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HYPERSURFACES OF A SPHERE WITH 3-TYPE
QUADRIC REPRESENTATION

By JI-TAN Lu

Abstract

We study hypersurfaces of a sphere with 3-type quadric representation.
Two theorems are obtained, and some eigenvalue inequalities are proved.

0. Introduction

Let @: M*—E™ be an isometric immersion of an n-dimensional compact
Riemannian manifold into the Euclidean space, A and spec(M™)={0<A, <A<+
/+oco} be the Laplacian and the spectrum of M?, respectively. Then we have
the decomposition @=3,.,@,, ucN, where @,: M"— E™ is a differentiable
mapping such that A®,=2,9., moreover @, is a constant mapping (it is the
center of mass of M™"). M? is said to be of finite type if the decomposition
consists of only a finite number of non-zero terms, and of k-type if there are
exactly 2 non-zero @,'s(®,,, -+, @,,) in the decomposition. In the latter case,
we also call the immersion @ to be of k-type.

Finite type submanifolds of a hypersphere S™ !CR™ have been studied by
many authors. For example, see [5], [2], [9], [3]. In [5] mass-symmetric 2-
type hypersurfaces of S™™' were characterized. In [2] it was proved that a
compact 2-type hypersurface of S™! is mass-symmetric if and only if it has
constant mean curvature. [n [9] Nagatomo showed that many 2-type hyper-
surfaces of a hypersphere are mass-symmetric and that there is no compact
hypersurface of constant mean curvature in a hypersphere which is of 3-type.
In particular, Barros and Garay [3] proved that the Riemannian product of two
plane circles of different and stuitable radii is the only 2-type surfaces in S*C R*.

On the other hand, let ¥: M"—S**?(1) be a minimal isometric immersion
of an n-dimensional compact Riemannian manifold into the unit sphere, SM(n+
p+)={P=glin+p+1, R)|P'=P}, and f: S**P(1)— SM(n+p+1) be the order
2 immersion of S**?(1). We consider the associated isometric immersion @=
foW: M">SM(n+p+1), which is called the quadric representation of M™. In
[8], Ros characterized minimal submanifolds in S"*P(1) with 2-type quadric
representation. Later, Lu [7] proved that the Clifford torus M, are the only
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full compact minimal hypersurfaces in S?™*(1) with 2-type representation and
that the Veronese surfaces in S* are the only full compact minimal surfaces in
the unit sphere for which @ is of 2-type. In this paper we study hypersurfaces
of a sphere with 3-type quadric representation. Our main results are

THEOREM 1. Let M™ be a compact mummal hypersurface of a sphere with
3-type quadric representation. Then the length of the second fundamental form
of M™ in the sphere must be constant.

On the basis of Theorem 1, we further prove

THEOREM 2. There does not exist compact minimal surface in S*(1) with
3-type quadric representation.

Theorem 2 is not valid for any dimensional compact minimal hypersurfaces
in a sphere. For example, minimal Cartan hypersurface SO(3)/Z,XZ, in S* is
showed to just have 3-type quadric representation.

Finally we also give some eigenvalue inequalities. The author wishes to
thank professor W.H. Chen for many valuable comments and suggestions.

1. Preliminaries

Let S"*?(1) be an Euclidean sphere with radius 1 and SM(n+p+1)={Pe
gl(n+p+1, R)|P'=P} be the space of the real symmetric matrices of order
n+p+1. We define on SM(n+p+1) the metric <P, Q>=(1/2) tr PQ, for arbitrary
P Q in SM(n+p+1). We consider the mapping f: S**?(1)— SM(n+p+1)
given by f(x)=xx!, where x is the position column vector of S**?(1) in R"*?P*!,
and x' is the transpose of x. Then f is the order 2 immersion of the sphere,
and the mass center of f(S**?(1)) is I/(n+p—+1), where [ is the identity matrix
in SM(n+p+1). We identify x with f(x). Then the normal space for the
immersion f at x of S"*?(1) is given by

(1.1) TLS*P1))={QeSM(n+p+1)|Qx=2x, for some real A}.

We denote by ¥, V the Rlemanman connection on SM(n+p—+1) and S**?(1),
respectively, and by &, A and H the second fundamental form, the Weingarten
endomorphism and the mean curvature vector of immersion f, respectively, the
normal connection of f is denoted by D. Then we have the following formulas

(1.2) 0,

e

I

a
1.3) szm(l—(n+p+l)x),
(1.4 3(X, Y), 6(V, WH=2(X, Y )XV, W)+<LX, V)XY, W)+<X, WXY, V>,

(L.5) Ascx.p V=X, YSVHX, VSY <V, V3X,
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(1'6) <x) 6(X7 Y)>=_<X; Y>:
(1.7 I, (X, Y)=0,

where X, Y, V, W are vector fields tangent to S™*?(1).

2. Compact minimal hypersurfaces in the sphere

Let ¥': M»—S"* (1) be a minimal isometric immersion of a hypersuface in
S»*1(1). Let ey, ---, ¢,, N be a local field of orthonormal frames of S™*(1),
such that restricted to M?®, e, -+, e, are tangent to M™. We denote by V, D
the Riemannian connection of M™ and the normal connection of ¥, and by o,
A, H the second fundamental form, the Weingarten endomorphism and the
mean curvature vector of ¥, respectively. Considering the associated isometric
immerison @=f-¥: M"—SM(n+2), we have the following formulas (see [8])

2.1) AD=— 3 i(e, e,
(2.2) A@:Z(n-i—l)A@—Z%‘,&(AU(ei,ej)e,, ej)—l—ZlZJ&(a(el, e,), (e, e,)).

We denote by S the square of the length of ¢, then from (2.2) we have
2.3) AO=2n+DAD+2S5(N, N)—2 3 5(4e,, Ae.).

Let (VyA)Y =Vx(AY)—A(V,Y), for arbitrary vector feilds X, Y tangent to
M™, and AA:—2?=1Vek(VekA)+21?=1VWkekA- We will prove the following
Lemmas.

LEMMA 1. Let W: M™— S™*'Y(1) be a munimal isometric immersion of a
hypersurface into the sphere, @®=f-W. Then

(2.4) A Q=(2AS+45%+4| A%|%)G(N, N)
—4 grad S—8(tr A )N+2(n+1)A*®

+126(N, A grad S)+ % (N, grad(tr A?%))
—4(S+1) é 5(Aey, Aey)—4 é}l&(A?ek, A%e,)

—4 33 5((AA)ew), Aen)+e 3 a((VeyAXe), (Vo AXe).-

Proof. At first we compute the differential of A2@. From (2.3) we obtain
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(2.5) (A%0)x(es)=2(n+1)(AD)s(er)+2e(S)a(N, N)
+25¥,,5(N, N)—Z:Z}lveka(Ael, Ae,).
We compute the last two terms respectively.
(2.6) Ve 6N, N)=—Asn. mrex+25(V,, N, N)=—2¢,—25(Ae,, N),

where we have used (1.5), (1.2) and D,,N=0. By the same way we have

@7 ZT.,0(de, de)=— 3 Asuyacpes + 3 D.,5(Ae,, Ae,)
=—25e,—2 3 (Ae,, exdAe,

12 ; #(a(es, Ae,), Ae)+2 g,l 3(V.,(Aey), Ae,).
Hence, from (2.5), (2.6) and (2.7) we have
2.8)  (A0)(en)=—4S5(Aes, N)+4A%,
+2(n+1)(AD)«(er)+2e,(S)5(N, N)
~4 33 5(0(es, Aey), Ae)—4 3 5(Vey(de), Ae).

Let x be an arbitrary point in M", we may assume that V.e,=0 at x.
We compute A*® at x as follows

@29 AO®)=— 37, A0)le)
=2n-+DAB()+2AS)3(N, N)
+4S 3 ¥.,5(Acs, N)—4 3T, ,(A%)

+4 33 eu(S)a(Aer, N)=2 3 eu(SVeya(N, N)
+4 3 Gopi(oles, Ac), Ae)+4 3 7.,3(Vey(Ae), Ac).
It is obvious that
3 ex(S)a(Aes, N)=3(Agrad$, N).

By a direct computation, using Codazzi equation, H =0 and (1.2), (1.5) we obtain
the following relations
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M=

Veri(Aes, N)=Sa(N, N)— 3 a(Aes, Aew),

k

1

E]

lVek(/lze,,)z é‘,l G(Aey, Aey)+(tr AN + —;-grad S,

=
Il

e, 5(Ve,(Ae), Ae))= % (N, grad(tr A%)— ’;f:,l F((AAXe,), Aey)

M=

k=1

2 grad S+ (N, Agrad S+ 3 #(Ve, ANe), (Ve ANe),

k 1

33 0e,6(aten, Ae), Ae)=7 (N, Agrad3)

—l—é (N, grad(tr A%)— ;V:_}l G(A%ey, A%er)—tr(A*)N +|A%|%3(N, N).
From (2.6), (2.9) and the above relations we have (2.4).

LEMMA 2. Let ¥: M™— S™'(1) be a minimal isometric immersion of a
hypersurface in the sphere, @=f-W. Then we have the following relations

(2.10) <0, q)>=—%—,

(2.11) (D, ADY=n,

(2.12) (D, ADY=2n(n+1),
(2.13) (D, NDy=dn(n+1)+S,
(2.14) (AD, A@y=4dn(n+1)+S.

Proof. The above relations can be obtainted by a long but direct computa-
tion using (2.1), (2.2), (2.4), (1.4) and (1.6).

Note. In fact, (2.10), (2.11), (2.12), (2.14) hold for any co-dimention p. (see
[8], Lemma 2.2).

3. Proof of the Theorems 1 and 2

Proof of Theorem 1. Let ¥ : M™—S"**(1) be a minimal isometric immersion,
Q=f-U, if @ is of 3-type ({u,, us, us}). Then we have

®2@0+¢u]+@u2+@u3 ’

and
AD=2y, D+ AuyPuy+ A, Dy,

NO=32 D, + 22,0, 422 Dy, ,
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ADP=25 D, +25,0 0y +23,D o,
Hence

3.1 ADP=aAND+bAD+cD—cD,,

where
a= ﬁ 2111;; b’:_‘ |
1=1 15178
From (1.1), (2.1) and (2.2) we know that I, @, A® and A*®@ are all normal
to S**}(1). Hence, for any vector field X tangent to M", we use (2.4) and
(3.1) to obtain

Ruihuy €= 11 A,

A, X)=—4<grad S, X)=—c<{X, @y,

but

X<®, ¢o>=<X, @o>;
and

{grad S, X>=X(S).
Therefore

X(4S—c<D, @y»)=0.
This means
(3.2) 45— <D, @>=constant .

On the other hand, by using (2.10), (2.11), (2.12) and (3.1) we have
1

AQ, O>=2n(n+1)a+nb+ 3 c—c{D,, D>.
Combining with (2.14), we have
(3.3) S+c(®, Boy=2n(n+1)a+nb+ —21—0—4(71—1—1)211

Hence, from (3.3) and (3.2) we obtain S=constant, and <@, @,>=constant. This
finishes the proof of Theorem 1.

Proof of Theorem 2. When n=2, i.e, M? is a compact minimal surface
in S%1). For the Gauss curvature K of M?, we have K=1—(1/2)S. If @ is of
3-type, from Theorem 1, we know that K is constant. But Bryant [1] had
proved that there is no minimal surface of constant negative Guassian curva-
ture in S*, so K=0. If K=0, then S=2. From the well-known result of
Chern and others [6], we know that M?® must be the Clifford torus M,,,. But
we know that for M, , @ is of 2-type. This is a contradiction in consideration
of @ being of 3-type. If K >0, Calabi [4] told us K must be 1, thus, S=0.
This means that M? is the geodesic sphere and therefore @ is of 1-type. This
is also a contradiction to that @ is of 3-type. Theorem 2 is thereby proved.



296 JI-TAN LU

4. Eigenvalue inequalities

Let ¥: M"—S"*?(1) be a minimal isometric immersion of a compact zn-
dimentional Riemannian manifold into the sphere. Then @=f-¥ is an isometric
immersion of M™ into SM(n+p+1, R). Let @=3,,, D, be the spectral de-
composition. Then we have

“.1) SW«D“, O *1=0  for all u, veN, urv,
where *1 is the volume element of M™.
We put
Sun<@"’ O *l=a, for all ueN,
and
2.={, a0, 011 @0-0, 01,
Mn Mn
then
4.2) g WO, PY1= 3 Aia,.
M©T uz1

From the above relations, we obtain

4.3) legl(xu_zl)augo
the equality in (4.3) holds if and only if @ is of order 1.

THEOREM 3. Let ¥: M"—S"*?(1) be an minimal isometric immersion, and
O=f-U. Then
n

(1/2)— | D,1*’
the equality holds if and only if @ is of order 1.

AS

The theorem is obtained from (4.3), (2.10) and (2.11).

THEOREM 4. Let ¥': M"—-S™*?(1) be a munimal isometric immersion, and
O=f-U. If @ is of 3-type, then we have

(4.4) 2n(n+1) 3 A= 3 A,
1=1 w<J
s*1
b D L 2 —dn(nt 1y b

2An+p+1) =1 Vol(M™)’
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the equality holds if and only if the centres of M™ and S™*?(1) in SM(n+p+1)
are the same.

Proof. If @ is of 3-type, we have
(4.5) 80=( 3 4, )80~ ( S duha, ) A0+ ( 1T 2,)0—0).
Then
@) |, @0, oy1=(24,)|, @, 0y

(gt )] a0, 91 (121,00, 91,0, 00m)
Using (2.14), (2.12), (2.11), (2.10) and (4.2), we get

@n 20D 2 ) (S Auik,)

) . S S*1
Hg =101 )( I ) —AnCn4 =y

where Vol(M™) is the volume of M™.
We recall that @, is a constant mapping and (Do:Sm(I)*l /Vol(M™). So,

SMn@*l ) B SMntr O*1

4.8) tr @,=tr Vol )= Vol =1,
where we use the fact that tr @=1.
Let g1, -+, ptnsp+1 De the eigenvalues of the matrix @,, then JP*! pu,=1,
and
1 n+p+1 1 n+D+1 2 1
2— [ — S
4.9) Dol*=7 2 iz 2(n+p+1)< 2 ‘“) 2n+p+1)’

the equality holds if and only if py=:=pgasps:;. This means @,=1/(n+p+1).
Combining (4.9) and (4.7) we have (4.4).
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