ON THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF ARRANGEMENTS

BY NGUYEN VIET DUNG

Let V be a vector space of finite dimension. An arrangement of hyperplanes in V is a finite collection \mathcal{A} of hyperplanes of V. An arrangement \mathcal{A} will be said to be real (resp. complex) if V is a real (resp. complex) vector space. The complexification of a hyperplanes H of \mathbb{R}^n is the hyperplane $H_{\mathbb{C}}$ of \mathbb{C}^n having the same equation as H. Given an arrangement \mathcal{A} in \mathbb{R}^n , we have its complexification $\mathcal{A}_{\mathbb{C}}$ to be the complex arrangement $\{H_{\mathbb{C}}; H \in \mathcal{A}\}$ in \mathbb{C}^n .

Given an arrangement \mathcal{A} , we are interested in finding a presentation for the fundamental group $\pi_1(M)$ of the complement

$$M = V - \bigcup_{H \in \mathcal{A}} H$$

in case \mathcal{A} is a complex arrangement, and $\pi_1(M_{\mathbf{C}})$ of the complement of $\mathcal{A}_{\mathbf{C}}$ in case \mathcal{A} is a real arrangement. In [2] we have suggested a geometrical method to compute the fundamental group of a manifold equipped with a suitable cellular decomposition. Also, given a real arrangement \mathcal{A} in \mathbf{R}^n , we have introduced a certain cellular decomposition $\mathcal{C}(\mathbf{C}^n, \mathcal{A})$ of \mathbf{C}^n , induced from the arrangement \mathcal{A} . In this note, we will apply our method to this decomposition to find a presentation for $\pi_1(M_{\mathbf{C}})$ of any real arrangement \mathcal{A} . Such a presentation has been given by M. Salvetti in [4] using his complex. After reducing the problem to the case of dimension 2, W. Arvola has suggested an algorithm to find a presentation for the complement of a complex arrangement. In a sequent paper [3] we will also treat the case when \mathcal{A} is a complex arrangement.

We first recall of our method suggested in [2]. Let \mathcal{M} be a connected topological-manifold of dimension n with a locally finite CW-semicomplex structure $\mathcal{C}_{\mathcal{M}}$ such that \mathcal{M} is 1-codimensionally regular (see [2] for the notion of CW-semicomplex and 1codimensional regularity). Each (n-1)-cell σ of \mathcal{M} is a face of exactly two *n*-cells, say c and c'. Then we have two *n*-intervals $[c, \sigma, c']$ and $[c', \sigma, c]$. We specify one of them by $[\sigma]$ and the other by $[\sigma]^{-1}$. A *n*-path γ on \mathcal{M} is a join of a finite number of *n*-intervals

$$\gamma = [\sigma_1]^{\epsilon_1} \vee [\sigma_2]^{\epsilon_2} \vee \cdots \vee [\sigma_k]^{\epsilon_k},$$

where $\epsilon_i = \pm 1$, σ_i are (n-1)-cells of \mathcal{M} , $1 \leq i \leq k$. If $[\sigma_1]^{\epsilon_1} = [c, \sigma_1, c_1]$ and $[\sigma_k]^{\epsilon_k} = [c_k, \sigma_k, c']$, for some *n*-cells c, c_1, c_k and c' we say that γ is a *n*-path from c to c'. Among *n*-paths on the manifold \mathcal{M} we have defined in [2] a certain equivalence relation.

Let \mathcal{M} be given a base point * belonging to a certain *n*-cell c_0 . Then, the equivalence classes of closed *n*-paths at * form a group denoted by $\pi_1(\mathcal{C}_{\mathcal{M}}, *)$. In [2] we have proved the isomorphism $\pi_1(\mathcal{C}_{\mathcal{M}}, *) \cong \pi_1(\mathcal{M}, *)$. So, in order to compute $\pi_1(\mathcal{M}, *)$, it suffices to compute $\pi_1(\mathcal{C}_{\mathcal{M}}, *)$. And the latter can be determined by means of the decomposition $\mathcal{C}_{\mathcal{M}}$ as below

Received June 28, 1993.

We call a *n*-tree T of \mathcal{M} a family of *n*-cells and (n-1)-cells of $\mathcal{C}_{\mathcal{M}}$ such that each (n-1)-cell of T is a face of exactly two *n*-cells of T and the union of all cells in T is simply connected. A *n*-tree T is maximal if it is not contained in any othe *n*-tree. It is easily seen that such a maximal *n*-tree exists and it contains all *n*-cells of $\mathcal{C}_{\mathcal{M}}$. Let K be a subspace of \mathcal{M} which is the underlying space of a CW-subsemicomplex of codimension 2 of \mathcal{M} . Then we have

THEOREM 1 (see [2]). Let \mathcal{M} be a connected manifold with a 1-codimensionally regular CW-semicomplex structure $\mathcal{C}_{\mathcal{M}}$ and T a maximal n-tree of $\mathcal{C}_{\mathcal{M}}$. Let K as above. Then $\pi_1(\mathcal{M} - K, *)$ has a presentation with generators g_s indexed by the set $\mathcal{M}^{(n-1)} - \mathcal{M}^{(n-2)}$ of all (n-1)-cells of \mathcal{M} , with following defining relations

(i) $g_{\sigma} = 1$ if $\sigma \in T$

(ii) $g_{\sigma_1}^{\epsilon_1} \cdot g_{\sigma_2}^{\epsilon_2} \cdots g_{\sigma_q}^{\epsilon_q} = 1$ if $[\sigma_1]^{\epsilon_1} \vee [\sigma_2]^{\epsilon_2} \vee \cdots \vee [\sigma_q]^{\epsilon_q}$ is well defined and is a closed *n*-path around some (n-2)-cell of $\mathcal{M} - K$, *i.e.* $\sigma_1, \ldots, \sigma_q$ having a common (n-2)-face in $\mathcal{M} - K$.

Next we recall of the decomposition $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ induced from the arrangement $\mathcal{A} = \{H_s; s \in I\}$ of hyperplanes in a *n*-dimensional real vector space $V = \mathbb{R}^n$. For each $s \in I$ we have a linear function $u_s : V \to \mathbb{R}$ with $H_s = \ker u_s$. Clearly, $V - H_s$ consists of two components $V_s^+ = \{x \in V : u_s(x) > 0\}$ and $V_s^- = \{x \in V : u_s(x) < 0\}$. In a natural way, the arrangement \mathcal{A} induces a cellular decomposition $\mathcal{C}(V, \mathcal{A})$ of V. An arbitrary cell of $\mathcal{C}(V, \mathcal{A})$ is an equivalence class with respect to the following equivalence relation

"x and y are equivalent if $u_s(x) \cdot u_s(y) > 0$ or $u_s(x) = u_s(y) = 0$ for all $s \in I$."

It is easily seen that a *n*-cell of $\mathcal{C}(V, \mathcal{A})$ is a connected component of $V - \bigcup_{s \in I} H_s$ and is usually called a chamber of \mathcal{A} . A cell of dimension lower than n is contained in the closure \overline{c} of a certain chamber c. The closure of such a cell is the intersection $\overline{c} \cap \{\bigcap_{j=1}^{l} H_{s_j}\}$ of \overline{c} and some hyperplanes of \mathcal{A} . We denote this cell by c_{s_1,\ldots,s_l} . For each cell e of $\mathcal{C}(V,\mathcal{A})$ we denote by |e| the intersection of all hyperplanes of \mathcal{A} containing e and call it the support of e. Then it is easily seen that $|c_{s_1,\ldots,s_l}| = \bigcap_{j=1}^{l} H_{s_j}$.

Let us consider the complexification $\mathbf{C}^n = V + \iota V$ of V, where ι denotes $\sqrt{-1}$, the imaginary unit. Then we have the complexification of the arrangement \mathcal{A} , $\mathcal{A}_{\mathbf{C}} = \{H_s + \iota H_s; s \in I\}$, in \mathbf{C}^n with the complement $M_{\mathbf{C}} = V_{\mathbf{C}} - \bigcup_{s \in I} (H_s + \iota H_s)$. The arrangement \mathcal{A} induces also a cellular decomposition $\mathcal{C}(\mathbf{C}^n, \mathcal{A})$ of \mathbf{C}^n as follows.

(a) An arbitrary 2*n*-cell in $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ is of the form $c + \iota V$, where c is a chamber of $\mathcal{C}(V, \mathcal{A})$.

(b) An arbitrary (2n-1)-cell in $\mathcal{C}(\mathbf{C}^n, \mathcal{A})$ is of the form $c_s + \iota V_s^{\epsilon}$, $\epsilon = +$ or -, with c_s and V_s^{ϵ} as in the above notations.

(c) A cell of dimension $\leq 2n - 1$ is of the form

$$c_{s_1,\ldots,s_k}+\iota D,$$

where D is any cell in $\mathcal{C}(V, \{H_{s_1}, \ldots, H_{s_k}\})$.

Remark 2. Denoting $V_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k}$ to be the intersection $V_{s_1}^{\epsilon_1}\cap\ldots\cap V_{s_k}^{\epsilon_k}$, with $s_j \in I, \epsilon_j = +$ or -, we observe that any (2n-2)-cell of $\mathcal{C}(\mathbb{C}^n,\mathcal{A})$ lying in the complement M will be of the form

$$c_{s_1,\ldots,s_k} + \iota V_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k}$$

where c_{s_1,\ldots,s_k} is a cell of codimension 2 of $\mathcal{C}(V,\mathcal{A})$.

Now we will use theorem 1 and this decomposition $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ to give a presentation for the group $\pi_1(M_{\mathbb{C}}, *)$. According to Theorem 1, we have a presentation of the fundamental group of the complement $\pi_1(M)$ with generators corresponding to (2n-1)-cells of $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ and with defining relations given by (2n-2)-cells of $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ lying in Mmodulo a chosen maximal 2n-tree T. We will denote by g_{σ}^+ and g_{σ}^- the generators corresponding to $\sigma + \iota V_s^+$ and $\sigma + V_s^-$ respectively, where σ is any (n-1)-cell of $\mathcal{C}(V, \mathcal{A})$ with the support $|\sigma| = H_s \in \mathcal{A}$. Now we try to simplify this presentation.

LEMMA 3. We can choose a maximal 2n-tree T_0 of $\mathcal{C}(\mathbb{C}^n, \mathcal{A})$ so that in the group $\pi_1(M)$ we have $g_{\sigma}^- = 1$ for any (n-1)-cell σ of $\mathcal{C}(V, \mathcal{A})$.

Let T be the maximal 2n-tree as in Lemma 3. According to Theorem 1 (i), the fundamental group $\pi_1(M)$ has the set of generators $\{g_{\sigma}^+; \sigma \text{ is a } (n-1)\text{-cell of } \mathcal{C}(V,\mathcal{A})\}$. For the sake of simplicity, from now on, we will denote g_{σ}^+ simply by g_{σ} . We can also prove that two generators corresponding to $(n-1)\text{-cells of } \mathcal{C}(V,\mathcal{A})$ having the same support are conjugate. So, there are as many generators as there are hyperplanes in \mathcal{A} . Denote the generator corresponding to the hyperplane H_s by $g_s, s \in I$.

Next we consider the defining relations of the group $\pi_1(M)$. According to Theorem 1 (ii), these relations are given by (2n-2)-cells in M. By Remark 2, any (2n-2)-cell in M will be of the form

$$c_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k} = c_{s_1,\ldots,s_k} + \iota V_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k},$$

where $\epsilon_i = +$ or -, $s_i \in I$ and c_{s_1,\ldots,s_k} is a codimension 2 cell of $\mathcal{C}(V,\mathcal{A})$. We first observe that the (2n-1)-cells of $\mathcal{C}(\mathbb{C}^n,\mathcal{A})$ having $c_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k}$ as a common face are $\sigma_1 + \iota V_{s_1}^{\epsilon_1},\ldots,\sigma_k+\iota V_{s_k}^{\epsilon_k}$, and $\sigma'_1+V_{s_1}^{\epsilon_1},\ldots,\sigma'_k+\iota V_{s_k}^{\epsilon_k}$, where $\sigma_i,\sigma'_i, 1 \leq i \leq k$, are codimension 1 cells of $\mathcal{C}(V,\mathcal{A})$ having c_{s_1,\ldots,s_k} as a common face and $|\sigma_i| = |\sigma'_i| = H_{s_i}, 1 \leq i \leq k$. Looking at a 2-plane perpendicular to $c_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k}$ at an inner point of this cell, we obtain

LEMMA 4. The relation given by
$$c_{s_1,\ldots,s_k}^{\epsilon_1,\ldots,\epsilon_k}$$
 is
 $g_{\sigma_1}^{\epsilon_1}\cdots g_{\sigma_k}^{\epsilon_k} \cdot (g_{\sigma_1'}^{\epsilon_1})^{-1}\cdots (g_{\sigma_k'}^{\epsilon_k})^{-1} = 1.$

Let us consider the codimension 2 cell c_{s_1,\ldots,s_l} of $\mathcal{C}(V,\mathcal{A})$. Changing the sign of linear functions $u_{s_i}, 1 \leq i \leq l$, if necessary, we can assume that $V_{s_1,\ldots,s_l}^{+,\ldots,+} = V_{s_1}^{+} \cap \ldots \cap V_{s_l}^{+} \neq \emptyset$. Then in $\mathcal{C}(V_{\mathbf{C}},\mathcal{A})$ we will have the following (2n-2)-cells : $c_{s_1,\ldots,s_l}^{\epsilon_1,\ldots,\epsilon_l}$, where $(\epsilon_1,\ldots,\epsilon_l)$ runs over the set

 $\{(+,+,\ldots,+,+),(-,+,\ldots,+,+),\ldots,(-,-,\ldots,-,+),(-,-,\ldots,-,-)\}.$

By a direct computation, from the defining relations of the group $\pi_1(M_{\mathbf{C}})$ corresponding to these (2n-2)-cells as determined in Lemma 4 we obtain the set of relations

$$\{g_{\sigma_1}g_{\sigma_2}\cdots g_{\sigma_l}=g_{\sigma_{s(1)}}g_{\sigma_{s(2)}}\cdots g_{\sigma_{s(l)}};s\in C\},\$$

where C is the set of cyclic permutations of $\{1, \ldots, l\}$. Denote this set of relations by $R(c_{s_1,\ldots,s_l})$.

Next we consider two cells of codimension 2 of $\mathcal{C}(V,\mathcal{A})$ having the same support. Suppose they are c_{s_1,\ldots,s_l} and $\tilde{c}_{s_1,\ldots,s_l}$. Then we have (n-1)-cells σ_1,\ldots,σ_l and $\tilde{\sigma}_1,\ldots,\tilde{\sigma}_l$

430

around c_{s_1,\ldots,s_l} and $\tilde{c}_{s_1,\ldots,s_l}$ respectively. Moreover $|\sigma_i| = |\tilde{\sigma}_i| = H_{s_i}, 1 \leq i \leq l$. We can prove that there is a class of *n*-paths λ such that $\lambda g_{\tilde{\sigma}_i} \lambda^{-1} \simeq g_{\sigma_i}, 1 \leq i \leq l$. Combining this and relations $R(c_{s_1,\ldots,s_l})$ and $R(\tilde{c}_{s_1,\ldots,s_l})$ we see that c_{s_1,\ldots,s_l} and $\tilde{c}_{s_1,\ldots,s_l}$ determine the same relation of the group $\pi_1(M)$.

Now substituting to g_{σ_i} the right conjugate of g_{s_i} , the relations $R(c_{s_1,\ldots,s_l})$ translate into the relations amongs g_{s_i} . We denote these relations by $R(s_1,\ldots,s_l)$.

So from above investigations we obtain

THEOREM 5. The fundamental group $\pi_1(M_{\mathbb{C}})$ accepts a presentation with the set of generators $\{g_s; s \in I\}$ and with defining relation $R(s_1, \ldots, s_l)$ whenever $H_{s_1} \cap \ldots \cap H_{s_l}$ is of codimension 2.

Reference

- [1] W. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, to appear in Topology.
- [2] N.V. Dung, The fundamental groups of the space of regular orbits of the affine Weyl groups, Topology 22 (1983), 425-435.
- [3] N.V. Dung-H.H. Vui, Braid monodromy of arrangements of complex lines, (in preparation).
- [4] M. Salvetti, Topology of the complement of real hyperplanes in C^N, Inv. Math. 88 (1987), 603-618.

Hanoi Institute of Mathematics P.O. Box 631 Bo Hô 10000 Hanoi Vietnam