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HYPERSURFACES OF A SPHERE WITH 3-TYPE

QUADRIC REPRESENTATION

BY JI-TAN LU

Abstract

We study hypersurfaces of a sphere with 3-tyρe quadric representation.
Two theorems are obtained, and some eigenvalue inequalities are proved.

0. Introduction

Let Φ: Mn->Em be an isometric immersion of an n-dimensional compact
Riemannian manifold into the Euclidean space, Δ and specCM71)— {Q<λι<λ2<
y+oo} be the Laplacian and the spectrum of Mn, respectively. Then we have
the decomposition Φ = Σ ^ 0 Φu, u<=N, where Φu: Mn->Em is a differentiate
mapping such that AΦu=λuΦu, moreover Φo is a constant mapping (it is the
center of mass of Mn). Mn is said to be of finite type if the decomposition
consists of only a finite number of non-zero terms, and of &-tyρe if there are
exactly k non-zero Φu'$(ΦUv •••, ΦUk) in the decomposition. In the latter case,
we also call the immersion Φ to be of &-type.

Finite type submanifolds of a hypersphere 5 m ' t i ? m have been studied by
many authors. For example, see [5], [2], [9], [3]. In [5] mass-symmetric 2-
type hypersurfaces of S m - 1 were characterized. In [2] it was proved that a
compact 2-tyρe hypersurface of Sm~1 is mass-symmetric if and only if it has
constant mean curvature. In [9] Nagatomo showed that many 2-tyρe hyper-
surfaces of a hypersphere are mass-symmetric and that there is no compact
hypersurface of constant mean curvature in a hypersphere which is of 3-type.
In particular, Barros and Garay [3] proved that the Riemannian product of two
plane circles of different and stuitable radii is the only 2-tyρe surfaces in SsdR\

On the other hand, let Ψ: Mn-*Sn+p(l) be a minimal isometric immersion
of an n-dimensional compact Riemannian manifold into the unit sphere, SM(n +
p+l)={PtEgl(n+p+ly R)\Pι=P}y and / : Sn+p(l)-+SM(n+p+l) be the order
2 immersion of Sn+P(l). We consider the associated isometric immersion Φ —
foψ: Mn-+SM(n+p+l), which is called the quadric representation of Mn. In
[8], Ros characterized minimal submanifolds in Sn+P(l) with 2-type quadric
representation. Later, Lu [7] proved that the Clifford torus Mm,m are the only
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full compact minimal hypersurfaces in S2 m + 1(l) with 2-type representation and
that the Veronese surfaces in Si are the only full compact minimal surfaces in
the unit sphere for which Φ is of 2-type. In this paper we study hypersurfaces
of a sphere with 3-type quadric representation. Our main results are

THEOREM 1. Let Mn be a compact minimal hyper surf ace of a sphere with
3-type quadric representation. Then the length of the second fundamental form
of Mn in the sphere must be constant.

On the basis of Theorem 1, we further prove

THEOREM 2. There does not exist compact minimal surface in S3(l) with
3-type quadric representation.

Theorem 2 is not valid for any dimensional compact minimal hypersurfaces
in a sphere. For example, minimal Cartan hypersurface SO(3)/Z2XZ2 in S4 is
showed to just have 3-type quadric representation.

Finally we also give some eigenvalue inequalities. The author wishes to
thank professor W. H. Chen for many valuable comments and suggestions.

1. Preliminaries

Let Sn+P(l) be an Euclidean sphere with radius 1 and
gl(n+p + l, R)\Pt=P\ be the space of the real symmetric matrices of order
n+p+1. We define on SM(n+p + l) the metric <P, Q>=(l/2) tr PQ, for arbitrary
P, Q in SM(n+p+l). We consider the mapping / : Sn+p(l)-> SM(n+p + l)
given by f(x)=xxt

J where x is the position column vector of Sn+P(l) in Rn+p+1

f

and xι is the transpose of x. Then / is the order 2 immersion of the sphere,
and the mass center of f(Sn+p(l)) is I/(n + p+l), where / is the identity matrix
in SM(n + p+l). We identify x with f(x). Then the normal space for the
immersion / at x of Sn+P(l) is given by

(1.1) Tϊ(Sn+p(l))={Q^SM(n + p+l)\Qx = λx, for some real λ}.

We denote by v, V the Riemannian connection on SM(n+p + 1) and Sn+P(l),
respectively, and by σ, A and H the second fundamental form, the Weingarten
endomorphism and the mean curvature vector of immersion /, respectively, the
normal connection of / is denoted by D. Then we have the following formulas

(1.2) Dσ=0,

(1.4) ia{X, Y\ σ(V, W)>=2<X, Y><V, W>+<X, V><Y, W>+<X, W><Y, V>,

(i.5) Ά8{ZtY>v=2<x, γyv+<xy V>Y+<Y, vyx,
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(1.6) <*, σ(X,Yy>=-<X,Y>,

(1.7) </, σ(Z, K)>=0,

where X, Y, V, W are vector fields tangent to Sn+P(l).

2. Compact minimal hypersurfaces in the sphere

Let Ψ: Mn~*SΛ+1(1) be a minimal isometric immersion of a hypersuface in
Sn + 1(l). Let β!, •••, en, ΛΓ be a local field of orthonormal frames of Sn + 1(l),
such that restricted to Mn, elf •••, £Λ are tangent to Mn. We denote by V, D
the Riemannian connection of Mn and the normal connection of Ψ, and by <τ,
Λ, H the second fundamental form, the Weingarten endomorphism and the
mean curvature vector of Ψ, respectively. Considering the associated isometric
immerison Φ = / ° F : Mn-^SM(n+2), we have the following formulas (see [8])

(2.1) ΔΦ = - Σ σ ( e t , et),
1 = 1

(2.2) tfΦ=2{n + l)AΦ-2-Σ,d{AαiH,e)eu e1)+2Σlσ{σ{eι, e,\ σ(et, «,)).

We denote by 5 the square of the length of σ, then from (2.2) we have

(2.3) A2Φ=2(n + l)AΦ+2Sσ(N, N)-2Σ>σ(Aez, Aet).
t=l

Let (VχA)Y=Vx(AY)—A(VxY), for arbitrary vector feilds X, Y tangent to

Mn, and AA = -Σ?=iV^(V e AA)+Σ*=iVV g.^Λ We will prove the following

Lemmas.

LEMMA 1. Let Ψ: Mn -+Sn+\1) be α minimal isometric immersion of a
hyper surf ace into the sphere, Φ—f°Ψ. Then

(2.4) Δ3Φ=(2ΔS+4S2+4|^2 |2)d(Λr, N)

-4gradS-8(tr A3)N+2(n+l)A2Φ

+ 12σ(N, ^gradS)+-|^(A^, grad(tr A3))
o

-^S+D^σiAβt, Λe*)-4ΣU(Λ2e4) A%e»)

k=i i, k = i * k

Proof. At first we compute the differential of Δ2Φ. From (2.3) we obtain
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(2.5) (A2ΦUek)=2(n+iχAΦh(ek)+2ek(S)σ(N, N)

+2Svekσ(N, N)-2ΣVekσ(Aet, Aet).

We compute the last two terms respectively.

(2.6) Vekσ{N, N)=-Άd(N,N)ek+2σ(VekN, N)=-2ek-2σ(Aek, N),

where we have used (1.5), (1.2) and DekN=0. By the same way we have

(2.7) Σ Vekσ{Aeτ, Aβt)=- Σ ΆdiAei,AH)ek + Σ ΰβkσ(Aet, Aet)
1 = 1 * t = l l l 1=1 k
Σ
1 = 1

+ 2 Σ σ(σ(ek, Aet), Ael)+2^a{VeAAel), Aet).

Hence, from (2.5), (2.6) and (2.7) we have

(2.8) {A2Φ)*{ek)=-4:So(Aek, N)+4A*eb

(n + iχAΦ)*(ek)+2ek(S)σ(N, N)

β,), Aβt).

Let x be an arbitrary point in M", we may assume that Ve}et=0 at x.
We compute Δ3Φ at x as follows

(2.9) Δ Φ(x)=-Σ

Φ(x)+2A(S)σ(N, N)

4 Λ f ) 4

+4 Σ e*(S)d(^e», JV)-2 Σ
* = 1 Ar = l

+4 Σ Vekσ(σ(ek, Aet), A ^ ,

It is obvious that

Σ,ek(S)σ(Aek, N)=σ(AgraάS, N).

By a direct computation, using Codazzi equation, H=0 and (1.2), (1.5) we obtain
the following relations
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ΣV.kd(.Aet, N)=Sσ(N, N)- Σ σ(Aek, Aet),

ΊlVek(A*e«)= Σ t * (Λe*, Aek)+(tr AS)N + |-grad S,

ΣιVekS(V,k(Aβt), Aβt)=jS(N, grad(.tr A'))-•Σι9((AAXβt), Aβt)

graάS+δ(N, AgradS)+ Σ σ((VekA)(et),

n __ 1
ΈVekσ(σ(ek, Aex\ Aeι)=-7τd(N, A grad 5)

L3))- Σ ί ( A * , A2ek)-tr(A*)N+\A2\2d(Nf N).

From (2.6), (2.9) and the above relations we have (2.4).

LEMMA 2. Let Ψ: Mn ->Sn + 1(l) be a minimal isometric immersion of a
hypersurface in the sphere, Φ — f°Ψ. Then we have the following relations

1
(2.10) <Φ, Φ > = y ,

(2.11) <Φ,AΦy=n,

(2.12) <Φ, A2Φy-2n{

(2.13) <Φ, Δ3Φ>=4w(

(2.14) <ΔΦ, Δ 2Φ>=4n(rc+l) 2+S.

Proof. The above relations can be obtainted by a long but direct computa-
tion using (2.1), (2.2), (2.4), (1.4) and (1.6).

Note. In fact, (2.10), (2.11), (2.12), (2.14) hold for any co-dimention p. (see
[8], Lemma 2.2).

3. Proof of the Theorems 1 and 2

Proof of Theorem 1. Let Ψ: Mn—>Sra+1(l) be a minimal isometric immersion,
φ — foψy if φ is of 3-type ({uu u2, uB}). Then we have

and
AΦ=λUίΦUl+λU2ΦU2+λUsΦU3,
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φ — }3 φ I 23 φ I 23 $

Hence

(3.1) A*Φ = aA2Φ+bAΦ+cΦ-cΦ0,

where
3

From (1.1), (2.1) and (2.2) we know that /, Φ, ΔΦ and Δ2Φ are all normal
to Sn + 1(l). Hence, for any vector field X tangent to Mn, we use (2.4) and
(3.1) to obtain

<Δ3Φ, Z>=-4<gradS, X)=-c<X, Φo>,
but

X<Φ, Φ0>=<X, Φo>,
and

<gradS, * > =
Therefore

This means

(3.2) 4S-c<Φ, Φ0}=constant.

On the other hand, by using (2.10), (2.11), (2.12) and (3.1) we have

<Δ3Φ, Φ>=2 ^

Combining with (2.14), we have

(3.3) S+c<Φ, Φ0y=

Hence, from (3.3) and (3.2) we obtain S=constant, and <Φ, Φo>=constant. This
finishes the proof of Theorem 1.

Proof of Theorem 2. When n=2, i.e, M 2 is a compact minimal surface
in S\l). For the Gauss curvature K of M\ we have ϋf=l—(1/2)S. If Φ is of
3-type, from Theorem 1, we know that K is constant. But Bryant [1] had
proved that there is no minimal surface of constant negative Guassian curva-
ture in Sn, so K^O. If K—^y then S—2. From the well-known result of
Chern and others [6], we know that M 2 must be the Clifford torus Mltl. But
we know that for Mltl Φ is of 2-tyρe. This is a contradiction in consideration
of Φ being of 3-type. If K>0, Calabi [4] told us K must be 1, thus, 5 = 0 .
This means that M 2 is the geodesic sphere and therefore Φ is of 1-type. This
is also a contradiction to that Φ is of 3-type. Theorem 2 is thereby proved.
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4. Eigenvalue inequalities

Let Ψ: Mn~*Sn+p(l) be a minimal isometric immersion of a compact n-
dimentional Riemannian manifold into the sphere. Then φ—f°Ψ is an isometric
immersion of Mn into SM(n+p+l, R). Let Φ — Tiu^Φu be the spectral de-
composition. Then we have

(4.1) \Mn<Φu> Φυ>*1=0 f 0 Γ a 1 1 U> V<EΞN>

where *1 is the volume element of Mn.
We put

[
J3

<Φu, Φu>*l=au for all

and

Ωk = [ n<ΔΦ, Φ>*l-λk\ <Φ-Φ0> Φ>*1,

then

(4.2) [n(Δ*Φ, Φ>*1= Σλla1t.

From the above relations, we obtain

the equality in (4.3) holds if and only if Φ is of order 1.

THEOREM 3. Let Ψ: Mn-^Sn+p(l) be an minimal isometric immersion, and
φ = f*ψ. Then

the equality holds if and only if Φ is of order 1.

The theorem is obtained from (4.3), (2.10) and (2.11).

THEOREM 4. Let Ψ: Mn-+Sn+P(l) be a minimal isometric immersion, and
φ=foψ. If φ is of 3-type, then we have

(4.4) ( + ) Σ « £ 4 Σ

ί 5*1
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the equality holds if and only if the centres of Mn and Sn + P(l) in Sλi(n
are the same.

Proof. If Φ is of 3-type, we have

(4.5) Δ8Φ

Then

(4.6) ( <Δ3Φ, Φ>*l=(J:λUι)[ <Δ2Φ, Φ>*1

Using (2.14), (2.12), (2.11), (2.10) and (4.2), we get

(4.7)

where Vol(Mn) is the volume of Mn.

We recall that Φo is a constant mapping and Φ o = \ Φ*l/Vol(Mn). So,
J M ft

t rΦ*l

where we use the fact that t r φ = l.

Let μlt •••, μn+P+ι be the eigenvalues of the matrix Φo, then

and

(4.9) | Φ . | . = - Σ ^ 2 ( M + / ) + 1 ) ( Σ )

the equality holds if and only if μ1=-"=μn+p+lm This means Φ0=l/(n

Combining (4.9) and (4.7) we have (4.4).

REFERENCES

[ 1 ] R. L. BRYANT, Minimal surfaces of constant curvature in Sn, Trans. Amer. Math.
Soc, 290 (1985), 259-271.

[ 2 ] M. BARROS, B.Y. CHEN AND O.J. GARAY, Spherical finite type hypersurfaces,

Algebras Groups Geom., 4 (1987), 58-72.
[ 3 ] M. BARROS AND O.J. GARAY, 2-type surfaces in S3, Geom. Dedicata, 14 (1987),

329-336.
[ 4 ] E. CALABI, Minimal immersions of surfaces in Euclidean spheres, J. Differential

Geom., 1 (1967), 111-125.



298 JI-TAN LU

[ 5 ] B. Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type, World Scien-
tific, 1984.

[ 6 ] S.S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere
with second fundamental form of constant length, Shing-Shen Chern Selected
Papers, Springer-verlag, 1978, 393-409.

[ 7 ] J.T. Lu, Spectral geometry of minimal submanifolds in Sn(l), J. Tsinghua
Univ., 33 (1993) S4, 108-113.

[ 8 ] A. Ros, Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math.
Z., 187 (1984), 393-404.

[ 9 ] Y. NAGATOMO, Finite type hypersurfaces of a sphere, Tokyo J. Math., 14
(1991), 85-92.

[10] I. DIMITRIC, Quadric representation of a submanifold, Proc. Amer. Math. Soc,
114 (1992), 201-210.

DEPARTMENT OF APPLIED MATHEMATICS

TSINGHUA UNIVERSITY (100084)

BEIJING, CHINA




