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THE HADAMARD VARIATION OF THE GROUND STATE

VALUE OF SOME QUASI-LINEAR ELLIPTIC EQUATIONS

BY SUSUMU ROPPONGI

1. Introduction

Let Ω be a bounded domain in RN (iV!Ξ>2) with smooth boundary dΩ. Let
p(x) be a real smooth function on dΩ and vx be the exterior unit normal vector
at x^dΩ. For any sufficiently small ε^O, let Ωε be the domain bounded by

dΩε={x-\-εp(x)vx; xed£?}.

Fix />e(l, oo) and let q be a fixed number satisfying Q<q<p*—l, where
p*=oo if p^N and p*=Np/(N-p) if p<N. Then we consider the following
problem.

(1.1), Λ(e)=inf \ |Vu p d x ,

where
Xε={u€ΞWl'p(Ωε); \\u\\Lq+iiΩε)=l, u^O a.e.}.

It is easy to see that there exists at least one non-negative solution uε which
attains (l.l)e and which satisfies

(1.2)

uε(x)=0 x<=3Ωε

a.e.

Furthermore uε<=C1+a(Ωε) for some « E ( 0 , 1).
In this note we want to show the following.

THEOREM 1. Assume that p^2 and q^p—1. Assume that the minimizer
uQ of (l.l)o is unique. Then, the following asymptotic behaviour of λ(ε) holds.

(1.3) λ(ε)

Here d/dvx denotes the derivative along the exterior normal direction.
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Remarks. When p=2 and q=l, the formula (1.3) can be found, for example,
in Hadamard [7], Garabedian-Schiffer [3].

When p=2 and q>l, the formula (1.3) can be found in Osawa £11] with
the additional assumption that Kzτ(Δ+λ(0)qu0

q-ι)—{0}. Therefore the result of
this paper is an improvement of Osawa [11, Theorem 1, pp. 258-259]. Further-
more he treated the Hadamard variation of (1.2) under the Robin boundary
condition and the Neumann boundary condition. As an application of [11], the
problem of asymptotic behaviour of non-linear eigenvalues under singular varia-
tion of domains is studied by Ozawa [12], Ozawa-Roppongi [13].

When p—q—l, the uniqueness of the minimizer of (l.l)0 is shown in Lind-
qvist [10]. When p—2y q>l and Ω is a ball, the uniqueness of the minimizer
of (l.l)o is shown in Gidas, Ni and Nirenberg [4].

The regularity of the non-negative solution uε of (1.2) is discussed, for
example, in Dibenedetto [1], Guedda-Veron [6], Lieberman [9], Sakaguchi [14],
Tolksdorf [16], [17]. It should be noticed that the solution of (1.2) with pΦ2
does not always belong to C2(Ωε), since the £-Laplacian is degenerate elliptic
when pφ2.

The reader who is unfamiliar with Hadamard's variation may be referred
to Hadamard [7], Garabedian-Schiffer [3], Fujiwara-Ozawa [2], Shimakura [15].

Section 2 contains preliminary material. The asymptotic formula (1.3) is
established in section 3. In Appendix we give some regularity properties of the
solution of (1.2) and give some inequalities. Throughout section 2 and section
3 we assume all the assumption in Theorem 1.

2. Preliminary Lemma

In this section we would like to construct a nice C°°-diffeomorphism between
Ω and Ωε for any sufficiently small ε>0. Let Uo be a neighbourhood of dΩ in
RN such that there exists a unique P^C°°(UOf dΩ) satisfying \x—P(x)\z=
dist(x, dΩ) for x<=U0. Let O be a neighbourhood of dΩ in Ω as in Lemma
A.2 in the Appendix. Then ι/0eC2(5). Let Ω' (£?", respectively) be a bounded
domain with a smooth boundary dΩ/—{x—δvx x^dΩ} {dΩ'f—{x—2δvx'f x<=dΩ},
respectively) for any sufficiently small δ>0. We fix δ>0 so that Ω\Ω"mU0

and Ω\O<mΩ"<mΩ'(^Ω hold. Then Ω'mΩε holds for any sufficiently small ε>0.
We take a φ^C°°{Ω, R) such that O ^ ^ l , 0 = 0 on Ω" and φ=l on Ω\Ω\

We put

x + εφ(x)p(P(x))vPix) x<=ΞΩ\Ωf/,

where vP(X) denotes the exterior unit normal vector at
Then we can see that Φε: Ω-+Ωε is a surjective diffeomorphism for any
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sufficiently small ε>0 and that the following properties (2.1), (2.2), (2.3) and
(2.4) hold.

(2.1) We put Φε(x)=x + εS(x) for x<=Ω. Then

SEEC°°(Ω,RN) and \\S\\cm(D)N£Cm (m=0, 1, 2, •••)

holds for a constant Cm independent of ε.

(2.2) There exists a t(ε)<EΞC°°(Ωε, RN) satisfying

φ9-\x)=x+εtw(x) for x<=Ωε and

(m=0, 1, 2, •••)

holds for a constant Cm independent of s. Here Φε~
ι denotes the inverse

function of Φε.

(2.3) S(x)=p(x)vx

=0

(2.4) MβGC2(fl\fl') and S(*)=0 fo

For a function / on β δ , we define function / on Ω by f(x)=f(Φε(x)) for
i G β . For a function g on 42, we define function g on i2e by g{y)=g{Φε~\y))
for 3;eflε.

Then we have the following.

LEMMA 2.1. (i) Let JΦε{x) be the Jacobian of Φε(x). Then

(2.5) l/ΦeWI-l + ε Σ ^ W + O ί ε 2 )
t=i OXX

holds uniformly for x&Ω, where St{x) denotes the i-th element of

(ii) ~ : Wl>p(Ωε)^f^f^Wl p(Ω) is a bounded linear operator and its operator
norm is uniformly bounded for any sufficiently small ε>0.

The same is true for ~ :Wl'v(Ω)Ξ$g^g<EΞWl'v{Ωε).
(iϋ)

(2.6) J
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holds for any feWl'p(Ω,).

Furthermore, if ||/Hwj p(#ε)^ίC holds for a constant C independent of $, then

the remainder term in the right hand side of (2.6) is uniform with respect to f.

Proof, (i) and (ii) easily follow from (2.1) and (2.2). Therefore we give a
proof of (iii).

We take an arbitrary f<=Wl'v{Ωε) and the transformation of co-ordinates;
Φ," 1 : Ωε=>y^x = Φε-\y)(ΞΩ. Since x=y + εtw(y) for y<^Ωε, we have

(2.7) g i = ί < i , + β a ^ ( : y )

where ditJ denotes Kronecker's delta and t[ε)(y) denotes the z'-th element of
t<ε)(y)£ΞRN. On the other hand, since y=Φε(x)=x+εS(x)=y+εt<εKy)+εS(x)
hold for y^Ωεy we have

ε, ε>0) .

Thus we get

(2 8) ! > f £ i
From (2.7) and (2.8),

hold for l<j, k^N. Hence we get

-(x)

for l^j^N.
From (2.5) and (2.9) we can see that
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(2.10) I (V/XΦ.(*)) I' I JΦ,(x) I = I (Vf)(Φt(x)) Ip

Σ §^ (
holds for xeί2, where

Here C denotes a positive constant independent of ε, x and / .
On the other hand, by (2.9) and using Lemma A.3 in the Appendix with

Wι=(Vf)(x) and w2=(Vf)(y)=(Vf)(Φe(x)), we have the following.

(2.11) \(Vf)(Φε(xW=\(V?)(x)r

holds for x&Ω, where

|Λ'(β, x9 f)\

Here C denotes a positive constant independent of ε, x and / .
Since

(2.6) follows from (2.10) and (2.11). Furthermore the absolute value of the
remainder term in the right hand side of (2.6) is bounded from above by

Thus the proof is complete. q. e. d.

3. Proof of Theorem 1

For the sake of simplicity we write Hlz,r(β) (IHUr(βe), respectively) as || ||r

Ir.β, respectively) for r ^ l .
Since Uo/\\uo\\q+i,ε^Xε, we have

(3.1) ί(e)

Notice that ^(O)=||Vtιo|l?, l|Mollί+i=l and U0=u0 on Ω. Thus, from (2.5) and
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(2.6), we see

(3.2) j f l \Ut(y)\ *1dy=\g\St(x)\*+ι\JΦ.{x)\dx

and

(3.3) ί \mo)(y)\pdy=λ(O)+ε\n\

By (3.1), (3.2) and (3.3) we get the following.

LEMMA 3.1. For any sufficiently small ε>0

(3.4) λ

holds, where

On the other hand, since ύε/\\uε{lq+1^XOf we have

(3.5) (^

Notice that Λ(ε)=||Vwe||g,ε^C (independent of ε) and | | t t j β + 1 > β = l . Thus, from
(2.5) and (2.6), we see

(3.6) l

and

(3.7)
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Since ||Vwε | |p,ε^C, we can see that | | 0 , | | β + 1 ^ C Ί | V β J p ^ C * by (ii) of Lemma 2.1
and the Sobolev embedding: Wl'p(Ω)c>Lq+\Ω). Therefore, from (3.5), (3.6) and
(3.7), we see

(3.8)

and λ(0)^λ(ε)+O(ε). On the other hand, by Lemma 3.1, λ(ε)^λ(0)+O(ε) holds.
Thus we have

(3.9) λ(ε)=λ(0)+O(ε).

Next we want to show that

(3.10) uε—>u0 weakly in W\'V{Ω) as e->0.

Assume that (3.10) does not hold. Then there exist η>0, FG(WI'P(Ω))*, and a
sequence {εn}£L0 satisfying εn j 0 (n-*oo) such that

(3.11) \F(uεn)-F(u0)\^η

holds. Since {uεj is bounded in Wl'p(Ω) and the Sobolev embedding: W\'P(Ω)
c*Lq+1(Ω) is compact, there exist a subsequence {u$n,} and v^.W\'v(Ω) satis-
fying

(3.12) «...

β.,.

— > v

—>v

— > v

weakly

strongly

a. e. Ω.

in

in

W\'

Lq

P(Ω)

+\Ω)

Since u£jl,^0 a.e. Ω, v^O a. e. Ω. From (3.8) and (3.9),

l l « . n J e + i — > 1 and ||Vβ.n f | |J—>||Vttβ | |J=ίl(O) as n'->oo .

Thus, by (3.12), we have |M| ? + 1 =1 and

IIVi llp^ lim inf \\Vuεn,\\p£\\Vu0\\p=λ(θrp .
n'-*oo

Here we used the lower semicontinuity of the Wo'p(β)-norm. Therefore we
have VZΞXO and ^(0)^||Vv||J^||VM0||?=-il(0). Hence y is a minimizer of (l.l)0.
Since the minimizer u0 of (l.l)0 is unique by the assumption, v=u0 must hold.
Letting n = w'->oo in (3.11), we have 0=\F(v)—F(uo)\^η. This contradicts

Thus we get (3.10).
From (3.8) and (3.9) we can see that

(3.13) l|β.lUi *(0> — > \\u*\\wi-P(Q) as s->0.

By (3.10), (3.13) and the uniform convexity of W\ V(Ω),

(3.14) uε—>u0 strongly in W\'V{Ω) as e-*0



QUASI-LINEAR ELLIPTIC EQUATIONS 221

holds.
We put uε=u0+vε. Then, vε-+0 strongly in W\tV{Ω) as e-+0. We have

where

)=( |V«.I" Σ ψ<PP-Φ
Jfl ],k=ι ax, \ax, axk oxj

It is easy to see that

(3.16) h(ε)=o(l).

On the other hand, by using Lemma A.4 in the Appendix with iiΊ=Vw0 and
W 2 =VM £ , we see

<J

(if

(if

(if p>Z)

.||f (if p>3).

Notice that Ji(β)=0 if p=2. Thus we have

(3.17) Λ( )=o(l) .

From (3.7), (3.14), (3.15), (3.16) and (3.17), we see

(3.18)

Furthermore, since uε^u0 strongly in Lq+1(Ω) as ε—>0, the following follows
easily from (3.6).
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(3.19) ( fi.«+I<i*=l-«( ur1 Σ ~dx+o(ε)

From (3.5), (3.18) and (3.19), we have

5 N /3Q1

Ω

uriΆwxl

Using (3.9) in the third term of the right hand side of the above inequality, we
get the following.

LEMMA 3.2. For any sufficiently smalt ε>0

(3.20) λ(0)£λ(ε)-με+o(£)

holds, where μ is defined as in Lemma 3.1.

Now we are in a position to prove Theorem 1. Since u^C\Ω) and wo=O
on 342, we have the following by the divergence theorem.

(3.21) ( < ? + l H wo?+1 Σ ^dx + \ uo«(Vuo S)dx
jU ι = i OXχ JΩ

We recall (2.3) and (2.4). Then we have the following by the divergence
theorem.

(3 22)

= \ div(|Vu.|»S)ί/*
J iI\S2"
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(3.23) ί (div (\VuQ\p-2Vuo))(VuO'S)dx+[ (\Vuo\
p-2VuQ V(VuO'S))dx

Ω\Ω"

It is easy to see that

(3.24)

=S.V(|V«.|>)+ί|V«.|>- Σ f ^ J ^
, *=i OXj OXj OXk

holds in Ω\Ω".
From (2.4), (3.4), (3.21), (3.22), (3.23) and (3.24), we can easily get the fol-

lowing.

Since uo=O on dΩ, \VuQ\ = \duQ/dvx\ on dΩ. Furthermore, by (2.4), u0 satisfies

-div(\Vu0\p-2Vu0)=λ(0)u0

q in Ω\Ω»

in the strong sense. Hence we have

(3.25) Pp(x)dσx.
old χ

From Lemmas 3.1, 3.2 and (3.25) we get the desired Theorem 1.

4. Appendix

In this section we refer to the regularity of a solution uε of (1.2). Further-
more we give some inequalities. At first we have the following.

LEMMA A.I. Let G be a bounded domain in RN (N^2) with a smooth
boundary dG. Assume that p>l and g is continuous in GxR and satisfies

\g(x,t)\^C\t\r+D (x,t)(ΞGxR,

where C and D are real positive constants and re(0, p*—l). If u^Wl'p(G)
satisfies

(A.I) -div(\Vu\v-2Vu)=g(', u) in G
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w=0 on dG,

then weC 1 + α(G) for some αe(0, 1).

Proof1 When £>iV, u<=L°°(G) follows by the Sobolev embedding: W\'V{G)
c*Cι~N/p(G). Therefore the above assertion easily follows from Corollary 1.1
and Remark 1.2 in Guedda-Veron [β, p. 884]. q. e. d.

From Lemma A.I wεeC1 + α(i2e) holds for some αε(0, 1). Furthermore we
have the following.

LEMMA A.2. Assume that q^p—l. Then there exists a neighbourhood O of
dΩ in Ω such that

(A.2)

Proof. We recall uo<=Wl'p(Ω)Γ\C1+a(Ω) satisfies

(A.3) -div(|Vtt0|*-8VMo)=α(*)ttop~1 in Ω

wo=0 on dΩ

a. e. Ω ,

where α(x)=« o

ί " ( p " 1 ) W. Thus a(x)&L°°(Ω). Therefore the following follows
from Harnack's inequality due to Trudinger [18, Theorem 1.1, p. 724],

(A.4) wo>O in Ω

From (A.3), (A.4) and Hopf s lemma due to Sakaguchi [14, Lemma A.3, p.
417], we have

duo/dvx<O on dΩ.

Since u^C\Ω)9 there exist a neighbourhood O of dΩ in Ω and η>0 such that

in 0 .

Therefore (A.2) follows from the regularity theory of the elliptic partial differ-
ential equation (see, for example, Gilbarg-Trudinger [5], Ladyzhenskaja-UraΓ-
tseva [8]). q. e. d.

Next we give the following inequalities.

LEMMA A.3. Assume that p^2. Then

(A.5)
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holds for any wu

Proof. We ήx wlf w2^RN. At first we assume that w1+t(w2—Wi)Φθ for
any fe[0, 1]. We put

Then

=g(O)+g'Q)+\\l--t)g*(t)dt,

where

g'(t)=p I w i

Using Schwarz's inequality, we have

\g"(t)\£p(p-l)\wι+t(wt--w1)\*-*\w2--wι\*

for ίe[0, 1]. Summing up these facts, we get (A.5).
Next we assume that Wi+tiwz—wJ^O for someίe[0, 1]. When ί=0 (i.e.

Wi=ΰ), (A.5) is equivalent to l<p(p-l). Since p^2, p(p-l)^l holds. When
0, 1], we put s=Γ 1 . Then w2—{l—s)wι and (A.5) is equivalent to

(A.β)

Since s2^(s2+1)/2 for

(A.7) p(p

hold for />^2. On the other hand,

(A.8)

holds for p>2, since

From (A.7) and (A.8) we get (A.β). Therefore we get (A.5).
Thus the proof is complete. q. e. d.

LEMMA A.4. Assume that p^2. Then
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(A.9) l l ^ 2 | p " 2 - N i l p ' Ί

p-2)(\w1\-{-\w2-w1\)p-s\w2-w1\ (if p>3)

hold for any wu

Proof. We fix wu wt(=RN. If £e[2, 3], then we see

and

Hence we get (A.9) for />e[2, 3].
Hereafter we assume p>3. When w1+t(w2—w1)=0 for some ίe[0, 1], we

can easily get (A.9) as in the proof of Lemma A.3. Therefore we may assume
that Wt+tίwt—wJΦO for any ίe[0, 1]. We put

Then

λ(l)=A(0)+(V(βΛ,
Jo

where

hold for ίe[0, 1], Summing up these facts, we get (A.9).
Thus the proof is complete. q. e. d.
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