DISCRETE MEASURES AND THE RIEMANN HYPOTHESIS

BY ALBERTO VERJOVSKY

1. Introduction

The purpose of this paper is to show that the Riemann hypothesis is equivalent to a problem of the rate of convergence of certain discrete measures defined on the positive real numbers to the measure $\frac{6}{\pi^2}udu$, where du is Lebesgue measure.

As a motivation consider the following: For each positive real number y, let μ_y be the infinite measure on the real line defined by

$$\mu_y = \sum_{n \in \mathbb{Z}} y \, \delta_{ny},$$

where \mathbb{Z} denotes the integers and δ_x denotes the Dirac mass at the point $x \in \mathbb{R}$. It follows by the Poisson summation formula that if $f \in C_c^{\infty}(\mathbb{R})$ $(C_c^{\infty}(\mathbb{R}) = \text{functions } f : \mathbb{R} \to \mathbb{R}$, of class C^{∞} and with compact support), then for every $\beta > 0$:

$$\mu_y(f) = \int_{\mathbb{R}} f(t) dt + o(y^{\beta}), \quad \text{as } y \to 0.$$

This is so because by the Poisson summation formula [B],

$$y \sum_{n \in \mathbb{Z}} f(ny) = \sum_{n \in \mathbb{Z}} \widehat{f}(ny^{-1})$$

where \hat{f} is the Fourier transform of f and, since f is smooth with compact support we have that \hat{f} is of rapid decay at infinity. Hence

$$y\sum_{n\in\mathbb{Z}}f(ny)=\widehat{f}(0)+o(y^{\beta}) \quad \text{as }y
ightarrow 0 \text{ for all }\beta>0.$$

So, as $y \to 0$, the atoms of μ_y cluster uniformly and $\mu_y(f)$ gives a very good approximation of integrals of smooth functions with compact support.

Now let \mathbb{R}^{\bullet} denote the multiplicative group of positive real numbers. For each $y \in \mathbb{R}^{\bullet}$, let us consider the infinite measure, m_y , defined on smooth functions with compact support in \mathbb{R}^{\bullet} , by the formula:

$$m_y(f) = \sum_{n \in \mathbb{N}} y\varphi(n) f(y^{\frac{1}{2}}n) \tag{1}$$

where $\mathbb{N} = \{1, 2, ...\}$ is the set of natural numbers and $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$ is Euler's totient function, which counts the number of integers which are relatively prime to a given integer, and are lesser or equal to that integer. In fact, for every $r \ge 0$, r an

Received June 17, 1993

integer or $r = \infty$, we can consider m_y as an element in the dual space of $C_c^r(\mathbb{R}^{\bullet}) =$ complex-valued functions $f : \mathbb{R}^{\bullet} \to \mathbb{C}$, of class C^r , with compact support.

We will prove the following theorems:

THEOREM A. For every $f \in C_c^0(\mathbb{R}^{\bullet})$:

$$m_{y}(f) = \frac{1}{\zeta(2)} \int_{0}^{\infty} uf(u)du + \mathcal{O}(y^{1/2}\log y)$$

= $\frac{6}{\pi^{2}} \int_{0}^{\infty} uf(u)du + \mathcal{O}(y^{\frac{1}{2}}\log y) \quad as \ y \to 0.$ (2)

DEFINITION. Let $m_0(f) = \int_0^\infty \frac{6}{\pi^2} u f(u) du$.

THEOREM B. 1) The Riemann hypothesis is true if and only if for every function $f \in C_c^r(\mathbb{R}^{\bullet})$, with $2 \leq r \leq \infty$

$$m_y(f) = m_0(f) + o(y^{\frac{3}{4}-\epsilon}),$$

as $y \to 0$, for all $\epsilon > 0$.

2) Furthermore, if $\alpha \in (\frac{1}{2}, \frac{3}{4})$ is such that, for all functions $f \in C_c^2(\mathbb{R}^{\bullet})$ one has, $m_y(f) = m_0(f) + o(y^{\alpha - \epsilon}),$ (3)

as $y \to 0$, for all $\epsilon > 0$, then the Riemann zeta-function has no zeroes in the halfplane $\Re(s) > 2(1-\alpha)$. Conversely, if the Riemann zeta-function has no zeroes in the half-plane $\Re(s) > 2(1-\alpha)$ then (3) holds for all functions $f \in C_c^2(\mathbb{R}^{\bullet})$.

3) If f is the characteristic function of an interval then:

$$\overline{\lim}_{y\to 0} y^{-\alpha} |m_y(f) - m_0(f)| = \infty, \quad \text{if } \alpha > \frac{1}{2}.$$

Hence $\frac{1}{2}$ is the best possible exponent of the error for some nonsmooth functions. 4) Let the function F, with domain in the positive reals be defined by

$$F(x) = \begin{cases} 1 - x & \text{for } x \leq 1\\ 0 & \text{for } x > 1 \end{cases}$$

Then:

$$m_y(F) = \frac{1}{\pi^2} + o(y^{\frac{1}{2}}) \quad as \ y \to 0,$$

and,

$$\overline{\lim}_{y \to 0} y^{-\alpha} \left| m_y(F) - m_0(F) \right| = \infty, \quad \text{for all } \alpha > \frac{1}{2}$$
(4)

if and only if the Riemann hypothesis is false in the strongest possible sense: there exist zeroes of Riemann's ζ -function arbitrarily close to the critical line $\Re(s) = 1$.

If $f = \chi_{[a,b]}$ is the characteristic function of the interval [a,b], 0 < a < b, then we can also define $m_y(f)$ in the obvious manner:

$$m_y(f) = \sum_{ay^{-\frac{1}{2}} \le n \le by^{-\frac{1}{2}}} y\varphi(n).$$

The measures m_y and their connection to the Riemann hypothesis were discovered by the author as a consequence of studying geometrically the beautiful paper [Z] by Don Zagier. The author wrote [V] inspired by this paper which contains a remarkable connection obtained by Zagier between the Riemann Hypothesis and horocyclic measures on the modular orbifold (see also P. Sarnak [S] and E. Ghys [G]). The present paper can be thought of as a continuation of [V].

In order to be as self-contained as possible we will recall some classical and fundamental results.

2. Preliminaries

First, let us start by proving formula (2) for characteristic functions. Let $f = \chi_{[a,b]}$ be the characteristic function of the interval [a,b], where 0 < a < b. Then:

$$m_{y}(f) = \sum_{ay^{-\frac{1}{2}} \leq n \leq by^{-\frac{1}{2}}} y\varphi(n) = \frac{1}{2\zeta(2)} [b^{2} - a^{2}] + \mathcal{O}(y^{\frac{1}{2}} \log y)$$

$$= \frac{1}{\zeta(2)} \int_{0}^{\infty} uf(u) du + \mathcal{O}(y^{\frac{1}{2}} \log y).$$
(5)

The second equality follows from the well-known formula:

$$\sum_{n \le x} \varphi(n) = \frac{3}{\pi^2} x^2 + \mathcal{O}(x \log x), \quad x > 1.$$
(6)

This formula, due to Mertens (1874), can be found, for instance, in Hardy and Wright [HW] or Apostol [A], p. 70.

Thus,

$$m_y(f)=m_0(f)+\mathcal{O}(y^{rac{1}{2}}\log y) \quad ext{as } y o 0.$$

If $m_y(f) - m_0(f) = K_f(y)$, then $K_f(y) = h_f(y)y^{\frac{1}{2}} \log y$ and $h_f(y)$ remains bounded as $y \to 0$ and the bound depends only on the interval [a, b]. If $f \in C_c^1(\mathbb{R}^{\bullet})$ then we can apply Abel's summation formula and (6) to obtain:

$$\begin{split} m_y(f) &= \sum_{n \in \mathbb{N}} y \varphi(n) f(y^{\frac{1}{2}} n) = -\frac{1}{2\zeta(2)} \int_0^\infty u^2 f'(u) \, du + \mathcal{O}(y^{\frac{1}{2}} \log y) \\ &= \frac{1}{\zeta(2)} \int_0^\infty u f(u) \, du + \mathcal{O}(y^{\frac{1}{2}} \log y), \quad \text{as } y \to 0. \end{split}$$

Since any continuous function with compact support in \mathbb{R}^{\bullet} can be uniformly approximated by C^1 functions with compact support in \mathbb{R}^{\bullet} , and the error terms depend only on the support of the functions, we immediately obtain Theorem A. However, Theorem A will also be a consequence of what follows. It is interesting to note that the volume of $PSL(2,\mathbb{R})/PSL(2,\mathbb{Z})$, with respect to Haar measure, is $\pi^2/3$. As it turns out, Mertens Theorem corresponds to the statement that the ergodic measures of the horocyclic flow which are supported on the periodic orbits and uniformly distributed with respect to arc-length, converge vaguely to Haar measure as the period tends to infinity (see [V] and [Z]).

2.1 Mellin transform

To see how naturally the Riemann ζ function arises in connection with the measures m_y , let us first recall a classical formula:

$$\frac{\zeta(s-1)}{\zeta(s)} = \sum_{n \ge 1} \frac{\varphi(n)}{n^s}, \quad \text{for} \quad \Re(s) > 2$$
(7)

(see, for instance, [A], p. 229). Let $r \ge 0$ be an integer or infinity. For each $f \in C_c^r(\mathbb{R}^{\bullet})$ consider the Mellin transform of $m_y(f)$:

$$\mathcal{M}_f(s) = \int_0^\infty m_y(f) y^{s-2} \, dy. \tag{8}$$

PROPOSITION 2.1.1. The integral defining $\mathcal{M}_f(s)$ converges absolutely in the halfplane $\Re(s) > 1$ and uniformly in $\Re(s) > 1 + \epsilon$ for all $\epsilon > 0$. Therefore, it defines a holomorphic function on the half plane $\Re(s) > 1$.

Proof. Let us suppose that support $(f) \subset [a,b]$; 0 < a < b. Let $||f||_{\infty} = \sup_{y \in \mathbb{R}^{\bullet}} |f(y)|$. Then if $\Re(s) > 1$, we have, since $|m_y(f)| \leq A ||f||_{\infty}$, for some A > 0:

$$\left|\mathcal{M}_{f}(s)\right| \leq \left\|f\right\|_{\infty} A\left(\frac{b^{\sigma-1}}{\sigma-1}\right), \text{ where } \sigma = \Re(s).$$
 (9)

Therefore, we have absolute convergence in $\Re(s) > 1$, and evidently the convergence is uniform in $\Re(s) > 1 + \epsilon$ for $\epsilon > 0$. \Box

Remarks 2.1.2.

(a) Strictly speaking, equation (8) defines, in classical notation, the Mellin transform of $y^{-1}m_y(f)$; however, we will still call it the Mellin transform of $m_y(f)$. Let $[C_c^r(\mathbb{R}^\bullet)]^*$ denote the topological dual of $C_c^r(\mathbb{R}^\bullet)$. Then the function

$$\mathcal{M}:, \{\Re(s)>1\} \rightarrow [C^r_c(\mathbb{R}^{\bullet})]^*,$$

given by

$$s\mapsto \int_0^\infty m_y(\cdot)y^{s-2}\,dy,\quad \Re(s)>1$$

defines a weakly holomorphic function. For every s such that $\Re(s) > 1$, \mathcal{M} defines an infinite measure on \mathbb{R}^{\bullet} . When $r = \infty$, \mathcal{M} defines a holomorphic function whose values are distributions of finite order. Compare [S]. We will be able to continue \mathcal{M} analytically to obtain a weakly meromorphic function with values in the distribution space of \mathbb{R}^{\bullet} .

(b) We notice that for every $0 \le r \le \infty$, and $f \in C_c^r(\mathbb{R}^{\bullet})$ we have $m_y(f) = 0$ if y is sufficiently large:

$$m_y(f) = 0$$
 for all $y > b$, where support $(f) \subset [a, b]$.

(c) Via the logarithm, or the exponential, we can transport measures defined on \mathbb{R} to measures defined on \mathbb{R}^{\bullet} , and vice versa. Let $m_y^+ = \exp^*(m_y)$ be the measure on the real line obtained by pulling back m_y by $\exp : \mathbb{R} \to \mathbb{R}^{\bullet}$. Then m_y^+ is supported on a discrete set of points which is irregularly distributed on the real line and the Dirac masses that define m_y^+ are weighted by Euler's function. This

accounts for the difference between the measures μ_y defined at the beginning of the introduction and m_y , as far as error terms are concerned. This also establishes a connection between the measures $\{m_y\}_{y>0}$ and Farey sequences as in the well-known results of Franel ([F]) and Landau ([La]). See ([V]).

Now, let us combine equations (1) and (8) to obtain:

$$\mathcal{M}_f(s) = \int_0^\infty \left(\sum_{n \in \mathbb{N}} y\varphi(n) f(y^{\frac{1}{2}}n) \right) y^{s-2} \, dy; \quad \Re(s) > 1.$$
(10)

Fix $n \in \mathbb{N}$ and define $\psi_n : \mathbb{R}^{\bullet} \to \mathbb{C}$ by the formula

$$\psi_n(y) = y\varphi(n)f(y^{\frac{1}{2}}n). \tag{11}$$

Then:

$$\int_0^\infty \psi_n(y) y^{s-2} \, dy = \varphi(n) \int_0^\infty f(y^{\frac{1}{2}} n) y^{s-1} \, dy$$

Changing variable: $u = y^{\frac{1}{2}}n$, we get:

$$\int_0^\infty \psi_n(y) y^{s-2} \, dy = 2 \frac{\varphi(n)}{n^{2s}} \int_0^\infty f(u) u^{2s-1} \, du; \quad \Re(s) > 1.$$
(12)

Now, if $\sigma = \Re(s) > 2$, we have $\left|\frac{\varphi(n)}{n^{2s}}\right| \leq \frac{1}{n^3}$. Hence, by the Lebesgue dominated convergence theorem and formula (7) we obtain:

PROPOSITION 2.1.3.

$$\mathcal{M}_f(s) = 2 \frac{\zeta(2s-1)}{\zeta(2s)} \int_0^\infty f(u) u^{2s-1} \, du; \quad \Re(s) > 2.$$
(13)

Furthermore if F is the function defined in Theorem B part 3), then all the above applies so:

$$\mathcal{M}_f(s) = \frac{\zeta(2s-1)}{s(2s+1)\,\zeta(2s)}$$

Let

$$\varphi_f(s) = \int_0^\infty f(u) u^{2s-1} \, du. \tag{14}$$

Since f has compact support it follows that $\varphi_f(s)$ is an entire function with derivative

$$\frac{d}{ds}(\varphi_f(s)) = 2 \int_0^\infty f(u)(\log u) u^{2s-1} du.$$
(15)

Therefore, we see from (13) that $\mathcal{M}_f(s) = \frac{2\zeta(2s-1)}{\zeta(2s)}\varphi_f(s)$, can be continued as a meromorphic function to all of \mathbb{C} and we obtain, using the properties of ζ , the following:

PROPOSITION 2.1.4. a) $\mathcal{M}_f(s)$ is a meromorphic function with a simple pole at s = 1 with residue:

$$\operatorname{Res}_{s=1}(\mathcal{M}_f(s)) = \frac{1}{\zeta(2)} \int_0^\infty u f(u) \, du$$

b) All other possible poles of $\mathcal{M}_f(s)$ are the negative integers and the zeroes of $\zeta(2s)$ in the strip $0 \leq \Re(s) < 1/2$.

From the functional equation of ζ ,

$$\pi^{-\frac{1}{2}s} \Gamma\left(\frac{1}{2}s\right) \zeta(s) = \pi^{-\frac{1}{2}+\frac{1}{2}s} \Gamma\left(\frac{1}{2}-\frac{1}{2}s\right) \zeta(1-s)$$
(16)

we have:

PROPOSITION 2.1.5 (Functional Equation). The function $\mathcal{M}_f(s)$ satisfies the functional equation:

$$\frac{\pi^{s-\frac{1}{2}}\mathcal{M}_f(\frac{1}{2}-s)}{\varphi_f(\frac{1}{2}-s)\Gamma(\frac{1}{2}-s)\zeta(-2s)} = \frac{\pi^{-s}\mathcal{M}_f(s)}{\varphi_f(s)\Gamma(s)\zeta(2s-1)}.$$
(17)

Suppose that $f \in C_c^k(\mathbb{R}^{\bullet})$, for $k \geq 1$. Then, integrating by parts we obtain:

$$\varphi_f(s) = \frac{(-1)^k}{2s(2s+1)\dots(2s+k-1)} \int_0^\infty f^{(k)}(u) u^{2s+k-1} \, du. \tag{18}$$

Therefore, if $f \in C_c^k(\mathbb{R}^{\bullet})$, there exist positive constants A and B such that for all $\sigma \in \mathbb{R}$,

$$\left|\varphi_f(\sigma+it)\right| \le A \frac{B^{2|\sigma|}}{(1+|t|)^k}.$$
(19)

The constants A and B depend only on f and k. In fact, if $support(f) \subset [a, b]$ and 0 < a < b, then

$$\left|\varphi_{f}(\sigma+it)\right| \leq \frac{((b-a)||f^{(k)}||_{\infty}b^{k-1})b^{|2\sigma|}}{|2\sigma+2it| \cdot |2\sigma+1+2it| \dots |2\sigma+k-1+2it|}.$$
(20)

Therefore, if $f \in C_c^{\infty}(\mathbb{R}^{\bullet})$ it follows that f belongs to the Paley-Wiener space, $PW(\mathbb{C})$ (see Lang [L], p. 74), *i.e.*, there exists a constant c > 0 such that for every natural number N and $\sigma \in \mathbb{R}$ we have:

$$\left|\varphi_f(\sigma+it)\right| \ll \frac{c^{|2\sigma|}}{(1+|t|)^N}, \quad \text{as } t \to \pm \infty.$$
 (21)

That is, given N and σ there exists a positive constant K = K(f, N), depending only on f and N such that

$$\left|\varphi_f(\sigma+it)\right| \leq K \frac{c^{|2\sigma|}}{(1+|t|)^N}$$

for all $t \in \mathbb{R}$ such that $|t| \ge t_0$, where t_0 depends only on f and N.

From (21) it follows that φ_f is of rapid decay in any fixed vertical strip, *i.e.*, $\varphi_f(\sigma+it)$ tends very rapidly to zero uniformly in any strip $\sigma_1 \leq \sigma \leq \sigma_2$, as $|t| \to \infty$. In particular, if $f \in C_c^2(\mathbb{R}^{\bullet})$, we have that the function $g_f^{\sigma} : \mathbb{R}^{\bullet} \to \mathbb{C}$ defined by

$$g_f^{\sigma}(t) = \varphi_f(\sigma + it) \tag{22}$$

has the property that $g_f^{\sigma} \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$, for all $\sigma \in \mathbb{R}$.

Now, let us recall the following facts about the order of growth of $\zeta(s)$ along vertical lines. Let $\mu(\sigma)$ be the lower bound of real numbers $\ell \ge 0$ such that

$$\zeta(\sigma + it) = \mathcal{O}(|t|^{\ell}) \quad \text{as} \quad |t| \to \infty.$$
(23)

Then μ has the following properties (Titchmarsh [T], p. 95):

- μ is continuous non-increasing and never negative.
 μ is convex downwards in the sense that the curve y = μ(σ) has no points above the chord joining any two of its points.
 μ(σ) = 0 if σ ≥ 1 and μ(σ) = ½ σ if σ ≤ 0.

The Lindelöf hypothesis is equivalent to the statement that

$$\begin{cases} \mu(\sigma) = \frac{1}{2} - \sigma & \text{if } \sigma < \frac{1}{2} \\ \mu(\sigma) = 0 & \text{if } \sigma \ge \frac{1}{2} \end{cases}$$
(25)

(24)

which is equivalent to:

$$\zeta\left(\frac{1}{2}+it\right) = \mathcal{O}(t^{\epsilon}) \quad \text{for all } \epsilon > 0.$$
 (26)

Now suppose the Riemann hypothesis is true; then $\log \zeta(s)$ is a holomorphic function in the half-plane $\Re(s) > \frac{1}{2}$ (except at s = 1) and we have the following estimates due to Littlewood:

For
$$\epsilon > 0$$
 and $\sigma \ge \frac{1}{2}$:
 $-\epsilon \log t < \log |\zeta(s)| < \epsilon \log t; \quad s = \sigma + it, \quad t \ge t_0(\epsilon),$

that is:

$$\begin{cases} \zeta(s) = \mathcal{O}(t^{\epsilon}) \\ \frac{1}{\zeta(s)} = \mathcal{O}(t^{\epsilon}) \end{cases} \quad \text{for every } \epsilon > 0, \ s = \sigma + it, \ \sigma > \frac{1}{2} \text{ as } |t| \to \infty.$$
 (27)

The estimates (27), valid under the Riemann hypothesis, can be found in Titchmarsh [T], Chapter XIV, p. 337, formulæ (14.2.5) and (14.2.6). Furthermore, suppose that $\alpha > \frac{1}{2}$ is such that ζ has no zeroes in the half-plane $\Re(s) > \alpha$; then Littlewood has the following estimates:

$$\begin{cases} \zeta(s) = \mathcal{O}(t^{\epsilon}) \\ \frac{1}{\zeta(s)} = \mathcal{O}(t^{\epsilon}) \end{cases} \text{ for every } \epsilon > 0, \ s = \sigma + it, \ \sigma \ge \alpha.$$

$$(28)$$

Also if for each $\sigma > \frac{1}{2}$ (and $s = \sigma + it$ as before) we define $\nu(\sigma)$ as the lower bound of numbers a such that

$$\log \zeta(s) = \mathcal{O}(\log^a t)$$

then for $\beta < \sigma < 1$, $\beta = \sup\{\Re(\rho) \mid \zeta(\rho) = 0\}$, we have

$$1 - \sigma \le \nu(\sigma) \le 2(1 - \sigma). \tag{28'}$$

Also $\log \zeta(s)$ (for $\Re(s) > \beta$) has the same ν function as $\frac{\zeta'(s)}{\zeta(s)}$, *i.e.*, if we define $\nu'(\sigma)$ as the lower bound of numbers such a that

$$\frac{\zeta'(s)}{\zeta(s)} = \mathcal{O}(\log^a t)$$

then

$$1 - \sigma \le \nu'(\sigma) \le 2(1 - \sigma). \tag{28''}$$

Also, (see Titchmarsh, Chapter XIV, Theorem 14.5) we have:

$$\frac{\zeta'(s)}{\zeta(s)} = \mathcal{O}((\log t)^{2-2\sigma})$$

uniformly for $\beta < \sigma_0 \leq \sigma \leq \sigma_1 < 1, \ \sigma \neq \frac{1}{2}$.

3. Proof of Theorems

In all that follows we will assume that $f \in C_c^{\infty}(\mathbb{R}^{\bullet})$ but everything will still hold if we only assume that $f \in C_c^r(\mathbb{R}^{\bullet})$, $r \ge 2$.

3.1. Proof of Theorem A. By the Mellin inversion formula we have:

$$m_y(f) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \mathcal{M}_f(s) y^{1-s} \, ds, \qquad (29)$$

for an appropriate $a \in \mathbb{R}$. In our case we can take $a = \frac{1}{2}$ because the function $\Theta_{\frac{1}{2}}(t) = \mathcal{M}_f(\frac{1}{2} + it)$ satisfies $\Theta_{\frac{1}{2}} \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$; this is so because the function $\varphi_f(\frac{1}{2} + it)$ is in the Paley-Wiener space and by (24) the function $Z_f(t) = \frac{\zeta(2it)}{\zeta(1+2it)}$ is $\mathcal{O}(|t|^{\frac{1}{2}+\epsilon})$ for all $\epsilon > 0$. Hence $\varphi_f|_{\Re(s)=\frac{1}{2}} \cdot Z_f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$.

The integral of $\mathcal{M}_f(s)y^{1-s}$ over the boundary of the vertical strip $\frac{1}{2} \leq \sigma \leq 2$ exists and it is equal at the same time to $\mathcal{R}es_{s=1}(\mathcal{M}_f(s))$ and equal to

$$n_y(f) - \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{M}_f\left(\frac{1}{2} + it\right) y^{\frac{1}{2}} y^{-it} dt.$$

We have:

$$\left| \int_{-\infty}^{\infty} \mathcal{M}_f\left(\frac{1}{2} + it\right) y^{\frac{1}{2}} y^{-it} dt \right| = y^{\frac{1}{2}} \left| \int_{-\infty}^{\infty} \mathcal{M}_f\left(\frac{1}{2} + it\right) y^{-it} dt \right| = o(y^{\frac{1}{2}}),$$

because, by the Riemann-Lebesgue Theorem:

r

$$\lim_{y\to 0} \left| \int_{-\infty}^{\infty} \mathcal{M}_f\left(\frac{1}{2} + it\right) y^{-it} \, ds \right| = 0.$$

Thus

$$m_y(f) = \frac{1}{\zeta(2)} \int_0^\infty u f(u) \ du + o(y^{\frac{1}{2}}).$$

This proves theorem A. \Box

3.2. Proof of Theorem B. Suppose the Riemann hypothesis is true. Then we set in formula (29) $a = \frac{1}{4} + \epsilon$, for any fixed $\epsilon > 0$. Then the function $\Theta_{\frac{1}{4}+\epsilon}(t) = \mathcal{M}_f(\frac{1}{4}+it)$ has the property that $\Theta_{\frac{1}{4}+\epsilon} \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$.

Therefore, the integral of $\mathcal{M}_f(s)y^{1-s}$ exists over the boundary of the band $\frac{1}{4} + \epsilon \leq \sigma \leq 2$. Therefore:

$$m_y(f) = \mathcal{R}es_{s=1}(\mathcal{M}_f(s)) + \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{M}_f\left(\frac{1}{4} + \epsilon + it\right) y^{-it} y^{\frac{3}{4} - \epsilon} dt.$$
(30)

Again, by the Riemann-Lebesgue Theorem:

$$m_{y}(f) = \frac{1}{\zeta(2)} \int_{0}^{\infty} uf(u)du + o(y^{\frac{3}{4}-\epsilon}).$$
(31)

If, on the other hand, $m_y(f) = \frac{1}{\zeta(2)} \int_0^\infty uf(u)du + o(y^{\frac{3}{4}-\epsilon})$ for all $\epsilon > 0$ and all functions $f \in C_c^\infty(\mathbb{R}^{\bullet})$, then $\mathcal{M}_f(s)$ is holomorphic (except for a pole at s = 1) in the half-plane $\Re(s) > \frac{1}{4} + \epsilon$, for all $\epsilon > 0$. Since, under the hypotheses, $\mathcal{M}_f(s) = \frac{2\zeta(2s-1)}{\zeta(2s)}\varphi_f(s)$ is holomorphic in that half-plane and we can choose f so that $\varphi_f(s)$ does not vanish at any given zero of ζ , it follows that $\zeta(2s-1)/\zeta(2s)$ is holomorphic in the half-plane $\Re(s) > \frac{1}{4}$ and hence the Riemann hypothesis would be true. The reason that $\mathcal{M}_f(s)$ is holomorphic in the half-plane, under the hypothesis that $m_y(f) = m_0(f) + K(y)$, where $K(y) = o(y^{\frac{3}{4}-\epsilon})$, is the following:

$$\mathcal{M}_f(s) = \frac{m_0(f)}{s-1} + \int_0^\infty K(y) y^{s-2} \, dy.$$
(32)

The integral in the right-hand side of (32) converges absolutely and uniformly in the half-plane $\Re(s) > \frac{1}{4} + \epsilon$, so it defines a holomorphic function in that half-plane.

Suppose that $\beta = \sup\{\Re(\rho) \mid \zeta(\rho) = 0\}$. Then the function $\Theta_{\epsilon}(t) = \mathcal{M}_{f}(\frac{\beta}{2} + \epsilon + it)$ belongs to $\mathcal{L}_{1}(\mathbb{R},\mathbb{C})$ for all $\epsilon > 0$.

This fact follows from (24), and the fact that $\varphi_f(s)$ is of rapid decay on vertical lines. As we know, $\frac{\beta}{2} \in [\frac{1}{4}, \frac{1}{2}]$ since Riemann's zeta-function has an infinite number of zeroes on the line $\Re(s) = \frac{1}{2}$ (Littlewood, Titchmarsh, Landau, Selberg) and no zeroes on the closed half-plane $\Re(s) \ge 1$ (by the prime number theorem). Then, by the Mellin inversion formula we have:

$$m_y(f) = m_0(f) + o(y^{1-\frac{p}{2}-\epsilon}) \quad \text{for all } \epsilon > 0.$$
(33)

If, on the other hand, (33) holds with $\alpha = 1 - \frac{\beta}{2} - \epsilon$, $\frac{\beta}{2} \in [\frac{1}{4}, \frac{1}{2})$ then, proceeding as in the proof of formula (32) we obtain that ζ has no zeroes in the half-plane $\Re(s) > 2(1-\alpha)$.

Therefore, we have proven everything stated in Theorem B except for the fact that the exponent $\frac{1}{2}$ is optimal for characteristic functions and the assertion regarding the function F. To finish the proof we need the following: For x > 0, let $\Phi(x) = \sum_{n \leq x} \varphi(n)$ and set $\Phi(x) = 0$ for 0 < x < 1. Then by Mertens theorem $\Phi(x) = \frac{3}{\pi^2}x^2 + (x \log x)b(x)$ for a bounded function b(x): -c < b(x) < c for all x > 0 and some constant c > 0.

LEMMA 3.2.1. For all $\alpha > 1$

$$\overline{\lim_{x\to\infty}}x^{\alpha}\Big|\frac{\Phi(x)}{x^2}-\frac{3}{\pi^2}\Big|=\infty.$$

Proof. Suppose the contrary. Then there exist $\alpha > 1$, c > 0 and a function $b_{\alpha}(x)$ defined on the positive reals and such that $-c < b_{\alpha}(x) < c$ for all $0 < x < \infty$ such that

$$\frac{\Phi(x)}{x^2} - \frac{3}{\pi^2} = x^{-\alpha} b_{\alpha}(x).$$
 (34)

Let $H(x) = \Phi(x)/x^2$. Then

$$H(x+1) = \Phi(x) \frac{x^2}{(x+1)^2} + \frac{\varphi([[x+1]])}{(x+1)^2},$$
(35)

where $[[\cdot]]$ denotes integral part.

By (34) and (35) and letting x run over the integers such that x + 1 is a prime, we obtain:

$$L(x) = x^{\alpha} \left[\frac{3}{\pi^2} \left[\frac{2x-1}{(x+1)^2} \right] - \frac{x}{(x+1)^2} \right] = b_{\alpha}(x) \left[\frac{x^2}{(x+1)^2} \right] - b_{\alpha}(x+1) \left[\frac{x}{x+1} \right]^{\alpha} = R(x)$$

But this is an absurdity since L(x) is unbounded when $\alpha > 1$ whereas the right-hand side remains bounded. This proves the statement in Theorem B for the characteristic function of the interval (0, 1]. The proof for an arbitrary closed interval is similar. Now let F be the function given in Theorem B and suppose:

$$\overline{\lim_{y\to 0}} y^{-\alpha} \left| m_y(F) - m_0(F) \right| = \infty, \quad \text{for all } \alpha > \frac{1}{2}$$

First we note that

$$m_0(F)=\frac{1}{\zeta(2)}\int_0^\infty uF(u)du=\frac{1}{\pi^2}$$

The Mellin transform $M_F(s)$ is:

$$\mathcal{M}_F(s) = rac{\zeta(2s-1)}{s(2s+1)\,\zeta(2s)}$$

Hence its only poles in the half-plane $\Re(s) > 0$ are located at the zeroes of $\zeta(2s)$, since s(2s+1) does not vanish in that half-plane. $\mathcal{M}_F(s)$ is not of rapid decay namely not of Paley-Wiener type, however it decays fast enough so as to be able to shift the vertical line of integration—in Mellin's inversion formula—to the vertical line $\Re(s) = \frac{\beta}{2} + \epsilon$ where β , as before, is the supremum of the real parts of the zeroes of Riemann's ζ -function. Now suppose $\beta < 1$. We want to arrive to a contradiction.

First we note that for any $\epsilon > 0$ the inequalities (24) through (28") imply that the function

$$h(t) = \frac{\zeta(\beta - 1 + 2\epsilon + 2it)}{(\beta/2 + \epsilon + it)(1 + \beta + 2\epsilon + 2it)\zeta(\beta + 2\epsilon + 2it)}$$

has the property that

$$\lim_{|t| \to \infty} h(t) = 0 \tag{40}$$

and

$$\lim_{|t| \to \infty} h'(t) = 0 \tag{41}$$

for all $\epsilon > 0$. In fact we have if $s = \sigma + it$ and $-1 \le \sigma \le 2$:

$$|\zeta'(s)| \le K_1 |\log t| |t|^{\mu(\sigma)}$$

and

$$|\zeta(s)| \le K_2 |t|^{\mu(\sigma)}$$

for some constants $K_1, K_2 > 0$ and |t| sufficiently large. Hence under the hypotheses:

$$|h(t)| \le K_1 |t|^{-\delta}$$
$$|h'(t)| \le K_2 |t|^{-\delta}$$

for some $\delta > 1$. On the other hand, the improper integral

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}h(t)y^{1-\frac{\beta}{2}-\epsilon-it}dt$$

exists for all y > 0. Namely

$$\lim_{T_1,T_2\to\infty}\frac{1}{2\pi}\int_{-T_1}^{T_2}h(t)y^{1-\frac{\theta}{2}-\epsilon-\imath t}dt$$

exists for all y > 0, This follows from Cauchy's Residue Theorem by integrating the function $H_y(s) = \frac{1}{2\pi i} \mathcal{M}_F(s) y^{1-s}$ for each fixed y > 0 along the rectangle $Q(T_1, T_2)$ with vertices:

$$A(T_1) = \frac{\beta}{2} + \epsilon - iT_1$$

$$B(T_2) = \frac{\beta}{2} + \epsilon + iT_2$$

$$C(T_2) = 2 + iT_2$$

$$D(T_1) = 2 - iT_1.$$

The integrals along the segments $[B(T_2), C(T_2)]$ and $[D(T_1), A(T_1)]$ tend uniformly to zero as T_1 and T_2 tend to infinity, hence

$$\lim_{T_1,T_2\to\infty}\frac{1}{2\pi}\int_{-T_1}^{T_2}h(t)y^{1-\frac{\theta}{2}-\epsilon-it}dt=-\frac{1}{\pi^2}+m_y(f).$$

Hence:

$$m_y(F) = \frac{1}{\pi^2} + \frac{1}{2\pi} y^{1 - \frac{\beta}{2} - \epsilon} \int_{-\infty}^{\infty} h(t) y^{-it} dt.$$
(42)

Now consider the integral

$$G(y) = \int_{-\infty}^{\infty} h(t) e^{-(\log y)it} dt.$$

By (42), G(y) is continuous. Also, $G(y) = \hat{h}(\log y)$ where \hat{h} is the Fourier transform of h. Since $h \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ h has a well defined Fourier transform and all of the above is valid. In fact since h and h' vanish at infinity, we have for $y \neq 1$:

$$G(y) = i[\log y]^{-1} \lim_{a \to \infty} \int_{-a}^{a} e^{-(\log y)it} dh$$

Integration by parts is valid, since both h and h' vanish at infinity. Hence Riemann-Lebesgue is valid and we obtain:

$$\lim_{y\to 0} G(y) = 0$$

Therefore, under the hypothesis $\beta < 1$ we obtain:

$$m_y(F) = \frac{1}{\pi^2} + \frac{1}{2\pi} y^{1-\frac{\theta}{2}-\epsilon} G(y) \quad \text{for all } \epsilon > 0$$

and therefore:

$$\lim_{y\to 0} y^{-1+\frac{\theta}{2}+\epsilon} \left| m_y(F) - \frac{1}{\pi^2} \right| = 0.$$

But this contradicts the hypothesis since $1 - \frac{\beta}{2} - \epsilon > \frac{1}{2}$ if ϵ is small enough. \Box

Remark. We have shown that:

$$m_y(F) = rac{1}{\pi^2} + o(y^{1/2})$$

Now let $y = N^{-2}$ where N is a positive integer. Then,

$$m_y(F) = N^{-3} \sum_{n=1}^{N-1} \Phi(n)$$

From the last two equations we obtain:

$$\lim_{N \to \infty} N^{-3} \sum_{n=1}^{N-1} \Phi(n) = \frac{1}{\pi^2}$$

and,

$$\lim_{N \to \infty} \left[N^{-2} \sum_{n=1}^{N-1} \Phi(n) - \frac{N}{\pi^2} \right] = 0$$

By Mertens Theorem, one has:

$$\sum_{n=1}^{N-1} \Phi(n) = \frac{3}{\pi^2} \sum_{n=1}^{N-1} n^2 + \sum_{n=1}^{N-1} nb(n) \log(n)$$

For some bounded function b(n). Hence, recalling that $\sum_{n=1}^{N-1} n^2 = \frac{2N^3 - 3N^2 + N}{6}$, we obtain:

COROLLARY.

$$\lim_{N \to \infty} N^{-2} \sum_{n=1}^{N-1} nb(n) \log(n) = \frac{3}{2\pi^2}$$

Acknowledgements. I would like to thank E. Ghys, S. Lopez de Medrano, C. Mc-Mullen, B. Randol, D. Sullivan and D. Zagier. I would also like to thank the organizers of the International Workshop on Topology and Geometry held in Hanoi, Vietnam.

References

- [A] T. Apostol, Introduction to analytic number theory, GTM Springer-Verlag, Berlin, Heidelberg, New York, 1985.
- S. Bochner, Lectures on Fourier Integrals, Annals of Mathematical Studies 42, Princeton Univ. Press, New Jersey, 1959.
- [Fr] J. Franel, Les Suites de Farey et le problème des nombres premiers, Göttinger Nachrichten (1924), 198-201.
- [G] E. Ghys, Actions localment libres du groupe affine, Inv. Math.82 (1985), 479-526.
- [HW] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 1975.
- [L] S. Lang, $SL_2(\mathbb{R})$, Addison-Wesley, Reading, Mass., 1975.
- [La] E. Landau, Bemerkung zu der vorstehenden Arbeit von Herrn Franel, Göttinger Nachrichten (1924), 202–206.
- [S] P. Sarnak, Asymptotic behaviour of periodic orbits of the horocycle flow and Eisenstein series, Comm. in Pure and App. Math. 34 (1980), 719–739.
- [T] E.C. Titchmarsh, The theory of Riemann zeta-function, Oxford Univ. Press, London, 1988.
- [V] A. Verjovsky, Arithmetic, Geometry and dynamics in the modular orbifold, Dynamical Systems, (Santiago de Chile 1990) (Pitman Series 285), R. Bamon, R. Labarca, J. Lewowicz, J. Palis, Longman, Essex, UK, 1992, pp. 263-298.
- [Z] D. Zagier, Eisenstein Series and the Riemann zeta function, Automorphic forms, Representation theory and Arithmetic, Tata Institute of Fundamental Research, Bombay, 1979, Springer-Verlag, Berlin, Heidelberg, New York, 1981, pp. 275–301.

DEPARTEMENT DE MATHEMATIQUES UNIVERSITE DE SCIENCES ET TECHNOLOGIES DE LILLE VILLENEUVE D'ASCQ 59655 FRANCE e-mail: Alberto@gat.citilille.fr