c o m p l e x n u m b e r s a n d vitι, •••, vt,kt ( r e s p .
rx a n d sx) a r e pos i t i ve ( r e s p . n o n - n e g a t i v e ) i n t e g e r s a n d γιΛ, •••, γttk a r e a s s u m e d
t o be m u t u a l l y d i s t i n c t . T h e n / is n o n - d e g e n e r a t e on t h e face A t if a n d only
if vxΛ— -" —vίtkι — l. T h i s c a n be p r o v e d eas i ly u s i n g t h e E u l e r e q u a l i t y :

; f)fPt(x, y)= *-§*(* ^

Now it is convenient to introduce the following notion of quasi non-degeneracy
which is motivated by Sublemma (1.9).

DEFINITION (2.2). We say that / is quasi non-degenerate if for any /, j
with Vί,j>l, there exists a germ of analytic function hltJ(x, y) with d(Pz; hltJ)

such that (yat—7t.jX
bi + ht,j(x, y))H>J divides f(x, y).

We will show later that if / is non-degenerate, / is also quasi non-degenerate
(see Lemma (2.8) and Lemma (2.9)).

The non-degeneracy of a function depends on the choice of coordinate, but
we shall observe in Corollary 3.13 that the quasi non-degeneracy does not de-
pend on the choice of good coordinates. However, for a reduced function germ
/, the notion of non-degeneracy is also independent of the choice of good
coordinates.

In connection with quasi-good coordinates we have the following Lemma:

LEMMA (2.3). Suppose that f is quasi non-degenerate (resp. non-degenerate)
with respect to the given coordinates (x, y). Assume that x is a bad coordinate
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for f and assume that

fpι—CιySι{yaι—ϊi.ixY1'1 (yi,ι=l */ / is non-degenerate)

Let x=Xi+γ7,\y(ϊ1 + Kyi)> y = yi with va\h>aι and assume that xx is a quasi-
good coordinate system for

as guaranteed by Lemma (1.3). Then fλ is also quasi non-degenerate (resp. non-
degenerate) in the new system of coordinates (xu yj.

A similar assertion is true for y coodinate.

Proof. Suppose

(ri=0 and &i=l) and perform a change of coordinate using Lemma (1.3):

χ=χι+ΐϊ,\y(ϊ1+Kyi), y—yiy with vai/z>αi

so that x1 is quasi-good for fγ(xu yγ):= fixi+YlSy^ + KyJ, yx).

SUBLEMMA (2.3.1). Assume that vλΛ — 1. Then xx is quasi-good for fi(xu yλ)
if and only if xx divides fx{xu yx).

Proof. Sufficiency is obvious by definition. Therefore we prove that the
condition is necessary. Note that the first interior vertex of Γ{f x, y) is
(1, Si). Thus Γ(fi; Xi, yi) can have at most one face in {u^l}. If xx does
not divide fu Γ{fx xu yx) has a unique face Δί in {u<Ll} and we can
write /IΔ'JC^I, y\)—c[y\ι{yaιι—ϊfxι) which shows that xt is not quasi-good for fx.

Assume that / is non-degenerate with respect to (x, y). Then Vi,i=l. By
Assertion (1.5), we have

Γ(fi xi, yi)ΓΛ{u>l}=Γ(f; x, yYMu^l}

and fPi(x', y')=f'pt(x', y') for i>2. This observation and Sublemma (2.3.1)
imply that

{u£l} = \a, si)}

so /i is non-degenerate with respect to (xu yλ). This proves Lemma (2.3) if /
is non-degenerate.

It remains to consider the case / is quasi non-degenerate. We need:

ASSERTION (2.3.2). Assume that (x—γya+h(x, y))v divides f(x, y) where
h(x, y) is a germ of an analytic function with d(P;h)>a and P~ι{a, 1). Then
there exists a germ of analytic function h'{y) such thatvdλh'y a and (x—γya-\-
h'(y))v divides f(x, y).
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Proof. By the implicit function theorem, we can find an analytic function
h'(y) so that

, y)=Ux(x-γya +

where U is a unit with /7(0, 0)=l. As we have

x-γya=(x-rya + h(x, y))p=UP(x-γy«+h'(y))P

and Up=l, we have

(x-γya+h'(y))P=x-γya

This implies that va\h'>a and (x—yya-\-hf{y))v divides /.
As f(x, y) is assumed to be quasi non-degenerate, there exists a germ of an

analytic function hltl(x, y) such that (x—γϊ,\yai+hlιl(x, jy))*1-1 divides f(x, y).
Thus by the Assertion (2.3.2) there exists a germ of an analytic function h[Λ(y)
such that (x—TT\yaι+h[Λ{y))Vι>1 divides f(x, y). Now consider the following
change of coordinate given by:

x'=x-ri\yaι + hίtl(y) and y'=y

and denote f'(x', / ) : = f{xfJrγτ\y/aι-hr

lΛ{yf)y y'). Obviously xfu^ divides
f'(x', y') Assume that (xίf yλ) be as above and assume that xλ is quasi-good
for / i θ i , yι). By Assertion (1.9.1), we must have xλ—χr and yγ—yf. It re-
mains to prove that fx is quasi non-degerate with respect to (xlt yx). As x^11

divides fi(x\, yi), we have

and fp^Xi, y^—fiPiixiy yι) for i>2. Assume that vitJ>l for some z>l and
l^j^kt. Then by the quasi non-degeneracy of f(x, y), there exists a germ of
analytic function httj(x, y) with d(Pt; httJ)<aibt such that (ya*—γltJx

bί-\-
hιj(x, y))Vi'3 divides f(x, y).
As (Xi+πSy^-Ky^p^Xu we have

where d(Pt; h')>a,ibi. Therefore (y^—Yi.jX^ + h^Xi, yi))Vi ' divides fi(xϊy yi).
Thus /i is quasi non-degenerate with respect to (xlf yλ). A similar proof works
for the coordinate y. Q.E.D.

The Lemma (2.3) implies:

COROLLARY (2.4). Suppose that f is quasi non-degenerate (resp. non-degene-
rate) with respect to the given coordinates (%, y). Then there exists a change of
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coordinates (xlf yx) so that f is quasi non-degenerate (resp. non-degenerate) in
(xu yλ) and (xu yλ) is a quasi-good system of coordinates of f.

Proof. First assume that both coordinates x and y are bad under the con-
dition (2) of (1.1), i.e. we have

where vlΛ—VlΛ—\ if / is non-degenerate.
Assume first that / is non-degenerate. So we have vιΛ—vχΛ—\. We first

take the coordinate change

x'=y—γltlx y y'=y-γι,2χ

Then / ' ( * ' , y'):= f(x, y) is automatically non-degenerate with respect to (x', y')
and we come to the situation as in the condition (1) of (1.1). Applying Lemma
(2.3) and Sublemma (2.3.1), we find coordinates (xlf yλ) such that fx is simply
the monomial cxxyx and is therefore non-degenerate. (In particular / has a
normal crossing singularity at 0.)

In the case / is quasi non-degenerate, we take the coordinates

(*, y) a n d yi=y—ϊi.2χ+hi.i{χ, y)

where hlΛ,hlt2 are chosen so that (y—γι,ιXJrhlΛ(x, y)Yι<1 divides/, ( y—7Ί>2* +
Λi.2(^, y))Vί'2 divides / and d(P; hlίt)>Ί for ι = l, 2 with P = e ( l , 1). Then fλ

becomes simply the product CιX\ι>ιyV-2 and fx has a normal crossing singularity.
Now assume that the coordinate x is bad under the condition (1) of (1.1), then
we can apply Lemma (2.3) to obtain a quasi-good coordinate (xu yx) in which
/i is quasi non-degenerate (resp. non-degenerate). Similarly we do the same
reasoning for the coordinate y. Q.E.D.

LEMMA (2.5). // (x, y) is a quasi-good coordinate system for a function
f(x, y) and assume that f ts non-degenerate (resp. quasi non-degenerate) in this
coordinates. Then the system of coordinates (x, 3;) is also good for f.

Proof. We may assume that / has not a normal crossing singularity at O.
As the non-degeneracy implies the quasi non-degeneracy by Lemma (2.8) below,
we may prove the assertion in the case / is quasi non-degenerate. Let

fpj<x, y)=cίx
r^ys^ Π (yaι-γltjx

biyi>>

If &i>l, the assertion follows from the definition. Assume that bι—l. As x
is quasi-good, either (a) n X ) or (b) r i=0 and &i>l. In any case, n + ̂ 1^2.
By the assumption, f(x, y) is quasi non-degenerate. Using Assertion (2.3.2),
we can take a germ of analytic function h'ltJ(y) such that val h'ltJ{y)>aι and

divides / ( * , y). Let
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and let F(X, F) := f(X+γΊjYaι-h[tj{Y), Y). Then XVI J divides F(X, F). Let

y'=y

be an arbitrary change of coordinates with val/ι>αi. Let / ' (* ' , y ) : = / ( x ' +
f o y α i —^(jΌ, 3θ Assume that xf is a quasi-good coordinate for / ' . By As-
sertion (1.9.1), this implies that x'—X. This implies that x'Vί>J divides / ' (# ' , yf).
Therefore x is good by Sublemma (1.9). The same argument applies for y.
Q.E.D.

(2.6). Now we recall the definition of a toroidal modification. We have
already introduced the dual Newton diagram Γ*(f x, y) and we have identified
it with a subdivision R.^, Ply •••, Pm, Ro of the segment [i?-*,, Ro']. For con-
venience, we denote P0=i?-oo and Pm+1=R0. Assume that

We use Lemma (3.6) of [03] to obtain a unique regular subdivision \_Plt PtΛf •••,
Pχ.h Λ+i] so that det(Pt)<7, P ΐ > < 7 + 1)=l for 0 ^ ' ^ r a and 0£j^lt (where Plt0=Pι
and Ptiιi+ι=Pt+i). Thus we obtain a canonical regular simplicial subdivision
Σ * ( / ; ^, ^) of Γ*(f x, y). Let ^ ΰ ^ . ^ ί > ; ) be the unique primitive integral
weight vector in the class represented by the point Ptt3 (we identify the point
PtJ and the unique primitive integral vector contained in it) and let

for any (*', /) such that 0<^i<^m, 0<j<^lt except (/, /)=(0, 0) and with the con-
vention (/, —l)=(ί—1, /,_!). This subdivision has the following properties: the
number mlt3 is a positive integer for any (i, j) such that Q<Li<^m, 0<Lj<Llt and
mXiJ>2 for 0<z<m, liίj<Llt. In particular, only mι>0 {i~l, •••, m) can be pos-
sibly 1. Let

δ)
(a

V

be a unimodular integral 2x2 matrix. This matrix defines a birational morphism

π σ : ( C * ) 2 — > ( C * ) 2

by πσ(x, y)=(xayβ, xryδ). If the integers a and γ are non-negative, this map
can be extended to the axis {x=0}. Similarly if the integers β and δ are non-
negative, this map can be extended to the axis {y=0\, Because of the uni-
modularity of the matrix σ, the map πσ is in fact an analytic isomorphism.
Note that if τ is another unimodular 2x2 matrix

πσoπ7=πστ and (πσ)-1=πσ-ι
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For each segment Σ3t.^=CΛ.j, Λ. +i] and the corresponding unimodular matrix

we associate a two dimensional affine space ClitJ with coordinates (xσitJ, yCitJ)
and the map

We use the maps πOi} to build-up a non-singular algebraic variety X as follows.
First we consider the disjoint union \Jι,jC%itJ and the variety X is the quotient
of this union obtained by identifying points (xσitj, yσiiJ)^C2

σit:ι and (xσktl, yakΛ)
&Ciktl if and only if the birational map ^o^\ail3 is defined at the point (xσitJ, yσiιJ)
and

Again by the unimodularity of the above matrices, X is non-singular. The maps
{πσij} glue into a proper birational algebraic map π:X-^C2.

DEFINITION (2.7). The map π is called the toroidal modification associated
to (the canonical regular simplicial subdivision Σ*(f x, y) of) the dual Newton
diagram Γ*(/ x, y) ([V], [03, 4]).

Note that we only consider regular toroidal modification. In the sequence
when we speak about the toroidal modification associated to (x, y), we implicitly
deal with an analytic function / and we mean the toroidal modification asso-
ciated to the canonical regular simplicial subdivision Σ*(f x, y) of the dual
Newton diagram Γ*(f x, y).

One can check that each vertex PltJ with Q<i<m, 0<j<^lt except (i, / )=
(0, 0) defines a component of the exceptional divisor of π which we denote by
E{Px,j) and which is a non-singular rational curve. In the coordinate chart
C$tιjt έ(Pι.j) is defined by *, ί l < ; =0. Actually we have

By analogy we denote by E(P0) and E(Pm+1) the non-compact components

which are isomorphically mapped on the axis {x=0} and {^=0}. The self-
intersection numbers E(Pltj)

2 can be easily computed by the well-known property
(see for example [La], Theorem (2.6)):

where (π*(x)) is the divisor associated to the function π*(x)—x°π. Note that
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(**(*))= Σβ,.,£(P,.,)+£(P.)
l,J

Therefore we can see that E(Pltj)
2=-mttJ (see [02, 3]).

On the other hand, in the chart C\itJ the restriction of the function π*f is

given b y :

(2.7.1) π*f(x.it0, y,x.>)=cxxS}WySiP^^

(2.7.2) π*f(x*i.ι,y*iJ=ctxSlP*.«f>yffi^^

where Ψ is a germ of analytic function. Let

f)yd(Pitl + i,f) (j^l

f) (ί,/)=(0,0)

Obviously / σ . z = 0 is the defining equation of the strict transform of {/=0} Γ\C2

σ. r

So the strict transform of {/=0} only intersects with £(Pi), •••, E(Pm). E(P0)

(resp. E(Pm+ι)) is a component of this strict transform if x (resp. y) divides / .

Let CltJ be the germ of the curve at the origin which is the image of the

germ of the curve CttJ:= {/σ ί > 0}=0 at (0, γlιj)^Cσi>0. For simplicity, we denote

the point represented by (0, γltJ)(=Cσί 0 by ξltJ. In general, CltJ is not reduced

and a union of same irreducible components of C—{f=0} with positive integers

as coefficients. The following lemma gives the form of the equations of CltJ

and the irreducible components CltJtk of CtιJ:

L E M M A (2.8). (1) Let r be the number of irreducible camponents of C—

{/=0}. Then r ^ S ^ i k^m. In particular, if C is irreducible, we must have

m=0 or m—\ and the Newton boundary touches to the both axis.

(2) Let CltJ= nltJιlCι,J,1-] 1- ntιJ>tujCι>J>tuJ where CttJtU •••, Ct.JttttJ are

distinct irreducible components. Let ft,j(x,y) and ft,3tk k = lf •••, tUJ be the

defining functions of CltJ and CttJιk respectively. Then multiplying by a unit if

necessary, we can write as

>+hι,j(x, y), d(Pt;

ί>>'k + hx,3,k(xy y), d(Pt; hι>Jtk)>aibivi,J,k

and Σ,k=ί n l i J > k V i > j , k = v i , j .

Proof. The assertion (1) is obvious. We consider the equality

riy'* Π ft.j, ft.j=uJτίfZMk

k
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with U and Ult3 being units. Let P be an arbitrary weight vector. Then we
have

Thus using the assertion (1), ftίJ,k(x, y) is either x or y or (yah—γh,ι
χbhyhΛ'k

+(higher terms). However the proper transform of the curve {(yah—Yh,ιXbhΎif3' k

+(higher terms)=0} passes through ξlt3 if and only if (h, l)=(i, j). This proves
the assertion (2). Q.E.D.

LEMMA (2.9). The function π*f has a normal crossing singularity at $τ,j^
Cfft 0 if and only if there exists a germ of a function hlij(x, y) with d(Pt; h%ι3)
>aιbi so that (y(Xι—γι,jX

biJrhτ>3(x, y))Vi^ divide f(x, y). (In the notations of
Lemma (2.8), this implies tlι3—l, ntt3tι=vit3.) In particular if viί3—\> CXt3 is
irreducible and π*f has a (reduced) normal crossing singularity at ξlt3.

Proof. Let

b i Λ ) 9 ι ul Xtl ι

Then by the definition of the mapping πσ. o: CJ ί ι 0->C2 and (2.7.1), we have

yat-Yt.jXbi=xS&iySi

t-}b<yσi,Q--rt.j) therefore

i\\yaii0 Yι,j) '^Xσi^yσi^ψKXσi.Q, yσi>0)j

Take

as a system of coordinates centered at ξιJ^C2

Oi . Note that

where Uu U2 are units and φ is a germ of analytic function at ξltJ. We need.

ASSERTION (2.10). The function π*f has a normal crossing singularity at
ξlt3 if and only if there exists an analytic function h(x') vanishing at x;=0 so
that

where Us is a unit and h(xf) is a germ of an analytic function at ξlt3.

We assume Assertion (2.10) for a while. Assume first that there exists a
germ of a function h(x, y) with d(Pt h)>aib3 so that (yai—yx,jX

biJrh(x, y))Vί>i
divide f(x, y). Then under the same notation as in Lemma (2.8),
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and we can write

as a function germ at ξltJ where h\x', yf) is a suitable germ of an analytic
function and U is a unit. This implies that

π*f(x', y')=x'd<

where Uf is a unit. Thus π*/ has a normal crossing singularity at ξltJ.
Conversely assume that π*f has a normal crossing singularity at ξltJ. By

Assertion (2.10), there exists a germ of function h(x') so that

This implies that Cx>J—Vi,3L where L:— {y/Jrx'h{xe)—^} and ί t > < 7=l. Thus
Cι,j=Ui,jCt,Jtι in the notation of Lemma (2.8). This also implies that fι,Jti(x,y)
=zyat-rι,jXbi + hι,j,ι(x, y) with d(P t huhl)>aιbί and /»..,=/Ϊ.Vi. As A,/*, 3;)
divides /(x, 3;), this proves the assertion. Q.E.D.

0/ Assertion (2.10). Let g ^ , y')=ctx'd(P*i/)U1X(y'1'*>jU2+x'<p). The
sufficiency is clear. Assume that the function g has a normal crossing singularity
at the origin. Obviously x'=Q is a component. Thus we can write g(x\ y')
— xfaΊ(x'y')b where l{x', yf)—Q is the other smooth components. Using the im-
plicit function theorem, we can write l(x', y')=Uι (y'-\ h(x')) with /ι(0)=0.
Now considering the equality

we can easily see that a — d(Pι; f), b—vitJ and

for some unit U3. In particular if vltJ=l, π*f has a normal crossing singularity
at ξttJ. This proves the assertion.

Example (2.10.1). Let us consider the examples considered in Example (1.2.1).
(A) Let

f(x, y)=

Then Γ*(f; x, y) has only one vertex P1=
t(2.1).
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Cl.l

E(Pi)

Figure (2.10.1.A)

For the canonical regular subdivision, we need one more vertex Pltl=zl(l, 1).

In the toric coordinate chart

*:=(A,/Vi)=(i J)

we can write

Thus the strict transform is a cusp at (0, —1).
Now we consider the case (B) in Example (1.2.1):

Let C i . i = {x+y2=0\, C 1 > 2 = {x-3>2=0}^C1>3 = {x-;y2+;y2+m=0} and C 8 i l =
{3; + x2=r0}. Then the strict transforms Cltt ofj3Uι, ί = l , 2, 3 are smooth and
intersect transversely with £(Λ) and C 1 ) 2 and C l i 3 are tangent with the inter-
section multiplicity m. The Figure (2.10.1.B) shows the situation for m—2.

c,.,

\
Figure (2.10.1.B)

Recall that a map />: F - ^ F is a resolution of the function f on a neighbor-

hood F of O in C2 if:
i) Y is non-singular;

ii) /> is a proper analytic mapping and the restriction p : Y—p-\O)-*V— {0} is

biholomorphic
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iii) the divisor (p*f) defined by the pull-back />*/:= fop has only normal
crossing singularities and its irreducible components are non-singular.

It is known that each component of the divisor p~ι(O) is isomorphic to P 1 .
We remark here that the function / need not reduced. To such a resolution
of /, we associate the dual resolution graph G(p) of p in the following way:
let Et (1^/^s) be the distinct compact components of the divisor (p*f) i.e.,
p~\O)—\J\=1Eι and let C} (1^/^f) be the distinct non-compact components of
(p*f). Namely we have (/>*/)= Σ!»i m,2Ji+Σj»i nfij. Note that the union of
C3 are the proper transform of C={/—0}. To each E% we associate a vertex
vif an edge joining vt and vι if EtΓ\EιΦ$. The total dual resolution graph
Q'(p /) of / with respect to p is obtained by adding a vertex w3 for each C}

and an edge between w3 and vt when CjΠEiΦfi. The dual resolution graph
and the total dual resolution graph are in fact trees and in general they are
not bamboos.

Recall that the resolution of the function / in the neighborhood of the
origin is minimal if and only if there is no component of the exceptional divisor
p~\O) with self-intersection number —1 which intersects at most two com-
ponents of the divisor (p*f). In the case of quasi non-degenerate function, we
have:

PROPOSITION (2.11). Assume that the function f zs quasi non-degenerate with
respect to the coordinates x, y and let π: X—C2 be the associated toroidal modi-
fication. Then π: X-^C2 is a resolution of f near the origin. If (x, y) is a
quasi-good coordinate system, π: X-^C2 is a minimal resolution.

Proof. The first assertion results from Lemma (2.9). We assume that
(x, y) is a quasi-good coordinate system and we will show π: X—>C2 is minimal.
We saw above that the self-intersection numbers of the divisors E{Pι>J) is equal
to —mltJ. Furthermore for 0<i<m and l<]^lx the integer — ?nltJ^~-2 (see
[02], Lemma (3.6) of [03]). Therefore the only components to be checked are
£(Pι>0)=E(Pι) for l ^ ^ m . If 2 ^ / ^ m - l , E(PX) intersects with E(Pt.1,ιt_ι)f

£(Pltι) and at least a non-compact component of the divisor (π*/) Therefore
this component E{PX) intersects at least three components of the divisor (π*f).
It remains to consider E{PX) and E(Pm). Now we shall see that x and y being
quasi-good coordinates, each of is (Pi) and E(Pm) intersects at least three com-
ponents of the divisor (π*f). We will see this assertion for E(PX). Let

Π

Recall that

Assume first that m^2. Then E(Pλ) intersects with E{PίΛ) and &i(^l) non-
compact components CltU •••, Cίtkl of (τr*/) Either /0>0 (this means det(P0, Pi)
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>1) or lo=Q. In the first case, E{PX) intersects with E(P0,ι0). In the second
case, we have P1—

t(aί, 1). x being quasi-good, either k^2 or kx=\ and x
divides / i.e., r x >0. If x divides /, E(P0) is a non-compact component of the
divisor (π*f) which intersects 2s(Pi). So in any case E(PX) intersects at least
three components of the divisor (π*f) and for E{Pm) we have similar arguments.
Assume now that m—l. If / i^l, the argument above applies. If U—0, either
/ 0 ^l or / 0=0. If lo^l, E(Pι) intersects E(P0, ίo) and kι non-compact components
Ci.i, •••, Cι,kV y being quasi-good, either &i^2, or y divides / and E(Pm+1) is
a non-compact component of the divisor (π*f) which also intersects E(Pλ). Thus
in any case is (Pi) intersects at least three divisors. If h=lQ—0, the map TΓ is
the blowing-up of the point 0. This is the case if and only if m—l and Pi=
J(l, 1). By the assumption that x and y are quasi-good coordinates, there are
three possible cases: (1) kλ^>3 or (2) kx=2 and x\f or y\f or (3) kι—l and x | /
and 3; | / . In any cases E(Pλ) intersects at least three non-compact components
of the divisor (π*f). Q.E.D.

By a similar argument, we obtain

LEMMA (2.12). Let f be a complex analytic function defined in a neighbor-
hood of the origin in C2. Assume that x (resp. y) be quasi-good coordinate for
f at the origin and π: X—>C2 be the associated toroidal blowing-up. Then com-
pact divisors E(PX) (z'=l, ••• , m—l) (resp. z=2, ••• , m) intersect at least three
components of the divisor (π*f).

Remark (2.13). Another way to state this Lemma and Proposition (2.11) is
to say that, when / is quasi non-degenerate with respect to {x, y) and (x, y)
are quasi-good for /, the compact divisors E(Pt) (i=l, •••, m) are the rupture
components of the minimal resolution of / in the sense of (1.3.10) in [L-M-W],
because these divisors intersect at least three components of the divisor (TΓ*/)
at normal crossing singularities.

More generally, when (x, y) are quasi-good for an analytic function /, the
toroidal modification associated to (x, y) will be of a particular interest. There-
fore it is reasonable to introduce the following definition:

DEFINITION (2.14). A quasi-good (resp. good) toroidal modification π: X-^C2

of / is the toroidal modification associated to the canonical regular subdivision
of the dual Newton diagram Γ*(f x, y) of / with respect to a system of
coordinates (x, 3;) which is quasi-good (resp. good) for /. Its restriction over
a neighborhood V of the origin is also called a quasi-good (resp. good) toroidal
modification.

3. Resolution Complexity

Let ? be a graph which is a tree. Let F(SF) be the set of vertices of CJ.
For any vertex yeF(ίF), let δ(v) be the number of edges meeting at v.
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DEFINITION (3.1). The complexity of the graph p(%) is defined by

^(30:= 1+ Σ max(3(v)-2, 0).
WΞF(ff)

The graph 21 is called a bamboo if /o(2Γ)=l. The resolution complexity p(p /)
of a minimal resolution p: F->F of / at the origin of / is defined by the com-
plexity of the resolution graph Q(p). If / has a normal crossing singularity at
O, p(f)=0 by definition.

Remark (3.2). If £F has at least two vertices, it is easy to see that
+ 1 is equal to the number of vertices v with δ(v)=l. We call such vertices
the ends of the graph. The definition of the resolution complexity does not
depend on the minimal resolution p: Y-+V because any two minimal resolutions
are isomorphic above a neighborhood of the origin. Thus we denote this num-
ber by ρ(f) hereafter.

Let p: Y-+V be a modification at the origin. Namely Y is smooth, V is a
neighborhood of the origin, p is proper and the restriction p:Y—p~\O)-+
V— {0} is biholomorphic. Furthermore assume that the components Eu •••, Es

of p~\O) are non-singular curves.

DEFINITION (3.3). Let ζ^(Ei—^JJΦXEj) and assume that p*f has a singu-
larity at ξ which is not a normal crossing singularity. A system of coordinates
(u, v) centered at ξ is called admissible with p: Y^V if u=0 (or v=0) is the
defining equation of Eτ. We say that (M, V) is an admissible quasi-good (resp.
admissible good) system of coordinates if it is admissible and v is quasi-good
(resp. good), assuming that u—0 is the defining equation of Et.

Note that u is necessarily quasi-good as u divides p*f.

DEFINITION (3.4). A map q: Z-+V is a quasi-good (resp. good) toroidal re-
solution of the function f(x, y) if
(i) the map q is the composition

of a quasi-good (resp. good) toroidal modification πι and non-trivial quasi-good
toroidal modifications π3: X3-^Xj^λ for j , k^j'^2 where Xk = Z and π3 is the
toroidal modification associated to the function /°τri° ••• »^_i and admissible
quasi-good (resp. admissible good) coordinates with the modification ττi° ••• ^πJ_ί

(in short we shall call these modifications admissible quasi-good (resp. admissible
good) toroidal modifications).
(ii) the map q: Z—>V is a resolution of / in a neighborhood of 0.

We first prove the existence of a quasi-good toroidal resolution.
Let p: Y-+V be a modification at the origin. Hereafter V is assumed to be

a sufficiently small neighborhood of the origin.
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ing

Denote Eu •••, Es the irreducible components of p~\O). We use the follow-
well-known properties (see [La] Theorem (5.9))

FACT (3.5). The modification p is a finite composition of ordinary blowing-
ups. In particular, the curves Ex are non-singular and isomorphic to the Riemann
sphere Pι and there exists an exceptional divisor Et with E\— — 1.

Let / be a complex analytic function defined on a neighborhood of the origin
O. Let C be the proper transform of C={f=0] by the modification p: Y~>V
and let p"KO)nC={ξu ••• ,Jt}. Let C3 be the germ of a curve at ξ3 which is
defined by C. The germ C3 is not necessarily either irreducible or reduced.

Now we assume that p*f has a normal crossing singularity at any non-
empty intersections EiΓ\Ej with iφj. In this situation, we consider the con-
figuration graph Q(p) (resp. the total configuration graph Q\p /)) as follows:

To each divisor El} we give a vertex v% and a vertex w3 to each strict
transform C3. Two vertices are joined by an edge if the corresponding divisors
has non-empty intersection. The graph obtained in this way is the total con-
figuration graph Q\p / ) . The graph Q(p) is simply defined by the subgraph
with vertices vx l^i<s. It is well known that Q\p /) and Q(p) are trees.
If p: Y^V is a minimal resolution of /, the configuration graph Q{p) coincides
with the resolution graph defined in § 2. Let δ(vx) (resp. δ'(vx)) be the number
of edges meeting at the vertex vt in Q(p) (resp. in Q\p /)). We define the
complexity of p: Y-^V by the complexity of G(p):

io( ί )=l+ Σ max (δ(v%)-2, 0).
1 = 1

We say that the modification p:Y — V is quasi-effective for / if it satisfies the
following condition.
(a) p*f has a normal crossing singularity at any non-empty intersections
EtΓλEj with iφj.
(b) The self-intersection number E\^—2 for any Ex with δ'{vt)^L2.
In the case of p being a resolution, (b) implies the minimality. A quasi-effective
modification is called effective if the following condition (c) is also satisfied.

(c) p*f has at most normal crossing singularities on each end component Ex

(i .e., Ex with δ(vt)=l).

L E M M A (3.6). Assume that p:Y — V is quasi-effective and assume also that
there is a vertex v% with δ/(vt)>2. Let m% be the multiplicity of the function
p*f along Ex. Then we have the following inequality:

Remark. When p: Y-^V is a resolution of /, the sum Σ?~i ^t(2—δ'(vt)) is
equal to the Euler characteristic of the Milnor fiber of / at O.
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Proof. Note that any two vertices of G{p) can be uniquely joined by a
finite edges as the graph is a tree. We decompose the graph G(p) into a finite
star graphs in the following way. Let

Let Vi^S. Assume that a vertex v3 with δ\v3)—\ can be joined to vt without
passing any other vertices vk<^S, then we add this path to vx. The union of
such paths make a star with center vt. We denote this subgraph by Q(vt). It
is immediate by definition that
(1) g(Vi)nS(vk)=9 if ViΦvk and
(2) B:— G(p)—\JVi<=s G(vt) is a disjoint union of bamboos.
For any vertex vt of &y δ'(l)—2 and it does not contribute the sum which we
are considering in Lemma (3.6). Thus we can ignore the vertices of <B for
our purpose. We will first show that

We assume that va<=S and assume that G(va) has r-branches of respective length
μu ••• , μr in G(va). We renumber each vertex from the center as v1>u ••• ,
vi,μi ••• vr,u •••, vr,μr and we write the corresponding component by EltJ,

See Figure (3.A).

\

,μι Vι>2 VχΛ Va Vr,ι Vr,2
 Vr,μr

Figure (3.A)

We denote the corresponding coefficient of EtιJ in (/>*/) by mltJ. Let

(/>*/)= Σ Σ w t . Λ ί + w Λ + f l

where Z) is a linear sum of the other components. Let l=δf{va)—r. Note that
/>0. In fact, if G(p)—G(va), the vertex va must intersect with some non-
compact vertex w3. If G(p)^>G(va), the vertex va must intersect with some
compact vertex υ)t as G{p) is connected. In any case, we have r=δ(va)<δ'(va).
Then the sum which we are considering is
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(3.6.1) Σ mJ(2-δ'(vj))=Σmί,μt+(2~r-l)ma

The intersection multiplicities of EttJ and Ea are determined from the equality:

0=(p*f)Έa=±mι>1+Ea'D
t~i

where m%^—ma, mι>μi+1=0. As E\tJ^—2 for l^j<,μt by the assumption (b),
we obtain

(3.6.2) 2mtιμ.£mι,μ.-ί<mltμ..2< ••• <mtt0=ma

Assume first r = 0 . Then the above sum is obviously negative as 2—δ'(z;α)<0.
Assume next that r = l . Then 1^2 as δ'(va)^3 and by (3.6.2)

Σ ^ι,i μι μ
t = l

Assume that r = 2 . By (3.6.2), we have m α ^m 1 ) j U l +m 2 ,μ 2 . Thus we have

r

Σ fntι

If the equality holds, we must have μ1=μ2=l, 1=1 and ma=2mltl=2m2ιl. If
this is the case, we have

Now we consider the case that r ^ 3 . The (2—r—l)^ — (r— 1) and

Σ mι,μi+(2-r-l)maS(mί>μi+m2>μ2-ma)+(ms,μ3-{ Vmri(ir-{r~2)ma)
t = l

<0 by (3.6.2)

Thus we have proved

If the equality holds, we have that E\< — 1 for any ^ ε ό ' . As E\^—2 for any
by the quasi-effectiveness, we get a contradiction to Fact (3.5). Q. E. D.

Now let us recall the Milnor fibration. Let f(x, y) be a germ of an analytic
function with /(0, 0)—0. Then there exist small positive numbers ε and δ
(0<δ<ε) such that / : E(ε, δ)->Sδ is a local trivial fibration where

E ( ε , δ ) : = {{x, y ) ; \ f ( x , y ) \ = δ , | % | 2 + I y \ 2 ^ ε * } , S δ : = {V<EΞC \ η \ = δ }
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This is called the Milnor ίibration of f(x, y) at the origin O. We denote the
fiber by F(f 0) and its Euler characteristic by X(f 0). It is well-known that
the isomorphism class of the Milnor fibration does not depend on either the
coordinates (x, y) or the positive numbers ε and δ if they are sufficiently small
and 0<δ€ε.

COROLLARY (3.7). (1) Under the same assumption as in Lemma (3.6), we
have

(3.7.1) l{f O)= Σ X(P*f f α ) + Σ mx{2-δf(vx))
α=i t=i

where p~1(O)Γ\C={ξ1, ••• , ξt). In particular, we have

(3.7.2) ΆP*f;.

(2) The Euler-Poincare characteristic X(f O) is positive if and only if f—ft
for some function germ / 0 which is non-singular at the origin. In this case, we
have X(f 0)=a and we say that f is quasi-smooth. If f is not quasi-smooth, we
have X(f 0 ) ^ 0 and the equality holds if and only if the singularity is a normal
crossing singularity at 0.

Proof. Let ηιΛ be the intersection of EiΓ\Eι (if not empty) and fix a
coordinate system (xa, ya) and (xί.Jf y[,3) centered at ξa and ηltJ respectively
for a —I, •••, t, iφj. Let BltJ and Ba be the ball of radius s centered at ηx,j
and ξa respect ively :

Ba={(χr,yr); Iχ t1
2+1y t1

2^ε 2}

We also fix a metric on X. Let U be the ε'-neighborhood of π~\0). Let W~
U\Jι,JBι,j\JaBa and let P=(p*fY\S)Γ\W={Q<ΞW\ f{π(Q))=i) and let Ft>^
FΓ\Blt3 and Fa=FίΛBa. Let (p*f)= Σί=i m ^ i + S U Ca. Here mt is the
multiplicity of the function p*f along Et. If ε, ε', δ are sufficiently small and
0 < d < ε ' < ε , by a standard argument we see that
(1) F is diffeomorphic to F(f 0),

(2) F t > J and Fa are diffeomorphic to the respective Milnor fiber F(p*f ηxJ)

and F(p*f f α).
(3) The complement F—\Jτ>3F%J—\JaFa is disjoint union of s-components, say
Gt> i—l, "-, s, and Gx is diffeomorphic to a mrfold covering space over EΊ
using the projection map px of a tubular neighborhood of Ex:

m-fold

pτ:Gx -^ E[, Ei=Ex-ExrΛ({JJΦι BxJ\Ju&E% Ba)

By the definition of δf{vx), this space is homeomorphic to P1 minus δ'(υi) disks.
From the decomposition F—VJιJFtj\JaFa\JιGι and the additivity of Euler-
Poincare characteristics, the equality (3.7.1):
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Άf O)= Σ Ά** £«)+ Σ m*(2-<5'(^))

30

follows immediately. Here we have used the following facts:
(4) X(p*f; Fttj)=0 as p*f has an normal crossing singularity at ηt 3.

(5) Z(Gt)=rot(2-3'(ι;,)) by (3).
(6) The Euler-Poincare characteristics of the various intersections GιΓ\Fay or
GiΓ\FltJ of the above decomposition are zero as they are disjoint sums of S\

Ca

E,

Eι

Figure (3.B)

Now we prove the assertion (2) before showing (3.7.2). Assume that p: Y-+V
is a minimal resolution of /. Assume that Q\p f) is a bamboo i.e., δ'(Vi)^2
for any i—1, •••, s. Then δ(Vi)'^2 and by the minimality this is the case only
when s=0. This implies either (i) / = / ? for some α>0 and / 0 being non-
singular or (ii) / has a normal crossing singularity at the origin. In these
cases, we have X(f O)—a or X(f O)=0 respectively. See [01] for the second
equality. Assume that the singularity of / at the origin is neither quasi-smooth
nor a normal crossing singularity. Then we are in the situation as in Lemma
(3.6). Note that p*f has a normal crossing singularity at fα, K α ^ s as ^ is
assumed to be a minimal resolution. Thus X(p*f ξa)=Q amϋ the inequality
(3.7.2) gives

)= Σ X(ρ*f

= Σ m<(2-

Σ m t (2-

by Lemma (3.6).

This proves the assertion (2). We come back to the situation as in (1) where
p is a quasi-effective modification. The inequality (3.7.2) follows immediately
from Lemma (3.6), (3.7.1) and (2):

X(f 0)= Σ X(P*f £«

This completes the proof. Q. E. D.
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COROLLARY (3.8). Assume that the singularity of f at the origin is neither
quasi-smooth nor a normal crossing singularity. Let (x, y) be a quasi-good coordi-
nates and let π: X—+V be the associated toroidal modification. Then π is quasi-
effective and under the same notation as in §2, X(π*f ξt,j)>X(f O).

Proof. The quasi-effectiveness follows from Lemma (2.12) and the property
E(Pttj)

2^-2 for any O^ί^m, l<]

COROLLARY (3.9). For any function germ f, there exists a quasi-good (resp.
good) toroidal resolution q: Z—>V of f.

Proof. Consider first a quasi-good (resp. good) toroidal blowing-up at the
origin π±: X^V. If π*f has still some singularity ξXtJ which is different from
a normal crossing singularity, we take an admissible quasi-good (resp. good)
coordinate centered at ξttJ by Lemma (1.3) or Lemma (1.7). The number of
such £ t,/s is not bigger than — X(f 0) by Corollary (3.7). Then we take the
associated blowing-up at ξtίJ and continue the same operation on the upstairs
if necessary. Each tower of the singularities has at most —X(f; O) steps again
by Corollary (3.7). Q. E. D.

Now we study how the configuration graph and the complexity of the
modification change under the composition of the modifications.

Let / be as in § 2 and let π: X-+V be the associated toroidal modification
with respect to the system of coordinates (x, y). We use the same notations
as in § 2. Recall that we have shown in § 2:

PROPOSITION (3.10). (i) The graph of π is a bamboo with ra+Σϋo h-vertices
vo,u •••, vm,ιm corresponding to the exceptional divisor E(P0>1), •••, E(Pm,ιm) (P0,i
= P, if / 0=0 and Pm,ιm=Pm if /m=0.) The non-compact divisor E(PQ) (resp.
E(Pm+ι) which is the pull back of x=0 (resp. y = 0) intersects only with E(POtί)
(resp. E(PmιlJ).
We have E(PtJ)

2^-2 for O^i^m, l^j£L and d'(vl>0)^:3 for 2£ι<m-l.
(ii) // x (resp. y) is quasi-good for f, either l0φ0 or lo=O and 5 / ( I Ί , 0 ) ^ 3 (resp.
imΦO or /TO=0 and δ'(vn.o)^3.
(iii) // x (resp. y) is good, the function π*f has at most normal crossing
singularities on the left end divisor E(PQΛ) (resp. the right end divisor E(Pm>ιm)).
(iv) In particular, the quasi-good (resp. good) toroidal blowing-up is quasi-effec-
tive (resp. effective).

The assertion (iii) follows from Lemma (2.12). Now we consider the com-
position of modifications.

LEMMA (3.11). (i) Let p: Y-+V be an quasi-effective modification for f at
the origin and let C be the proper transform of C={f=0}. Let Eίf •••, Es be
the components of p~ι(O) and let ξ^EiΓλC be a singular point of p*f which is
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not a normal crossing singularity. Let (u, v) be an admissible quasi-good (resp.

good) coordinate for p*f at ξ and let πι: Y1-^Y be the associated toroidal blowing-

up. (We assume that E% is defined by w=0.) Then the composition pλ\ p°π1: Yx

-*V is a quasi-effective modification and the configuration graph Q{pι) is obtained

from the disjoint sum of Q(p) and Q(πx) by joining the vertex v% and the left end

vertex of Q(πλ).

(ii) Furthermore in the case that p is effective and (w, v) is admissible good,

we have the equality: p(pi)=p(p)+l.

Proof. We know that £(τri) is a bamboo. Let Flf •••, Ft be the com-
ponents of π^\ξ) from the left and let v'u •••, v't be the corresponding vertices
of Q{πx). Let E'} be the proper transform of E3 (1<J^S) respectively. It is
obvious that E[y •••, E's and Fu •••, Ft are the components of p~ϊι(O). As πx(Fa)
= {ζ\ and ξφEj for jΦi by the quasi-effectivity of p, EjΓ\Fa=:Q. As Ex cor-
responds to {u—0}, Eί intersects with Fi. Thus the configuration graph of pi
is simply obtained by adding the bamboo G(πλ) at the vertex vt corresponding
to E%. We assert E?=E2j, jΦi and E?<E\. The first equality is obvious and
the second equality follows from the well-known fact that (i) πx is a finite com-
position of ordinary blowing-ups and under an ordinary blowing-up whose
center is on a compact smooth divisor D, the self-intersection number of the
proper transform D' of D goes down by 1 (see for instance [La] Lemma (4.3)
or [04]). Thus px is quasi-effective. This proves the assertion for the case
that p is quasi-effective and πx is admissible quasi-good toroidal modification.
Assume that p is effective and (w, v) is admissible good. By the effectiveness,
p*f has at most normal crossing singularities at each end divisor E3 of Q(p)
(i. e., δj—1). In particular, Ex is not an end divisor. Thus we obtain the equality :
p(Pi)=:p(P)+^' By Proposition (3.10) and the above observation, p\f has at
most normal crossing singularities on Ej with 3^=1 and on the right end divisor
Ft of S( ri). Thus px is effective. Q. E. D.

Now we are ready to state our main theorem which is an immediate con-
sequence of Lemma (3.11).

T H E O R E M (3.12). (i) Assume that πx° ••• °πk is a quasi-good toroidal resolu-

tion. Then πxo ••• °πk gives a minimal resolution of f.

(ii) Assume that πλ° ••• °πk is a good toroidal resolution. Then the number

of good toroidal blowing-ups k is equals to the resolution complexity of f: k = p(f).

In particular, the number of good toroidal blowing-ups does not depend on the

choice of the good toroidal blowing-ups.

As an application of Theorem (3.12), we obtain:

COROLLARY (3.13). Let f be a given function.

( i ) The quasi non-degeneracy does not depend on the choice of a good system

of coordinates.
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(ii) Assume that f is reduced. Then the non-degeneracy does not depend on the
choice of a good system of coordinates.

Proof, Assume that (x, y) is a good system of coordinates for /. Then
by Theorem (3.12), />(/)—1 if and only if / is quasi non-degenerate in (x, y).
This proves (i). Assume that f(x, y) is non-degenerate in a good system of
coordinates. Then / is also quasi non-degenerate. Thus / is quasi non-
degenerate in any good system of coordinates. Assume that (u, v) be a good
system of coordinates. Let / '(M, V)\— f(x(ut v), y(u, v)). Then f'(u, v) is quasi
non-degenerate. By the definition of quasi non-degeneracy, for reduced function
germ, f'(u, v) is quasi non-degenerate if and only if /'(w, v) is non-degenerate.

4. Remarks

In this section, we give a few remarks

(I) Non-admissible good coordinates
Assume that we have chosen a finite admissible good toroidal blowing-up

Let ps—π^ ••• o,τ s:X s->C2 and let Eu •••, Et be components of p7ι(O). Let
fs-~Pΐf. Let £<=(£*— \JJΦXEJ) and assume that fs has a singularity at ξ
which is not an ordinary double point. As we have seen in § 3, we can take
an admissible good system of coordinates (xlf yγ) centered at f such that Xi=0
defines Eτ. The coordinate yx is good by definition but the coordinate xx may
not good, though it is quasi-good of course. Assume that xx is not good. Let
Qi, "', Qm be the covectors corresponding to the faces of Γ(f8; xu >Ί) and let

fs.Q^hxVyHτKx.-γjyVyi, Qi=Kai, 1)

Then there exists good coordinate system (x2, y2) so that

2y y2) for some

Note that (x2, y2) is not an admissible system of coordinates in the sense of
Definition (3.4). Now the face Δ(Qi /„) breaks into q faces (q^2) and fStQι

changes as

ci(χ*+rjyϊιrιylιχlJ*

Let p : Y-~»XS be the toroidal blowing-up with respect to Γ*(fs x2, y2). As x\ι

divides / „ {Xi+γ&W1 also divide fs{x2+γjQyP-\-h(x2, y2), y2). Thus p*f8 has
a normal crossing singularity near the divisor Et which is the proper transform
of Ei^ix.-O} (Lemma (2.8)). Let p'-p^p'.Y-^C1. Now the configuration
graph Γ(p') is simply obtained by joining the configuration graph Γ(ps) and
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Γ(p) at the vertices corresponding to Et and E(Qi). See Figure (4.1.A). Now

it is easy to see that

(4.1) p(p')=p(Ps)+2

Thus the above non-admissible good toroidal blowing-up is the composition of
two admissible blowing-ups.

Add to

Figure (4. LA)

(II) Finiteness of admissible blowing-ups
To show the finiteness of admissible blowing-ups, we can also use the fol-

lowing argument. Let f{x, y) be as in the section 1. We use the same nota-
tion as in the section 1 or 2. We define the level of degeneracy η(f x, y) of
/ relatively to the system of coordinates x, y by the following:

η(f; x , y)= m a x {vitJ).

iyjif \ x> y) i s assumed to be 0 if m=0). Notice that / is non-degenerate if and
only if η(f x, y)—l or 0.

Then we have the following simple lemma.

LEMMA (4.2). Let f be as above. Suppose that (x, y) is a system of quasi-
good coordinates for f at the point O. Let π be the good toroidal blowing-up of
f in these coordinates and suppose it is a non-trivial toroidal blowing-up. Let ξx

be a point in the component E(P) of π~\O) where the total transform of f has
not normal crossings. Let (xlt yx) be an admissible quasi-good coordinates for the
total transform π*f of f at the point ξx. Then we have:

ηif O x, y)>η(π*f;ξi;xlf yx)

This inequality may not hold if we take non-admissible good coordinate
system.

(III) A toroidal blowing-up is a finite composition of blowing-ups
We have remarked already that a toroidal blowing-up is a composition of a

sequence of blowing-ups. This fact can be also proved quite elementarily as
follows

PROPOSITION (4.3). Any toroidal blowing-up is a sequence of point blowing-
ups.
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Proof. We assume that we start for the point O which is the origin. Let
Σ* be a regular subdivision of the dual diagram [/?_«,, P o ] . Let π: X-+C2 be
the corresponding toroidal blowing-up.

First we notice that, if J * is non-trivial, the vertex ι(l, 1) is among the
vertices of Σ*. In 2"* there is a unique pair of vertices (P, Q) such that (P, Q)
is a simplex of J * and, for P= ί (α, 6) and Q= £(α', 60, α^& and α'<&'. Be-
cause Σ* is regular, we have abr—baf—\ and

If 6=0, we must have a=b'=l and then (P, Q)=(R-oo, Ro) which contradicts to
the assumption. So b>0 and we have necessarily that b—b'—a'=\ and α=£.
Thus P=*(l, 1).

Now consider the blowing-up e: F-^C 2 of the point 0 . We have two charts
Uι and ί/2 with coordinates (s, ί) and (M, V). The blowing-up £ is given by eλ

and #2 given by:
x = st, y = t

χ — u, y—uv

This is the toroidal blowing-up with respect to the simplest non-trivial regular
subdivision with three vertices {/?«,, P, Ro\ where P—ι(l, 1). If non-trivial, the
regular subdivision J * gives two subdivisions Σx and Σ2 ending ^and starting
by P = t ( l , 1) respectively. These subdivisions define subdivisions Σι and Σ2 of
[J?_oo, /?o] by the corresponding afrine transformations

2Ί — > ϊx, \a, β).—• f(α-/3, /3)

J 2 — > J 2 , \a9β)>—>t(a, β-a)

in which P is respectively sent onto Ro and Poo. It is obvious that these sub-
divisions Σι and Σ2 are regular. They define two toroidal blowing-ups
πx: Xι-»Uι and π 2 : X2-+U2. The spaces ΛΊ and Z 2 are respectively biholo-
morphic to Ux and U2 outside the inverse images of the origin and can be
glued into a space X' and, by gluing the maps πx and π2, we obtain a map
π':X'-*Y. Let us explicit this map. Consider σ=(Pu P2) be a simplex in Σ1

(resp. <Γ2). Write

(Λ, A) = (<(ίll, Al), *(ίlB, ί»»))

Then 7r' is defined by

t—yσ,iyσ,2 (resp. u —

One can check that X/ is obtained by the charts obtained by composing
these charts and ex or e2. There is a canonical biholomorphic map of X' onto
X. We define this map from Xx (resp. X2) into X: let σ in J\ (resp. Σ2) it
defines a simplex <τ of J * , so the map of Xx into X read in the corresponding
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charts is the identity. One checks easily that the corresponding gluings give
the biholomorphic isomorphism. So the assertion of the proposition derives
from an induction on the number of vertices in the dual diagram.

REFERENCES

[ B ] E. BRIESKORN AND H. KNORRER, Ebene Algebraische Kurven, Birkhauser, Basel-
Boston-Stuttgart, 1981.

[K] A. G. KOUCHNIRENKO, Polyedres de Newton et nombres de Milnor, Invent. Math.,
32 (1976), 1-32.

[La] H.B. LAUFER, Normal Two-Dimensional Singularities, Ann. of Math. Stud.,
71, Princeton Univ. Press, Princeton, 1971.

[L-M-W] D. T. LE, F. MICHEL AND C. WEBER, Courbes polaires et topologie des
courbes planes, Ann. Sci. Ecole Norm. Sup. 4eme Serie, 24 (1991), 141-169.

[M] J. MILNOR, Singular Points of Complex Hypersurface, Ann. of Math. Stud., 61,
Princeton Univ. Press, Princeton, 1968.

[N] M. NOETHER, Uber die algebraischen Funktionen einer und zweier Variabeln,
Gδtting. Nachr. (1871), 267-278.

[01] M. OKA, On the homotopy types of hypersurfaces defined by weighted homo-
geneous polynomials, Topology, 12 (1973), 19-32.

[ 0 2 ] M. OKA, On the resolution of two-dimensional singularities, Proc. Japan Acad.,
60 (1984), 174-177.

[03] M. OKA, On the resolution of hypersurface singularities, Complex Analytic
Singularities, Adv. Stud. Pure Math., 8, North-Holland, 1987, 405-436.

[ 0 4 ] M. OKA, Geometry of plane curves via toroidal resolntion (preprint, to appear
in Proceeding of La Rabida Conference 1991).

[V] A. N. VARCHENKO, Zeta-function of monodromy and Newton's diagram, Invent.
Math., 37 (1976), 253-262.

CMI-UNIVERSIT£ DE PROVENCE

TECHNOPOLE DE CHATEAU GOMBERT

F-13453 MARSEILLE CEDEX 13

FRANCE

e-mail: ledt@gyptis.univ-mrs.fr

DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY

OH-OKAYAMA, MEGURO-KU

TOKYO 152, JAPAN

e-mail: oka@math.titech.ac.jp




