THE HADAMARD VARIATION OF THE GROUND STATE VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

By Susumu Roppongi

1. Introduction

Let Ω be a bounded domain in $\boldsymbol{R}^{N}(N \geqq 2)$ with smooth boundary $\partial \Omega$. Let $\rho(x)$ be a real smooth function on $\partial \Omega$ and ν_{x} be the exterior unit normal vector at $x \in \partial \Omega$. For any sufficiently small $\varepsilon \geqq 0$, let Ω_{ε} be the domain bounded by

$$
\partial \Omega_{\varepsilon}=\left\{x+\varepsilon \rho(x) \nu_{x} ; x \in \partial \Omega\right\}
$$

Fix $p \in(1, \infty)$ and let q be a fixed number satisfying $0<q<p^{*}-1$, where $p^{*}=\infty$ if $p \geqq N$ and $p^{*}=N p /(N-p)$ if $p<N$. Then we consider the following problem.

$$
\begin{equation*}
\lambda(\varepsilon)=\inf _{X_{\varepsilon}} \int_{\Omega_{\varepsilon}}|\nabla u|^{p} d x \tag{1.1}
\end{equation*}
$$

where

$$
X_{\varepsilon}=\left\{u \in W_{0}^{1, p}\left(\Omega_{\varepsilon}\right) ;\|u\|_{L^{q+1}\left(\Omega_{\varepsilon}\right)}=1, u \geqq 0 \text { a. e. }\right\} .
$$

It is easy to see that there exists at least one non-negative solution u_{ε} which attains (1.1) $)_{\varepsilon}$ and which satisfies

$$
\begin{gather*}
-\operatorname{div}\left(\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon}(x)\right)=\lambda(\varepsilon) u_{\varepsilon}^{q}(x) \quad x \in \Omega_{\varepsilon} \tag{1.2}\\
u_{\varepsilon}(x)=0 \quad x \in \partial \Omega_{\varepsilon} \\
u_{\varepsilon}(x) \geqq 0 \quad \text { a. e. } x \in \Omega_{\varepsilon}
\end{gather*}
$$

Furthermore $u_{\varepsilon} \in C^{1+\alpha}\left(\bar{\Omega}_{\varepsilon}\right)$ for some $\alpha \in(0,1)$.
In this note we want to show the following.
THEOREM 1. Assume that $p \geqq 2$ and $q \geqq p-1$. Assume that the minimizer u_{0} of $(1.1)_{0}$ is unique. Then, the following asymptotic behaviour of $\lambda(\varepsilon)$ holds.

$$
\begin{equation*}
\lambda(\varepsilon)-\lambda(0)=-\varepsilon(p-1) \int_{\partial \Omega}\left|\frac{\partial u_{0}}{\partial \nu_{x}}(x)\right|^{p} \rho(x) d \sigma_{x}+o(\varepsilon) \tag{1.3}
\end{equation*}
$$

Here $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction.
Received February 9, 1993 ; revised September 20, 1993.

Remarks. When $p=2$ and $q=1$, the formula (1.3) can be found, for example, in Hadamard [7], Garabedian-Schiffer [3].

When $p=2$ and $q>1$, the formula (1.3) can be found in Osawa [11] with the additional assumption that $\operatorname{Ker}\left(\Delta+\lambda(0) q u_{0}^{q-1}\right)=\{0\}$. Therefore the result of this paper is an improvement of Osawa [11, Theorem 1, pp. 258-259]. Furthermore he treated the Hadamard variation of (1.2) under the Robin boundary condition and the Neumann boundary condition. As an application of [11], the problem of asymptotic behaviour of non-linear eigenvalues under singular variation of domains is studied by Ozawa [12], Ozawa-Roppongi [13].

When $p=q-1$, the uniqueness of the minimizer of $(1.1)_{0}$ is shown in Lindqvist [10]. When $p=2, q>1$ and Ω is a ball, the uniqueness of the minimizer of $(1.1)_{0}$ is shown in Gidas, Ni and Nirenberg [4].

The regularity of the non-negative solution u_{s} of (1.2) is discussed, for example, in Dibenedetto [1], Guedda-Veron [6], Lieberman [9], Sakaguchi [14], Tolksdorf [16], [17]. It should be noticed that the solution of (1.2) with $p \neq 2$ does not always belong to $C^{2}\left(\bar{\Omega}_{\varepsilon}\right)$, since the p-Laplacian is degenerate elliptic when $p \neq 2$.

The reader who is unfamiliar with Hadamard's variation may be referred to Hadamard [7], Garabedian-Schiffer [3], Fujiwara-Ozawa [2], Shimakura [15].

Section 2 contains preliminary material. The asymptotic formula (1.3) is established in section 3. In Appendix we give some regularity properties of the solution of (1.2) and give some inequalities. Throughout section 2 and section 3 we assume all the assumption in Theorem 1.

2. Preliminary Lemma

In this section we would like to construct a nice C^{∞}-diffeomorphism between $\bar{\Omega}$ and $\bar{\Omega}_{\varepsilon}$ for any sufficiently small $\varepsilon>0$. Let U_{0} be a neighbourhood of $\partial \Omega$ in \boldsymbol{R}^{N} such that there exists a unique $P \in C^{\infty}\left(U_{0}, \partial \Omega\right)$ satisfying $|x-P(x)|=$ dist $(x, \partial \Omega)$ for $x \in U_{0}$. Let O be a neighbourhood of $\partial \Omega$ in Ω as in Lemma A. 2 in the Appendix. Then $u_{0} \in C^{2}(\bar{O})$. Let $\Omega^{\prime}\left(\Omega^{\prime \prime}\right.$, respectively) be a bounded domain with a smooth boundary $\partial \Omega^{\prime}=\left\{x-\delta \nu_{x} ; x \in \partial \Omega\right\}\left(\partial \Omega^{\prime \prime}=\left\{x-2 \delta \nu_{x} ; x \in \partial \Omega\right\}\right.$, respectively) for any sufficiently small $\delta>0$. We fix $\delta>0$ so that $\Omega \backslash \Omega^{\prime \prime} \subseteq U_{0}$ and $\Omega \backslash O \Subset \Omega^{\prime \prime} \Subset \Omega^{\prime} \Subset \Omega$ hold. Then $\Omega^{\prime} \Subset \Omega_{\varepsilon}$ holds for any sufficiently small $\varepsilon>0$.

We take a $\phi \in C^{\infty}(\bar{\Omega}, \boldsymbol{R})$ such that $0 \leqq \phi \leqq 1, \phi=0$ on $\Omega^{\prime \prime}$ and $\phi=1$ on $\bar{\Omega} \backslash \Omega^{\prime}$. We put

$$
\Phi_{\varepsilon}(x)=\left\{\begin{array}{l}
x \quad x \in \Omega^{\prime \prime} \\
x+\varepsilon \phi(x) \rho(P(x)) \nu_{P(x)} \quad x \in \bar{\Omega} \backslash \Omega^{\prime \prime}
\end{array}\right.
$$

where $\nu_{P(x)}$ denotes the exterior unit normal vector at $P(x) \in \partial \Omega$.
Then we can see that $\Phi_{\varepsilon}: \bar{\Omega} \rightarrow \bar{\Omega}_{\varepsilon}$ is a surjective diffeomorphism for any
sufficiently small $\varepsilon>0$ and that the following properties (2.1), (2.2), (2.3) and (2.4) hold.
(2.1) We put $\Phi_{\varepsilon}(x)=x+\varepsilon S(x)$ for $x \in \bar{\Omega}$. Then

$$
S \in C^{\infty}\left(\bar{\Omega}, \boldsymbol{R}^{N}\right) \quad \text { and } \quad\|S\|_{C^{m}(\bar{\Omega})} \leqq C_{m} \quad(m=0,1,2, \cdots)
$$

holds for a constant C_{m} independent of ε.
(2.2) There exists a $t^{(\varepsilon)} \in C^{\infty}\left(\bar{\Omega}_{\varepsilon}, \boldsymbol{R}^{N}\right)$ satisfying

$$
\begin{aligned}
& \Phi_{\varepsilon}{ }^{-1}(x)=x+\varepsilon t^{(\varepsilon)}(x) \quad \text { for } \quad x \in \bar{\Omega}_{\varepsilon} \quad \text { and } \\
& \quad\left\|t^{(\varepsilon)}\right\|_{C^{m}\left(\bar{\Omega}_{\varepsilon}\right)} \leqq C_{m} \quad(m=0,1,2, \cdots)
\end{aligned}
$$

holds for a constant C_{m} independent of ε. Here $\Phi_{\varepsilon}{ }^{-1}$ denotes the inverse function of Φ_{ε}.

$$
\begin{align*}
S(x) & =\rho(x) \nu_{x} & & x \in \partial \Omega \tag{2.3}\\
& =0 & & x \in \partial \Omega^{\prime \prime} .
\end{align*}
$$

$$
\begin{equation*}
u_{0} \in C^{2}\left(\overline{\Omega \backslash \Omega^{\prime \prime}}\right) \text { and } \quad S(x)=0 \quad \text { for } x \in \Omega^{\prime \prime} \tag{2.4}
\end{equation*}
$$

For a function f on Ω_{ε}, we define function \tilde{f} on Ω by $\tilde{f}(x)=f\left(\Phi_{\varepsilon}(x)\right)$ for $x \in \Omega$. For a function g on Ω, we define function \hat{g} on Ω_{ε} by $\hat{g}(y)=g\left(\Phi_{\varepsilon}{ }^{-1}(y)\right)$ for $y \in \Omega_{\varepsilon}$.

Then we have the following.
Lemma 2.1. (i) Let $J \Phi_{\varepsilon}(x)$ be the Jacobian of $\Phi_{\varepsilon}(x)$. Then

$$
\begin{equation*}
\left|J \Phi_{\varepsilon}(x)\right|=1+\varepsilon \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{i}}(x)+O\left(\varepsilon^{2}\right) \tag{2.5}
\end{equation*}
$$

holds uniformly for $x \in \bar{\Omega}$, where $S_{i}(x)$ denotes the i-th element of $S(x) \in \boldsymbol{R}^{N}$ $(1 \leqq i \leqq N)$.
(ii) $\sim: W_{0}^{1, p}\left(\Omega_{\varepsilon}\right) \ni f \mapsto \tilde{f} \in W_{0}^{1, p}(\Omega)$ is a bounded linear operator and its operator norm is uniformly bounded for any sufficiently small $\varepsilon>0$.

The same is true for ${ }^{\wedge}: W_{0}^{1, p}(\Omega) \ni g \mapsto \hat{g} \in W_{0}^{1, p}\left(\Omega_{\varepsilon}\right)$.
(iii)

$$
\begin{align*}
\int_{\Omega_{\varepsilon}}|(\nabla f)(y)|^{p} d y= & \int_{\Omega}|(\nabla \tilde{f})(x)|^{p} d x \tag{2.6}\\
& +\varepsilon \int_{\Omega}|(\nabla \tilde{f})(x)|^{p} \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \\
& -\varepsilon p \int_{\Omega}|(\nabla \tilde{f})(x)|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x}, \frac{\partial \tilde{f}}{\partial x}, \frac{\partial \tilde{f}}{\partial x_{k}} d x \\
& +O\left(\varepsilon^{2}\right)
\end{align*}
$$

holds for any $f \in W_{0}^{1, p}\left(\Omega_{\varepsilon}\right)$.
Furthermore, if $\|f\|_{W_{0}^{1}, p_{\left(\Omega_{\varepsilon}\right)} \leqq C}$ holds for a constant C independent of ε, then the remainder term in the right hand side of (2.6) is uniform with respect to f.

Proof. (i) and (ii) easily follow from (2.1) and (2.2). Therefore we give a proof of (iii).

We take an arbitrary $f \in W_{0}^{1, p}\left(\Omega_{\varepsilon}\right)$ and the transformation of co-ordinates; $\Phi_{\varepsilon}{ }^{-1}: \Omega_{\varepsilon} \ni y \mapsto x=\Phi_{\varepsilon}{ }^{-1}(y) \in \Omega$. Since $x=y+\varepsilon t^{(\varepsilon)}(y)$ for $y \in \Omega_{\varepsilon}$, we have

$$
\begin{equation*}
\frac{\partial x_{2}}{\partial y_{j}}=\delta_{i, j}+\varepsilon \frac{\partial t_{2}^{(\varepsilon)}}{\partial y_{j}}(y) \quad(1 \leqq i, j \leqq N), \tag{2.7}
\end{equation*}
$$

where $\delta_{i, j}$ denotes Kronecker's delta and $t_{i}^{(\varepsilon)}(y)$ denotes the i-th element of $t^{(\varepsilon)}(y) \in \boldsymbol{R}^{N}$. On the other hand, since $y=\Phi_{\varepsilon}(x)=x+\varepsilon S(x)=y+\varepsilon t^{(\varepsilon)}(y)+\varepsilon S(x)$ hold for $y \in \Omega_{\varepsilon}$, we have

$$
t^{(s)}(y)+S(x)=0 \quad\left(y \in \Omega_{\varepsilon}, \varepsilon>0\right) .
$$

Thus we get

$$
\begin{equation*}
\frac{\partial t_{k}^{(s)}}{\partial y_{j}}(y)+\sum_{\imath=1}^{N} \frac{\partial x_{2}}{\partial y_{j}} \frac{\partial S_{k}}{\partial x_{\imath}}(x)=0 \quad(1 \leqq j, k \leqq N) . \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8),

$$
\begin{aligned}
\frac{\partial x_{k}}{\partial y_{j}} & =\delta_{j, k}-\varepsilon \sum_{\imath=1}^{N} \frac{\partial x_{2}}{\partial y_{j}} \frac{\partial S_{k}}{\partial x_{\imath}}(x) \\
& =\delta_{j, k}-\varepsilon \sum_{i=1}^{N}\left(\delta_{i, j}+\varepsilon \frac{\partial t_{\imath}^{(\varepsilon)}}{\partial y_{j}}(y)\right) \frac{\partial S_{k}}{\partial x_{\imath}}(x) \\
& =\delta_{j, k}-\varepsilon \frac{\partial S_{k}}{\partial x_{j}}(x)-\varepsilon^{2} \sum_{\imath=1}^{N} \frac{\partial t_{\imath}^{(\varepsilon)}}{\partial y_{j}}(y) \frac{\partial S_{k}}{\partial x_{\imath}}(x)
\end{aligned}
$$

hold for $1 \leqq j, k \leqq N$. Hence we get

$$
\begin{align*}
\frac{\partial f}{\partial y_{j}}(y)= & \sum_{k=1}^{N} \frac{\partial x_{k}}{\partial y_{j}} \frac{\partial}{\partial x_{k}} f\left(\Phi_{\varepsilon}(x)\right) \tag{2.9}\\
= & \sum_{k=1}^{N}\left(\delta_{j, k}-\varepsilon \frac{\partial S_{k}}{\partial x_{j}}(x)-\varepsilon^{2} \sum_{i=1}^{N} \frac{\partial t_{t}^{(s)}}{\partial y_{j}}(y) \frac{\partial S_{k}}{\partial x_{\imath}}(x)\right) \frac{\partial \tilde{f}}{\partial x_{k}}(x) \\
= & \frac{\partial \tilde{f}}{\partial x_{j}}(x)-\varepsilon \sum_{k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}}(x) \frac{\partial \tilde{f}}{\partial x_{k}}(x) \\
& \quad-\varepsilon^{2} \sum_{2, k=1}^{N} \frac{\partial t_{c}^{(\varepsilon)}}{\partial y_{j}}(y) \frac{\partial S_{k}}{\partial x_{\imath}}(x) \frac{\partial \tilde{f}}{\partial x_{k}}(x)
\end{align*}
$$

for $1 \leqq j \leqq N$.
From (2.5) and (2.9) we can see that

$$
\begin{align*}
\left|(\nabla f)\left(\Phi_{\varepsilon}(x)\right)\right|^{p}\left|J \Phi_{\varepsilon}(x)\right|= & \left|(\nabla f)\left(\Phi_{\varepsilon}(x)\right)\right|^{p} \tag{2.10}\\
& +\varepsilon|(\nabla \tilde{f})(x)|^{p} \sum_{i=1}^{N} \frac{\partial S_{i}}{\partial x_{\imath}}(x)+R(\varepsilon, x, \tilde{f})
\end{align*}
$$

holds for $x \in \Omega$, where

$$
|R(\varepsilon, x, \tilde{f})| \leqq C \varepsilon^{2}|(\nabla \tilde{f})(x)|^{p} .
$$

Here C denotes a positive constant independent of ε, x and \tilde{f}.
On the other hand, by (2.9) and using Lemma A. 3 in the Appendix with $w_{1}=(\nabla \tilde{f})(x)$ and $w_{2}=(\nabla f)(y)=(\nabla f)\left(\Phi_{\varepsilon}(x)\right)$, we have the following.

$$
\begin{align*}
\left|(\nabla f)\left(\Phi_{\varepsilon}(x)\right)\right|^{p}= & |(\nabla \tilde{f})(x)|^{p} \tag{2.11}\\
& -\varepsilon p|(\nabla \tilde{f})(x)|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{\jmath}}(x) \frac{\partial \tilde{f}}{\partial x_{k}} \frac{\partial \tilde{f}}{\partial x_{\jmath}}+R^{\prime}(\varepsilon, x, \tilde{f})
\end{align*}
$$

holds for $x \in \Omega$, where

$$
\begin{aligned}
& \left|R^{\prime}(\varepsilon, x, \tilde{f})\right| \\
& \leqq p(p-1)(|(\nabla f)(x)|+|(\nabla \tilde{f})(y)-(\nabla \tilde{f})(x)|)^{p-2}|(\nabla f)(y)-(\nabla \tilde{f})(x)|^{2} \\
& \left.\quad+\left.\varepsilon^{2} p|(\nabla \tilde{f})(x)|^{p-2}\right|_{2, j, j=1} ^{N} \frac{\partial t_{2}^{(\varepsilon)}}{\partial y_{j}}(y) \frac{\partial S_{k}}{\partial x_{\imath}}(x) \frac{\partial \tilde{f}}{\partial x_{k}} \frac{\partial \tilde{f}}{\partial x_{j}} \right\rvert\, \\
& \leqq C^{\prime} \varepsilon^{2}|(\nabla \tilde{f})(x)|^{p} .
\end{aligned}
$$

Here C^{\prime} denotes a positive constant independent of ε, x and \tilde{f}.
Since

$$
\int_{\Omega_{\varepsilon}}|(\nabla f)(y)|^{p} d y=\int_{\Omega}\left|(\nabla f)\left(\Phi_{\varepsilon}(x)\right)\right|^{p}\left|J \Phi_{\varepsilon}(x)\right| d x
$$

(2.6) follows from (2.10) and (2.11). Furthermore the absolute value of the remainder term in the right hand side of (2.6) is bounded from above by

$$
\left(C+C^{\prime}\right) \varepsilon^{2}\|\tilde{f}\|_{W_{0}^{1, p}}^{p} p_{(\Omega)} \leqq C^{\prime \prime} \varepsilon^{2}\|f\|_{W_{0}^{1}, p\left(\Omega_{\varepsilon}\right)}^{p} .
$$

Thus the proof is complete.
q. e. d.

3. Proof of Theorem 1

For the sake of simplicity we write $\|\cdot\|_{L r(\Omega)}\left(\|\cdot\|_{L^{r}\left(\Omega_{\varepsilon}\right)}\right.$, respectively) as $\|\cdot\|_{r}$ ($\|\cdot\|_{r, s}$, respectively) for $r \geqq 1$.

Since $\hat{u}_{0} /\left\|\hat{u}_{0}\right\|_{q+1, \varepsilon} \in X_{s}$, we have

$$
\begin{equation*}
\lambda(\varepsilon) \leqq\left(\int_{\Omega_{\varepsilon}}\left|\left(\nabla \hat{u}_{0}\right)(y)\right|^{p} d y\right)\left(\int_{\Omega_{\varepsilon}}\left|\hat{u}_{0}(y)\right|^{\alpha+1} d y\right)^{-p /(q+1)} . \tag{3.1}
\end{equation*}
$$

Notice that $\lambda(0)=\left\|\nabla u_{0}\right\|_{p}^{p},\left\|u_{0}\right\|_{q+1}=1$ and $\tilde{u}_{0}=u_{0}$ on Ω. Thus, from (2.5) and
(2.6), we see

$$
\begin{align*}
\int_{\Omega_{\varepsilon}}\left|\hat{u}_{0}(y)\right|^{q+1} d y & =\int_{\Omega}\left|\tilde{\hat{u}}_{0}(x)\right|^{q+1}\left|J \Phi_{\varepsilon}(x)\right| d x \tag{3.2}\\
& =1+\varepsilon \int_{\Omega} u_{0}^{q+1} \sum_{\imath=1}^{N} \frac{\partial S_{\imath}}{\partial x_{\imath}} d x+O\left(\varepsilon^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
\int_{\Omega_{e}}\left|\left(\nabla \hat{u}_{0}\right)(y)\right|^{p} d y= & \lambda(0)+\varepsilon \int_{\Omega}\left|\nabla u_{0}\right|^{p} \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \tag{3.3}\\
& -\varepsilon p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{,, k=1}^{N} \frac{\partial S_{k}}{\partial x}, \frac{\partial u_{0}}{\partial x} \frac{\partial u_{0}}{\partial x_{k}} d x \\
& +O\left(\varepsilon^{2}\right)
\end{align*}
$$

By (3.1), (3.2) and (3.3) we get the following.
Lemma 3.1. For any sufficiently small $\varepsilon>0$

$$
\begin{equation*}
\lambda(\varepsilon) \leqq \lambda(0)+\mu \varepsilon+O\left(\varepsilon^{2}\right) \tag{3.4}
\end{equation*}
$$

holds, where

$$
\begin{aligned}
\mu= & \int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}-p \lambda(0)(q+1)^{-1} u_{0}^{q+1}\right) \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \\
& -p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} d x
\end{aligned}
$$

On the other hand, since $\tilde{u}_{\varepsilon} /\left\|\tilde{u}_{\varepsilon}\right\|_{q+1} \in X_{0}$, we have

$$
\begin{equation*}
\lambda(0) \leqq\left(\int_{\Omega}\left|\left(\nabla \tilde{u}_{\varepsilon}\right)(x)\right|^{p} d x\right)\left(\int_{\Omega}\left|\tilde{u}_{\varepsilon}(x)\right|^{q+1} d x\right)^{-p /(q+1)} \tag{3.5}
\end{equation*}
$$

Notice that $\lambda(\varepsilon)=\left\|\nabla u_{\varepsilon}\right\|_{p, \varepsilon}^{p} \leqq C$ (independent of ε) and $\left\|u_{\varepsilon}\right\|_{q+1, \varepsilon}=1$. Thus, from (2.5) and (2.6), we see

$$
\begin{align*}
1= & \int_{\Omega}\left|\tilde{u}_{\varepsilon}(x)\right|^{q+1}\left|J \Phi_{\varepsilon}(x)\right| d x \tag{3.6}\\
& =\int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} d x+\varepsilon \int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} \sum_{\imath=1}^{N} \frac{\partial S_{\imath}}{\partial x_{\imath}} d x+O\left(\varepsilon^{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
\lambda(\varepsilon)= & \int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p} d x+\varepsilon \int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p} \sum_{i=1}^{N} \frac{\partial S_{\imath}}{\partial x_{\imath}} d x \tag{3.7}\\
& -\varepsilon p \int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{k}} d x+O\left(\varepsilon^{2}\right) .
\end{align*}
$$

Since $\left\|\nabla u_{\varepsilon}\right\|_{p, \varepsilon} \leqq C$, we can see that $\left\|\tilde{u}_{\varepsilon}\right\|_{q+1} \leqq C^{\prime}\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{p} \leqq C^{\prime \prime}$ by (ii) of Lemma 2.1 and the Sobolev embedding : $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q+1}(\Omega)$. Therefore, from (3.5), (3.6) and (3.7), we see

$$
\begin{equation*}
\int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} d x=1+O(\varepsilon), \quad \int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p} d x=\lambda(\varepsilon)+O(\varepsilon) \tag{3.8}
\end{equation*}
$$

and $\lambda(0) \leqq \lambda(\varepsilon)+O(\varepsilon)$. On the other hand, by Lemma 3.1, $\lambda(\varepsilon) \leqq \lambda(0)+O(\varepsilon)$ holds. Thus we have

$$
\begin{equation*}
\lambda(\varepsilon)=\lambda(0)+O(\varepsilon) . \tag{3.9}
\end{equation*}
$$

Next we want to show that

$$
\begin{equation*}
\tilde{u}_{\varepsilon} \longrightarrow u_{0} \text { weakly in } W_{0}^{1, p}(\Omega) \quad \text { as } \varepsilon \rightarrow 0 . \tag{3.10}
\end{equation*}
$$

Assume that (3.10) does not hold. Then there exist $\eta>0, F \in\left(W_{0}^{1, p}(\Omega)\right)^{*}$, and a sequence $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}$ satisfying $\varepsilon_{n} \downarrow 0(n \rightarrow \infty)$ such that

$$
\begin{equation*}
\left|F\left(\tilde{u}_{\varepsilon_{n}}\right)-F\left(u_{0}\right)\right| \geqq \eta \tag{3.11}
\end{equation*}
$$

holds. Since $\left\{\tilde{u}_{\varepsilon_{n}}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$ and the Sobolev embedding: $W_{0}^{1, p}(\Omega)$ $\hookrightarrow L^{q+1}(\Omega)$ is compact, there exist a subsequence $\left\{\tilde{u}_{\varepsilon_{n^{\prime}}}\right\}$ and $v \in W_{0}^{1, p}(\Omega)$ satisfying

$$
\begin{array}{ll}
\tilde{u}_{\varepsilon_{n^{\prime}}} \longrightarrow v & \text { weakly in } W_{0}^{1, p}(\Omega) \tag{3.12}\\
\tilde{u}_{\varepsilon_{n^{\prime}}} \longrightarrow v & \text { strongly in } L^{q+1}(\Omega) \\
\tilde{u}_{\varepsilon_{n^{\prime}}} \longrightarrow v & \text { a. e. } \Omega .
\end{array}
$$

Since $\tilde{u}_{\varepsilon_{n}} \geqq 0$ a. e. $\Omega, v \geqq 0$ a.e. Ω. From (3.8) and (3.9),

$$
\left\|\tilde{u}_{\varepsilon_{n}}\right\|_{q+1} \longrightarrow 1 \text { and }\left\|\nabla \tilde{u}_{\varepsilon_{n}}\right\|_{p}^{p} \longrightarrow\left\|\nabla u_{0}\right\|_{p}^{p}=\lambda(0) \text { as } n^{\prime} \rightarrow \infty .
$$

Thus, by (3.12), we have $\|v\|_{q+1}=1$ and

$$
\|\nabla v\|_{p} \leqq \liminf _{n^{\prime} \rightarrow \infty}\left\|\nabla \tilde{u}_{\varepsilon_{n}}\right\|_{p} \leqq\left\|\nabla u_{0}\right\|_{p}=\lambda(0)^{1 / p}
$$

Here we used the lower semicontinuity of the $W_{0}^{1, p}(\Omega)$-norm. Therefore we have $v \in X_{0}$ and $\lambda(0) \leqq\|\nabla v\|_{p}^{p} \leqq\left\|\nabla u_{0}\right\|_{p}^{p}=\lambda(0)$. Hence v is a minimizer of (1.1) . Since the minimizer u_{0} of (1.1) $)_{0}$ is unique by the assumption, $v=u_{0}$ must hold. Letting $n=n^{\prime} \rightarrow \infty$ in (3.11), we have $0=\left|F(v)-F\left(u_{0}\right)\right| \geqq \eta$. This contradicts $\eta>0$. Thus we get (3.10).

From (3.8) and (3.9) we can see that

$$
\begin{equation*}
\left\|\tilde{u}_{\varepsilon}\right\|_{W_{0}^{1}, p_{(\Omega)}} \longrightarrow\left\|u_{0}\right\|_{W_{0}^{1}, p_{(\Omega)}} \quad \text { as } \varepsilon \rightarrow 0 \tag{3.13}
\end{equation*}
$$

By (3.10), (3.13) and the uniform convexity of $W_{0}^{1, p}(\Omega)$,

$$
\begin{equation*}
\tilde{u}_{\varepsilon} \longrightarrow u_{0} \text { strongly in } W_{0}^{1, p}(\Omega) \quad \text { as } \varepsilon \rightarrow 0 \tag{3.14}
\end{equation*}
$$

holds.
We put $\tilde{u}_{\varepsilon}=u_{0}+v_{\varepsilon}$. Then, $v_{\varepsilon} \rightarrow 0$ strongly in $W_{0}^{1, p}(\Omega)$ as $\varepsilon \rightarrow 0$. We have

$$
\begin{align*}
& \int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{k}} d x \tag{3.15}\\
& \quad=\int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} d x+I_{1}(\varepsilon)+I_{2}(\varepsilon)
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}(\varepsilon)=\int_{\Omega}\left(\left|\nabla \tilde{u}_{\varepsilon}\right|^{p-2}-\left|\nabla u_{0}\right|^{p-2}\right)_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{j}}, \frac{\partial \tilde{u}_{\varepsilon}}{\partial x_{k}} d x \\
& I_{2}(\varepsilon)=\int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}}\left(\frac{\partial u_{0}}{\partial x_{j}} \frac{\partial v_{\varepsilon}}{\partial x_{k}}+\frac{\partial v_{\varepsilon}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}}+\frac{\partial v_{\varepsilon}}{\partial x_{j}} \frac{\partial v_{\varepsilon}}{\partial x_{k}}\right) d x .
\end{aligned}
$$

It is easy to see that

$$
\begin{equation*}
I_{2}(\varepsilon)=o(1) \tag{3.16}
\end{equation*}
$$

On the other hand, by using Lemma A. 4 in the Appendix with $w_{1}=\nabla u_{0}$ and $w_{2}=\nabla \tilde{u}_{\varepsilon}$, we see

$$
\begin{aligned}
\left|I_{1}(\varepsilon)\right| & \leqq\left. C \int_{\Omega}| | \nabla \tilde{u}_{\varepsilon}\right|^{p-2}-\left.\left|\nabla u_{0}\right|^{p-2}| | \nabla \tilde{u}_{\varepsilon}\right|^{2} d x \\
& \leqq \begin{cases}C \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p-2}\left|\nabla \tilde{u}_{\varepsilon}\right|^{2} d x & \text { (if } 2<p \leqq 3) \\
C \int_{\Omega}\left(\left|\nabla u_{0}\right|+\left|\nabla v_{\varepsilon}\right|\right)^{p-3}\left|\nabla v_{\varepsilon}\right|\left|\nabla \tilde{u}_{\varepsilon}\right|^{2} d x & \text { (if } p>3)\end{cases} \\
& \leqq \begin{cases}C\left\|\nabla v_{\varepsilon}\right\|_{p}^{p-2}\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{p}^{2} & \text { (if } 2<p \leqq 3) \\
C\left(\int_{\Omega}\left(\left|\nabla u_{0}\right|+\left|\nabla v_{\varepsilon}\right|\right)^{p} d x\right)^{(p-3) / p}\left\|\nabla v_{\varepsilon}\right\|_{p}\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{p}^{2} & \text { (if } p>3) .\end{cases}
\end{aligned}
$$

Notice that $I_{1}(\varepsilon)=0$ if $p=2$. Thus we have

$$
\begin{equation*}
I_{1}(\varepsilon)=o(1) \tag{3.17}
\end{equation*}
$$

From (3.7), (3.14), (3.15), (3.16) and (3.17), we see

$$
\begin{align*}
\int_{\Omega}\left|\nabla \tilde{u}_{\varepsilon}\right|^{p} d x= & \lambda(\varepsilon)-\varepsilon \int_{\Omega}\left|\nabla u_{0}\right|^{p} \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \tag{3.18}\\
& +\varepsilon p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}} d x+o(\varepsilon)
\end{align*}
$$

Furthermore, since $\tilde{u}_{\varepsilon} \rightarrow u_{0}$ strongly in $L^{q+1}(\Omega)$ as $\varepsilon \rightarrow 0$, the following follows easily from (3.6).

$$
\begin{equation*}
\int_{\Omega} \tilde{u}_{\varepsilon}^{q+1} d x=1-\varepsilon \int_{\Omega} u_{0}^{q+1} \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x+o(\varepsilon) \tag{3.19}
\end{equation*}
$$

From (3.5), (3.18) and (3.19), we have

$$
\begin{aligned}
\lambda(0) \leqq & \lambda(\varepsilon)-\varepsilon \int_{\Omega}\left|\nabla u_{0}\right|^{p} \sum_{\imath=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \\
& +\varepsilon p \lambda(\varepsilon)(q+1)^{-1} \int_{\Omega} u_{0}^{q+1} \sum_{i=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x \\
& +\varepsilon p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x}, \frac{\partial u_{0}}{\partial x_{k}} d x+o(\varepsilon) .
\end{aligned}
$$

Using (3.9) in the third term of the right hand side of the above inequality, we get the following.

Lemma 3.2. For any sufficiently small $\varepsilon>0$

$$
\begin{equation*}
\lambda(0) \leqq \lambda(\varepsilon)-\mu \varepsilon+o(\varepsilon) \tag{3.20}
\end{equation*}
$$

holds, where μ is defined as in Lemma 3.1.
Now we are in a position to prove Theorem 1. Since $u_{0} \in C^{1}(\bar{\Omega})$ and $u_{0}=0$ on $\partial \Omega$, we have the following by the divergence theorem.

$$
\begin{align*}
& (q+1)^{-1} \int_{\Omega} u_{0}^{q+1} \sum_{i=1}^{N} \frac{\partial S_{2}}{\partial x_{\imath}} d x+\int_{\Omega} u_{0}^{q}\left(\nabla u_{0} \cdot S\right) d x \tag{3.21}\\
& \quad=\int_{\Omega} \operatorname{div}\left((q+1)^{-1} u_{0}^{q+1} S\right) d x \\
& \quad=\int_{\partial \Omega}(q+1)^{-1} u_{0}^{q+1}\left(S \cdot \nu_{x}\right) d \sigma_{x}=0
\end{align*}
$$

We recall (2.3) and (2.4). Then we have the following by the divergence theorem.

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{0}\right|^{p} \sum_{i=1}^{N} \frac{\partial S_{2}}{\partial x_{2}} d x+\int_{\Omega, \Omega^{\prime \prime}} S \cdot \nabla\left(\left|\nabla u_{0}\right|^{p}\right) d x \tag{3.22}\\
& \quad=\int_{\Omega, \Omega^{\prime \prime}} \operatorname{div}\left(\left|\nabla u_{0}\right|^{p} S\right) d x \\
& \quad=\int_{\partial \Omega}\left|\nabla u_{0}\right|^{p}\left(S \cdot \nu_{x}\right) d \sigma_{x}=\int_{\partial \Omega}\left|\nabla u_{0}\right|^{p} \rho(x) d \sigma_{x}
\end{align*}
$$

$$
\begin{align*}
& \int_{\Omega, \Omega^{\prime \prime}}\left(\operatorname{div}\left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)\right)\left(\nabla u_{0} \cdot S\right) d x+\int_{\Omega, \Omega^{\prime \prime}}\left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0} \cdot \nabla\left(\nabla u_{0} \cdot S\right)\right) d x \tag{3.23}\\
& \quad=\int_{\Omega, \Omega^{\prime \prime}} \operatorname{div}\left(\left(\nabla u_{0} \cdot S\right)\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right) d x \\
& \quad=\int_{\partial \Omega}\left(\nabla u_{0} \cdot S\right)\left|\nabla u_{0}\right|^{p-2} \frac{\partial u_{0}}{\partial \nu_{x}} d \sigma_{x}=\int_{\partial \Omega}\left|\nabla u_{0}\right|^{p-2}\left|\frac{\partial u_{0}}{\partial \nu_{x}}\right|^{2} \rho(x) d \sigma_{x}
\end{align*}
$$

It is easy to see that

$$
\begin{align*}
& p\left|\nabla u_{0}\right|^{p-2} \nabla u_{0} \cdot \nabla\left(\nabla u_{0} \cdot S\right) \tag{3.24}\\
& \quad=S \cdot \nabla\left(\left|\nabla u_{0}\right|^{p}\right)+p\left|\nabla u_{0}\right|^{p-2} \sum_{j, k=1}^{N} \frac{\partial S_{k}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{j}} \frac{\partial u_{0}}{\partial x_{k}}
\end{align*}
$$

holds in $\Omega \backslash \Omega^{\prime \prime}$.
From (2.4), (3.4), (3.21), (3.22), (3.23) and (3.24), we can easily get the following.

$$
\begin{aligned}
\mu= & \int_{\partial \Omega}\left(\left|\nabla u_{0}\right|^{p}-p\left|\nabla u_{0}\right|^{p-2}\left|\frac{\partial u_{0}}{\partial \nu_{x}}\right|^{2}\right) \rho(x) d \sigma_{x} \\
& +p \int_{\Omega, \Omega \mu}\left(\operatorname{div}\left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)+\lambda(0) u_{0}^{q}\right)\left(\nabla u_{0} \cdot S\right) d x
\end{aligned}
$$

Since $u_{0}=0$ on $\partial \Omega,\left|\nabla u_{0}\right|=\left|\partial u_{0} / \partial \nu_{x}\right|$ on $\partial \Omega$. Furthermore, by (2.4), u_{0} satisfies

$$
-\operatorname{div}\left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)=\lambda(0) u_{0}^{q} \quad \text { in } \Omega \backslash \Omega^{\prime \prime}
$$

in the strong sense. Hence we have

$$
\begin{equation*}
\mu=-(p-1) \int_{\partial \Omega}\left|\frac{\partial u_{0}}{\partial \nu_{x}}\right|^{p} \rho(x) d \sigma_{x} \tag{3.25}
\end{equation*}
$$

From Lemmas 3.1, 3.2 and (3.25) we get the desired Theorem 1.

4. Appendix

In this section we refer to the regularity of a solution u_{ε} of (1.2). Furthermore we give some inequalities. At first we have the following.

Lemma A.1. Let G be a bounded domain in $\boldsymbol{R}^{N}(N \geqq 2)$ with a smooth boundary ∂G. Assume that $p>1$ and g is continuous in $\bar{G} \times \boldsymbol{R}$ and satisfies

$$
|g(x, t)| \leqq C|t|^{r}+D \quad(x, t) \in \bar{G} \times \boldsymbol{R},
$$

where C and D are real positive constants and $r \in\left(0, p^{*}-1\right)$. If $u \in W_{0}^{1, p}(G)$ satisfies
(A.1)

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=g(\cdot, u) \quad \text { in } G
$$

$$
u=0 \quad \text { on } \partial G,
$$

then $u \in C^{1+\alpha}(\bar{G})$ for some $\alpha \in(0,1)$.
Proof. When $p>N, u \in L^{\infty}(G)$ follows by the Sobolev embedding: $W_{0}^{1, p}(G)$ $\hookrightarrow C^{1-N / p}(\bar{G})$. Therefore the above assertion easily follows from Corollary 1.1 and Remark 1.2 in Guedda-Veron [6, p. 884].
q. e. d.

From Lemma A. $1 u_{\varepsilon} \in C^{1+\alpha}\left(\bar{\Omega}_{\varepsilon}\right)$ holds for some $\alpha \in(0,1)$. Furthermore we have the following.

Lemma A.2. Assume that $q \geqq p-1$. Then there exists a neighbourhood O of $\partial \Omega$ in Ω such that

$$
\begin{equation*}
u_{0} \in C^{2}(\bar{O}) \tag{A.2}
\end{equation*}
$$

Proof. We recall $u_{0} \in W_{0}^{1, p}(\Omega) \cap C^{1+\alpha}(\bar{\Omega})$ satisfies

$$
\begin{gather*}
-\operatorname{div}\left(\left|\nabla u_{0}\right|^{p-2} \nabla u_{0}\right)=a(x) u_{0}^{p-1} \quad \text { in } \Omega \tag{A.3}\\
u_{0}=0 \\
\text { on } \partial \Omega \\
u_{0} \geqq 0 \\
\text { a. e. } \Omega,
\end{gather*}
$$

where $a(x)=u_{0}^{q-(p-1)}(x)$. Thus $a(x) \in L^{\infty}(\Omega)$. Therefore the following follows from Harnack's inequality due to Trudinger [18, Theorem 1.1, p. 724].

$$
\begin{equation*}
u_{0}>0 \quad \text { in } \Omega \tag{A.4}
\end{equation*}
$$

From (A.3), (A.4) and Hopf's lemma due to Sakaguchi [14, Lemma A.3, p. 417], we have

$$
\partial u_{0} / \partial \nu_{x}<0 \quad \text { on } \partial \Omega .
$$

Since $u_{0} \in C^{1}(\bar{\Omega})$, there exist a neighbourhood O of $\partial \Omega$ in Ω and $\eta>0$ such that

$$
\left|\nabla u_{0}\right| \geqq \eta>0 \quad \text { in } \bar{O} .
$$

Therefore (A.2) follows from the regularity theory of the elliptic partial differential equation (see, for example, Gilbarg-Trudinger [5], Ladyzhenskaja-Ural'tseva [8]).
q. e.d.

Next we give the following inequalities.
Lemma A.3. Assume that $p \geqq 2$. Then

$$
\begin{align*}
& \left.\left|\left|w_{2}\right|^{p}-\left|w_{1}\right|^{p}-p\right| w_{1}\right|^{p-2} w_{1} \cdot\left(w_{2}-w_{1}\right) \mid \tag{A.5}\\
& \quad \leqq p(p-1)\left(\left|w_{1}\right|+\left|w_{2}-w_{1}\right|\right)^{p-2}\left|w_{2}-w_{1}\right|^{2}
\end{align*}
$$

holds for any $w_{1}, w_{2} \in \boldsymbol{R}^{N}$.
Proof. We fix $w_{1}, w_{2} \in \boldsymbol{R}^{N}$. At first we assume that $w_{1}+t\left(w_{2}-w_{1}\right) \neq 0$ for any $t \in[0,1]$. We put

$$
g(t)=\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p} \quad t \in[0,1] .
$$

Then

$$
g(1)=g(0)+g^{\prime}(0)+\int_{0}^{1}(1-t) g^{\prime \prime}(t) d t
$$

where

$$
\begin{aligned}
g^{\prime}(t)= & p\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-2}\left(w_{1}+t\left(w_{2}-w_{1}\right)\right) \cdot\left(w_{2}-w_{1}\right) \\
g^{\prime \prime}(t)= & p\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-2}\left|w_{2}-w_{1}\right|^{2} \\
& +p(p-2)\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-4}\left(\left(w_{1}+t\left(w_{2}-w_{1}\right)\right) \cdot\left(w_{2}-w_{1}\right)\right)^{2} .
\end{aligned}
$$

Using Schwarz's inequality, we have

$$
\begin{aligned}
\left|g^{\prime \prime}(t)\right| & \leqq p(p-1)\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-2}\left|w_{2}-w_{1}\right|^{2} \\
& \leqq p(p-1)\left(\left|w_{1}\right|+t\left|w_{2}-w_{1}\right|\right)^{p-2}\left|w_{2}-w_{1}\right|^{2} \\
& \leqq p(p-1)\left(\left|w_{1}\right|+\left|w_{2}-w_{1}\right|\right)^{p-2}\left|w_{2}-w_{1}\right|^{2}
\end{aligned}
$$

for $t \in[0,1]$. Summing up these facts, we get (A.5).
Next we assume that $w_{1}+t\left(w_{2}-w_{1}\right)=0$ for some $t \in[0,1]$. When $t=0$ (i.e. $w_{1}=0$), (A.5) is equivalent to $1 \leqq p(p-1)$. Since $p \geqq 2, p(p-1) \geqq 1$ holds. When $t \in(0,1]$, we put $s=t^{-1}$. Then $w_{2}=(1-s) w_{1}$ and (A.5) is equivalent to

$$
\begin{equation*}
(s-1)^{p}+s p-1 \leqq p(p-1)(1+s)^{p-2} s^{2} \quad(s \geqq 1) . \tag{A.6}
\end{equation*}
$$

Since $s^{2} \geqq\left(s^{2}+1\right) / 2$ for $s \geqq 1$,

$$
\begin{align*}
p(p-1)(1+s)^{p-2} s^{2} & \geqq(p(p-1) / 2)(1+s)^{p-2} s^{2}+(p(p-1) / 2)(1+s)^{p-2} \tag{A.7}\\
& \geqq s^{p}+p-1 \quad(s \geqq 1)
\end{align*}
$$

hold for $p \geqq 2$. On the other hand,

$$
\begin{equation*}
s^{p}+p-1 \geqq(s-1)^{p}+s p-1 \quad(s \geqq 1) \tag{A.8}
\end{equation*}
$$

holds for $p \geqq 2$, since

$$
s^{p}=(s-1+1)^{p} \geqq(s-1)^{p}+p(s-1) \quad(p \geqq 2, s \geqq 1) .
$$

From (A.7) and (A.8) we get (A.6). Therefore we get (A.5).
Thus the proof is complete.
q. e. d.

Lemma A.4. Assume that $p \geqq 2$. Then

$$
\begin{align*}
& \left|\left|w_{2}\right|^{p-2}-\left|w_{1}\right|^{p-2}\right| \tag{A.9}\\
& \leqq\left\{\begin{array}{l}
\left.\left|w_{2}-w_{1}\right|^{p-2} \quad \text { (if } 2 \leqq p \leqq 3\right) \\
\left.(p-2)\left(\left|w_{1}\right|+\left|w_{2}-w_{1}\right|\right)^{p-3}\left|w_{2}-w_{1}\right| \quad \text { (if } p>3\right)
\end{array}\right.
\end{align*}
$$

hold for any $w_{1}, w_{2} \in \boldsymbol{R}^{N}$.
Proof. We fix $w_{1}, w_{\mathbf{2}} \in \boldsymbol{R}^{N}$. If $p \in[2,3]$, then we see

$$
\left|w_{1}\right|^{p-2} \leqq\left(\left|w_{2}\right|+\left|w_{2}-w_{1}\right|\right)^{p-2} \leqq\left|w_{2}\right|^{p-2}+\left|w_{2}-w_{1}\right|^{p-2}
$$

and

$$
\left|w_{2}\right|^{p-2} \leqq\left(\left|w_{1}\right|+\left|w_{2}-w_{1}\right|\right)^{p-2} \leqq\left|w_{1}\right|^{p-2}+\left|w_{2}-w_{1}\right|^{p-2}
$$

Hence we get (A.9) for $p \in[2,3]$.
Hereafter we assume $p>3$. When $w_{1}+t\left(w_{2}-w_{1}\right)=0$ for some $t \in[0,1]$, we can easily get (A.9) as in the proof of Lemma A.3. Therefore we may assume that $w_{1}+t\left(w_{2}-w_{1}\right) \neq 0$ for any $t \in[0,1]$. We put

$$
h(t)=\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-2} \quad t \in[0,1] .
$$

Then

$$
h(1)=h(0)+\int_{0}^{1} h^{\prime}(t) d t
$$

where

$$
\begin{aligned}
\left|h^{\prime}(t)\right| & =(p-2)\left|w_{1}+t\left(w_{2}-w_{1}\right)\right|^{p-4}\left|\left(w_{1}+t\left(w_{2}-w_{1}\right)\right) \cdot\left(w_{2}-w_{1}\right)\right| \\
& \leqq(p-2)\left(\left|w_{1}\right|+\left|w_{2}-w_{1}\right|\right)^{p-3}\left|w_{2}-w_{1}\right|
\end{aligned}
$$

hold for $t \in[0,1]$. Summing up these facts, we get (A.9).
Thus the proof is complete.
q. e. d.

References

[1] E. Dibenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.
[2] D. Fujiwara and S. Ozawa, Hadamard's variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad., 54A (1978), 215-220.
[3] P.R. Garabedian and M. M. Schiffer, Convexity of domain functionals, J. Anal. Math., 2 (1952-53), 281-368.
[4] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
[5] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer, Berlin, 1983.
「6] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., 13 (1989), 879-902.
[7] J. Hadamard, Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Oeuvres, C.N.R.S., tom. 2 (1968), 515-631.
[8] O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
[9] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.
[10] P. Lindqvist, On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
[11] T. Osawa, The Hadamard variational formula for the ground state value of $-\Delta u=\lambda|u|^{p-1} u$, Kodai Math. J., 15 (1992), 258-278.
[12] S. Ozawa, Singular variation of the ground state eigenvalue for a semilinear elliptic equation, Tohoku Math. J., 45 (1993), 359-368.
[13] S. Ozawa and S. Roppongi, Nonlinear eigenvalues and singular variation of domains-the Neumann condition-, preprint 1992.
[14] S. Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), 403-421.
[15] N. Shimakura, La première valeur propre du laplacien pour le problème de Dirichlet, J. Math. Pures Appl., 62 (1983), 129-152.
[16] P. TolKsDorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817.
[17] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.
[18] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20 (1967), 721-747.

Department of Mathematics
Faculty of Science
Tokyo Institute of Technology
Oh-okayama, Meguro-ku
Tokyo, 152, Japan

