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1. Introduction

The purpose of this paper is to show that the Riemann hypothesis is equivalent to a
problem of the rate of convergence of certain discrete measures defined on the positive
real numbers to the measure ^udu, where du is Lebesgue measure.

As a motivation consider the following: For each positive real number t/, let μy be
the infinite measure on the real line defined by

where Z denotes the integers and δx denotes the Dirac mass at the point x £ M. It follows
by the Poisson summation formula that if / G C~(K) (C™(Si) = functions / : R -> R,
of class C°° and with compact support), then for every β > 0:

* + *( A ^ y->0.

This is so because by the Poisson summation formula [B],

where / is the Fourier transform of / and, since / is smooth with compact support we
have that / is of rapid decay at infinity. Hence

y Σ f(ny) = /(O) + o(y") as y -> 0 for all /? > 0.
n€S

So, as y — » 0, the atoms of μy cluster uniformly and μy(f) gives a very good approx-
imation of integrals of smooth functions with compact support.

Now let R* denote the multiplicative group of positive real numbers. For each y G M*,
let us consider the infinite measure, ray, defined on smooth functions with compact
support in R* , by the formula:

n€N

where N = {1,2,...} is the set of natural numbers and φ(n) — n Π«|n(l ~ ~) is Euler's
totient function, which counts the number of integers which are relatively prime to a
given integer, and are lesser or equal to that integer. In fact, for every r ^ 0, r an
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DISCRETE MEASURES AND THE RIEMANN HYPOTHESIS 597

integer or r = oo, we can consider ray as an element in the dual space of C£(R*) =
complex-valued functions / : R* —> C, of class CΓ, with compact support.

We will prove the following theorems:

THEOREM A. For every f G Cj(K*):

y £(2) Ju (2)
(\ /*oo

= —2 / uf(u)du + O(y'2 logy) as y —» 0.
^ Jo

DEFINITION. Let m0(/) = /0°° ^uf(u)du.

THEOREM B. 1) TAe Riemann hypothesis is true if and only if for every function

as y — »• 0? /or a// e > 0.
2) Furthermore, if a £ (|,f ) is swcΛ fΛa<, /or all functions f G C^R*) one Λas,

my(/) = m0(/) + 0(j/a-£), (3)

aθ y — >• 0; /or a// e > 0; <Aen ίAe Riemann zeta-function has no zeroes in the half-
plane 3ί(s) > 2(1 — a). Conversely, if the Riemann zeta-function has no zeroes in
the half-plane 5ft(s) > 2(1 - a) then (3) holds for all functions f E C^(M').

3) If f is the characteristic function of an interval then:

Jmy-a\my(f) - m0(/)| = oo, if a > -.

Hence | 25 the best possible exponent of the error for some nonsmooth functions.
4) Let the function F} with domain in the positive reals be defined by

- x

Then:

and,

I
ϋmy-a\my(F) - mQ(F)\ = oo, for all a > - (4)
y— > 0 ' ' 2

if and only if the Riemann hypothesis is false in the strongest possible sense: there
exist zeroes of Riemann's ζ-function arbitrarily close to the critical line 9ϊ(s) = 1.

If / = χ is the characteristic function of the interval [α,6], 0 < a < 6, then we

can also define my(f) in the obvious manner:

,
a y 2 n b
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The measures my and their connection to the Riemann hypothesis were discovered by the
author as a consequence of studying geometrically the beautiful paper [Z] by Don Zagier.
The author wrote [V] inspired by this paper which contains a remarkable connection
obtained by Zagier between the Riemann Hypothesis and horocyclic measures on the
modular orbifold (see also P. Sarnak [S] and E. Ghys [G]). The present paper can be
thought of as a continuation of [V].

In order to be as self-contained as possible we will recall some classical and funda-
mental results.

2. Preliminaries

First, let us start by proving formula (2) for characteristic functions. Let / = χ[α b]

be the characteristic function of the interval [α,δ], where 0 < a < b. Then:

Σ 2 log y)
_1 _1 ^ V ' y - x

C(2) JQ

The second equality follows from the well-known formula:

(6)

This formula, due to Mertens (1874), can be found, for instance, in Hardy and Wright
[HW] or Apostol [A], p. 70.

Thus,

my(/) = mo(/) + O(y* log y) as y -> 0.

If rriy(f) — m0(/) = Kj(y\ then /f/(τ/) = hf(y)yz logy and Λ/(y) remains bounded
as y —» 0 and the bound depends only on the interval [α, 6]. If / 6 C\(ffi*) then we can
apply Abel's summation formula and (6) to obtain:

du= Σ W(n)/(»i") = -o/ToT Γ "2//(u

neN 2C(2) Jo

•I ΛOO

= 77^ / uf(Ψdu + °(y* loβ2/
sv^J JQ

Since any continuous function with compact support in M* can be uniformly approx-
imated by Cl functions with compact support in M*, and the error terms depend only
on the support of the functions, we immediately obtain Theorem A. However, Theorem
A will also be a consequence of what follows. It is interesting to note that the volume of
P5L(2,IR)/P5jL(2)Z), with respect to Haar measure, is τr2/3. As it turns out, Mertens
Theorem corresponds to the statement that the ergodic measures of the horocyclic flow
which are supported on the periodic orbits and uniformly distributed with respect to
arc-length, converge vaguely to Haar measure as the period tends to infinity (see [V] and

[z]).
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2.1 Mellin transform
To see how naturally the Riemann ζ function arises in connection with the measures

πιy, let us first recall a classical formula:

C(« - i)
ζ(8) -^ n* ' — »v>'«

(see, for instance, [A], p. 229). Let r ^ 0 be an integer or infinity. For each / G
consider the Mellin transform of my(f):

Γmy(f)ys-2dy. (8)
Jo

PROPOSITION 2.1.1. The integral defining M/(s) converges absolutely in the half-
plane 3£(s) > I and uniformly in $t(s) > 1 -f e for all e > 0. Therefore, it defines a
holomorphic function on the half plane 5ϊ(s) > I .

ooProof. Let us suppose that support (/) C [α,δ]; 0 < α < 6. Let
. Then if »(β) > 1, we have, since |my(/)| < A ||/||oo, for some A > 0:

(9)

Therefore, we have absolute convergence in 3ϊ(s) > 1, and evidently the convergence is
uniform in $t(s) > 1 + e for e > 0. D

Remarks 2.1.2.
(a) Strictly speaking, equation (8) defines, in classical notation, the Mellin transform

of y""1my(/); however, we will still call it the Mellin transform of my(/). Let
[C£(R*)]* denote the topological dual of Cc

r(ffi*). Then the function

given by

,( )ys-2dy, »(*) > 1
Jo

defines a weakly holomorphic function. For every s such that 3ϊ(s) > 1, M defines
an infinite measure on M*. When r = oo, .M defines a holomorphic function
whose values are distributions of finite order. Compare [S]. We will be able to
continue M analytically to obtain a weakly meromorphic function with values in
the distribution space of M*.

(b) We notice that for every 0 < r < oo, and / E C^M*) we have my(/) = 0 if y is
sufficiently large:

my(f) = 0 for all y > 6, where support(/) C [α, b].

(c) Via the logarithm, or the exponential, we can transport measures defined on M
to measures defined on M*, and vice versa. Let m+ = exp*(ray) be the measure
on the real line obtained by pulling back my by exp : M —»• K*. Then m+ is
supported on a discrete set of points which is irregularly distributed on the real
line and the Dirac masses that define ra+ are weighted by Euler's function. This
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accounts for the difference between the measures μy defined at the beginning of
the introduction and my, as far as error terms are concerned. This also establishes
a connection between the measures {my} >0 and Farey sequences as in the well-
known results of Franel ([F]) and Landau ([La]). See ([V]).

Now, let us combine equations (1) and (8) to obtain:

ys~2dy] 3ί(s)>l. (10)

Fix n G N and define ψn : R* -+ C by the formula

*n). (11)
Then:

/

OO ΛOO

Ψn(y)y'-2dy = φ(n] / f(y*n)y>-1 dy.
Jo

Changing variable: u = y^n, we get:

Γ Ψn(y)y*-2 dy = 2^ Γ /(tV-1 du 3ϊ(s) > 1. (12)
Jo n Jo

Now, if σ — 3ΐ(s) > 2, we have

convergence theorem and formula (7) we obtain:

Hence, by the Lebesgue dominated

PROPOSITION 2.1.3.

Mf(s) = 2 C ( 1 /(ii)^-1 dti; $(8) > 2. (13)

Furthermore if F is the function defined in Theorem B part 3), then all the above applies
so:

Let

u}u^du. (14)=
Joo

Since / has compact support it follows that φj(s) is an entire function with derivative

/(uJOoguJti2-1 du. (15)

Therefore, we see from (13) that M / ( s ) = ζ^ϊ) r f ( 8 ) ι can be continued as a mero-
morphic function to all of C and we obtain, using the properties of £, the following:

PROPOSITION 2.1.4. a) Λ4/(s) is a meromorphic function with a simple pole at
s = 1 with residue:

b) All other possible poles o f M j ( s ) are the negative integers and the zeroes of ζ(2s)
in the strip 0 < yt(s) < 1/2.
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From the functional equation of £,

we have:

PROPOSITION 2.1.5 (Functional Equation). The function M/(s) satisfies the func-
tional equation:

-.A,.ΛΛ ^

i - s)T(ί - s)ζ(-2s)

Suppose that / £ (7*(Rf ), for k ̂  1. Then, integrating by parts we obtain:

Therefore, if / £ (7*(Rf ), there exist positive constants A and J5 such that for all

The constants A and B depend only on / and k. In fact, if support(/) C [α,6] and
0 < a < 6, then

- 1 1

Therefore, if / € C£°(R') it follows that / belongs to the Paley- Wiener space,
PW(C) (see Lang [L], p. 74), z.e., there exists a constant c > 0 such that for every
natural number N and σ £ M we have:

as ^-,±00. (21)

That is, given N and σ there exists a positive constant K = K ( f , N ) , depending only
on / and TV such that

for all ΐ £ R such that |ί| ̂  £ Q > where ^0 depends only on / and TV.
From (21) it follows that φ$ is of rapid decay in any fixed vertical strip, i.e., φj(σ+it)

tends very rapidly to zero uniformly in any strip σ\ ^ σ ̂  σ2, as \t\ — » oo. In particular,
if / £ Cc(M*), we have that the function g J : M* -> C defined by

+ it) (22)

has the property that g* £ £ι(M,C), for all σ £ R.
Now, let us recall the following facts about the order of growth of ζ ( s ) along vertical

lines. Let μ(σ) be the lower bound of real numbers ί ^ 0 such that

as |*| -+00. (23)
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Then μ has the following properties (Titchmarsh [T], p. 95):

i) μ is continuous non-increasing and never negative.

ii) μ is convex downwards in the sense that the curve y = μ(σ)
\ /

has no points above the chord joining any two of its points.

iii) μ(σ) = 0 if σ ̂  1 and μ(σ) = \ — σ if σ ̂  0.

The Lindelδf hypothesis is equivalent to the statement that

ί^ϊo"' i f σ ^ i (25)

which is equivalent to:

ζ(\+ it] = O(te) for all e > 0. (26)
\2 /

Now suppose the Riemann hypothesis is true] then logζ(s) is a holomorphic function
in the half-plane 3£(s) > \ (except at s = 1) and we have the following estimates due to
Little wood:

For € > 0 and σ > \ :

-elogt <log|C(β)|

that is:

'cω =
\I i nu for evefy € > °' 5 = σ + ft» σ > as

cω ~ U(t > *
The estimates (27), valid under the Riemann hypothesis, can be found in Titchmarsh

[T], Chapter XIV, p. 337, formulae (14.2.5) and (14.2.6). Furthermore, suppose that
a > ^ is such that ζ has no zeroes in the half-plane 3ft(s) > α; then Little wood has the
following estimates:

for every e > °' s = σ + ft> σ - α

cω
Also if for each σ > | (and s = σ + it as before) we define j/(σ) as the lower bound of
numbers a such that

then for β < σ < 1, β = sup{»(p) | C(p) = 0}, we have

l-σ£ι/(σ)g2(l-σ). (28;)

Also logC(s) (for 5R(s) > /?) has the same v function as ^W, i.e., if we define ^'(σ) as
the lower bound of numbers such α that

then

l-σ^j/(σ)^2(l-σ). (28")
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Also, (see Titchmarsh, Chapter XIV, Theorem 14.5) we have:

603

uniformly for β < σo ^ σ < σ\ < 1, σ -

3. Proof of Theorems

In all that follows we will assume that / £ C£°(IR*) but everything will still hold if
we only assume that / £ CJ(M*), r > 2.

(29)

3.1. Proof of Theorem A. By the Mellin inversion formula we have:

my(/) = ̂ -. Γ ί0° Mf(s)yl-s ds,
λ'Kl Ja-too

for an appropriate a £ M. In our case we can take a = | because the function Θι(tf) =

Λ4/(^ + it) satisfies θ i £ jCι(R, C); this is so because the function φ/(^ + it) is in the

Paley-Wiener space and by (24) the function Zf(t) = ^n+^t) *s ^(M^+c) ^OΓ a^ e > O

Hence φ/\^(s)=λ Zj £ £ι(R,C).

The integral of Mf(s)yl~s over the boundary of of the vertical strip | ^ σ ̂  2
exists and it is equal at the same time to Hes9=ι(Mf(s)) and equal to

mu

We have:

y*

because, by the Riemann-Lebesgue Theorem:

Ί

Thus

lim
y-o

mu

/
°

0

This proves theorem A. D

3.2. Proof of Theorem B. Suppose the Riemann hypothesis is true. Then we set in
formula (29) α = | + e, for any fixed e > 0. Then the function θι+e(ί) = Λί/(| + #)
has the property that θι+e £ £ι(E,C).

Therefore, the integral of Mf(s)yl~s exists over the boundary of the band \-\- € <
σ<2. Therefore:

' ~ emy(f) = Kess=l(Mf(s)) + ± Γ Mf (- + € + it] y~*y
Z7Γ 7-00 \^ /

Again, by the Riemann-Lebesgue Theorem:

(30)

(31)
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If, on the other hand, my(f) = -^ /0°° uf(u)du + o(y*~e) for all c > 0 and all
functions / E C£°(ffi*), then M f ( s ) is holomorphic (except for a pole at s = 1) in the
half-plane 3ft(s) > |-K, for all e > 0. Since, under the hypotheses, M/(s) = ^rffr^/W
is holomorphic in that half-plane and we can choose / so that φ/(s) does not vanish
at any given zero of ζ, it follows that ζ(2s — l)/£(2s) is holomorphic in the half-plane
8ΐ(s) > \ and hence the Riemann hypothesis would be true. The reason that M f ( s ) is
holomorphic in the half-plane, under the hypothesis that my(f) = m0(/) + K(y), where
K(y) = 0(y4~ e )> is the following:

Mj(s) = ̂ ^ + Γ K(y)y'-2 dy. (32)
* -*• «/o

The integral in the right-hand side of (32) converges absolutely and uniformly in the
half-plane SR(s) > | -}- e, so it defines a holomorphic function in that half-plane.

Suppose that β = sup{3fc(p) \ ζ(p) = 0}. Then the function Θ€(t) = Λf/( f + c + it)
belongs to £ι(R,C) for all c> 0.

This fact follows from (24), and the fact that φ/(s) is of rapid decay on vertical
lines. As we know, f G [4,2! since Riemann's zeta-function has an infinite number of
zeroes on the line 3ϊ(s) = | (Littlewood, Titchmarsh, Landau, Selberg) and no zeroes
on the closed half-plane 3ϊ(s) ̂  1 (by the prime number theorem). Then, by the Mellin
inversion formula we have:

my(f) = m0(/) -f o(y1~^-e) for all e > 0. (33)

If, on the other hand, (33) holds with a= 1 — f — e, f € [|, f ) then, proceeding as in
the proof of formula (32) we obtain that ζ has no zeroes in the half-plane 3ϊ(s) > 2(1 —α).

Therefore, we have proven everything stated in Theorem B except for the fact that
the exponent | is optimal for characteristic functions and the assertion regarding the
function F . To finish the proof we need the following: For x > 0, let Φ(x) = Σn£x φ(n)

and set Φ(x) = 0 for 0 < x < 1. Then by Mertens theorem Φ(x) = ^x2 + (xlogx)b(x)
for a bounded function b(x): —c < b(x) < c for all x > 0 and some constant c > 0.

LEMMA 3.2.1. For all a > I

-T— «!*(*) 3 Ilim xa\-\L r = oo.
X-+OQ ' X* ft '

Proof. Suppose the contrary. Then there exist α > 1, c > 0 and a function ba(x)
defined on the positive reals and such that — c < ba(x) < c for all 0 < x < oo such that

φ(x\ 3v / γ~~ah (τ\ (*\A\2 2 ~~ °ot\χ) (M)

Let H(x) = Φ(x)/x2. Then

H(x +1) = Φ(x)- N9 H -( 1λ9 , (35)
(x + \y (x+1)2

where [[•]] denotes integral part.
By (34) and (35) and letting x run over the integers such that x + 1 is a prime, we

obtain:

L(x) = x" [A
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But this is an absurdity since L(x) is unbounded when α > 1 whereas the right-hand
side remains bounded. This proves the statement in Theorem B for the characteristic
function of the interval (0,1]. The proof for an arbitrary closed interval is similar. Now
let F be the function given in Theorem B and suppose:

Έmy~a\my(F) - m0(F)| = oo, for all α > -

First we note that

The Mellin transform MF(S) is:

Hence its only poles in the half-plane Sft(s) > 0 are located at the zeroes of C(2s), since
s(2s + 1) does not vanish in that half-plane. MF(S) is n°t of rapid decay namely not of
Paley- Wiener type, however it decays fast enough so as to be able to shift the vertical
line of integration — in Mellin 's inversion formula — to the vertical line $i(s) = & + e where
/?, as before, is the supremum of the real parts of the zeroes of Riemann's ^-function.
Now suppose β < 1. We want to arrive to a contradiction.

First we note that for any ε > 0 the inequalities (24) through (28") imply that the
function

" (β/2 + e + ft)(l + β + 2e + 2it)ζ(β + 26 + 2tt)

has the property that

lim h(t) = 0 (40)

and

lim ft'(t) = 0 (41)

for all e > 0. In fact we have if s = σ + # and — 1 ̂  σ ̂  2:

and

\ζ(s)\

for some constants K\,Kι > 0 and \t\ sufficiently large. Hence under the hypotheses:

for some 6 > 1. On the other hand, the improper integral

exists for all y > 0. Namely

lim -ί- / 2 h(t)yl-i-€-l

ι,τa-.oo 2π J_Tl

 v /y
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exists for all y > 0, This follows from Cauchy's Residue Theorem by integrating the
function Hy(s) = ^Mp(^yl~s for each fixed y > 0 along the rectangle Q(Tι,T2) with
vertices:

f + e-»Tι

B(Tt) = | + e + ir2

= 2 + zT2

= 2-tTι.

The integrals along the segments [β(T2),C(T2)] and [D(Tι),A(T\)] tend uniformly to
zero as TI and TI tend to infinity, hence

lim ^- Γ Λ(ίy
τ,,τ2-κχ> 2π ,/_Tl

 v '*

Hence:

""»(*") = ̂  + ά^1"1" Γ *(<)»'"*. (42)
Λ ^Λ ./-00

Now consider the integral

By (42), G(y) is continuous. Also, G(ι/) = Λ(log T/) where h is the Fourier transform of h.
Since Λ G A(M, C) Λ has a well defined Fourier transform and all of the above is valid.
In fact since h and h' vanish at infinity, we have for yφ\\

lim

Integration by parts is valid, since both h and h1 vanish at infinity. Hence Riemann-
Lebesgue is valid and we obtain:

lim<7(y) = 0.

Therefore, under the hypothesis β < I we obtain:

my(F} = ~2 + ^-yl~*~€G(y) for all e > 0

and therefore:

lim y~l+*+e

π

But this contradicts the hypothesis since 1 — | — e > | i f e i s small enough. D

Remark. We have shown that:

Now let y — N~2 where N is a positive integer. Then,
N-l

n=l
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From the last two equations we obtain:

_ *£i i
lim N > Φ(ra) — —-

ΛΓ-+00 ^ί 7Γ2

n=l

and,
N-l

lim N~2 y^ <
ΛΓ-H oo ^—'

L n=l

= 0

By Mertens Theorem, one has:
N-l 0 N-l N-l

Σ _ , v o -̂̂  2 V~^ i / \ i / \

v / ~~ 2 ,Z—^ ,Z-/ v / &v y
n = l n=l n=l

For some bounded function 6(n). Hence, recalling that Σn=ι n^ = 2jv "^ +jv, we
obtain:

COROLLARY.
N-l o

n=l

Acknowledgements. I would like to thank E. Ghys, S. Lopez de Medrano, C. Mc-
Mullen, B. Randol, D. Sullivan and D. Zagier. I would also like to thank the organizers
of the International Workshop on Topology and Geometry held in Hanoi, Vietnam.

REFERENCES

[A] T. Apostol, Introduction to analytic number theory, GTM Springer-Verlag, Berlin, Heidelberg,

New York, 1985.

[B] S. Bochner, Lectures on Fourier Integrals, Annals of Mathematical Studies 42, Princeton Univ.

Press, New Jersey, 1959.

[Fr] J. Franel, Les Suites de Farey et le probleme des nombres premiers, Gδttinger Nachrichten

(1924), 198-201.

[G] E. Ghys, Actions localment libres du groupe a/fine, Inv. Math.82 (1985), 479-526.

[HW] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press,

London, 1975.

[L] S. Lang, 5L2(M), Addison-Wesley, Reading, Mass., 1975.

[La] E. Landau, Bemerlcung zu der vorstehenden Arbeit von Herrn Franel, Gδttinger Nachrichten

(1924), 202-206.

[S] P. Sarnak, Asymptotic behaviour of periodic orbits of the horocycle now and Eisenstein series,

Comm. in Pure and App. Math. 34 (1980), 719-739.

[T] E.G. Titchmarsh, The theory ofRiemann zeta-function, Oxford Univ. Press, London, 1988.

[V] A. Verjovsky, Arithmetic, Geometry and dynamics in the modular orbifold, Dynamical Systems,

(Santiago de Chile 1990) (Pitman Series 285), R. Bamon, R. Labarca, J. Lewowicz, J. Palis,

Longman, Essex, UK, 1992, pp. 263-298.

[Z] D. Zagier, Eisenstein Series and the Riemann zeta function, Automorphic forms, Representation

theory and Arithmetic, Tata Institute of Fundamental Research, Bombay, 1979, Springer-Verlag,

Berlin, Heidelberg, New York, 1981, pp. 275-301.



608 ALBERTO VERJOVSKY

DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE DE SCIENCES ET
TECHNOLOGIES DE LILLE
VlLLENEUVE D'ASCQ 59655

FRANCE
e-mail: Alberto@gat.citilille.fr




