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BY SHIGEO SEGAWA

Consider an open Riemann surface R with a single ideal boundary com-
ponent. A subregion V(ΦR) of R is said to be an end of R if V is relatively
noncompact in R and the relative boundary dV consists of finitely many analytic
Jordan curves. Denote by &(V) the class of nonnegative harmonic functions on
V with vanishing boundary values on dV:

5>(7)= {h^HP{V): h \dV=0],

where HP(V) is the class of nonnegative harmonic functions on V. The dimen-
sion of the linear space 5>(7)©5>(7)={Ai — h2: hu /z2e£P(F)} is referred to as
the harmonic dimension of V (cf. Heins [4]), dim£P(V) in notation. It is known
that dim # ( 7 ) does not depend on a choice of an end V of R (cf. [4]): dim^VΊ)
=άim£B(V2) for any pair (Vu V2) of ends of R.

Denote by OG the class of open Riemann surfaces of null boundary and
by M the class of open Riemann surfaces R^OG such that there exists an
end V of R with dim &(V)=1. In terms of Martin compactiflcation an R be-
longs to M if and only if R is of null boundary and the Martin boundary of R
consists of a single point (cf. e.g. Constantinescu and Cornea [3]). We are
particularly interested in the following result by Heins [4] (see also [7]):

THEOREM A. Let V be an end and {Λn\ be a sequence of mutually disjoint
annuli in V satisfying that Λn+1 separates Λn from the ideal boundary of V for
every n. If the sum of moduli of An diverges, then dim5>(F)=l.

We also denote by Og the class of open Riemann surfaces having a regular
exhaustion {Rn}n=o such that each An—R2n—R2n-i (w=l, 2, •••) is a doubly
connected region and Σn=imod^4n=oo, where mod^U is the modulus of An.
Then the above Heins' result is restated as

O'ίdM.
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The main purpose of this paper is to show that the inclusion O'sCM is strict.

In § 1, we study harmonic dimension of an end which is a two-sheeted
covering surface of the punctured unit disc { 0 < | ^ | < l } . In §2, applying a fact
obtained in § 1, we give an example which shows that the inclusion O'^dM is
strict.

Harmonic dimension of two-sheeted covering surfaces

1.1. Consider two sequences {an} and {bn} satisfying Q<bn+ί<an<bn<l
and lim^oo an=0. Denote by D~D{{an}} {bn}) the region Δ—\J°Z=ιIn, where
In=lan, bn~] and Δ = { 0 < | z | < l } . Take N copies Du D2, •••, DN of D. Joining
the upper edge of In in Dm and the lower edge of In in Dm+1 (mod. N) for
every n, we obtain an Λf-sheeted covering surface W=W({an}, {bn}) of {0<|^|
<1}. We can view W as an end of an ΛΓ-sheeted covering surface of {0<|z |
^oo}. From Theorem A it follows that if Σ>n=i log {bn/an)—oo then dim3»(W0
= 1. Heins also showed the following (cf. [4]):

THEOREM B. Let D and W be the same as above. Then (i) dim£P(W0 ts at
most N and (ii) aim &(W)=N if the set /=US-i In is sufficiently 'thin' at the
point z=0 such as limsupΛ3a^_0-#ίog <i/izi)(*)<°°, where R[OS{\ι\z\) is the balayage
of log ( l/ | z | ) on { k | < l } with respect to I.

Here and hereafter we restrict our attention to the case N=2. Thus V is
an end of a two-sheeted covering surface R of {0<U|^oo} which is ramified
over Un=i {an, bn). Denote by π the projection of R onto {0<|* |^oo}. From
(i) of Theorem B it follows that dim5>(W0=l or 2, since £B(W)φQ. We first
prove the following which sharpens the above result in the case N=2:

THEOREM 1. Suppose that N=2. Then dim£P(P^)=2 if and only if the
point z—0 is an irregular boundary point of the domain D with respect to Diri-
chlet problem.

The proof is given in 1.2 and 1.3.

1.2. To begin with we state Heins' duality relation between harmonic
dimensions and bounded harmonic functions. Heins [4] proved the following
which is applied to the proof of Theorem 1:

THEOREM C. Let V be an end. Then dim£P(V)=l if and only if every
bounded harmonic function on V has a limit at the ideal boundary of V.

We are in the stage of proving 'if part' of Theorem 1. Denote by ux (resp.
u2) be the bounded harmonic function on Dλ (resp. D2) with boundary values 1
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(resp. —1) on { |z |=l} and 0 on / = \ j ; s l / B , Let w be a function on W such
that w~ux ( ί=l , 2) on Dt. By the Schwarz reflection principle we see that w
can be considered as a bounded harmonic function on W. Since Wi has a posi-
tive upper limit at z=Q by assumption (cf. e.g. Helms [5]), w does not have a
limit at the ideal boundary of W. Therefore Theorems B and C imply that

1.3. Suppose that z—0 is a regular boundary point of D. We show that
= l . We may assume that

(1) Σ M o g ^ - = oo.

In fact, otherwise, we have Σn=i log (an/bn)=^oof which implies that W satisfies
the condition of Theorem A. Hence Theorem A yields that dim&(W)=l.

Let ί be a point in W. Up belongs to the sheet Dt ( i=l , 2), then we
denote by p the point which belongs to Dt and lies over π(p). Take an arbi-
trary u<=HB(W), the space of bounded harmonic functions on W} and set u*(p)
=(l/2)(u(p)-\-u(p)). Observe that w* is a bounded harmonic function on W
satisfying u*(p)=u*(p). We also set

for 2-EA, where π~\z)—{pu p2). Then v is bounded and harmonic on Δ, and
hence on { | z |< l } . In particular we see that v is continuous on /U{0}. Con-
sider two functions Vi=u*\Dt (*=1, 2). Note that v(z)=u*(pi)=u*(p2) for every
-?£/. Hence we have that Vi can be viewed as a bounded harmonic function
on D with continuous boundary values v\IVJ{0\ on /W{0}. Therefore v% has a
limit at z=Q by assumption.

We show that u has a limit at the ideal boundary of W, which completes
the proof by virtue of Theorem C. Put Jn=ίbn+i, fl»] (w=l, 2, •••) and / —
Un«i/n. Consider two functions uι=u\Dι ( ι = l , 2), which are viewed as
bounded harmonic functions on D. Note that w^f* ( ι=l , 2) on / . Hence, as
proved in the preceding paragraph, we have

(2) lim (Uι(z) — u2(z))=0.
JBZ-Q

For r e / , denote by δi(r) the oscillation of ut on {|2r|=r} 0 = 1 , 2):

δi(r)= max ut{z)— mmu^z).

We also denote by δ(r) the oscillation of u on {

δ(r)= max u{p)— min

It is easily seen that
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(3) δ(r)^δ 1(r)+δ 2(r)+1 u t(r)

Set δn=minrejn(δi(r)+δ2(r)). Then we have

δnύδι(r)+δi(r)<
duj(reίθ)

dθ
dθ

for r e / n . Hence, by the Schwarz inequality and integration on Jn, we obtain

2 Can C2π 1 9i

n j=i)bn+1jo r2 d

where μn—\og(an/bn+ι) and Dn{u%) is Dirichlet integral of u% on {^n+i< 1̂ 1 < α Λ } .
Since u has finite Dirichlet integral on {0<\π(p)\<a1}f this implies that
2"=i δnμn converges. Therefore it follows from (1) that lim infn_»ooδΛ = 0.
Hence, by (2) and (3), there exists a sequence {rn} such that rn<=Jn and
lim^oo δ(rn)=0. By means of maximum principle, this implies that u has a
limit at the ideal boundary. The proof is herewith complete.

Extremal length of dividing curves

2.1. Consider an open Riemann surface R and its relatively compact sub-
region F(ΦQ). Let Γ~Γ(R — F) be the family of closed curves in R — F which
separate the ideal boundary of R from F and λ(Γ)=λ(Γ(R—F)) be the extremal
length of Γ. For the detail of extremal length, we refer to e.g. Ahlfors and
Sario [2]. Denote by Os the class of open Riemann surfaces R such that
λ(Γ(R-F))=Q for an F. It is well-known that the property λ(Γ(R-F))=0
does not depend on a choice of F. Kusunoki [6] showed the following (see also
Shiga [8]):

THEOREM D. 0%a0s(zM.

Set an—e~n(l—e~n2) and bn—e~n. For these sequences {an} and {bn} and
for N=2, let Do and Wo be the region D({an\, {bn}) and the end W({an\, {bn}),
respectively, which are considered in no. 1.1. We claim the following:

THEOREM 2. For the end Wo given above, άim^(W0)—l and λ(Γ)>0, where
Γ is the family of closed curves in Wo which separate the ideal boundary of Wo

from dW0.

The proof is given in 2.2 and 2.3.

2.2. Let R be the two-sheeted covering surface of {0<|z |^oo} which
branches over \Jϊ=i \o>n, bn\ and φ be the projection of R onto {0<|z |^oo}.
Theorem 2 implies that R^M—Of

s. Combining this with Theorem D it is
immediately seen that O'S<M, and hence 0%<M, where < means strict in-
clusion.
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It is easily proved that άim£B(W0)=l. In fact, since

M log(4/(bn-an)) -»?

the Wiener criterion yields that the point z=0 is a regular boundary point of
Do (cf. e.g. Tsuji [9]). Hence, by virtue of Theorem 1, we have the con-
clusion.

In order to prove that λ(Γ)>0, we provide the following lemma:

LEMMA. Let Λn be the annuίus {|2|<l}—([0, α»]U[fcn, 1]). Then mod^4n

<π2/n2.

In fact An is conformally equivalent to the region C—([—1, 0]\J[rn, +°°])
where rn={l—anbn)(bn — an)an\l+bny

2. Hence we have modi4n^π2/log(16/rn)
(cf. e.g. Ahlfors [1]). It is easy to see that log (16/rn)>n\

2.3. We start on the proof of λ(Γ)>0. Let Γn be the family of γ^Γ
satisfying that φ(γ)ίΛln^Q. Observe that

(4) r=\jrn.

Set Γi^{φ{γ):γξΞΓn}. Then Γt is a family of curves in Δ = { 0 < | z | < l } . It
is easily seen that

(5) 2λ{Γn)^λ{Γt)

for each n. Denote by u the harmonic measure of the annulus An with respect
to the outer boundary and set p=\Vu\. We may assume that p is defined on
Δ. Let Cn be the family of closed curves in the annulus An which separate
the inner boundary from the outer boundary. Set f={z: z<=γ] for γ^Γt
Observe that γ\Jf for each y^Γ* contains a closed curve which is approxi-
mated by a sequence in Cn. Hence we have

iπf {2L{l'f^ inf L(r^\pf> inf
γ(=r* Λ ( ) - A() -

where L(γ, p)=\ p\dz\ and i4(p)=\l ρ2dxdy (z=x+iy). By means of (4), (5)

and Lemma, this yields that

1^— Σ
7ϋ n = l

which implies λ(Γ)>0.
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