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ON THE TOPOLOGICAL STRUCTURE OF THE FERMAT

SURFACE OF DEGREE 5

BY YUKIO MATSUMOTO

Abstract

We will give the monodromy representation of a certain fibration of the Fermat surface

of degree 5 explicitly in terms of Dehn twists about concrete curves. This paper is a sequel

to Ahara's work [1]

1. Introduction

Let Vζ be the complex projective hypersurface in CPs defined by the equation of
degree 5

ZQ ~~ zl ~ Z2 ~ Z3

where 20,21,22,23 are the homogenuous coordinates. From topological viewpoint, this
surface is a simply-connected 4-manifold. The Euler characteristic and the signature of
Vs are equal to 55 and —35, respectively (see [5]). By Freedman [4] V$ is homeomorphic
to 9(7P2τίt44CP2, but by Donaldson [3] it is not diffeomorphic to this connected sum.

Our motive is to understand the topological structure of Vζ through a holomorphic
fibration over the Riemann sphere CP\ — C(J {oo}.

The fibration / : V£ —» CP\ is defined as follows:

{ 4 / 4 f Jz2/zQι " z® =i zl an(* Z2 = 23

(ZQ - zι)/(z2 - 23), otherwise.

A general fiber of this fibration is a Riemann surface of genus 3. In unpublished notes
(1990), the author determined the positions and the topological types of all singular fibers
in / : Vs —» CP\ let Fσ denote the fiber over a point σ G CP\. Then Fσ is a singular
fiber if and only if σ belongs to the following set SF consisting of 17 points:

SF = {σ \ σ5 = -1/4,1, or - 4} U {0, oo}.

If <j = 0 or oo , Fσ is a union of 4 complex lines meeting in a point. If σ is a 5-th root
of 1, Fσ is a union of two complex lines and a conic, meeting in 5 points transversely.
If σ is a 5-th root of —1/4 or of—4, Fσ is an irreducible stable curve of virtual genus 3
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which has two transverse sef-intersection points. See the table below.
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σ = 0 or = -I or -4

Remark. In the same unpublished notes, the author determined the positions and
the types of all singular fibers appearing in a similar fibration of the Fermat surface of
general degree n (n > 2). These results and the methods are summarized in [1, Section

2].

To accomplish the topological description of the fibration / : V$ -+ CP\, it suffices
to give the monodromy representation

p:πι(CP1-SF,σ0)-+M3

where Λίs is the mapping class group of a closed oriented surface of genus 3, and <TO is
a base point chosen in CP\ — SF.

Ahara [1] has essentially determined p. He presents a general fiber Fσ as a 4-fold
irregualar branched covering of CP\ branched at 8 points. By numerical analysis using
a computer, he has described motions of the branch points induced by movements of
σ along paths in CP\ — SF. He has also given an algorithm to compute the action of
the monodromy on the fundamental group of Fσo up to inner automorphisms. Thus
by Dehn-Nielsen's theorem [7] which states that Aut(πιFσo)/Inn(πιFσo) = Ms, it is
possible in principle to describe the monodromy representation p explicitly in terms of
Dehn twists. However, this last step remains undone in Ahara's paper . To carry it out
actually is easy for some loops as Ahara asserts in Remark 4 of [1, Section 1], but for
general loops it is not so immediate.

The purpose of this paper is to complete this last step we will take Ahara's com-
putaion as a starting point and will give the monodromy representation p explicitly in
terms of Dehn twists about concrete simple closed curves on Fσo (Theorem 2.1). Our
method does not depend on Ahara's algorithm and is more pictorial.

2. Main results

Following Ahara [1], we choose σ0 = 11/10 as a base point of CP\ - SF. The fiber
Fσo is presented_as a 4-fold irregular branched covering of CPi branched at 8 points Σ =
{A, !,£,£, C, C, £>, ~D} , where A w -0.9256 + 0.3786Λ/^Ϊ,£ w -0.3800 + 0.9250V^T
β « 0.2159 + 0.9764Λ/

IΪ5£> « 0.3246 + 0.9458V

cΐ. See Ahara [1, Section 4].
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Figure 1

n V 180°

Figure 2

The branching monodromy ξ : π\(CP\ — Σ,0) — »• 64 associated with the branched
covering Fσo —+ CP\ is computed as follows:

ί(α) = ί(δ) = (14)

ξ(d) = ξ(d) = (23)
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where α, α, 6, b ,c, c, d, and d are loops on CP\ — Σ which are based at 0 and go once
around the corresponding point A,A> £, £, C, C, D> and D respectively, and avoid the
rest of the points. See Ahara [1, Section 4].

Figure 3

Figure 4

By the above facts,we can identify Fσo as the surface constructed as follows: Take
4 copies of CP\ and call them Si, 82, £3, £4, and cut slits open on them as shown in
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Figure 1.
Each of the resulting surfaces (again call 5, , i = 1,2,3,4) is homeomorphic to a pair

of pants. See Figure 2, in which the homeomorphism between 83 and a pair of pants is
given as a 180° rotation of the slit DD followed by the natural identification. Similarly
for 64.

One obtains a surface of genus 3 by pasting these pairs of pants along their bound-
aries as shown in Figure 3. We will always identify Fσo as the surface of Figure 3.

Now take twelve simple closed curves {m;,/;}^!^,...^ on Fσo as shown in Figure 4.
Dehn twists about these simple closed curves are denoted by the corresponding

capital letters. Thus M\ for example denotes the positive Dehn twist about mi, and
Mf1 the negative twist. See Figure 5. Clearly, MiMj = MjM% and LiL3 — L3L% , for
•-,.7 = 1,2,3,4,5,6.

Figure 5

Let ω denote exp(2ττ\/^T/5). Then the cyclic group Cζ = {ωl \ i = 0,1,2,3,4} acts
on Vζ by ωl : [^0,^1^2,^3] |-+ [ω*ZQ , ω%z\, zi, z3] and on CP\ — C (J {00} by the natural
multiplication. Our fibration / : V$ —>• CP\ is equivariant with respect to the actions of
C5. [1, Section 1].

By the action of Cs , we can identify Fσo with the fibers over u Vo, i = 1,2,3,4. Let
7 : [0,1] —> CPi — SF be a path. Then there exists a continuous family of homeomor-
phisms {Ht : -F7(o) —* F-γ(t)}o<t<ι such that HQ = id of ^7(o) If the path 7 joins α;V0

and ωjσ0 , we can define a monodromy homeomorphism ̂ (7) : Fσo —» Fσo by setting

XT) * Λ"1

where hz : Fσo
and are homeomorphisms which give the

identification by the action of (75. The homeomorphism ρ(j) is determined up to isotopy
by the homotopy class of 7 (fixing the terminal points 7(0) and 7(1)).

Ahara [1, Sectionδ] takes four paths 70, 71, 72, 73 joining σ0 and ωσ^ , whose
homotopy classes are depicted in Figure 6. Any loop in CPι—SF based at σ0 is homotopic
to a composition of paths from the set of 20 paths

where ω*jj denotes the path j j : [0, 1] — > CP\ — SF rotated by the action of ω* :
CP\ — * CP\. Clearly, ω*jj joins α;V0 and ω*+lσQ. The monodromy representation p :

— SF, σ0) — »• Λ<3 is completely determined if we give the homeomorphisms
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Figure 6

It is important to notice that the monodromy representation p is an anti-homomor-
phism and that the monodromy homeomorphism associated with a composite path 77'
( 7 followed by 7' ) is computed by

Let T : FσQ — > FσQ be an involution which is a 180° rotation of Fσo about the axis
shown in Figure 7.

ζlj) I80°rotatzon = T

Figure 7

Now we are in a position to state our main result.

THEOREM 2.1. The monodromy homeomorphisms associated with ω*jj (
2, 3, 4, j — 0, 1, 2; 3) art independent of i, and are given as follows :
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Remarks. 1) In the statement of Theorem 2.1, and in what follows, we regard
self-homeo-morphisms of Fσo as elements of M.%.

2) The involution T commutes with M\M^ M^M^, MS, Me, £1^3, Z<2, £4, and

3) Using Lemma 3.3 of Section 3, one can show

p(τo)2 = r, />(T3)2 = sr,
where S : Fσo — » Fσo is the involution whose construction is indicated by Figure
8. Note that ST = TS. It follows that ,9(70) and />(γ3) have order 4 in Λί3.

4) Let Q G Λ43 be defined by

Then using Lemma 3.3, one can show

Figure 8

Here are some examples of monodromy calculations based on Theorem 2.1. The

monodromy associated with loops 71 γ^"1, J2JΪ1 , TsTj1 (based at σo) are calculated as

X7oΓV(7ι) = lί1^ '

respectively.
The monodromy around FI is given by

which coincides up to the sign convention for Dehn twists with the equation in the last
example of [1, Section 5].
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The monodromy around FQ is given by

(^27o)(^3To)(ω47o)) = />(7o)5 =

and the monodromy around FQQ is given by

both of which have period 4 as noted in Remark 3).
Notice that these results also exemplify the correspondence between topological

types of singular fibers and the monodromy homeomorphisms around them. See Theorem
lof [6].

3. Outline of proof

Let BS denote the braid group whose elements are isotopy classes of motions of the
8 points pi = D, p2 = C, p3 = B, P4 = A, p5 = A, p6 = J9, p7 - C, ps - D in

— {0, oo }. Following [1], we define elements /?,-, i = 1, , 8 of BS as in Figure 9.

Pi Pi P +i Pi P2 P7 P8

(1 £ t £ 7)

Figure 9

PROPOSITION 3.1([1, Prop. 5.3]). Suppose σ moves along the path 7,- ( i = 0,1,2,
or 3 ). Then the corresponding motion β(ji) of the points {pι,p2,P3,P4) P5,Pe,Pr,Ps} *s
represented as follows:

β(fθ) = β^

β(Ίι) = K

= (K VίVίVf ')

Remarks. 1) The motion of the 8 points described by a product ββ1 is isotopic
to the motion β followed by /?'.

2) The motion /?,- with even z is lifted to Dehn twist (s) of Fσo) but with odd i it
is not lifted to any self-homeomorphism of Fσo. This point makes Theorem 2.1
non-trivial.

3) As we remarked in Section 2, the homeomorphisms ^(70) and ^(73) have order 4
in Ms , but β(jo) and β(js) are not of finite order in B$.



568 YUKIO MATSUMOTO

Let {xι,Z2>#3>Z4} be the preimage of 0 under the branced covering FσQ

Xi being in the pair of pants 5» (see Section 2). The monodromy homeomorphism
p(Ίi) '- FσQ — * Fσ0 can be taken so that they preserve {£ι,£2>#3,£4} Then they cause
permutations π(~γi) of the indices (1,2,3,4).

PROPOSOTION 3.2 ([1, Prop.5.6]). The permutations π ( j i ) are given as follows:
τr(To) = (14), 7r(7ι) - 7r(72) - π(τs) -

Recall that we took 12 simple closed curves {m» , /,-},•=!,. ..,6 on Fσo in Section 2. The
curve /i projects onto a curve on CP\ shown in Figure 10, where the numbers 2,3,4
by the curve are the "sheet numbers "which indicate the pair of pants onto which the
portion of the curve is lifted.

Figure 10

Applying the motion β(jo) we move the projected curve, and as its final position we
get a new curve. See Figure 11.

Figure 11

The sheet numbers attached to the new curves are determined by Proposition 3.2.
The curve in Figure 11 is lifted to a curve on Fσo as shown in Figure 12.
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Figure 12

Therefore, the monodromy homeomorphism p (70) should send /i to the curve p
(7o)(fι) of Figure 12. By the same method, we can draw the images p (7o)(/2), p (70)^3),
p (To)(mι), p (τo)(m2), p (τo)(m3), p (τo)(m4), p (τo)(m5), P (To)(m6) as in Figure 13.

Figure 13

LEMMA 3.3. Let h,h! : Fσo -^ Fσo be orientation preserving homeomorphisms.
Suppose for each curve C in {/ι,/2, /s,mι, m2,m3, m4,m5,m6} Me zmα^e /ι(C) is freely
homotopic to h'(C}. Then h is isotopic to h1.
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Observe that each component of the complement of the union of the curves / ι ,/2 ,

/3,mι, m2, 7713,7714,7715,7716 is an open disk and that no point is common to 3 or more
curves. Then to prove Lemma 3.3 one can follow the arguments in the proofs of Lemmas

2.6 and 2.7 of Casson-Bleiler [2].
The first equality in Theorem 2.1 is proved by checking that the homeomorphism

on the right hand side has the same images of /i, /2, '3, TOI,^2> 7713,7714, ̂ 5? ^6 as p(jo)>
and then applying Lemma 3.3. Similarly for the rest of the equalities.

The author found the products of Dehn twists on the right hand sides of these
equalities simply by trial and error.
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