GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS IMMERSED IN SPACE FORMS AND ELLIPSOIDS

By Xue-shan Zhang

Abstract

Let M^{m} be a compact submanifold of a simply connected space form $N^{n}(c)$ with $c \geqq 0$. Denote by s and H the square length of the second fundamental form and the mean curvature vector field of M respectively. By in* troducing a selfadjoint linear operator Q^{A} associated with the shape operator of M, we show that there are no stable currents in M and topologically, M is a sphere if $s<H^{2} /(m-1)$. For an immersed submanifold of the ellipsoid we show that appropriate assumption on Q^{A} implies the vanishing of a given homology group.

1. Introduction

Let M^{m} be a submanifold immersed in a Riemannian manifold N^{n}. Denote by $V(N, M)$ the normal bundle of M in N. For a smooth section $\nu \in C(V(N, M))$, the shape operator A_{ν} determined by ν is given by

$$
\left\langle A_{\nu} X, Y\right\rangle=\langle h(X, Y), \nu\rangle,
$$

where $X, Y \in C(T M)$ and h is the second fundamental form of M.
In 1973, by using techniques of the calculus of variations in geometric measure theory, H. B. Lawson and J. Simons [4] showed the following

Theorem LS. Let M^{m} be a compact submanifold of S^{n} and p a given integer, $p \in(0, m)$. If for any $x \in M$ and any orthonormal basis $\left\{e_{i}, e_{\alpha}\right\}$ ($i=1$, $\cdots, p ; \alpha=p+1, \cdots, m)$ of $T_{x} M$ the following condition is satisfied

$$
\sum_{2, \alpha}\left[2\left\|h\left(e_{2}, e_{\alpha}\right)\right\|^{2}-\left\langle h\left(e_{2}, e_{2}\right), h\left(e_{\alpha}, e_{\alpha}\right)\right\rangle\right]<p(m-p)
$$

then there is no stable p-current in M and hence

[^0]$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

Theorem LS has been extended to the submanifolds of E^{n} and $S^{n_{1}} \times S^{n_{2}}$ by Y. L. Xin [7] and the author [8], respectively.

On the other hand, as an extension of the well-known gap theorem in the minimal submanifolds, M. Okumura [5] proved that

Theorem O. Let M^{m} be a compact, connected submanifold immersed in a Riemannian manifold of non-negative constant curvature. Suppose that
(c) the connection of the normal bundle is flat and the mean curvature vector field H is parallel with respect to the connection of the normal bundle.
If $s=\sum_{\lambda} \operatorname{tr} A_{\lambda}{ }^{2}$, the square length of the second fundamental form, satisfies $s<$ $H^{2} /(m-1)$, then M is totally umbilical.

In this paper, we shall cancel the condition (c) in Theorem O and prove that
Theorem 1. Let $\phi: M^{m} \rightarrow N^{n}(c)$ be an isometric immersion of a Riemannian manifold M^{m} into a simply connected space form $N^{n}(c), m=\operatorname{dim} M \geqq 3$. If one of the following is satisfied:

C1. M is compact $c \geqq 0$ and $s<H^{2} /(m-1)$ on M,
C2. M is complete, $c>0$ and $s \leqq H^{2} /(m-1)$ on M, then
i) there exist no stable p-currents in M and hence

$$
H_{p}(M, Z)=0 \quad \text { for } p=1,2, \cdots, m-1 \text {; }
$$

ii) M is homeomorphic to a sphere when $m \geqq 4$.

Remark. Just as Okumura [5] indicated, the condition $s<H^{2} /(m-1)$ is the best possible when $N^{n}=E^{n}$. For example, let $M^{m}=S^{m-1} \times E^{1} \subset E^{m+1}$, then $s=$ $H^{2} /(m-1)$ on M.

Now we give an example for Theorem 1. Consider the ellipsoid

$$
M^{m}: x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{m}{ }^{2}+\left(x_{m+1}{ }^{2} / c^{2}\right)=1 \quad(c>0) .
$$

Denote by r the position vector of the point $x \in M^{m}$ in E^{m+1}. Then M can also be expressed by

$$
r=\left(\sin \theta_{m} \sin \theta_{m-1} \cdots \sin \theta_{2} \sin \theta, \cdots, \cos \theta_{2} \sin \theta, c \cos \theta\right)
$$

A calculation indicates that the shape operator A of M can be given by

$$
\begin{equation*}
A X=a X+b\langle X, t\rangle t \tag{1.1}
\end{equation*}
$$

where $X \in C(T M)$ and

$$
\begin{gather*}
t=(\partial r / \partial \theta) /\|\partial r / \partial \theta\|, \quad a=c /\left(\cos ^{2} \theta+c^{2} \sin ^{2} \theta\right)^{1 / 2}, \tag{1.2}\\
b=c\left(1-c^{2}\right) \sin ^{2} \theta /\left(\cos ^{2} \theta+c^{2} \sin ^{2} \theta\right)^{3 / 2} .
\end{gather*}
$$

Choose an orthonormal basis $\left\{e_{i}\right\}$ of $T_{x} M$ such that e_{2} is parallel to $\partial r / \partial \theta_{2}$ $\left(i=1,2, \cdots, m, \theta_{1}=\theta\right)$. Then from (1.1),

$$
\begin{gathered}
s=\operatorname{tr} A^{2}=\sum_{\imath}\left\langle A^{2} e_{\imath}, e_{2}\right\rangle=(a+b)^{2}+(m-1) a^{2}, \\
H^{2}=(\operatorname{tr} A)^{2}=\left(\sum_{\imath}\left\langle A e_{2}, e_{\imath}\right\rangle\right)^{2}=[(a+b)+(m-1) a]^{2} .
\end{gathered}
$$

And thus

$$
H^{2} /(m-1)-s=(a+b)[m a+(2-m) b] /(m-1) .
$$

It is easy to verify that $a+b>0$ and $m a+(2-m) b>0$ when $c^{2}>(m-2) / 2(m-1)$. Therefore, $s<H^{2} /(m-1)$ on the ellipsoid with $c^{2}>(m-2) / 2(m-1)$.

The above example tells us, just as on S^{n} [4, p. 438], there is no stable p-currents on the ellipsoid with $c^{2}>(m-2) / 2(m-1)$. Besides, if the condition (c) in Theorem O is canceled, then the submanifolds in Theorem O do not necessarily have to be totally umbilical.

Furthermore, we shall prove the following
ThEOREM 2. Let $\phi: M^{m} \rightarrow N^{n}$ be an isometric immersion of a compact Riemannian manifold M in the ellipsoid $N^{n}: x_{1}{ }^{2}+\cdots+x_{n}{ }^{2}+x_{n+1}{ }^{2} / c^{2}=1, c \leqq 1$ and p a given integer, $p \in(0, m)$. If for any $x \in M$ and any p-subspace V of $T_{x} M$

$$
\operatorname{tr} Q^{4}<p(m-p) c^{2},
$$

Then there is no stable p-current in M and

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0
$$

Remark. When $c=1$, Theorem 2 is due to Theorem LS.

2. Rectifiable currents

In this section we shall give a brief description of rectifiable currents (ref. $[3,4,8]$).

Let M^{m} be an m-dimensional compact Riemannian manifold with Riemannian metric \langle,$\rangle and Levi-Civita connection \nabla$. Denote by \mathscr{H}^{p} Hausdorff p measure on M. A subset S of M is called a p-rectifiable set if S is a countable union of disjoint p-dimensional C^{1} submanifolds, up to sets of \mathscr{C}^{p}-measure zero. Consider over S an \mathscr{H}^{p}-measurable section $\xi: S \rightarrow \wedge^{p} T M$ with the property that for \mathscr{C}^{p}-almost all $x \in S, \xi_{x}$ is a simple vector of unit length which represents $T_{x} S$. Such a pair (S, ξ) is called an oriented, p-rectifiable set.

The set of rectifiable p-currents is defined by

$$
\mathscr{R}_{p}(M)=\left\{\mathbb{S}=\sum_{n=1}^{\infty} n \mathscr{S}_{n} ; \mathbb{S}_{n}=\left(S_{n}, \tilde{\xi}_{n}\right), M(\mathbb{S})=\sum_{n=1}^{\infty} n \mathscr{H}^{p}\left(S_{n}\right)<\infty\right\} .
$$

In the case that \subseteq and $\partial \subseteq$ are both rectifiable currents, \subseteq is called an integral p-current. The space of integral p-currents is denoted by $\mathscr{I}_{p}(M)$. The direct sum $\mathscr{I}_{*}(M)=\underset{p}{\oplus} \mathscr{I}_{p}(M)$ together with $\partial: \mathscr{I}_{*}(M) \rightarrow \mathscr{I}_{*}(M)$ forms a differential chain complex. For this complex there are the following results due to Federer and Fleming [3].

Theorem FF. For each $p \geqq 0$ there is a natural isomorphism

$$
H_{p}\left(\mathscr{I}_{*}(M)\right) \cong H_{p}(M, Z) .
$$

And for each $\alpha \in H_{p}\left(\mathscr{I}_{*}(M)\right)$ there exists a current $\mathfrak{S} \in \alpha$ of "least area", that is,

$$
M(ভ) \leqq M\left(\mathbb{S}^{\prime}\right)
$$

for all $\mathfrak{S}^{\prime} \in \alpha$.
For a smooth vector field $X \in C(T M)$, let $\phi_{t}: M \rightarrow M$ be the 1-parameter group of diffeomorphisms generated by X. A current $\subseteq \in \mathscr{R}_{p}(M)$ is said to be stable if for each vector field X there is an $\varepsilon>0$ such that

$$
M\left(\phi_{t *} \subseteq\right) \geqq M(\subseteq)
$$

for $|t|<\varepsilon$.
Lawson and Simons [4] derived the following formulae:

$$
\begin{align*}
& \left.\frac{d}{d t} M\left(\phi_{t *} \text { ऽ }\right)\right|_{t=0}=\int\left\langle a^{x}(\overrightarrow{\text { ভ }}), \vec{ভ}\right\rangle d\|\Subset\|, \\
& \left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t *} \mathbb{S}\right)\right|_{t=0}=\int\left\{-\left\langle a^{x}(\overrightarrow{\mathbb{S}}), \overrightarrow{\mathbb{S}}\right\rangle^{2}+\left\langle a^{x} a^{x}(\overrightarrow{\mathbb{S}}), \overrightarrow{\mathbb{S}}\right\rangle\right. \tag{2.1}\\
& \left.+\left\|a^{X}(\overrightarrow{\mathrm{~S}})\right\|^{2}+\left\langle\nabla_{X, \overrightarrow{\mathrm{E}}} X, \overrightarrow{\mathrm{~S}}\right\rangle\right\} d\|\Subset\|,
\end{align*}
$$

where $a^{x}: \wedge^{p} T_{x} M \rightarrow \wedge^{p} T_{x} M$ is a linear map given by

$$
\begin{gathered}
a^{X}\left(X_{1} \wedge \cdots \wedge X_{p}\right)=\sum_{j} X_{1} \wedge \cdots \wedge a^{X}\left(X_{j}\right) \wedge \cdots \wedge X_{p} \\
a^{X}\left(X_{j}\right)=\nabla_{X_{j}} X
\end{gathered}
$$

and $\nabla_{X}, X: \wedge^{p} T_{x} M \rightarrow \wedge^{p} T_{x} M$ is another linear map defined by

$$
\begin{gathered}
\nabla_{X, X_{1} \wedge \cdots \wedge X_{p}} X=\sum_{j} X_{1} \wedge \cdots \wedge\left(\nabla_{X, X_{j}} X\right) \wedge \cdots \wedge X_{p} \\
\nabla_{X, X_{j}} X=\nabla_{X} \nabla_{X_{j}} X-\nabla_{\nabla_{X} X_{j}} X .
\end{gathered}
$$

To any simple p-vector $\xi \in \wedge^{p} T_{x} M$ and $X \in C(T M)$, let ϕ_{t} be the flow generated by X, and define

$$
Q_{\xi}(X)=\left.\frac{d^{2}}{d t^{2}}\left\|\boldsymbol{\phi}_{t * \xi}\right\|\right|_{t=0} .
$$

Then the expression (2.1) can be denoted by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t *} \Im\right)\right|_{t=0}=\sum_{n} n \int_{S_{n}} Q_{\xi_{n}}(X) d \mathscr{H}^{p}(x) . \tag{2.2}
\end{equation*}
$$

If $X=\nabla f$ for some $f \in C^{3}(M)$ and $\left\{e_{2}, e_{\alpha}\right\}(i=1, \cdots, p ; \alpha=p+1, \cdots, m)$ is an orthonormal basis of $T_{x} M$ with $\xi=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p}$, then we can obtain

$$
\begin{equation*}
Q_{\xi}(X)=\left[\sum_{\jmath}\left\langle a^{x}\left(e_{j}\right), e_{\jmath}\right\rangle\right]^{2}+2 \sum_{j, \alpha}\left\langle a^{x}\left(e_{\jmath}\right), e_{\alpha}\right\rangle^{2}+\sum_{\jmath}\left\langle\nabla_{X, e_{j}} X, e_{\jmath}\right\rangle . \tag{2.3}
\end{equation*}
$$

3. Linear operator Q^{A}

For a p-rectifiable set S in M, we know that at \mathscr{C}^{p}-almost all point $x \in S$, there exists an approximate p-space $T_{x} S \subset T_{x} M$, to S. In this section we shall introduce a selfadjoint linear operator Q^{A} on $T_{x} S$ and prove some lemmas.

Let $\phi: M^{m} \rightarrow N^{n}$ be an isometric immersion of a Riemannian manifold M into a Riemannian manifold N. The Levi-Civita connections of M and N are denoted by ∇ and $\bar{\nabla}$ respectively.

For a given integer $p \in(0, m)$ let V be a p-dimensional subspace in $T_{x} M$. And for $\nu \in C(V(N, M))$, let A_{ν} be the shape operator determined by ν. Define a map $B_{\nu}: V \rightarrow V$ associated with A_{ν} by

$$
B_{\nu} X=\text { orthogonal projection of } A_{\nu} X \text { onto } V,
$$

where $X \in V$. If $\left\{e_{i}\right\}$ is an orthonormal basis of V, we have

$$
\begin{equation*}
B_{\nu} X=\sum_{\imath}\left\langle A_{\nu} X, e_{\imath}\right\rangle e_{2} \tag{3.1}
\end{equation*}
$$

Let $\left\{\nu_{\lambda}\right\}$ be an orthonormal basis of the normal space $V_{x}(N, M)$ and $A_{\lambda}=A_{\nu_{\lambda}}$. Define a selfadjoint linear map $Q^{A}: V \rightarrow V$ associated with the immersion ϕ by

$$
\begin{equation*}
Q^{A} X=\sum_{\lambda}\left[2\left(\sum_{\imath}\left\langle A_{\lambda}^{2} X, e_{2}\right\rangle e_{i}-B_{\lambda}^{2} X\right)-\left(\operatorname{tr} A_{\lambda}-\operatorname{tr} B_{\lambda}\right) B_{\lambda} X\right], \tag{3.2}
\end{equation*}
$$

where $X \in V$ and $\left\{e_{i}\right\}$ is an orthonormal basis of V. Let $\left\{e_{\alpha}\right\}$ be an orthonormal basis of V^{\perp} which is the orthogonal complement of V in $T_{x} M$. Then $\left\{e_{2}, e_{\alpha}\right\}$ is an orthonormal basis of $T_{x} M$ and from [8] the trace of Q^{A} is

$$
\begin{equation*}
\operatorname{tr} Q^{A}=\sum_{\imath}\left\langle Q^{A} e_{2}, e_{\imath}\right\rangle=\sum_{\lambda}\left[2 \sum_{\lambda, \alpha}\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle^{2}-\left(\operatorname{tr} A_{\lambda}-\operatorname{tr} B_{\lambda}\right) \operatorname{tr} B_{\lambda}\right] . \tag{3.3}
\end{equation*}
$$

Lemma O [5]. Let $a_{1}, a_{2}, \cdots, a_{m}$ and b be $m+1(m \geqq 2)$ real numbers satisfying the inequality

$$
\sum_{s=1}^{m}\left(a_{s}\right)^{2}+b<\frac{1}{m-1}\left(\sum_{s=1}^{m} a_{s}\right)^{2} \quad(\text { resp. } \leqq),
$$

then $2 a_{s} a_{t}>b(r e s p . \geqq)$ for any $s \neq t$.
Let $s=\sum_{\lambda} \operatorname{tr} A_{\lambda}{ }^{2}, H=\sum_{\lambda}\left(\operatorname{tr} A_{\lambda}\right) \nu_{\lambda}$, Now we shall prove

Lemma 1. Let $m \geqq 3$ and $p \in(0, m)$. If $s<H^{2} /(m-1)$ (resp. $\left.\leqq\right)$, then for any $x \in M$ and any p-subspace V in $T_{x} M$,

$$
\operatorname{tr} Q^{A}<0 \quad(\text { resp } . \leqq)
$$

Proof. If $s<H^{2} /(m-1)$, because $s \geqq 0$ we see that $H \neq 0$. So we can choose an orthonormal basis $\left\{\nu_{\lambda}\right\}$ of $V_{x}(N, M)$ such that $H=\left(\operatorname{tr} A_{1}\right) \nu_{1}$. Hence $\operatorname{tr} A_{\lambda}=0$ for $\lambda \geqq 2$.

Because the maps $B_{1}: V \rightarrow V$ and $B_{1}{ }^{\perp}: V^{\perp} \rightarrow V^{\perp}$ associated with A_{1} are selfadjoint linear, we can choose orthonormal basises $\left\{e_{i}\right\}$ of V and $\left\{e_{\alpha}\right\}$ of V^{\perp} respectively such that

$$
B_{1} e_{2}=\mu_{i} e_{2}, \quad B_{1}^{\frac{1}{1}} e_{\alpha}=\mu_{\alpha} e_{\alpha}
$$

So from (3.1) we have

$$
\left\langle A_{1} e_{i}, e_{\jmath}\right\rangle=\left\langle B_{1} e_{i}, e_{\jmath}\right\rangle=\mu_{i} \delta_{i,}, \quad\left\langle A_{1} e_{\alpha}, e_{\beta}\right\rangle=\left\langle B_{1}^{\perp} e_{\alpha}, e_{\beta}\right\rangle=\mu_{\alpha} \delta_{\alpha \beta},
$$

and then

$$
\begin{gather*}
\operatorname{tr} A_{1}=\sum_{\imath}\left\langle A_{1} e_{\imath}, e_{\imath}\right\rangle+\sum_{\alpha}\left\langle A_{1} e_{\alpha}, e_{\alpha}\right\rangle=\sum_{\imath} \mu_{i}+\sum_{\alpha} \mu_{\alpha}, \\
\operatorname{tr} B_{1}=\sum_{\imath} \mu_{\imath}, \quad \operatorname{tr} A_{1}-\operatorname{tr} B_{1}=\sum_{\alpha} \mu_{\alpha}, \tag{3.4}\\
s=\sum_{\imath} \mu_{i}^{2}+\sum_{\alpha} \mu_{\alpha}^{2}+2 \sum_{\imath, \alpha}\left(A_{\imath \alpha}^{1}\right)^{2}+\sum_{\lambda \geq 2}\left[\sum_{\imath, j}\left(A_{\imath j}^{\lambda}\right)^{2}+2 \sum_{\imath, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}+\sum_{\alpha, \beta}\left(A_{\alpha \beta}^{\lambda}\right)^{2}\right],
\end{gather*}
$$

where $A_{i j}^{\lambda}=\left\langle A_{\lambda} e_{\imath}, e_{j}\right\rangle, A_{\imath \alpha}^{\lambda}=\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle, A_{\alpha \beta}^{\lambda}=\left\langle A_{\lambda} e_{\alpha}, e_{\beta}\right\rangle$. Hence the condition $s<H^{2} /(m-1)$ becomes

$$
\begin{equation*}
\sum_{\imath} \mu_{i}^{2}+\sum_{\alpha} \mu_{\alpha}^{2}+b<\left(\sum_{\imath} \mu_{i}+\sum_{\alpha} \mu_{\alpha}\right)^{2} /(m-1) \tag{3.5}
\end{equation*}
$$

where

$$
b=2 \sum_{\imath, \alpha}\left(A_{\imath \alpha}^{1}\right)^{2}+\sum_{\lambda \geq 2}\left[2 \sum_{\imath, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}+\sum_{\imath, \rho}\left(A_{\imath j}^{\lambda}\right)^{2}+\sum_{\alpha, \beta}\left(A_{\alpha \beta}^{\lambda}\right)^{2}\right] .
$$

Using Lemma O to (3.5), we get that

$$
\begin{equation*}
2 \mu_{k} \mu_{r}>b=2 \sum_{\lambda, 2, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}+\sum_{\lambda \geq 2}\left[\sum_{\imath, j}\left(A_{\imath j}^{\lambda}\right)^{2}+\sum_{\alpha, \beta}\left(A_{\alpha \beta}^{\lambda}\right)^{2}\right] . \tag{3.6}
\end{equation*}
$$

Combining (3.3), (3.4) with $\operatorname{tr} A_{\lambda}=0(\lambda \geqq 2)$ and (3.6) gives

$$
\begin{aligned}
\operatorname{tr} Q^{A}= & 2 \sum_{\imath, \alpha}\left\langle A_{1} e_{\imath}, e_{\alpha}\right\rangle^{2}-\sum_{\imath, \alpha} \mu_{i} \mu_{\alpha}+\sum_{\lambda \geq 2}\left[2 \sum_{\imath, \alpha}\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle^{2}+\left(\operatorname{tr} B_{\lambda}\right)^{2}\right] \\
< & 2 \sum_{\lambda, 2, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}-p(m-p)\left\{\sum_{\lambda, \imath, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}+\frac{1}{2} \sum_{\lambda \geq 2}\left[\sum_{\imath, j}\left(A_{\imath j}^{\lambda}\right)^{2}+\sum_{\alpha, \beta}\left(A_{\alpha \beta}^{\lambda}\right)^{2}\right\}\right. \\
& +\sum_{\lambda \geq 2}\left(\sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle\right)^{2} \\
= & {[2-p(m-p)] \sum_{\lambda, \imath, \alpha}\left(A_{\imath \alpha}^{\lambda}\right)^{2}-\frac{1}{2} p(m-p) \sum_{\lambda \geq 2}\left[\sum_{\imath \neq j}\left(A_{\imath j}^{\lambda}\right)^{2}+\sum_{\alpha \neq \beta}\left(A_{\alpha \beta}^{\lambda}\right)^{2}\right] } \\
& +\sum_{\lambda \geq 2}\left\{\left(\sum_{i} A_{i i}^{\lambda}\right)^{2}-\frac{1}{2} p(m-p)\left[\sum_{\imath}\left(A_{i i}^{\lambda}\right)^{2}+\sum_{\alpha}\left(A_{\alpha, \alpha}^{\lambda}\right)^{2}\right]\right\} .
\end{aligned}
$$

Because $m \geqq 3$ and $0<p<m, 2-p(m-p) \leqq 0$. Therefore,

$$
\begin{equation*}
\operatorname{tr} Q^{A}<\sum_{\lambda \geq 2}\left\{\left(\sum_{i} A_{i i}^{\lambda}\right)^{2}-\frac{1}{2} p(m-p)\left[\sum_{i}\left(A_{i i}^{\lambda}\right)^{2}+\sum_{\alpha}\left(A_{\alpha \alpha}^{\lambda}\right)^{2}\right]\right\} . \tag{3.7}
\end{equation*}
$$

Noting that for $\lambda \geqq 2, \operatorname{tr} A_{\lambda}=0$, that is

$$
\sum_{\imath} A_{i i}^{\lambda}+\sum_{\alpha} A_{\alpha \alpha}^{\lambda}=\sum_{\imath}\left\langle A_{\lambda} e_{2}, e_{\imath}\right\rangle+\sum_{\alpha}\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle=0,
$$

we have

$$
\begin{equation*}
\left(\sum_{i} A_{i i}^{\lambda}\right)^{2}=\frac{1}{2}\left(\sum_{i} A_{i i}^{\lambda}\right)^{2}+\frac{1}{2}\left(\sum_{\alpha} A_{\alpha \alpha}^{\lambda}\right)^{2} \leqq \frac{p}{2} \sum_{i}\left(A_{i i}^{\lambda}\right)^{2}+\frac{m-p}{2} \sum_{\alpha}\left(A_{\alpha \alpha}^{\lambda}\right)^{2} . \tag{3.8}
\end{equation*}
$$

Substituting (3.8) into (3.7), we obtain $\operatorname{tr} Q^{A}<0$.
Repeating the above, if $s \leqq H^{2} /(m-1)$ and $H \neq 0$ we have $\operatorname{tr} Q^{4} \leqq 0$. If $s \leqq$ $H^{2} /(m-1)$ and $H=0$, then $A_{\lambda}=0$ and hence $\operatorname{tr} Q^{A}=0$.
Q.E.D.

Let the ambient space N be of constant curvature c, and $s<H^{2} /(m-1)$ on M. Choose an orthonormal basis $\left\{\nu_{\lambda}\right\}$ of $V_{x}(N, M)$ such that $H=\left(\operatorname{tr} A_{1}\right) \nu_{1}$ and hence $\operatorname{tr} A_{\lambda}=0$ when $\lambda \geqq 2$. And choose an orthonormal basis $\left\{E_{s}\right\}$ of $T_{x} M$ so that $A_{1} E_{s}=\lambda_{s} E_{s}(s=1, \cdots, m)$. Then the condition $s<H^{2} /(m-1)$ gives

$$
\sum_{s} \lambda_{s}^{2}+\sum_{\lambda \geq 2} \sum_{s, t}\left\langle A_{\lambda} E_{s}, E_{t}\right\rangle^{2}<\left(\sum_{s} \lambda_{s}\right)^{2} /(m-1)
$$

From Lemma O, for any $s \neq t$ we have

$$
\begin{equation*}
2 \lambda_{s} \lambda_{t}>\sum_{\lambda \geq 2} \sum_{q, r}\left\langle A_{\lambda} E_{q}, E_{r}\right\rangle^{2} \tag{3.9}
\end{equation*}
$$

Let v be a unit vector in $T_{x} M$ and $m \geqq 3$. Applying (3.9) and the equation of Gauss we can obtain

$$
\operatorname{Ric}(v, v)>(m-1) c .
$$

If $s \leqq H^{2} /(m-1)$, we can get that $\operatorname{Ric}(v, v) \geqq(m-1) c$. Hence from Myers' theorem (ref. [1, p. 28]) we have

Lemma 2. Let M^{m} be a submanifold immersed in a Riemannian manifold of constant curvature c and $m \geqq 3$. If M is compact, $c \geqq 0$ and $s<H^{2} /(m-1)$ on M, then the fundamental group of M is finite. If M is complete, $c>0$ and $s \leqq$ $H^{2} /(m-1)$ on M, then the fundamental group of M is finite and M is compact.

Now assume $\psi: N^{n} \rightarrow E^{1}$ is an isometric immersion of the Riemannian manifold N in the Euclidean space E^{1}. Let D be the Levi-Civita connection on E^{1}. Associated with the isometric immersion $x=\phi \circ \phi: M^{m} \rightarrow E^{1}$, the shape operator A_{ν}^{\prime} determined by $\nu \in C\left(V\left(E^{1}, M\right)\right)$ is given by

$$
A_{\nu}^{\prime} Y=-\left(D_{Y} \nu\right)^{T},
$$

where $Y \in C(T M)$. Especially, if $\nu \in C(V(N, M))$,

$$
\begin{equation*}
A_{\nu}^{\prime} Y=-\left(D_{Y} \nu\right)^{T}=-\left[\bar{\nabla}_{Y} \nu+\bar{h}(\nu, Y)\right]^{T}=-\left(-A_{\nu} Y+\nabla_{\bar{Y}} \nu\right)^{T}=A_{\nu} Y, \tag{3.10}
\end{equation*}
$$

where \bar{h} is the second fundamental form of the immersion ψ. And if $\nu \in$ $C\left(V\left(E^{1}, N\right)\right)$,

$$
\begin{equation*}
A_{\nu}^{\prime} Y=\left(\bar{A}_{\nu} Y\right)^{T} . \tag{3.11}
\end{equation*}
$$

Let S be a p-rectifiable set. At $x \in S$, associate a tangent p-space $V=T_{x} S$ $\subset T_{x} M$. Choose an orthonormal basis $\left\{e_{2}, e_{\alpha}\right\}$ of $T_{x} M$ such that $\left\{e_{i}\right\}$ is a basis of V and $\xi=e_{1} \wedge \cdots \wedge e_{p}$. Let $Q^{A^{\prime}}$ be the selfadjoint linear operator on V associated with the immersion $\phi \circ \phi: M^{m} \rightarrow E^{1}$ defined by (3.2). At $x \in M$ let $\left\{\nu_{\sigma}\right\}$ be an orthonormal basis of $V_{x}\left(E^{1}, M\right)$ and $A_{\sigma}^{\prime}=A_{\nu_{\sigma}}^{\prime}$. Then there is the following relation between $Q^{A^{\prime}}$ and Q_{ξ} given by (2.3) from [8]

Lemma 3. $\operatorname{tr} Q_{\xi}=\operatorname{tr} Q^{A^{\prime}}$, where

$$
\begin{equation*}
\operatorname{tr} Q^{A^{\prime}}=\sum_{\sigma}\left[2 \sum_{2, \alpha}\left\langle A_{\sigma}^{\prime} e_{\imath}, e_{\alpha}\right\rangle^{2}-\left(\operatorname{tr} A_{\sigma}^{\prime}-\operatorname{tr} B_{\sigma}^{\prime}\right) \operatorname{tr} B_{\sigma}^{\prime}\right] \tag{3.12}
\end{equation*}
$$

At a point $x \in M$, we take an orthonormal basis $\left\{\nu_{\lambda}, \eta_{a}\right\}$ of $V_{x}\left(E^{1}, M\right)$ so that $\left\{\nu_{\lambda}\right\}$ and $\left\{\eta_{a}\right\}$ are bases of $V_{x}(N, M)$ and $V_{x}\left(E^{1}, N\right)$ respectively. From (3.10) and (3.11) we obtain

$$
\begin{equation*}
\operatorname{tr} Q^{A^{\prime}}=\operatorname{tr} Q^{A}+\bar{A}(V) \tag{3.13}
\end{equation*}
$$

where $\operatorname{tr} Q^{A}$ is given by (3.3) and

$$
\begin{equation*}
\bar{A}(V)=\sum_{a, 2, \alpha}\left[2\left\langle\bar{A}_{a} e_{\imath}, e_{\alpha}\right\rangle^{2}-\left\langle\bar{A}_{a} e_{\alpha}, e_{\alpha}\right\rangle\left\langle\bar{A}_{a} e_{\imath}, e_{\imath}\right\rangle\right] \tag{3.14}
\end{equation*}
$$

4. Proof of Theorem 1

Let $\theta=\left\{\nabla f ; f: E^{n+1} \rightarrow R\right.$ is linear $\}$ and $\subseteq \in \mathscr{R}_{p}(M)$. For $X \in \theta$, let ϕ_{t} be the flow generated by X and set

$$
\begin{equation*}
Q_{\subsetneq}(X)=\left.\frac{d^{2}}{d t^{2}} M\left(\phi_{t *} \circlearrowleft\right)\right|_{t=0} . \tag{4.1}
\end{equation*}
$$

Then from (2.2) and (2.3), $Q_{\mathcal{E}}$ can be considered as a quadratic form on θ and

$$
\begin{equation*}
\operatorname{tr} Q_{\mathcal{E}}=\sum_{n} n \int_{S_{n}} \operatorname{tr} Q_{\xi_{n}} d \mathscr{G} \mathscr{C}^{p}(X) . \tag{4.2}
\end{equation*}
$$

According to the assumption in Theorem $1, N$ can be considered as a totally umbilical hypersurface of E^{n+1} (ref. [1, p. 41]). In this case, (3.14) becomes

$$
\bar{A}(V)=-p(m-p) c .
$$

Thus from (3.13) we obtain

$$
\operatorname{tr} Q^{A^{\prime}}=\operatorname{tr} Q^{A}-p(m-p) c .
$$

From Lemma 3 and Lemma 1, the condition C 1 or C 2 in Theorem 1 gives that $\operatorname{tr} Q_{\xi_{n}}<0$ for any n. Therefore $\operatorname{tr} Q_{\mathfrak{E}}<0$. This implies that there is no stable p-current in M for $p=1, \cdots, m-1$. By using Theorem FF we have $H_{p}(M, Z)=0(p=1, \cdots, m-1)$. The proof of the conclusion i) is completed.

As for ii), from i) we have $H_{1}(M, Z)=\cdots=H_{m-1}(M, Z)=0$ and so M is a homology sphere. From Lemma 2, M and its universal covering space \tilde{M} are compact. So \tilde{M} is also a homology sphere and from the Hurewicz isomorphism theorem \tilde{M} is ($m-1$)-connected, and thus it is a homotopy sphere. By the generalized Poincare conjecture, we know that \tilde{M} is homeomorphic to a sphere. Now the homology sphere M is covered by a sphere \tilde{M} and hence by a theorem of D. Sjerve [6] we have $\pi_{1}(M)=0$. Using Hurewicz's theorem and the generalized Poincaré conjecture again we get that M is homeomorphic to a sphere.

5. Proof of Theorem 2

Let $\left\{e_{i}, e_{\alpha}\right\}$ be an orthonormal basis of $T_{x} M$ so that $\left\{e_{i}\right\}$ is a basis of the p-subspace V. Denote by \bar{A} the shape operator of the ellipsoid $N^{n} \rightarrow E^{n+1}$. Then for any $X \in C(T M)$, from (1.1)

$$
\bar{A} X=a X+b\langle X, t\rangle t,
$$

where a, b and t are given by (1.2). Thus

$$
\begin{gathered}
\left\langle\bar{A} e_{2}, e_{\alpha}\right\rangle=b\left\langle e_{2}, t\right\rangle\left\langle e_{\alpha}, t\right\rangle, \\
\left\langle\bar{A} e_{\imath}, e_{2}\right\rangle=a+b\left\langle e_{\imath}, t\right\rangle^{2}, \quad\left\langle\bar{A} e_{\alpha}, e_{\alpha}\right\rangle=a+b\left\langle e_{\alpha}, t\right\rangle^{2} .
\end{gathered}
$$

Substituting these into (3.14) we get

$$
\begin{equation*}
\bar{A}(V)=\sum_{\imath, \alpha}\left[b^{2}\left\langle e_{2}, t\right\rangle^{2}\left\langle e_{\alpha}, t\right\rangle^{2}-a b\left(\left\langle e_{2}, t\right\rangle^{2}+\left\langle e_{\alpha}, t\right\rangle^{2}\right)\right]-p(m-p) a^{2} . \tag{5.1}
\end{equation*}
$$

For each pair of fixed indices i, α, let

$$
f_{2 \alpha}=b^{2}\left\langle e_{\imath}, t\right\rangle^{2}\left\langle e_{\alpha}, t\right\rangle^{2}-a b\left(\left\langle e_{\imath}, t\right\rangle^{2}+\left\langle e_{\alpha}, t\right\rangle^{2}\right)
$$

If $c=1$, then $a=1, b=0$ from (1.2) and hence $f_{2 \alpha}=0$. If $c<1$, then $a>0, b>0$. In this case, $f_{2 \alpha} \leqq 0$. In fact, let

Then

$$
\left\langle e_{\imath}, t\right\rangle=e_{i t}, \quad\left\langle e_{\alpha}, t\right\rangle=e_{\alpha t}
$$

$$
\begin{equation*}
f_{\imath \alpha}=b^{2} e_{i t}{ }^{2} e_{\alpha t}{ }^{2}-a b\left(e_{i t}{ }^{2}+e_{\alpha t}{ }^{2}\right) \tag{5.2}
\end{equation*}
$$

where

$$
0 \leqq e_{i t}{ }^{2} \leqq 1, \quad 0 \leqq e_{\alpha t}{ }^{2} \leqq 1
$$

Partially differentiating (5.2) with respect to each variable and equating to zero, we obtain

$$
2 b^{2} e_{i t} e_{\alpha t}^{2}-2 a b e_{i t}=0, \quad 2 b^{2} e_{i t}^{2} e_{\alpha t}-2 a b e_{\alpha t}=0
$$

If $e_{i t}=0$ or $e_{\alpha t}=0$, then $f_{2 \alpha}=-a b\left(e_{\alpha t}{ }^{2}\right.$ or $\left.e_{i t}{ }^{2}\right) \leqq 0$. If $e_{i t} \neq 0$ and $e_{\alpha t} \neq 0$, we have $e_{\alpha t}{ }^{2}=e_{i t}{ }^{2}=a / b$. And hence $f_{\imath \alpha}=-a^{2}<0$. Note that $e_{i t}{ }^{2}=1$ and $e_{\alpha t}{ }^{2}=1$ can not hold simultaneously because $\left\langle e_{\imath}, e_{\alpha}\right\rangle=0$. Thus $f_{\imath \alpha} \leqq 0$ when $c<1$.

Since $f_{2 \alpha} \leqq 0$, from (3.13) and (5.1) we have

$$
\operatorname{tr} Q^{A^{\prime}} \leqq \operatorname{tr} Q^{A}-p(m-p) a^{2}
$$

Because $c^{2} \leqq a^{2} \leqq 1$ for $c \leqq 1, \operatorname{tr} Q^{A^{\prime}}<0$ when $\operatorname{tr} Q^{A}<p(m-p) c^{2}$. Therefore, from Lemma 3 the trace of the quadratic form Q_{\subsetneq} defined by (4.1) is less than zero when $\operatorname{tr} Q^{A}<p(m-p) c^{2}$. This means that there is no stable p-current. The proof is completed.

If the immersion $\phi: M \rightarrow N^{n}$ is minimal, then $\operatorname{tr} A_{\lambda}=0$, from (3.3)

$$
\begin{aligned}
\operatorname{tr} Q^{A} & =\sum_{\lambda}\left[2 \sum_{\imath, \alpha}\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle^{2}+\left(\operatorname{tr} B_{\lambda}\right)^{2}\right] \\
& =\sum_{\lambda}\left[2 \sum_{\imath, \alpha}\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle^{2}+\left(\sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle\right)^{2}\right]
\end{aligned}
$$

But

$$
\begin{aligned}
\left(\sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle\right)^{2} & =\frac{1}{2}\left(\sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle\right)^{2}+\frac{1}{2}\left(\sum_{\alpha}\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle\right)^{2} \\
& \leqq \frac{p}{2} \sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle^{2}+\frac{m-p}{2} \sum_{\alpha}\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle^{2}
\end{aligned}
$$

because $\sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{\imath}\right\rangle+\Sigma\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle=\operatorname{tr} A_{\lambda}=0$. Thus

$$
\begin{aligned}
\operatorname{tr} Q^{A} & \leqq \sum_{\lambda}\left[2 \sum_{\imath, \alpha}\left\langle A_{\lambda} e_{\imath}, e_{\alpha}\right\rangle^{2}+\frac{p}{2} \sum_{\imath}\left\langle A_{\lambda} e_{\imath}, e_{2}\right\rangle^{2}+\frac{m-p}{2} \sum_{\alpha}\left\langle A_{\lambda} e_{\alpha}, e_{\alpha}\right\rangle^{2}\right] \\
& \leqq \frac{1}{2} \max \{p, m-p\} s
\end{aligned}
$$

where $s=\operatorname{tr} A_{\lambda}{ }^{2}$.
Corollary. Let M^{m} be a compact minimal submanifold immersed in the ellipsoid with $c \leqq 1$ and $p \in(0, m)$. If the square length of the second fundamental form of M satisfies $s<2 \min \{p, m-p\} c^{2}$, then

$$
H_{p}(M, Z)=H_{m-p}(M, Z)=0 .
$$

References

[1] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.
[2] B. Y. Chen, Geometry of Submanifolds, Dekker, New York, 1973.
[3] H. Federer and W. Fleming, Normal and integral currents, Ann. of Math., 72 (1960), 458-520.
[4] H. B. Lawson and J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. of Math., 98 (1973), 427-450.
[5] M. Okumura, Submanifolds and a pinching problem on the second fundamental tensors, Trans. Amer. Math. Soc., 178 (1973), 285-291.
[6] D. Sjerve, Homology spheres which are covered by sphere, J. London Math. Soc. (2), 6 (1973), 333-336.
[7] Y.L. Xin, An application of integral currents to the vanishing theorems, Scientian Sinica (A), 27 (1984), 233-241.
[8] X.S. Zhang, Nonexistence of stable currents in submanifolds of a product of two spheres, Bull. Austral. Math. Soc., 44 (1991), 325-336.

Department of Mathematics
Xian university of
Architecture and Technology
Xian 710055, P.R. China

[^0]: * This research is supported by the Science Foundation Grant of Shaanxi Province, P.R. China

 1991 Mathematics Subject Classification: 49Q15, 53C20
 Received June 7, 1993.

