X.-S. ZHANG KODAI MATH. J. 17 (1994), 262-272

GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS IMMERSED IN SPACE FORMS AND ELLIPSOIDS

BY XUE-SHAN ZHANG

Abstract

Let M^m be a compact submanifold of a simply connected space form $N^n(c)$ with $c \ge 0$. Denote by s and H the square length of the second fundamental form and the mean curvature vector field of M respectively. By introducing a selfadjoint linear operator Q^A associated with the shape operator of M, we show that there are no stable currents in M and topologically, M is a sphere if $s < H^2/(m-1)$. For an immersed submanifold of the ellipsoid we show that appropriate assumption on Q^A implies the vanishing of a given homology group.

1. Introduction

Let M^m be a submanifold immersed in a Riemannian manifold N^n . Denote by V(N, M) the normal bundle of M in N. For a smooth section $\nu \in C(V(N, M))$, the shape operator A_{ν} determined by ν is given by

$$\langle A_{\nu}X, Y \rangle = \langle h(X, Y), \nu \rangle$$

where X, $Y \in C(TM)$ and h is the second fundamental form of M.

In 1973, by using techniques of the calculus of variations in geometric measure theory, H.B. Lawson and J. Simons [4] showed the following

THEOREM LS. Let M^m be a compact submanifold of S^n and p a given integer, $p \in (0, m)$. If for any $x \in M$ and any orthonormal basis $\{e_i, e_\alpha\}$ $(i=1, \dots, p; \alpha = p+1, \dots, m)$ of $T_x M$ the following condition is satisfied

$$\sum_{\alpha} [2 \| h(e_{\alpha}, e_{\alpha}) \|^{2} - \langle h(e_{\alpha}, e_{\alpha}), h(e_{\alpha}, e_{\alpha}) \rangle] < p(m-p),$$

then there is no stable p-current in M and hence

 $[\]ast$ This research is supported by the Science Foundation Grant of Shaanxi Province, P.R. China

¹⁹⁹¹ Mathematics Subject Classification: 49Q15, 53C20 Received June 7, 1993.

$$H_p(M, Z) = H_{m-p}(M, Z) = 0$$
.

Theorem LS has been extended to the submanifolds of E^n and $S^{n_1} \times S^{n_2}$ by Y.L. Xin [7] and the author [8], respectively.

On the other hand, as an extension of the well-known gap theorem in the minimal submanifolds, M. Okumura [5] proved that

THEOREM O. Let M^m be a compact, connected submanifold immersed in a Riemannian manifold of non-negative constant curvature. Suppose that

(c) the connection of the normal bundle is flat and the mean curvature vector field H is parallel with respect to the connection of the normal bundle.

If $s = \sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}$, the square length of the second fundamental form, satisfies $s < H^{2}/(m-1)$, then M is totally umbilical.

In this paper, we shall cancel the condition (c) in Theorem O and prove that

THEOREM 1. Let $\phi: M^m \to N^n(c)$ be an isometric immersion of a Riemannian manifold M^m into a simply connected space form $N^n(c)$, $m=\dim M \ge 3$. If one of the following is satisfied:

C1. M is compact $c \ge 0$ and $s < H^2/(m-1)$ on M,

C2. M is complete, c>0 and $s \leq H^2/(m-1)$ on M,

then

i) there exist no stable p-currents in M and hence

 $H_p(M, Z) = 0$ for $p = 1, 2, \dots, m-1$;

ii) M is homeomorphic to a sphere when $m \ge 4$.

Remark. Just as Okumura [5] indicated, the condition $s < H^2/(m-1)$ is the best possible when $N^n = E^n$. For example, let $M^m = S^{m-1} \times E^1 \subseteq E^{m+1}$, then $s = H^2/(m-1)$ on M.

Now we give an example for Theorem 1. Consider the ellipsoid

 $M^{m}: x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2} + (x_{m+1}^{2}/c^{2}) = 1 \qquad (c > 0).$

Denote by r the position vector of the point $x \in M^m$ in E^{m+1} . Then M can also be expressed by

 $r = (\sin \theta_m \sin \theta_{m-1} \cdots \sin \theta_2 \sin \theta, \cdots, \cos \theta_2 \sin \theta, c \cos \theta).$

A calculation indicates that the shape operator A of M can be given by

 $AX = aX + b\langle X, t \rangle t,$

where $X \in C(TM)$ and

(1.2)
$$t = (\partial r/\partial \theta) / \|\partial r/\partial \theta\|, \qquad a = c/(\cos^2 \theta + c^2 \sin^2 \theta)^{1/2},$$
$$b = c(1 - c^2) \sin^2 \theta / (\cos^2 \theta + c^2 \sin^2 \theta)^{3/2}.$$

Choose an orthonormal basis $\{e_i\}$ of T_xM such that e_i is parallel to $\partial r/\partial \theta_i$ $(i=1, 2, \dots, m, \theta_1=\theta)$. Then from (1.1),

$$s = \operatorname{tr} A^{2} = \sum_{i} \langle A^{2}e_{i}, e_{i} \rangle = (a+b)^{2} + (m-1)a^{2},$$
$$H^{2} = (\operatorname{tr} A)^{2} = (\sum_{i} \langle Ae_{i}, e_{i} \rangle)^{2} = [(a+b) + (m-1)a]^{2}.$$

And thus

$$H^2/(m-1)-s=(a+b)[ma+(2-m)b]/(m-1)$$
.

It is easy to verify that a+b>0 and ma+(2-m)b>0 when $c^2>(m-2)/2(m-1)$. Therefore, $s < H^2/(m-1)$ on the ellipsoid with $c^2>(m-2)/2(m-1)$.

The above example tells us, just as on S^n [4, p. 438], there is no stable *p*-currents on the ellipsoid with $c^2 > (m-2)/2(m-1)$. Besides, if the condition (c) in Theorem O is canceled, then the submanifolds in Theorem O do not necessarily have to be totally umbilical.

Furthermore, we shall prove the following

THEOREM 2. Let $\phi: M^m \to N^n$ be an isometric immersion of a compact Riemannian manifold M in the ellipsoid $N^n: x_1^2 + \cdots + x_n^2 + x_{n+1}^2/c^2 = 1$, $c \leq 1$ and p a given integer, $p \in (0, m)$. If for any $x \in M$ and any p-subspace V of T_xM

$$tr Q^{A} < p(m-p)c^{2}$$
,

Then there is no stable p-current in M and

$$H_p(M, Z) = H_{m-p}(M, Z) = 0$$
.

Remark. When c=1, Theorem 2 is due to Theorem LS.

2. Rectifiable currents

In this section we shall give a brief description of rectifiable currents (ref. [3, 4, 8]).

Let M^m be an *m*-dimensional compact Riemannian manifold with Riemannian metric \langle , \rangle and Levi-Civita connection ∇ . Denote by \mathcal{H}^p Hausdorff *p*-measure on *M*. A subset *S* of *M* is called a *p*-rectifiable set if *S* is a countable union of disjoint *p*-dimensional C^1 submanifolds, up to sets of \mathcal{H}^p -measure zero. Consider over *S* an \mathcal{H}^p -measurable section $\xi : S \to \bigwedge^p TM$ with the property that for \mathcal{H}^p -almost all $x \in S$, ξ_x is a simple vector of unit length which represents T_xS . Such a pair (S, ξ) is called an oriented, *p*-rectifiable set.

The set of rectifiable *p*-currents is defined by

$$\mathfrak{R}_p(M) = \left\{ \mathfrak{S} = \sum_{n=1}^{\infty} n \mathfrak{S}_n ; \ \mathfrak{S}_n = (S_n, \ \xi_n), \ M(\mathfrak{S}) = \sum_{n=1}^{\infty} n \mathcal{H}^p(S_n) < \infty \right\}.$$

In the case that \mathfrak{S} and $\mathfrak{d}\mathfrak{S}$ are both rectifiable currents, \mathfrak{S} is called an integral *p*-current. The space of integral *p*-currents is denoted by $\mathcal{T}_p(M)$. The direct sum $\mathcal{T}_*(M) = \bigoplus_p \mathcal{T}_p(M)$ together with $\mathfrak{d} : \mathcal{T}_*(M) \to \mathcal{T}_*(M)$ forms a differential chain complex. For this complex there are the following results due to Federer and Fleming [3].

THEOREM FF. For each $p \ge 0$ there is a natural isomorphism

$$H_p(\mathcal{I}_*(M)) \cong H_p(M, Z)$$
.

And for each $\alpha \in H_p(\mathcal{T}_*(M))$ there exists a current $\mathfrak{S} \in \alpha$ of "least area", that is, $M(\mathfrak{S}) \leq M(\mathfrak{S}')$

for all $\mathfrak{S}' \in \alpha$.

For a smooth vector field $X \in C(TM)$, let $\phi_t : M \to M$ be the 1-parameter group of diffeomorphisms generated by X. A current $\mathfrak{S} \in \mathfrak{R}_p(M)$ is said to be stable if for each vector field X there is an $\varepsilon > 0$ such that

$$M(\phi_{t*}\mathfrak{S}) \geq M(\mathfrak{S})$$

for $|t| < \varepsilon$.

Lawson and Simons [4] derived the following formulae:

$$\frac{d}{dt}M(\phi_{t*}\mathfrak{S})\Big|_{t=0} = \int \langle a^{X}(\vec{\mathfrak{S}}), \vec{\mathfrak{S}} \rangle d\|\mathfrak{S}\|,$$

$$(2.1) \qquad \qquad \frac{d^{2}}{dt^{2}}M(\phi_{t*}\mathfrak{S})\Big|_{t=0} = \int \{-\langle a^{X}(\vec{\mathfrak{S}}), \vec{\mathfrak{S}} \rangle^{2} + \langle a^{X}a^{X}(\vec{\mathfrak{S}}), \vec{\mathfrak{S}} \rangle$$

$$+ \|a^{X}(\vec{\mathfrak{S}})\|^{2} + \langle \nabla_{X}, \vec{\mathfrak{S}}X, \vec{\mathfrak{S}} \rangle \} d\|\mathfrak{S}\|,$$

where $a^{x} : \wedge^{p}T_{x}M \rightarrow \wedge^{p}T_{x}M$ is a linear map given by

$$a^{X}(X_{1} \wedge \cdots \wedge X_{p}) = \sum_{j} X_{1} \wedge \cdots \wedge a^{X}(X_{j}) \wedge \cdots \wedge X_{p},$$

 $a^{X}(X_{j}) = \nabla_{X_{j}} X,$

and ∇_X , $X: \wedge^p T_x M \to \wedge^p T_x M$ is another linear map defined by

$$\nabla_{X, X_1 \wedge \dots \wedge X_p} X = \sum_j X_1 \wedge \dots \wedge (\nabla_{X, X_j} X) \wedge \dots \wedge X_p,$$
$$\nabla_{X, X_j} X = \nabla_X \nabla_{X_j} X - \nabla_{\nabla_X X_j} X.$$

To any simple *p*-vector $\xi \in \bigwedge^{p} T_{x}M$ and $X \in C(TM)$, let ϕ_{t} be the flow generated by X, and define

$$Q_{\boldsymbol{\xi}}(X) = \frac{d^2}{dt^2} \|\boldsymbol{\phi}_{t*}\boldsymbol{\xi}\| \Big|_{t=0}.$$

Then the expression (2.1) can be denoted by

(2.2)
$$\frac{d^2}{dt^2} M(\phi_{t*} \mathfrak{S}) \Big|_{t=0} = \sum_n n \int_{\mathcal{S}_n} Q_{\xi_n}(X) d\mathcal{H}^p(x).$$

If $X = \nabla f$ for some $f \in C^{s}(M)$ and $\{e_{i}, e_{\alpha}\}$ $(i=1, \dots, p; \alpha = p+1, \dots, m)$ is an orthonormal basis of $T_{x}M$ with $\xi = e_{1} \wedge e_{2} \wedge \dots \wedge e_{p}$, then we can obtain

(2.3)
$$Q_{\xi}(X) = \left[\sum_{j} \langle a^{X}(e_{j}), e_{j} \rangle\right]^{2} + 2 \sum_{j,\alpha} \langle a^{X}(e_{j}), e_{\alpha} \rangle^{2} + \sum_{j} \langle \nabla_{X,e_{j}} X, e_{j} \rangle.$$

3. Linear operator Q^A

For a *p*-rectifiable set S in M, we know that at \mathcal{H}^p -almost all point $x \in S$, there exists an approximate *p*-space $T_x S \subset T_x M$, to S. In this section we shall introduce a selfadjoint linear operator Q^A on $T_x S$ and prove some lemmas.

Let $\phi: M^m \to N^n$ be an isometric immersion of a Riemannian manifold M into a Riemannian manifold N. The Levi-Civita connections of M and N are denoted by ∇ and $\overline{\nabla}$ respectively.

For a given integer $p \in (0, m)$ let V be a p-dimensional subspace in $T_x M$. And for $\nu \in C(V(N, M))$, let A_{ν} be the shape operator determined by ν . Define a map $B_{\nu}: V \to V$ associated with A_{ν} by

 $B_{\nu}X$ =orthogonal projection of $A_{\nu}X$ onto V,

where $X \in V$. If $\{e_i\}$ is an orthonormal basis of V, we have

$$(3.1) B_{\nu}X = \sum_{i} \langle A_{\nu}X, e_{i} \rangle e_{i}$$

Let $\{\nu_{\lambda}\}$ be an orthonormal basis of the normal space $V_x(N, M)$ and $A_{\lambda} = A_{\nu_{\lambda}}$. Define a selfadjoint linear map $Q^A: V \to V$ associated with the immersion ϕ by

$$(3.2) Q^{A}X = \sum_{\lambda} \left[2(\sum_{i} \langle A_{\lambda}^{2}X, e_{i} \rangle e_{i} - B_{\lambda}^{2}X) - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda})B_{\lambda}X \right],$$

where $X \in V$ and $\{e_i\}$ is an orthonormal basis of V. Let $\{e_\alpha\}$ be an orthonormal basis of V^{\perp} which is the orthogonal complement of V in $T_x M$. Then $\{e_i, e_\alpha\}$ is an orthonormal basis of $T_x M$ and from [8] the trace of Q^A is

(3.3)
$$\operatorname{tr} Q^{A} = \sum_{i} \langle Q^{A} e_{i}, e_{i} \rangle = \sum_{\lambda} \left[2 \sum_{i, \alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) \operatorname{tr} B_{\lambda} \right].$$

LEMMA O [5]. Let a_1, a_2, \dots, a_m and b be $m+1 \ (m \ge 2)$ real numbers satisfying the inequality

$$\sum_{s=1}^{m} (a_s)^2 + b < \frac{1}{m-1} \left(\sum_{s=1}^{m} a_s \right)^2 \quad (resp. \leq),$$

then $2a_sa_t > b$ (resp. \geq) for any $s \neq t$.

Let
$$s = \sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}$$
, $H = \sum_{\lambda} (\operatorname{tr} A_{\lambda}) \nu_{\lambda}$, Now we shall prove

LEMMA 1. Let $m \ge 3$ and $p \in (0, m)$. If $s < H^2/(m-1)$ (resp. \le), then for any $x \in M$ and any p-subspace V in T_xM ,

tr
$$Q^A < 0$$
 (resp. \leq).

Proof. If $s < H^2/(m-1)$, because $s \ge 0$ we see that $H \ne 0$. So we can choose an orthonormal basis $\{\nu_{\lambda}\}$ of $V_x(N, M)$ such that $H=(\operatorname{tr} A_1)\nu_1$. Hence $\operatorname{tr} A_{\lambda}=0$ for $\lambda \ge 2$.

Because the maps $B_1: V \to V$ and $B_1^{\perp}: V^{\perp} \to V^{\perp}$ associated with A_1 are selfadjoint linear, we can choose orthonormal basises $\{e_i\}$ of V and $\{e_{\alpha}\}$ of V^{\perp} respectively such that

$$B_1e_1=\mu_ie_1$$
, $B_1^{\perp}e_{\alpha}=\mu_{\alpha}e_{\alpha}$.

So from (3.1) we have

$$\langle A_1 e_i, e_j \rangle = \langle B_1 e_i, e_j \rangle = \mu_i \delta_{ij}, \quad \langle A_1 e_\alpha, e_\beta \rangle = \langle B_1^{\perp} e_\alpha, e_\beta \rangle = \mu_\alpha \delta_{\alpha\beta},$$

and then

tr
$$A_1 = \sum_{i} \langle A_1 e_i, e_i \rangle + \sum_{\alpha} \langle A_1 e_{\alpha}, e_{\alpha} \rangle = \sum_{i} \mu_i + \sum_{\alpha} \mu_{\alpha}$$

(3.4) $\operatorname{tr} B_1 = \sum_{\iota} \mu_{\iota} , \quad \operatorname{tr} A_1 - \operatorname{tr} B_1 = \sum_{\alpha} \mu_{\alpha} ,$

$$s = \sum_{i} \mu_{i}^{2} + \sum_{\alpha} \mu_{\alpha}^{2} + 2 \sum_{i,\alpha} (A_{i\alpha}^{1})^{2} + \sum_{\lambda \geq 2} \sum_{i,j} (A_{ij}^{\lambda})^{2} + 2 \sum_{i,\alpha} (A_{i\alpha}^{\lambda})^{2} + \sum_{\alpha,\beta} (A_{\alpha\beta}^{\lambda})^{2}],$$

where $A_{ij}^{\lambda} = \langle A_{\lambda}e_i, e_j \rangle$, $A_{i\alpha}^{\lambda} = \langle A_{\lambda}e_i, e_{\alpha} \rangle$, $A_{\alpha\beta}^{\lambda} = \langle A_{\lambda}e_{\alpha}, e_{\beta} \rangle$. Hence the condition $s < H^2/(m-1)$ becomes

(3.5)
$$\sum_{i} \mu_i^2 + \sum_{\alpha} \mu_{\alpha}^2 + b < (\sum_{i} \mu_i + \sum_{\alpha} \mu_{\alpha})^2 / (m-1),$$

where

$$b = 2 \sum_{i,\alpha} (A_{i\alpha}^{1})^{2} + \sum_{\lambda \geq 2} \left[2 \sum_{i,\alpha} (A_{i\alpha}^{\lambda})^{2} + \sum_{i,j} (A_{ij}^{\lambda})^{2} + \sum_{\alpha,\beta} (A_{\alpha\beta}^{\lambda})^{2} \right].$$

Using Lemma O to (3.5), we get that

(3.6)
$$2\mu_k\mu_{\gamma} > b = 2\sum_{\lambda,\iota,\alpha} (A_{\iota\alpha}^{\lambda})^2 + \sum_{\lambda \geq 2} \left[\sum_{\iota,j} (A_{\iotaj}^{\lambda})^2 + \sum_{\alpha,\beta} (A_{\alpha\beta}^{\lambda})^2\right].$$

Combining (3.3), (3.4) with tr $A_{\lambda}=0$ ($\lambda \ge 2$) and (3.6) gives

$$\begin{split} \operatorname{tr} Q^{A} &= 2 \sum_{i,\alpha} \langle A_{i}e_{i}, \ e_{\alpha} \rangle^{2} - \sum_{i,\alpha} \mu_{i}\mu_{\alpha} + \sum_{\lambda \geq 2} \left[2 \sum_{i,\alpha} \langle A_{\lambda}e_{i}, \ e_{\alpha} \rangle^{2} + (\operatorname{tr} B_{\lambda})^{2} \right] \\ &< 2 \sum_{\lambda,i,\alpha} (A_{i\alpha}^{\lambda})^{2} - p(m-p) \Big\{ \sum_{\lambda,i,\alpha} (A_{i\alpha}^{\lambda})^{2} + \frac{1}{2} \sum_{\lambda \geq 2} \left[\sum_{i,j} (A_{ij}^{\lambda})^{2} + \sum_{\alpha,\beta} (A_{\alpha\beta}^{\lambda})^{2} \right] \\ &+ \sum_{\lambda \geq 2} \left[\sum_{i} \langle A_{\lambda}e_{i}, \ e_{i} \rangle \right]^{2} \\ &= \left[2 - p(m-p) \right] \sum_{\lambda,i,\alpha} (A_{i\alpha}^{\lambda})^{2} - \frac{1}{2} p(m-p) \sum_{\lambda \geq 2} \left[\sum_{i\neq j} (A_{ij}^{\lambda})^{2} + \sum_{\alpha\neq\beta} (A_{\alpha\beta}^{\lambda})^{2} \right] \\ &+ \sum_{\lambda \geq 2} \Big\{ (\sum_{i} A_{ii}^{\lambda})^{2} - \frac{1}{2} p(m-p) \left[\sum_{i} (A_{ii}^{\lambda})^{2} + \sum_{\alpha} (A_{\alpha\alpha}^{\lambda})^{2} \right] \Big\}. \end{split}$$

Because $m \ge 3$ and $0 , <math>2-p(m-p) \le 0$. Therefore,

(3.7)
$$\operatorname{tr} Q^{4} < \sum_{\lambda \geq 2} \left\{ (\sum_{i} A_{ii}^{\lambda})^{2} - \frac{1}{2} p(m-p) [\sum_{i} (A_{ii}^{\lambda})^{2} + \sum_{\alpha} (A_{\alpha\alpha}^{\lambda})^{2}] \right\}.$$

Noting that for $\lambda \geq 2$, tr $A_{\lambda} = 0$, that is

$$\sum_{i} A_{ii}^{\lambda} + \sum_{\alpha} A_{\alpha\alpha}^{\lambda} = \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle + \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle = 0,$$

we have

(3.8)
$$(\sum_{i} A_{ii}^{\lambda})^{2} = \frac{1}{2} (\sum_{i} A_{ii}^{\lambda})^{2} + \frac{1}{2} (\sum_{\alpha} A_{\alpha\alpha}^{\lambda})^{2} \leq \frac{p}{2} \sum_{i} (A_{ii}^{\lambda})^{2} + \frac{m-p}{2} \sum_{\alpha} (A_{\alpha\alpha}^{\lambda})^{2}.$$

Substituting (3.8) into (3.7), we obtain tr $Q^A < 0$.

Repeating the above, if $s \leq H^2/(m-1)$ and $H \neq 0$ we have tr $Q^A \leq 0$. If $s \leq H^2/(m-1)$ and H=0, then $A_\lambda=0$ and hence tr $Q^A=0$. Q. E. D.

Let the ambient space N be of constant curvature c, and $s < H^2/(m-1)$ on M. Choose an orthonormal basis $\{\nu_{\lambda}\}$ of $V_x(N, M)$ such that $H=(\operatorname{tr} A_1)\nu_1$ and hence $\operatorname{tr} A_{\lambda}=0$ when $\lambda \ge 2$. And choose an orthonormal basis $\{E_s\}$ of T_xM so that $A_1E_s=\lambda_sE_s$ $(s=1, \dots, m)$. Then the condition $s < H^2/(m-1)$ gives

$$\sum_{s} \lambda_s^2 + \sum_{\lambda \geq 2} \sum_{s,t} \langle A_{\lambda} E_s, E_t \rangle^2 < (\sum_{s} \lambda_s)^2 / (m-1).$$

From Lemma O, for any $s \neq t$ we have

(3.9)
$$2\lambda_s\lambda_t > \sum_{\lambda \ge 2} \sum_{q,r} \langle A_\lambda E_q, E_r \rangle^2.$$

Let v be a unit vector in T_xM and $m \ge 3$. Applying (3.9) and the equation of Gauss we can obtain

$$Ric(v, v) > (m-1)c$$
.

If $s \leq H^2/(m-1)$, we can get that $Ric(v, v) \geq (m-1)c$. Hence from Myers' theorem (ref. [1, p. 28]) we have

LEMMA 2. Let M^m be a submanifold immersed in a Riemannian manifold of constant curvature c and $m \ge 3$. If M is compact, $c \ge 0$ and $s < H^2/(m-1)$ on M, then the fundamental group of M is finite. If M is complete, c > 0 and $s \le H^2/(m-1)$ on M, then the fundamental group of M is finite and M is compact.

Now assume $\phi: N^n \to E^1$ is an isometric immersion of the Riemannian manifold N in the Euclidean space E^1 . Let D be the Levi-Civita connection on E^1 . Associated with the isometric immersion $x = \phi \circ \phi: M^m \to E^1$, the shape operator A'_{ν} determined by $\nu \in C(V(E^1, M))$ is given by

$$A_{\nu}'Y = -(D_{Y}\nu)^{T},$$

where $Y \in C(TM)$. Especially, if $\nu \in C(V(N, M))$,

(3.10)
$$A'_{\nu}Y = -(D_{Y}\nu)^{T} = -[\overline{\nabla}_{Y}\nu + \overline{h}(\nu, Y)]^{T} = -(-A_{\nu}Y + \nabla_{Y}^{\perp}\nu)^{T} = A_{\nu}Y,$$

where \bar{h} is the second fundamental form of the immersion ϕ . And if $\nu \in C(V(E^1, N))$,

Let S be a p-rectifiable set. At $x \in S$, associate a tangent p-space $V=T_xS \subset T_xM$. Choose an orthonormal basis $\{e_i, e_a\}$ of T_xM such that $\{e_i\}$ is a basis of V and $\xi = e_1 \wedge \cdots \wedge e_p$. Let $Q^{A'}$ be the selfadjoint linear operator on V associated with the immersion $\psi \circ \phi : M^m \to E^1$ defined by (3.2). At $x \in M$ let $\{\nu_\sigma\}$ be an orthonormal basis of $V_x(E^1, M)$ and $A'_{\sigma} = A'_{\nu_{\sigma}}$. Then there is the following relation between $Q^{A'}$ and Q_{ξ} given by (2.3) from [8]

LEMMA 3. tr Q_{ξ} =tr $Q^{A'}$, where

(3.12)
$$\operatorname{tr} Q^{A'} = \sum_{\sigma} \left[2 \sum_{\iota, \alpha} \langle A'_{\sigma} e_{\iota}, e_{\alpha} \rangle^2 - (\operatorname{tr} A'_{\sigma} - \operatorname{tr} B'_{\sigma}) \operatorname{tr} B'_{\sigma} \right].$$

At a point $x \in M$, we take an orthonormal basis $\{\nu_{\lambda}, \eta_{a}\}$ of $V_{x}(E^{1}, M)$ so that $\{\nu_{\lambda}\}$ and $\{\eta_{a}\}$ are bases of $V_{x}(N, M)$ and $V_{x}(E^{1}, N)$ respectively. From (3.10) and (3.11) we obtain

$$\operatorname{tr} Q^{A'} = \operatorname{tr} Q^{A} + \overline{A}(V) ,$$

where tr Q^A is given by (3.3) and

(3.14)
$$\overline{A}(V) = \sum_{a, \iota, \alpha} \left[2 \langle \overline{A}_a e_\iota, e_\alpha \rangle^2 - \langle \overline{A}_a e_\alpha, e_\alpha \rangle \langle \overline{A}_a e_\iota, e_\iota \rangle \right].$$

4. Proof of Theorem 1

Let $\theta = \{\nabla f ; f : E^{n+1} \rightarrow R \text{ is linear}\}$ and $\mathfrak{S} \in \mathfrak{R}_p(M)$. For $X \in \theta$, let ϕ_t be the flow generated by X and set

(4.1)
$$Q_{\mathfrak{S}}(X) = \frac{d^2}{dt^2} M(\phi_t * \mathfrak{S}) \Big|_{t=0}$$

Then from (2.2) and (2.3), $Q_{\mathfrak{S}}$ can be considered as a quadratic form on θ and

(4.2)
$$\operatorname{tr} Q_{\mathfrak{S}} = \sum_{n} n \int_{\mathcal{S}_{n}} \operatorname{tr} Q_{\xi_{n}} d \mathscr{H}^{p}(X).$$

According to the assumption in Theorem 1, N can be considered as a totally umbilical hypersurface of E^{n+1} (ref. [1, p. 41]). In this case, (3.14) becomes

$$\overline{A}(V) = -p(m-p)c.$$

Thus from (3.13) we obtain

tr
$$Q^{A'}$$
 = tr $Q^{A} - p(m-p)c$.

From Lemma 3 and Lemma 1, the condition C1 or C2 in Theorem 1 gives that tr $Q_{\xi_n} < 0$ for any *n*. Therefore tr $Q_{\mathfrak{S}} < 0$. This implies that there is no stable *p*-current in *M* for $p=1, \dots, m-1$. By using Theorem FF we have $H_p(M, Z)=0$ ($p=1, \dots, m-1$). The proof of the conclusion i) is completed.

As for ii), from i) we have $H_1(M, Z) = \cdots = H_{m-1}(M, Z) = 0$ and so M is a homology sphere. From Lemma 2, M and its universal covering space \tilde{M} are compact. So \tilde{M} is also a homology sphere and from the Hurewicz isomorphism theorem \tilde{M} is (m-1)-connected, and thus it is a homotopy sphere. By the generalized Poincare conjecture, we know that \tilde{M} is homeomorphic to a sphere. Now the homology sphere M is covered by a sphere \tilde{M} and hence by a theorem of D. Sjerve [6] we have $\pi_1(M)=0$. Using Hurewicz's theorem and the generalized Poincaré conjecture again we get that M is homeomorphic to a sphere.

5. Proof of Theorem 2

Let $\{e_i, e_\alpha\}$ be an orthonormal basis of T_xM so that $\{e_i\}$ is a basis of the *p*-subspace V. Denote by \overline{A} the shape operator of the ellipsoid $N^n \rightarrow E^{n+1}$. Then for any $X \in C(TM)$, from (1.1)

$$\overline{A}X = aX + b\langle X, t\rangle t$$
,

where a, b and t are given by (1.2). Thus

$$\langle Ae_i, e_{\alpha} \rangle = b \langle e_i, t \rangle \langle e_{\alpha}, t \rangle ,$$
$$\langle \overline{A}e_i, e_i \rangle = a + b \langle e_i, t \rangle^2 , \qquad \langle \overline{A}e_{\alpha}, e_{\alpha} \rangle = a + b \langle e_{\alpha}, t \rangle^2 .$$

Substituting these into (3.14) we get

(5.1)
$$\overline{A}(V) = \sum_{\iota, \alpha} \left[b^2 \langle e_\iota, t \rangle^2 \langle e_\alpha, t \rangle^2 - ab (\langle e_\iota, t \rangle^2 + \langle e_\alpha, t \rangle^2) \right] - p(m-p)a^2 .$$

For each pair of fixed indices i, α , let

$$f_{\iota\alpha} = b^2 \langle e_{\iota}, t \rangle^2 \langle e_{\alpha}, t \rangle^2 - ab(\langle e_{\iota}, t \rangle^2 + \langle e_{\alpha}, t \rangle^2).$$

If c=1, then a=1, b=0 from (1.2) and hence $f_{i\alpha}=0$. If c<1, then a>0, b>0. In this case, $f_{i\alpha}\leq 0$. In fact, let

$$\langle e_i, t \rangle = e_{it}, \quad \langle e_{\alpha}, t \rangle = e_{\alpha t}$$

Then

(5.2) $f_{\iota\alpha} = b^2 e_{\iota\iota}^2 e_{\alpha\iota}^2 - ab(e_{\iota\iota}^2 + e_{\alpha\iota}^2),$

where

 $0 \leq e_{it}^2 \leq 1$, $0 \leq e_{\alpha t}^2 \leq 1$.

Partially differentiating (5.2) with respect to each variable and equating to zero, we obtain

$$2b^2 e_{it} e_{\alpha t}^2 - 2abe_{it} = 0$$
, $2b^2 e_{it}^2 e_{\alpha t} - 2abe_{\alpha t} = 0$.

If $e_{it}=0$ or $e_{\alpha t}=0$, then $f_{i\alpha}=-ab(e_{\alpha t}^2 \text{ or } e_{it}^2)\leq 0$. If $e_{it}\neq 0$ and $e_{\alpha t}\neq 0$, we have $e_{\alpha t}^2=e_{it}^2=a/b$. And hence $f_{i\alpha}=-a^2<0$. Note that $e_{it}^2=1$ and $e_{\alpha t}^2=1$ can not hold simultaneously because $\langle e_i, e_\alpha \rangle = 0$. Thus $f_{i\alpha} \leq 0$ when c<1.

Since $f_{\iota\alpha} \leq 0$, from (3.13) and (5.1) we have

$$\operatorname{tr} Q^{A'} \leq \operatorname{tr} Q^A - p(m-p)a^2$$

Because $c^2 \leq a^2 \leq 1$ for $c \leq 1$, tr $Q^{A'} < 0$ when tr $Q^A < p(m-p)c^2$. Therefore, from Lemma 3 the trace of the quadratic form $Q_{\mathfrak{S}}$ defined by (4.1) is less than zero when tr $Q^A < p(m-p)c^2$. This means that there is no stable *p*-current. The proof is completed.

If the immersion $\phi: M \rightarrow N^n$ is minimal, then tr $A_{\lambda} = 0$, from (3.3)

$$\operatorname{tr} Q^{A} = \sum_{\lambda} \left[2 \sum_{\iota, \alpha} \langle A_{\lambda} e_{\iota}, e_{\alpha} \rangle^{2} + (\operatorname{tr} B_{\lambda})^{2} \right]$$
$$= \sum_{\lambda} \left[2 \sum_{\iota, \alpha} \langle A_{\lambda} e_{\iota}, e_{\alpha} \rangle^{2} + (\sum_{\iota} \langle A_{\lambda} e_{\iota}, e_{\iota} \rangle)^{2} \right]$$

But

$$(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle)^{2} = \frac{1}{2} (\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle)^{2} + \frac{1}{2} (\sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle)^{2}$$
$$\leq \frac{p}{2} \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2} + \frac{m-p}{2} \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2},$$

because $\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle + \sum \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle = \text{tr } A_{\lambda} = 0.$ Thus

$$\begin{aligned} \operatorname{tr} Q^{A} &\leq \sum_{\lambda} \left[2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} + \frac{p}{2} \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2} + \frac{m-p}{2} \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2} \right] \\ &\leq \frac{1}{2} \max \left\{ p, \ m-p \right\} s , \end{aligned}$$

where $s = tr A_{\lambda}^2$.

COROLLARY. Let M^m be a compact minimal submanifold immersed in the ellipsoid with $c \leq 1$ and $p \in (0, m)$. If the square length of the second fundamental form of M satisfies $s < 2 \min \{p, m-p\}c^2$, then

$$H_p(M, Z) = H_{m-p}(M, Z) = 0$$
.

References

- [1] J. CHEEGER AND D.G. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.
- [2] B.Y. CHEN, Geometry of Submanifolds, Dekker, New York, 1973.
- [3] H. FEDERER AND W. FLEMING, Normal and integral currents, Ann. of Math., 72 (1960), 458-520.
- [4] H.B. LAWSON AND J. SIMONS, On stable currents and their application to global problems in real and complex geometry, Ann. of Math., 98 (1973), 427-450.
- [5] M. OKUMURA, Submanifolds and a pinching problem on the second fundamental tensors, Trans. Amer. Math. Soc., 178 (1973), 285-291.
- [6] D. SJERVE, Homology spheres which are covered by sphere, J. London Math. Soc. (2), 6 (1973), 333-336.
- [7] Y.L. XIN, An application of integral currents to the vanishing theorems, Scientian Sinica (A), 27 (1984), 233-241.
- [8] X.S. ZHANG, Nonexistence of stable currents in submanifolds of a product of two spheres, Bull. Austral. Math. Soc., 44 (1991), 325-336.

DEPARTMENT OF MATHEMATICS XIAN UNIVERSITY OF Architecture and Technology XIAN 710055, P.R. China