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GROUP ACTIONS AND DEFORMATIONS FOR
HARMONIC MAPS INTO SYMMETRIC SPACES

BY YOSHIHIRO OHNITA

Let M and N be Riemannian manifolds. The energy of a smooth map φ : M —> N
is defined as

= \ I \\dφ\\2dv.
2 JMIM

A smooth map φ is called harmonic if the first variation of the energy vanishes for every
smooth variation of φ with compact support. In the case dimM = 2, since the energy
is invariant under conformal deformations of the Riemannian metric on M, it is natural
to consider a Riemann surface Σ rather than a Riemannian manifold M as the domain
manifold.

This article is concerned with two related areas of harmonic map theory group
actions and deformations for harmonic maps of Riemann surfaces Σ into symmetric
spaces N.

The action of a certain infinite dimensional Lie group and algebra on harmonic
maps from a simply connected Riemann surface, especially a Riemann sphere, into a
compact Lie group or a symmetric space have been investigated by Uhlenbeck [Uh],
Zakharov-Shabat-Mikhailov [ZM,ZS] others. In a joint paper with M.A. Guest ([GO1]),
we have shown how the action of a infinite dimensional Lie group can be interpreted in
terms of the Grassmannian model in Loop Group Theory (cf. [PS],[Se]) and investigated
its geometric nature, and as an important application we discussed deformations of
harmonic maps from the viewpoint of Morse-Bott theory over twistor spaces. Using this
idea, we have given results on the connectedness of spaces of harmonic 2-spheres in
the standard sphere 5n, the real projective space RPn (see also [Ko]) and the complex
projective space CPn, the unitary group ί/(n), and in [FGKO] we have determined the
fundamental group of the space of harmonic 2-spheres in Sn.

In Section 1 and 2 we shall review the construction of extended solutions of harmonic
maps into Lie groups and the natural action of the complex loop group on harmonic
maps into Lie groups. In Section 3 we shall discuss group actions on harmonic maps into
symmetric spaces of inner type and in Section 4 we shall mention further results on the
connectedness of certain spaces of harmonic 2-spheres in symmetric spaces. These are
joint works with M.A. Guest and M.Mukai in progress.

1. Extended solutions for harmonic maps

Let us begin with the definition of the notion of extended solutions of harmonic maps
into Lie groups. Let G be a compact connected Lie group and g be its Lie algebra. We
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equip G with a biinvariant Riemannian metric. Then G becomes a compact Riemannian
symmetric space. Denote by μ — μg the (left invariant) Maurer-Cartan form of G, which
satisfies the Maurer-Cartan equation

Now let φ : Σ — >• G be a smooth map of a Riemann surface Σ into G. Set α = φ* μ =
φ~ldφ, which is a 1-form with values in g. Then it satisfies

dα+-[αΛα] = 0. (1)

We shall decompose the 1-form α into a, = α' + α", where α/ and α" denote the (1,0)-
part and (0, l)-part of a with respect to the complex structure of Σ. It is known (cf.
[Uh]) that the map φ is harmonic if and only if

da'-d<*"=Q. (2)

Let ΩG = {7 : 51 — * G smooth ,τ(l) = e} be the group of based smooth loops
in G. (The completion of) ΩG has the standard infinite dimensional complex manifold
structure and Kahler structure (cf. [PS]). We identify the complexified tangent space
TeΩGc with the based loop algebra Ωgc = φa^0(Xa - 1)0°. The (left-invariant) com-
plex structure is defined as

T.ΩG1'0 = φ(λ~α - l)βc.
α>0

Define a surjective map π : ΩG — > G by π(j) = 7(— 1).
We call an extended solution (of a harmonic map) a smooth map Φ : Σ — »• ΩG

satisfying the condition

Φ*μnG(TΣl>°) = Φ~ldΦ(TΣl>°) C (\~l - 1)9°

We should remark that an extended solution Φ : Σ — » ΩG is a holomorphic map
relative to the above standard complex structure of ΩG.

THEOREM 1.1 [Po,Uh,ZS,ZM].
(1) IfΦ:Σ — »• ΩG is an extended solution, then ψ = π o Φ : Σ — > G is harmonic.
(2) Assume that Σ is simply connected. Let φ : Σ — » G be a harmonic map. For

ZQ G Σ and 6 G ΩG; there is a unique extended solution Φ : Σ — >• ΩG such that
Φ(zQ) = δ and π o Φ = cφ for c = δ(— l)φ(zQ)~1 G G.

This fact is obtained as follows : assume that a — ot + a" is a g-valued 1-form
on Σ, where a' and α" are the (l,0)-part and (0,l)-part of α, respectively. For each
A G 5 X = { A G C I |λ |= 1}, define

αλ = ̂ (l-A-V + 5(l-A)α / / .

Consider the linear partial differential equation of the first order : for each λ G S1,

or equivalently
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Then the important observation is that the complete integrability condition of (*) or
(**)

dθi\ + - [a\ Λ aχ] = 0 for all λ G Sl (3)

is equivalent to (1) and (2). Therefore we obtain the above theorem.
Assume that G = U(n). If a harmonic map φ : Σ — >• U(n) admits an extended

solution Φ : Σ — > ΩU(n) with π o Φ = aφ for some α G U(ri) which has finite Fourier
expansion

then we say that φ has finite umton number. Such a minimal number ra is called the
minimal uniton number of φ. This concept was introduced in [Uh] and she proved that
harmonic maps of finite uniton number can be factorized into so called unitons. This
shows how such harmonic maps may be constructed from holomorphic maps into complex
Grassmann manifolds. It is known (see [OV]) that a harmonic map of finite uniton
number is weakly conformal and thus a branched minimal immersion. Uhlenbeck [Uh]
showed that any harmonic map φ : S2 — » U(n) always has finite uniton number.

2. Loop group actions on harmonic maps

First we recall the notion of the Grassmannian model of ΩG (Quillen, [PS]).
Let G be a compact connected Lie group with trivial center with Lie algebra 9.

The Grassmannian model of ΩG is defined as follows ([PS]) : we consider H = Hβ =
£2(5'1>8C)) which has a complex Lie algebra structure of infinite dimension. The loop
groups LGC and LG act on HQ via the adjoint representation. We shall decompose
H = H+ 0 H- , where ff+ is the closed subspace of all functions with Fourier expansion

and H- = # X Define

= {W G Groo I W = \W, Wsm is a Lie algebra }

Here Wsm denotes the subspace of smooth functions in W. Then the loop groups LGC

and LG act transitively on Gr^ and their isotropy groups at H+ G Gr^ are L+GC and
G, respectively. Thus we get the identifications

Gr£ S LGC/L+GC S LG/G * ΩG.
Then the diffeomorphism ΩG — > Gr£> is given by γ i — > jH+. Hence we have the
following fact which is referred to the Iwasawa decomposition for loops ([PS]) : each
7 G LGC can be uniquely decomposed as

7 = T«T+ι
where ju G ΩG and 7+ G L+GC.

Let W : Σ — > Gr^ be the map corresponding to a smooth map Φ : Σ — > ΩG by
W(z) = Φ(z)H+ for all z G Σ. Then Φ is a holomorphic map if and only if W satisfies

Moreover, a holomorphic map Φ is an extended solution if and only if W satisfies

c \
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DEFINITION. The natural action of LGC on ΩG is defined as follows : for each
7 E LGC and each δ £ ΩG, then

or equivalently

on the Grassmannian model.

For any 7 £ LGC and any extended solution Φ : Σ — > 1?G, we define a map
7llΦ : Σ1 — > ί?G by (7^)(z) — ( j Φ ( z ) ) U y or equivalently in terms of the Grassmannian
model (^Φ}(z)H+ - jΦ(z)H+, for each z E Σ. Then it was shown in [GO1] that the
map 7^Φ : Σ — » ΩG is an extended solution. Hence we have

THEOREM 2.1 [GO1]. Assume that Σ is a simply connected Riemann surface. Then
the complex loop group LGC acts on the space of harmonic maps φ : Σ — > G.

The S^action J on ΩG (cf. [Uh]) is defined as

for each v G S1 and each 7 G ΩG. This 51-action β preserves the standard complex
Kahler manifold structure of ΩG.

3. Group actions on harmonic maps into symmetric spaces

We shall discuss actions of the complex loop group on harmonic maps into compact
symmetric spaces of inner type.

Let G be a compact connected Lie group with trivial center with Lie algebra Q.
Assume that M = G/K is a compact symmetric space with symmetric pair (G, K, σ),
where σ is an involutive automorphism of G and (Gσ)° C K C Gσ, where Gσ and (Gσ)°
are the subgroup of all fixed elements by σ and its identity component, respectively.
Define the subgroups of LGC and LG by

L(GC, σ) = {7 € LGC \ σ(γ(A)) = γ(-A) for all A € S1}

and L(G, σ) = LG Π L(GC :, σ). Then we have

THEOREM 3.1 [GO2]. ^4ssume <Λα^ Σ as α simply connected Riemann surface. Then
the complex loop group L(G , σ) αc^5 on Me space of harmonic maps φ : Σ — > G/K.

Here, in the case where M = G//ιf is a symmetric space of inner type, we introduce
a loop group action different from above.

Set N = {α G G | α2 = e}. Each connected component of TV is a totally geodesic
submanifold of even dimension, which is called a polar of G and was investigated by T.
Nagano. They are compact symmetric spaces of inner type and all compact symmetric
spaces of inner type can be obtained in this way. Now we define the subgroups of LG
and LG as

L'GC = {je LGC I T(λ) = 7(-λ) for all A G S1}
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and

L+>'G =

We define a loop subspace of ΩG by

Ω'G = {7 € ΩG I 7(A) = τ(-λ)T(-l)-1 for all λ G 51}.

The surjective map π : Ω'G — > N is defined as the restriction of π : ΩG — » G. Set

Grg = {We Gr^ \ τ(W) = W},

where r(/)(λ) = /(-λ). Then we have

Gr*£ S L'GC/L+>'GC * L'G/G S Ω'G.

Assume that φ : Σ — > N is a harmonic map of a simply connected Riemann surface
Σ into the symmetric space N. For each 6 G Ω'G with τr(ί) = ί_ι = ^>(zo)> by Theorem
1.1 there is an extended solution Φ : Σ — »• ΩG such that Φ(zo) = 6. Then we can show
that φ = π o Φ and the image of Φ is contained in Ω'G. This was proved by [Uh] in the
case of G = U(n). Hence we have

THEOREM 3.2. Assume thai Σ is a simply connected Riemann surface. Then the
complex loop group L'G acts on the space of harmonic maps φ : Σ — >• N .

In this case it is possible to construct finite dimensional twistor subspaces of Ω'G.
Consider

T = {ω G Ω'G I ω(λμ) = ω(λ)ω(μ) for all λ,μ G S1},

which is the set of all fixed points under the 51-action jt Thus each connected component
of F is a totally geodesic, complex submanifold of ΩG (see [EL]). Let ω G ̂ . There is
an element P in Q with exp(tfP) = ω(λ), where λ = e2π^~^t. Then we have a generalized
flag manifold G/Gp, where Cp is a centralizer in G of P. We have the identification

Cp - {α G G I Ad(ά)ω(λ) = ω(λ) for each λ G 51},

and

G/Cp = {Ad(a)ω G Ω'G | a G G}.

Let A" = {α G G | ^4d(α)α;(— 1) = ω(— 1)}. Then we have a compact symmetric space
G/K totally geodesically embedded in G, which is a connected component of N. The
linear endomorphism ad(P) on gc has eigenvalues in 2ττ\/-- TZ and we denote by QI the
2τr"\/--ΐ£-eigenspace of ad(P). We have the eigenspace decomposition of gc with respect
to ad(P) :

Then we have

Cp = go and t =

i even
where CP and t denote the Lie algebras of Gp and K, respectively. We have the natural
projection π : G/Gp —* G/K as a restriction of π : ΩG —> G. This fibration was in-
vestigated by [BR] from the viewpoint of twistor geometry and applications to harmonic
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maps. Relative to the fibration π : G/Cp —> G/K, the complexified vertical subspace
corresponds to φ^ .+ Q even $t and the complexified horizontal subspace corresponds to

®ί odd &• ̂ ne suPer~horizontal subspace ([BR]) corresponds to g_ι φ 91. Let K^ be
a complex Lie subgroup of Gc generated by fc. It is known that if / : Σ —> G/Cp is
horizontal and holomorphic, then π o / : Σ —> G/K is harmonic (cf. [Ra,Sa]).

Under the identifications TeCpG/C$ ~ 0 0̂ & and ZL,ΩGC Si ΓeΩGc ~ φ 0̂ g*,
the derivative at the origin eCp of the embedding i : G/Cp —> Ω'G C ΩG identifies
$1 with (λ~^ — l)$ι (e.g. see [GO1]). Hence we see that if / : Σ —» G/Cp is super-
horizontal and holomorphic, then i o / is an extended solution as a smooth map into
ΩG.

Let GP be the parabolic subgroup of Gc generated by a parabolic subalgebra

Qp ~ ®t£Q 9t Then it is well-known that G/Cp = Gc/Gp and thus it becomes a com-

plex manifold. The embedding t : G/CP = GC/GP —> Ω'G = L'GC/L+>'GC is holo-
morphic and Gc-equivariant with respect to the injective homomorphism Gc —» L'GC

of constant loops. Then the action of G on G/Cp preserves the holomorphicity con-
dition and the super-horizontality condition, and the action of Kc on G/Cp preserves
the holomorphicity condition and the horizontality condition (see [GO2]). But, in gen-
eral, the action of Gc on G/Cp does not preserve the horizontality condition. We can
characterize the twistor fibrations such that the action of G^ on G/Cp preserves the
horizontality condition.

Obviously, if & = 0 for \£\ > 2, the concepts of horizontality and super-horizontality
coincide and hence the action of Gc on G/Cp preserves the horizontality condition. In
this case, adP gives a gradation of this type

0C = g-2 -i- g-i + go + 01 + 02-

Such twistor fibrations over symmetric spaces were investigated and classified by [Br]
and [Sa]. These twistor fibrations form a distinguished class of twistor fibrations over
symmetric spaces. We call such a twistor fibration π : Z —»• M over M standard and
the twistor space Z over a symmetric space M the standard twistor space of M.

PROPOSITION 3.3 (see [GO2]). The action ofGc on G/Cp preserves the horizon-
tal subspaces if and only if the twistor fibration G/Cp —>• G/K is isomorphic to the
standard twistor fibration over M — G/K.

See [Br], [Sa] for the complete list of the standard twistor spaces. The following is a
concrete description for all standard twistor spaces Z over each classical symmetric space
M of inner type. In this list we use the following notation. Let { , ) be the standard
Hermitian inner product on C^ defined by (u,v) = X^ί=1 UiV{. We define the complex
symmetric bilinear form ( , ) on C^ by (u,v) = (u,v). Let J : C2N —> C2N denote the
conjugate linear map corresponding to the left multiplication of j under the identification

HΛΓ s c2N by (zι + zN+ιj, ...,ZN + z^Nj] \—> (*ι,..., zN,zN+ι,..., z2N). We define
the complex symmetric bilinear form ( , )α on H^ = C2N by (t/, v)a = (u, J(v)).

(AIII) In the case M = Grk(CN),
(I) Z = M = Grk(CN) and π = id,
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(2) fθll<p<N-k,

Z = FP,P+k(CN)

= {(Wp,Wp+k) € Grp(C
N) x Grp+k(C

N) | Wp C Wp+k}

and π(Wp, Wp+k) = Wf Π Wp+k,
(3) for 1 < p < k with k = p + q,

Z = *£,(C")

= {(Wp, WN-q) € Grp(C
N) x GrN-g(C

N) \ Wp C WN.q}

and τr(Wp, WN-q) = WP φ W^_q.
(BDI) In the case M = Grk(RN),

(1) for k - 2m and ί odd with TV = k + ί,

Z = Zm(CN) = {W€ Grm(CN) \ (W, W) = 0}

andττ(W) = WΦW,
(2) for k = 1m and I = 2n with TV = k + £,

Z = Zm(CN) = {W€ Grm(CN) \ (W, W) = 0}

and π(W) = W@W,
(3) for k = 2m and t = In with JV = k + 1,

Z = Zn(CN) = {W€ Grn(C
N) \ (W, W) = 0}

and π(W) - (W eW)x .
(CI) In the case M = Sp(n)/U(n) = (V € Grn(C2n) | (V, V)a = 0},

Z = M - Sp(n)/U(n) and π = id.

(CII) In the case M = Grk(HN) = {V € Gr2λ(C2JV) | J(V) = V},
(1) for k + 1 = N, Z = Tt(C2N)

= {W <Ξ Grt(C2N) I (W, W)a = 0}
and π(W) = (W Θ JW)^ ,

(2) for 1 < k < N, Z = T£(C™)

= {W € Grk(C™) I (Hζ W)a = 0}

(Dili) In the case M = SO(1n)/U(n) = {W € Grn(C
2n) \ (W, W) = 0},

(1) Z = M = SO(2n)/U(n) and π = id,
(2) Z = Zlιn(C2")

= {(Wι,Wn) € Gr^C2") x Grn(C2») | W^ C Wn ,(Wn , Wn) = 0}

and π(Wι,Wn) = Wι® (W^ Γ) Wn).

4. Morse-Bott theoretic deformations of harmonic maps

The method of Morse-Bott theoretic deformations of harmonic maps under the group
actions was presented in [GO1]. The natural action of complex loop group LG can be
used to study the space of harmonic maps. The idea is to use a one-parameter subgroup
to deform a given extended solution into a simpler one. In the case at hand, the one-
parameter subgroups induce the gradient flows of suitable Morse-Bott functions and so
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are quite to easy to work with. This analysis leads to results concerning the connectedness
and the fundamental groups of the space of certain classes of harmonic maps.

THEOREM 4.1 [GO1]. Let φ : Σ —> U(n) be a harmonic map of finite uniton num-
ber. Assume that φ has an extended solution Φ = X^-o λaTa satisfying rank TQ(Z) ^ 2
for all z £ Σ. Then φ : Σ —> U(n) can be continuously deformed through harmonic
maps of finite uniton number into a harmonic map ψ : Σ —» U(n — i) of finite uniton
number.

Next we recall the notion of the Gauss bundles and the isotropy (cf. [EL]). Let
φ : Σ —> Gr(CN) be a harmonic map. Let φ denote the complex vector subbundle of
the trivial bundle C^ = Σ x C^ corresponding to the map φ. Then we can define the
<9'-Gauss bundle G'(φ) as a complex subbundle induced by the image of the <9'-second
fundamental form A'φ — π^d : φ —> φ^, and it corresponds to a harmonic map Σ
Gr(CN). Define the ί-th ^-Gauss bundle G^(φ) of φ by G^(φ) = G'(G
inductively. We say that the harmonic map φ is strongly isotropic if all G^\φ) (i ^ 1)
are orthogonal to φ with respect to the Hermitian inner product of C^. A strongly
isotropic harmonic map φ : Σ —>• CPn = Gr1(CN) is called simply isotropic. Any
holomorphic map of a Riemann surface into Gr(CN) is strongly isotropic. It is known
(cf. [EL]) that a harmonic map of a Riemann sphere 52 into 5n, RPn or CPn is always
isotropic as a harmonic map S2 —> (Sn —> RPn C)CPn.

THEOREM 4.2 [GO1]. Ifn ^ 2, then any isotropic harmonic map φ : Σ —> CPn

can be deformed continuously through isotropic harmonic maps into an isotropic har-
monic map ψ : Σ —» CP2. In particular, if n ^ 2, then any harmonic map φ :
S2 —> CPn can be deformed continuously through harmonic maps into a harmonic
map φ :S2 —> CP2.

CONJECTURE (cf. [GO1]). The space of harmonic maps of a Riemann sphere S2

into CPn with fixed energy and fixed degree is path-connected.

By Theorem 4.2, it suffices to verify this conjecture in the case n = 2. Very recently
this has been proved by T. A. Crawford [Cr].

THEOREM 4.3 [Ko],[GOl]. Ifn^2, then any isotropic harmonic map φ : Σ —>•
Sn can be deformed continuously through isotropic harmonic maps into a holomorphic
map ψ : Σ —> 52. In particular, ifn^2, then any harmonic map φ : S2 —» Sn can be
deformed continuously through harmonic maps into a holomorphic map ψ : S2 —>• S2.

Let Harmk(S2

JS
n) be the space of harmonic 2-spheres in the n-dimensional unit

sphere Sn of energy 4πk, where k is a positive integer. It is well-known that if n = 2,
then Harnik(S2,S2) has just two connected components consisting of the spaces of
holomorphic maps of degree k and anti-holomorphic maps of degree — k.

COROLLARY 4.4 [Ko], Ifn^Ά, then Harmk(S2,Sn) is path-connected and hence
#αrmfc(52,RPn) is also path-connected.
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In the case n = 4 this result was proved by Loo [Lo] and independently Verdier [Ve].
Kotani [Ko] proved the above result for n ̂  3.

It is known that each of Harπik(S2,S2) has fundamental group Z/2&Z ([Ep]). More-
over, in [FGKO] we have determined the fundamental group of the space Harmk(S2,Sn).

THEOREM 4.5 [FGKO].

^Harmk(S2,Sn) =

There is a similar result for #αrmfc(S2,RPn) as follows.

THEOREM 4.6 [FGKO].

'Z/2Z z / n > 4 , & ^ 2

πlHarmk(S2,RP")=\Z/2Z®Z/2Z *"**>* = *
V ' ' j Z/2&ZΘZ/2Z i f n = 3

Z/2&Z z/n = 2

We want to mention the connectedness of the space of harmonic 2-spheres in a
quaternionic projective space HPn. Bahy-El-Dien and Wood [DW2] gave the construc-
tion theory of all harmonic 2-spheres in HPn.

The quaternionic projective space HPn has two standard twistor spaces CP2n+1

and Tn ([Br],[Gl]). We have the identification

HPn = {V G Gf2(C2<n+1>) | V = JV}.

The twistor space Tn over HPn is defined

Tn = {W G Grn(C2(n+1)) I (W, W)a = 0}

with the projection π(W) - (W® JW}L. The twistor space CP2n+1 over HPn is defined
by the projection π(L) = L Θ JL.

We know that any strongly isotropic harmonic map into HPn can be lifted to a
horizontal holomorphic map into Tn ([Gl]), and any harmonic map into HPn which
can be lifted to a horizontal holomorphic map into CP2n+1 is called a quaternionic
mixed pair by [DW2]. Though any harmonic 2-sphere in HPn which is neither strongly
isotropic nor a quaternionic mixed pair can not be lifted to a horizontal holomorphic
map in CP2n+1 or 7^, such a harmonic 2-sphere can be transformed to a quaternionic
mixed pair by a finite number of forward and backward replacements ([DW2]). It is easily
shown ([DW2]) that any harmonic 2-sphere in HP1(= S4) is always strongly isotropic
or a quaternionic mixed pair.

Let Harmε(S2,HPnytlsot and Harm£(S2, HPn)* m *> be the spaces of harmonic
maps of 52 into HPn with fixed energy which are strongly isotropic and which are
quaternionic mixed pairs, respectively. Applying the argument of [GO1] to horizontal
holomorphic maps into the twistor spaces CP2n+1 and Tn over HPn, M. Mukai (Tokyo
Metropolitan Univ.) showed the following.
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THEOREM 4.7 [Mul]. Harms (S2

 )HPΛ)5ί 250ί and Harms (S2,HPn)«-m^ are
path- connected. Moreover, the space of harmonic maps of S2 into HPn with fixed energy
which are strongly isotropic or quaterniomc mixed pairs,

Harmε(S2,HPn)st*$ot {jHarmε(S2,HPnym'p ,

is also path- connected.

PROBLEM. Is it true that the space Harms(S2 , HPn) of all harmonic 2-spheres in
HPn of fixed energy is path-connected ?

Furthermore, we obtained similar results for a real Grassmann manifold
Gr2(Rn+2), a complex hyperquadric Qn(C) ([Mu2]) and more generally for compact
classical symmetric spaces of inner type ([Mu3]). Next we shall mention those results.

Let

Qn(C) = {L G

be the complex hyperquadric and Gr2(Rn+2) be the real Grassmann manifold of oriented
2-planes in Rn+2. Then we have the natural identification Gr2(Rn+2) S QΛ(C). Let
Gr2(Rn+2) be the real Grassmann manifold of 2-planes in Rn+2.

The complex hyperquadric Qn(C) has two standard twistor spaces, namely Qn(C)
itself and for n = 2m

Zm = {We Grm(C2m+2) I (W, W) = 0}

with the projection π(W) = (W Θ W)1.
The real Grassmann manifold Gr2(Rn+2) has two standard twistor spaces, namely

Qn(C) with the projection π(L) = L 0 L (double covering) and for n — 2m

Zm = {W G Grm(C2™+2) I (W, W) = 0}

with the projection π(W) = (W Θ W)-1 .
Bahy-El-Dien and Wood [DW1] also gave the construction theory of all harmonic

2-spheres in Qn(C) and Gr2(Rn+2). A harmonic map φ : Σ — > Gr2(Rn+2) (c
Gr2(Cn+2)) is strongly isotropic if and only if φ can be lifted to Zm as a horizontal
holomorphic map. A harmonic map φ : Σ — »• Gr2(Rn+2) is called a real mixed pair if
φ can be lifted to <2n(C) as a holomorphic map.

Since #2(<2n(C); Z) = Z for n ^ 3, we can define the degree of φ for each smooth
map φ : S2 — + Qn(C). For n > 3, let ^αrm^(52,Qn(C))5ί ί50t and Hold(S2,Qn(C))
be the space of strongly isotropic harmonic maps of S2 into Qn(C) with fixed energy
and fixed degree and the space of holomorphic maps of S2 into Qn(C) with fixed degree,
respectively. Here we call a harmonic map φ : Σ — > Qn(C) strongly isotropic if φ is
strongly isotropic as a harmonic map φ : Σ — > (Qn(C) — > Gr2(Rn+3)) C Gr3(Cn+a).

In the case n = 2, since #2(ζ?2(C); Z) = H2(CPl x CP^Z) = Z Θ Z, we can
define the bi-degree (degc(φ),degw(φ)) for each smooth map φ : S2 — >• Q2(C). Let
HarπidC}dy^(S2 , Q2(C)) be the space of harmonic maps of S2 into Q2(C) with fixed
degc(φ) and fixed

THEOREM 4.8.
(1) 7/n ^ 3? f f te 5^αce Harmd)ε(S2, Qn(C))5t ί50t 25 path- connected.
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(2) I f n ^ 3, the space Hold(S2 ,Qn(C)) is path- connected.
(3) The space Harmdc>dvv(S2

yQ2(C)) is path- connected.

For n > 3, let tfαrra^S^G^R"*2))^50*- be the space of strongly isotropic
harmonic maps of S2 into Gr2(Rn+2) with fixed energy and fixed d(φ), where d(φ) —
\deg(φ)\ for a lift φ to Qn(C), and let Harmd(S2, Gr2(Rn+2))r m* the space of real
mixed pairs of S2 into Gr2(Rn+2) with fixed cί(y>).

Let Harmdc,dw,e(S2,Gr2(R4)) denote the space of harmonic maps φ : S2 — >
Gr2(R4) with fixed dc(φ), fixed dw(φ) and fixed sign € (= 1 or — 1) of (degc(φ)) -

(degw(φ))y where d£(y?) = |deg£(^>)| and dw(<£>) = ldegw(^)l for a lift ^ of ^ to

Q2(C).

THEOREM 4.9.
(1) I f n > 3, the space Harmd)ε(S2,Gr2(Έin+2))stΛSOt is path- connected.
(2) //n ^ 3, ttc space Harmd(S2,Gr2(Rn+2)y m p is path- connected.
(3) The space Harmdc^d^,e(S2 ,Gr2(R4)) zs path- connected.

Let M be a compact symmetric space of inner type and Z be the standard twistor
space of M with the projection π : Z — > M (see Section 3). We consider the space of
all harmonic map φ : S2 — > M which can be lifted to a horizontal holomorphic map
into Z.

THEOREM 4.10.
(1) Hold(S2,Grk(CN)) is path- connected for k>2, N-k>2.

(2) Harmε(S2,Grk(RN))W is path- connected for k > 4, N - k > 3.

(3) Harmε(S2, Grk(ΈlN))M is path- connected for k > 4, N - k > 4.

(4) Harmε(S2,Grk(RN))W is path- connected for k > 4, N - k > 4.
(5) Hold(S2,Sp(n)/U(n)) is path- connected for n ̂  2.
(6) Harmε(S2

tGrk(HN))W is path- connected for k > 2, N - k > 2.
(7) Harmε(S2,Grk(HN))W is path- connected for k ̂  2, N - k > 2.
(8) Hold(S2,SO(2n)/U(n)) is path- connected for n>3.

Here Harms (S2 ,Grk(RN))^ denotes the space of all harmonic maps of S2 into

Grk(HN) with fixed energy which can be lifted as horizontal holomorphic maps to
the standard twistor space of (i) in (BDI) of the list of Section 3, and Harms (S2,
Grk(HN))(l) denotes the space of all harmonic maps of S2 into Grk (ΆN) with fixed
energy which can be lifted as horizontal holomorphic maps to the standard twistor space
of (i) in (CII) of the list of Section 3.

Remark.
(1) In the case (AIΠ)-(2) : φ can be deformed continuously through harmonic maps

into a (strongly isotropic) harmonic map into Grk(Ck+2).
(2) In the case (AIII)-(3) : φ can be deformed continuously through harmonic maps

into a harmonic map (mixed pair) into Gr2(CΛΓ~fc+2).
(3) In the case (DIII)-(2) . Our argument using Morse-Bott theoretic deformations to

a subtwistor space does not work.
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In a forthcoming paper, we will discuss these works in detail including results on
fundamental groups of these spaces of harmonic 2-spheres.
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