THE REAL PART OF DECOMPOSITION OF A POLYNOMIAL AND ITS DETERMINACY

BY ZHANG GUOBIN AND SUN WEI-ZHI

1. Introduction

Let f(x,y), $g(x,y) : (\mathbb{R}^2,0) \to (\mathbb{R},0)$ be two C^{∞} function-germs. Germs f and g are called to be r-jet equivalent if at (0,0), their derivatives of degree not greater than r are identical. Denote this fact by $j^r(f) = j^r(g)$. Germ f is called to be C^{0} -r-determined if for each germ g with $j^r(f) = j^r(g)$, there exists a germ of homeomorphism $h : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ such that $f \circ h = g$. f is called to be C^{0} -finitely-determined if it is C^{0} -r-determined for some r. The degree of C^{0} -determinacy of f is the least number such that f is C^{0} -r-determined.

Germs f and g are called to be V-equivalent if germs $f^{-1}(0)$ and $g^{-1}(0)$ are homeomorphic.

Let $P_0(n,k;\mathbb{R})$ denote the set of topological equivalence classes of germs of real polynomials in n variables of degree $\leq k$, and $P_0(n,\mathbb{R})$ the set of those classes for all k. T. Fukuda [1] proved the Thom's conjecture: $P_0(n,k;\mathbb{R})$ is a finite set. How about $P_0(n;\mathbb{R})$? It is easy to see that $P_0(1;\mathbb{R})$ contains only three elements. For example, the germs $y = x^2$ and $y = x^4$ are C^0 -equivalent (V.I. Arnol'd etc. [2], p. 12). In general, $y = x^{2m}$ and $y = x^{2n}$ belong to be the same class, and $y = x^{2m+1}$ and $y = x^{2n+1}$ belong to be the another class.

2. Homogeneous case

Let P(x, y) be a germ of a real homogeneous polynomial of degree k. Then

$$P(x,y) = a(x-b_1y)\cdots(x-b_sy)(x-c_1y)\cdots(x-c_my)$$

where $a, b_i \in \mathbb{R}, a \neq 0, c_j \in \mathbb{C}$. We have the following.

THEOREM 1. P(x, y) is C^0 -finitely determined if and only if $b_i \neq b_j$ for $i \neq j$. In this case, the degree of C^0 -determinacy of P is k.

THEOREM 2. Homogeneous polynomial-germs P(x, y) and Q(x, y) are V-equivalent if and only if they have the same number of real factors (do not account the repeated number, if $b_i = b_j$ for some i, j).

Remark. The degrees of P and Q may be unequal when they are V-equivalent.

Received May 18, 1993.

COROLLARY 3. $P_0(n; \mathbb{R})$ is infinite for $n \geq 2$.

3. Non-homogeneous case

Let F(x, y) be a germ of the following form

$$F(x, y) = x^{n} + A_{1}(y)x^{n-1} + A_{2}(y)x^{n-2} + \dots + A_{n}(y)$$

where $A_i(y)$ is a real polynomial of y. By Newton-Puiseux Theorem,

$$F(x,y) = (x-p_1(y))\cdots(x-p_s(y))(x-q_1(y))\cdots(x-q_m(y))$$

where $p_i(y)$ is a real fraction power series in y and $q_i(y)$ has some complex coefficients.

Remark. The coefficients of p_i, q_j can be computed effectively out, so p_i and q_j are called the Puiseux roots.

THEOREM 4. If p_1, \ldots, p_s are mutually distinct, then F(x, y) is C^0 -finitely-determined.

4. Proofs

LEMMA 1 (Y.C. Lu [3], Theorem 2). Let $Z(x, y) = Z_1 Z_2 \cdots Z_q$, where $Z_1(x, y)$ is homogeneous of degree a_j and the degree of C^0 -determinacy of Z_j is k_j . Moreover, $\{Z_1, Z_2, \ldots, Z_q\}$ is pairwise relatively prime. Then Z is C^0 -m-determined, where

$$m = \max_{1 \leq i \leq q} \left\{ \sum_{j=1}^{q} a_j - a_i + k_i \right\}$$

LEMMA 2 (T.C. Kuo [4], Corollary 1). Let H(x, y) be homogeneous of degree k. If H(x, y) = 0 is a non-singular projective variety, i.e. grad H(x, y) = 0 only when x = y = 0, then H is C^{0} -k-determined.

Proof of Theorem 1. (1) Necessity. If P has a real repeated factor, we have

$$P = (x - ay)^r B(x, y), a \in \mathbb{R}, r \ge 2.$$

Then x - ay is a comon factor of $\frac{\partial P}{\partial x}$ and $\frac{\partial P}{\partial y}$, so the line x - ay = 0 is contained in $\left(\frac{\partial P}{\partial x}\right)^{-1}(0)$ and $\left(\frac{\partial P}{\partial y}\right)^{-1}(0)$, and (0,0) is not an isolated critical point of P. By Bochnack and Lojasiewicz [5], P is not C^0 -finitely-determined.

(2) Sufficiency. If P has no any real repeated factors, we have

(A)
$$P = a \prod_{i=0}^{s} (x - b_i y) \prod_{j=0}^{m} (x^2 + c_j x y + d_j y^2)^{w_j}$$
$$= a Z_1 Z_2 \cdots Z_{s+m}. \quad \text{where } c_j^2 - 4d_j < 0, \quad j = 1, 2, \dots, m.$$

If $i \neq j$, Z_i and Z_j are relatively prime. Let g(x, y) = x - by, $b \in \mathbb{R}$. Obviously, g is C^{0} -1-determined. Let $h(x, y) = (x^2 + cxy + dy^2)^t$, $c^2 - 4d < 0$, $t \ge 1$, then $x^2 + cxy + dy^2 = 1$ is an elliptic curve, so under new coordinate system, h has the following form:

$$h(x,y) = \left(x^2 + y^2\right)^t$$

For $\frac{\partial h}{\partial x} = 2tx(x^2 + y^2)^{t-1}$, $\frac{\partial h}{\partial y} = 2ty(x^2 + y^2)^{t-1}$, then grad h = 0 only when x = y = 0. By Lemma 2, h is C^0 -k-determined.

Denote the degree of Z_j by a_j , and the degree of C^0 -determinacy of Z_j by k_j , then $a_j = k_j$ for all j from the above argument and $\sum_{j=1}^{s+m} a_j = k$. Hence by Lemma 1, P is C^0 -k-determined.

Example. Let $P(x, y) = x^5 + y^5$. Since $z^5 + 1 = 0$ has only one real root, so P has only one real factor of its decomposition. By Theorem 1, P is C^{0} -5-determined. From D. Siersma [6] (p. 26), P is C^{∞} -6-determined. By Y.C. Lu [7] (p. 59), P is not C^{∞} -5-determined. This example and Theorem 1 show that for germs of homogeneous polynomials, the degree of C^{0} -determinacy is exactly the degree of polynomial if it is finite-determined, but it is not ture for the smooth case.

Proof of Theorem 2. In the express (A), P(x, y) = 0 if and only if either $x - b_i y = 0$ or $x^2 + c_1 xy + d_j y^2 = 0$ is satisfied. The curve $x - b_i y = 0$ is a straight line T_i passing through the origin, and the curve $x^2 + c_1 xy + d_j y^2 = 0$ contains only one point (0,0), because $c_i^2 - 4d_j < 0$, then $P^{-1}(0)$ consists of lines T_i .

It is easy to see that $P^{-1}(0)$ and $Q^{-1}(0)$ have the same topological type if and only if they have the same number of lines T_i .

Proof of Corollary 3. For n = 2, let $f_k(x,y) = (x-y)(x-2y)\cdots(x-ky)$. By Theorem 2, f_i is not C^0 -equivalent to f_j for $i \neq j$. For n > 2, let $\overline{f}_k(x_1, \ldots, x_n) = (x_1 - x_2)\cdots(x_1 - kx_2)(x_3^2 + \cdots + x_n^2)$, then $f_k(x_1, x_2) = \overline{f}_k(x_1, x_2, 0, \ldots, 0)$. Since $f_i(x_1, x_2)$ is not C^0 -equivalent to $f_j(x_1, x_2)$ for $i \neq j$, hence \overline{f}_i is not C^0 -equivalent to \overline{f}_j .

Proof of Theorem 4. For any point D near (0,0),

$$\frac{\partial F}{\partial x} = \sum_{i=1}^{s} [x - p_1(y)] \cdots (x - p_i(y)) \cdots (x - p_s(y))(x - q_1(y)) \cdots (x - q_m(y)) \\ + \sum_{j=1}^{m} (x - p_1(y)) \cdots (x - p_s(y))(x - q_1(y)) \cdots (x - q_j(y)) \cdots (x - q_m(y)).$$

Therefore, $\frac{\partial F}{\partial x} = 0$ at D if and only if D = (0,0), and so (0,0) is the isolated critical point of F. By Kuo-Bochnack-Lojasiewicz Theorem, F is C^0 -finitely-determined.

The authors would like to thank Professor T.C.Kuo for his helpful talk about Theorem 4.

Reference

- [1] T. Fukuda, Topologiques Des polynomes, I. H. E. S. Publ. Math. 46, (1976), 87-106.
- [2] V.I. Arnol'd, S.M. Gusein-Zade and A.N. Varchenko, Singularities of Differentiable Maps, Vol. I, Birkhauser, Boston Inc., 1985.
- [3] Yung-Chen Lu, Sufficiency of jets in J^r(2,1) via Decomposition, Invent. Math. 10 (1970), 119– 127.
- [4] T.C. Kuo, On C^0 -sufficiency of jets of potential functions, Topology 8 (1969), 167–171.
- [5] J. Bochnack and S. Lojasiewicz, A converse of the Kuiper-Kuo Theorem, LNM-Springer 192 (1971), 254-261.
- [6] D. Siersma, Classification and deformation of singularities, Ph. D. thesis, Academis Service, Vinkveen (1974).
- [7] Y.C. Lu, Singularity Theory and Introduction to Catastrophe, Springer-Verlag, New York, 1976.
- [8] R.J. Walker, Algebraic Curves, Princeton Univ. press, 1950.

ZHANG GUOBIN DEPARTMENT OF MATHEMATICS ZHANJIANG TEACHER'S COLLEGE ZHANJIANG, GUANGDONG, 524048, P. R. CHINA

SUN WEI-ZHI DEPARTMENT OF MATHEMATICS DONG BEI NORMAL UNIVERSITY CHANG CHUN, 130024, P. R. CHINA 441