S. SEGAWA KODAI MATH. J. 17 (1994), 256-261

HARMONIC DIMENSION AND EXTREMAL LENGTH

Dedicated to Professor Nobuyuki Suita on his sixtieth birthday

By Shigeo Segawa

Consider an open Riemann surface R with a single ideal boundary component. A subregion $V(\neq R)$ of R is said to be an *end* of R if V is relatively noncompact in R and the relative boundary ∂V consists of finitely many analytic Jordan curves. Denote by $\mathcal{P}(V)$ the class of nonnegative harmonic functions on V with vanishing boundary values on ∂V :

$$\mathcal{P}(V) = \{h \in HP(V) : h \mid \partial V = 0\},\$$

where HP(V) is the class of nonnegative harmonic functions on V. The dimension of the linear space $\mathcal{P}(V) \ominus \mathcal{P}(V) = \{h_1 - h_2 : h_1, h_2 \in \mathcal{P}(V)\}$ is referred to as the harmonic dimension of V (cf. Heins [4]), dim $\mathcal{P}(V)$ in notation. It is known that dim $\mathcal{P}(V)$ does not depend on a choice of an end V of R (cf. [4]): dim $\mathcal{P}(V_1) = \dim \mathcal{P}(V_2)$ for any pair (V_1, V_2) of ends of R.

Denote by O_G the class of open Riemann surfaces of null boundary and by M the class of open Riemann surfaces $R \in O_G$ such that there exists an end V of R with dim $\mathcal{P}(V)=1$. In terms of Martin compactification an R belongs to M if and only if R is of null boundary and the Martin boundary of Rconsists of a single point (cf. e.g. Constantinescu and Cornea [3]). We are particularly interested in the following result by Heins [4] (see also [7]):

THEOREM A. Let V be an end and $\{A_n\}$ be a sequence of mutually disjoint annuli in V satisfying that A_{n+1} separates A_n from the ideal boundary of V for every n. If the sum of moduli of A_n diverges, then dim $\mathcal{P}(V)=1$.

We also denote by O''_{s} the class of open Riemann surfaces having a regular exhaustion $\{R_n\}_{n=0}^{\infty}$ such that each $A_n = R_{2n} - \overline{R_{2n-1}}$ $(n=1, 2, \cdots)$ is a doubly connected region and $\sum_{n=1}^{\infty} \mod A_n = \infty$, where $\mod A_n$ is the modulus of A_n . Then the above Heins' result is restated as

$O''_{s} \subset M$.

^{*} This work was partially supported by Grant-in Aid for Scientific Research, No. 04302006, Japanese Ministry of Education, Science and Culture.

Received June 5, 1993.

The main purpose of this paper is to show that the inclusion $O'_{\leq} \subset M$ is strict.

In §1, we study harmonic dimension of an end which is a two-sheeted covering surface of the punctured unit disc $\{0 < |z| < 1\}$. In §2, applying a fact obtained in §1, we give an example which shows that the inclusion $O''_{s} \subset M$ is strict.

Harmonic dimension of two-sheeted covering surfaces

1.1. Consider two sequences $\{a_n\}$ and $\{b_n\}$ satisfying $0 < b_{n+1} < a_n < b_n < 1$ and $\lim_{n\to\infty} a_n = 0$. Denote by $D = D(\{a_n\}, \{b_n\})$ the region $\Delta - \bigcup_{n=1}^{\infty} I_n$, where $I_n = [a_n, b_n]$ and $\Delta = \{0 < |z| < 1\}$. Take N copies D_1, D_2, \dots, D_N of D. Joining the upper edge of I_n in D_m and the lower edge of I_n in D_{m+1} (mod. N) for every n, we obtain an N-sheeted covering surface $W = W(\{a_n\}, \{b_n\})$ of $\{0 < |z| < 1\}$. We can view W as an end of an N-sheeted covering surface of $\{0 < |z| \le \infty\}$. From Theorem A it follows that if $\sum_{n=1}^{\infty} \log (b_n/a_n) = \infty$ then dim $\mathcal{P}(W)$ =1. Heins also showed the following (cf. [4]):

THEOREM B. Let D and W be the same as above. Then (i) dim $\mathcal{P}(W)$ is at most N and (ii) dim $\mathcal{P}(W) = N$ if the set $I = \bigcup_{n=1}^{\infty} I_n$ is sufficiently 'thin' at the point z=0 such as $\limsup_{R \ni x \to -0} \hat{R}_{\log(1/|z|)}^{l}(x) < \infty$, where $\hat{R}_{\log(1/|z|)}^{l}$ is the balayage of $\log(1/|z|)$ on $\{|z| < 1\}$ with respect to I.

Here and hereafter we restrict our attention to the case N=2. Thus V is an end of a two-sheeted covering surface R of $\{0 < |z| \le \infty\}$ which is ramified over $\bigcup_{n=1}^{\infty} \{a_n, b_n\}$. Denote by π the projection of R onto $\{0 < |z| \le \infty\}$. From (i) of Theorem B it follows that dim $\mathcal{P}(W)=1$ or 2, since $\mathcal{P}(W)\neq \emptyset$. We first prove the following which sharpens the above result in the case N=2:

THEOREM 1. Suppose that N=2. Then dim $\mathcal{P}(W)=2$ if and only if the point z=0 is an irregular boundary point of the domain D with respect to Dirichlet problem.

The proof is given in 1.2 and 1.3.

1.2. To begin with we state Heins' duality relation between harmonic dimensions and bounded harmonic functions. Heins [4] proved the following which is applied to the proof of Theorem 1:

THEOREM C. Let V be an end. Then dim $\mathcal{P}(V)=1$ if and only if every bounded harmonic function on V has a limit at the ideal boundary of V.

We are in the stage of proving 'if part' of Theorem 1. Denote by u_1 (resp. u_2) be the bounded harmonic function on D_1 (resp. D_2) with boundary values 1

SHIGEO SEGAWA

(resp. -1) on $\{|z|=1\}$ and 0 on $I=\bigcup_{n=1}^{\infty} I_n$. Let w be a function on W such that $w=u_i$ (i=1, 2) on D_i . By the Schwarz reflection principle we see that w can be considered as a bounded harmonic function on W. Since u_1 has a positive upper limit at z=0 by assumption (cf. e.g. Helms [5]), w does not have a limit at the ideal boundary of W. Therefore Theorems B and C imply that dim $\mathcal{P}(W)=2$.

1.3. Suppose that z=0 is a regular boundary point of *D*. We show that dim $\mathcal{P}(W)=1$. We may assume that

(1)
$$\sum_{n=1}^{\infty} \log \frac{a_n}{b_{n+1}} = \infty$$

In fact, otherwise, we have $\sum_{n=1}^{\infty} \log (a_n/b_n) = \infty$, which implies that W satisfies the condition of Theorem A. Hence Theorem A yields that dim $\mathcal{P}(W)=1$.

Let p be a point in W. If p belongs to the sheet D_i (i=1, 2), then we denote by \overline{p} the point which belongs to D_i and lies over $\overline{\pi(p)}$. Take an arbitrary $u \in HB(W)$, the space of bounded harmonic functions on W, and set $u^*(p) = (1/2)(u(p)+u(\overline{p}))$. Observe that u^* is a bounded harmonic function on W satisfying $u^*(p)=u^*(\overline{p})$. We also set

$$v(z) = \frac{1}{2}(u(p_1) + u(p_2))$$

for $z \in \Delta$, where $\pi^{-1}(z) = \{p_1, p_2\}$. Then v is bounded and harmonic on Δ , and hence on $\{|z| < 1\}$. In particular we see that v is continuous on $I \cup \{0\}$. Consider two functions $v_i = u^* | D_i (i=1, 2)$. Note that $v(z) = u^*(p_1) = u^*(p_2)$ for every $z \in I$. Hence we have that v_i can be viewed as a bounded harmonic function on D with continuous boundary values $v | I \cup \{0\}$ on $I \cup \{0\}$. Therefore v_i has a limit at z=0 by assumption.

We show that u has a limit at the ideal boundary of W, which completes the proof by virtue of Theorem C. Put $J_n = [b_{n+1}, a_n]$ (n=1, 2, ...) and $J = \bigcup_{n=1}^{\infty} J_n$. Consider two functions $u_i = u | D_i$ (i=1, 2), which are viewed as bounded harmonic functions on D. Note that $u_i = v_i$ (i=1, 2) on J. Hence, as proved in the preceding paragraph, we have

(2)
$$\lim_{J \ni z \to 0} (u_1(z) - u_2(z)) = 0.$$

For $r \in J$, denote by $\delta_i(r)$ the oscillation of u_i on $\{|z|=r\}$ (i=1, 2):

$$\delta_i(r) = \max_{|z|=r} u_i(z) - \min_{|z|=r} u_i(z) \,.$$

We also denote by $\delta(r)$ the oscillation of u on $\{|\pi(p)|=r\}$:

$$\delta(r) = \max_{|\pi(p)|=r} u(p) - \min_{|\pi(p)|=r} u(p).$$

It is easily seen that

(3)
$$\delta(r) \leq \delta_1(r) + \delta_2(r) + |u_1(r) - u_2(r)|.$$

Set $\delta_n = \min_{r \in J_n} (\delta_1(r) + \delta_2(r))$. Then we have

$$\delta_n \leq \delta_1(r) + \delta_2(r) \leq \sum_{j=1}^2 \int_0^{2\pi} \left| \frac{\partial u_j(re^{i\theta})}{\partial \theta} \right| d\theta$$

for $r \in J_n$. Hence, by the Schwarz inequality and integration on J_n , we obtain

$$\delta_n^2 \mu_n \leq 4\pi \sum_{j=1}^2 \int_{b_{n+1}}^{a_n} \int_0^{2\pi} \frac{1}{r^2} \left| \frac{\partial u_j}{\partial \theta} \right|^2 r dr d\theta \leq 4\pi \sum_{j=1}^2 D_n(u_j),$$

where $\mu_n = \log(a_n/b_{n+1})$ and $D_n(u_i)$ is Dirichlet integral of u_i on $\{b_{n+1} < |z| < a_n\}$. Since u has finite Dirichlet integral on $\{0 < |\pi(p)| < a_1\}$, this implies that $\sum_{n=1}^{\infty} \delta_n^2 \mu_n$ converges. Therefore it follows from (1) that $\liminf_{n \to \infty} \delta_n = 0$. Hence, by (2) and (3), there exists a sequence $\{r_n\}$ such that $r_n \in J_n$ and $\lim_{n \to \infty} \delta(r_n) = 0$. By means of maximum principle, this implies that u has a limit at the ideal boundary. The proof is herewith complete.

Extremal length of dividing curves

2.1. Consider an open Riemann surface R and its relatively compact subregion $F(\neq \emptyset)$. Let $\Gamma = \Gamma(R - \overline{F})$ be the family of closed curves in $R - \overline{F}$ which separate the ideal boundary of R from F and $\lambda(\Gamma) = \lambda(\Gamma(R - \overline{F}))$ be the extremal length of Γ . For the detail of extremal length, we refer to e.g. Ahlfors and Sario [2]. Denote by O'_{S} the class of open Riemann surfaces R such that $\lambda(\Gamma(R - \overline{F}))=0$ for an F. It is well-known that the property $\lambda(\Gamma(R - \overline{F}))=0$ does not depend on a choice of F. Kusunoki [6] showed the following (see also Shiga [8]):

Theorem D. $O''_{s} \subset O'_{s} \subset M$.

Set $a_n = e^{-n}(1 - e^{-n^2})$ and $b_n = e^{-n}$. For these sequences $\{a_n\}$ and $\{b_n\}$ and for N=2, let D_0 and W_0 be the region $D(\{a_n\}, \{b_n\})$ and the end $W(\{a_n\}, \{b_n\})$, respectively, which are considered in no. 1.1. We claim the following:

THEOREM 2. For the end W_0 given above, dim $\mathcal{P}(W_0)=1$ and $\lambda(\Gamma)>0$, where Γ is the family of closed curves in W_0 which separate the ideal boundary of W_0 from ∂W_0 .

The proof is given in 2.2 and 2.3.

2.2. Let R be the two-sheeted covering surface of $\{0 < |z| \le \infty\}$ which branches over $\bigcup_{n=1}^{\infty} \{a_n, b_n\}$ and φ be the projection of R onto $\{0 < |z| \le \infty\}$. Theorem 2 implies that $R \in M - O'_s$. Combining this with Theorem D it is immediately seen that $O'_s < M$, and hence $O''_s < M$, where < means strict inclusion.

259

SHIGEO SEGAWA

It is easily proved that dim $\mathcal{P}(W_0)=1$. In fact, since

$$\sum_{n=1}^{\infty} \frac{n}{\log(4/(b_n - a_n))} \ge \sum_{n=1}^{\infty} \frac{1}{n+3} = \infty$$

the Wiener criterion yields that the point z=0 is a regular boundary point of D_0 (cf. e.g. Tsuji [9]). Hence, by virtue of Theorem 1, we have the conclusion.

In order to prove that $\lambda(\Gamma) > 0$, we provide the following lemma:

LEMMA. Let A_n be the annulus $\{|z| < 1\} - ([0, a_n] \cup [b_n, 1])$. Then mod $A_n < \pi^2/n^2$.

In fact A_n is conformally equivalent to the region $C-([-1, 0]\cup[r_n, +\infty])$ where $r_n=(1-a_nb_n)(b_n-a_n)a_n^{-1}(1+b_n)^{-2}$. Hence we have mod $A_n \leq \pi^2/\log(16/r_n)$ (cf. e.g. Ahlfors [1]). It is easy to see that $\log(16/r_n) > n^2$.

2.3. We start on the proof of $\lambda(\Gamma) > 0$. Let Γ_n be the family of $\gamma \in \Gamma$ satisfying that $\varphi(\gamma) \cap I_n \neq \emptyset$. Observe that

(4)
$$\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n \, .$$

Set $\Gamma_n^* = \{\varphi(\gamma) : \gamma \in \Gamma_n\}$. Then Γ_n^* is a family of curves in $\Delta = \{0 < |z| < 1\}$. It is easily seen that

(5)
$$2\lambda(\Gamma_n) \ge \lambda(\Gamma_n^*)$$

for each *n*. Denote by *u* the harmonic measure of the annulus A_n with respect to the outer boundary and set $\rho = |\nabla u|$. We may assume that ρ is defined on Δ . Let C_n be the family of closed curves in the annulus A_n which separate the inner boundary from the outer boundary. Set $\bar{\gamma} = \{\bar{z} : z \in \gamma\}$ for $\gamma \in \Gamma_n^*$. Observe that $\gamma \cup \bar{\gamma}$ for each $\gamma \in \Gamma_n^*$ contains a closed curve which is approximated by a sequence in C_n . Hence we have

$$4\lambda(\Gamma_n^*) \ge \inf_{\gamma \in \Gamma_n^*} \frac{(2L(\gamma, \rho))^2}{A(\rho)} \ge \inf_{\gamma \in \Gamma_n^*} \frac{L(\gamma \cup \overline{\gamma}, \rho)^2}{A(\rho)} \ge \inf_{c \in C_n} \frac{L(c, \rho)^2}{A(\rho)} = \frac{2\pi}{\mod A_n},$$

where $L(\gamma, \rho) = \int_{\gamma} \rho |dz|$ and $A(\rho) = \iint_{\Delta} \rho^2 dx dy$ (z=x+iy). By means of (4), (5) and Lemma, this yields that

$$\lambda(\Gamma)^{-1} \leq \sum_{n=1}^{\infty} \lambda(\Gamma_n)^{-1} \leq \frac{4}{\pi} \sum_{n=1}^{\infty} \mod A_n \leq 4\pi \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty ,$$

which implies $\lambda(\Gamma) > 0$.

260

References

- [1] L. AHLFORS, Conformal Invariants, McGraw-Hill, 1973.
- [2] L. AHLFORS AND L. SARIO, Riemann Surfaces, Princeton, 1960.
- [3] C. CONSTANTINESCU AND A. CORNEA. Ideale Ränder Riemannscher Flächen, Springer, 1963.
- [4] M. HEINS, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
- [5] L. HELMS, Introduction to Potential Theory, Wiley-Interscience, 1969.
- Y. KUSUNOKI, On Riemann's period relations on open Riemann surfaces, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math., 30 (1956), 1-22.
- [7] S. SEGAWA, A duality relation for harmonic dimensions and its applications, Kodai Math. J., 4 (1981), 508-514.
- [8] H. SHIGA, On harmonic dimensions and bilinear relations on open Riemann surfaces, J. Math. Kyoto Univ., 21 (1981), 861-879.
- [9] M. TSUJI, Potential Theory in Modern Function Theory, Chelsea, 1975.

Department of Mathematics Daido Institute of Technology Daido, Minami, Nagoya 457 Japan