GAP THEOREMS FOR ENTIRE FUNCTIONS

By Deng GuanTie*

Abstract

In this paper, we give a necessary and sufficient condition that there exists an entire function represented by a gap power series with an appropriate growth condition for the maximum modulus, and the entire function is bounded and not identically zero in an angular domain.

1. Introduction

We consider a nonconstant entire function $f(z)$, which is represented by a gap power series

$$
\begin{equation*}
f(z)=\sum_{n=1}^{+\infty} a_{n} z^{\lambda_{n}} \tag{1}
\end{equation*}
$$

and is bounded in the angular domain $B(a)=\left\{z=r e^{i \theta}:|\theta| \leqq a\right\}$, where $0 \leqq a<\pi$, $\Lambda=\left\{\lambda_{n}\right\}(n=1,2,3, \cdots)$ is a strictly increasing sequence of positive intergers. We denote the set of such functions $f(z)$ by $E(\Lambda, a)$. It is well-known by A. J. Macintyre's theorem ([7]) that when $a=0$, a necessary and sufficient condition that there exists an entire function $f(z) \in E(\Lambda, 0)$ is that $\lambda(r) \rightarrow+\infty$, as $r \rightarrow+\infty$, where

$$
\begin{equation*}
\lambda(r)=\sum_{\lambda_{n} \leq r} \frac{2}{\lambda_{n}}, \quad \text { if } r \geqq \lambda_{1} ; \quad \text { and } \quad \lambda(r)=0, \text { if } r<\lambda_{1} . \tag{2}
\end{equation*}
$$

J. M. Anderson and K. G. Binmore ([1]) also proved a necessary and sufficient condition for the existence of an entire function $f(z) \in E(\Lambda, 0)$ with a growth condition concerning the maximum modulus of $f(z)$.

Suppose that $\varphi(t)$ be a convex function defined on $[0,+\infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} t^{-1} \varphi(t)=+\infty . \tag{3}
\end{equation*}
$$

It is well-known that there exists a constant $t_{1} \geqq 0$ such that $\varphi(t)$ is strictly

[^0]increasing and continuous on $\left[t_{1},+\infty\right)$, so $s=\varphi(t)$ has the inverse function $t=$ $\tilde{\varphi}(s)$. We can define the φ-order $\rho(0 \leqq \rho \leqq+\infty)$ and the lower φ-order λ of an entire function $f(z)$ by
\[

$$
\begin{align*}
& \rho=\lim \sup _{t \rightarrow+\infty} t^{-1} \tilde{\varphi}\left[\log M\left(e^{t}, f\right)\right], \tag{4}\\
& \lambda=\liminf _{t \rightarrow+\infty} t^{-1} \tilde{\varphi}\left[\log M\left(e^{t}, f\right)\right], \tag{5}
\end{align*}
$$
\]

where $M(r, f)$ is the maximum modudus of $f(z)$ on the ciricle $|z|=r$, i. e.

$$
\begin{equation*}
M(r, f)=\max \{|f(z)|:|z|=r\}, \quad(r \geqq 0) \tag{6}
\end{equation*}
$$

The φ-order and the lower φ-order reduce to the usual order notion in the case where $\varphi(t)$ is the exponential function. ([2], [3])

Utilizing Carlemen's formula ([2]) for analytic functions, the present article proves some results which are similar to those in [1] for the angular domain and obtains a necessary and sufficient condition as follows.

Theorem 1. Let $0 \leqq a<\pi, \Lambda=\left\{\lambda_{n}\right\}$ be a strictly increasing sequence of positive integers and $\varphi(t)$ be an convex function defined on $[0,+\infty)$ satisfying (3). Then there exists an entire function $f(z) \in E(\Lambda, a)$ of the finite φ-order at most ρ, if and only if

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty} r^{-1} k(\varphi(r)) \geqq \frac{1}{\rho}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
k(r)=\lambda(r)-\frac{2 a}{\pi} \log ^{+} r \tag{8}
\end{equation*}
$$

and $\lambda(r)$ is defined by (2).
Remark 1. When $a=0$, the sufficiency is proved by J. M. Anderson and K. G. Binmore ([1]), and when $a=0$ and $\log \varphi(s)$ is a convex function of s, they also gave a necessity. So our result is a generalization and an improvement of a result in [1] even in the case $a=0$. The method of proofs in this paper is quite different from that in [1].

Theorem 2. Let $a, \Lambda=\left\{\lambda_{n}\right\}, \lambda(r)$ and $\varphi(t)$ be the same as those in Theorem 2. Then there exists $f(z) \in E(\Lambda, a)$ of finite lower φ-order at most λ, if and only if

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \sup ^{-1} k .(\varphi(r)) \geqq \frac{1}{\lambda} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\text { k. }(r)=\inf \left\{k\left(r^{\prime}\right): r^{\prime} \geqq r\right\}, \tag{10}
\end{equation*}
$$

and $k(r)$ is defined by (8).

Remark 2. The letter A will be used for absolute and positive constants, not necessarily the same at each occurrence.

Remark 3. We notice that, if $f(z) \in E(\Lambda, a)$, then the function

$$
\begin{equation*}
\varphi_{0}(t)=\log M\left(e^{t}, f\right) \tag{11}
\end{equation*}
$$

is a convex function satisfying (3) and $f(z)$ is of finite φ_{0}-order 1 . So we have the following corollary.

Corollary 1. Let $0 \leqq a<\pi$ and $\Lambda=\left\{\lambda_{n}\right\}$ be a strictly increasing sequence of positive integers. Then there exists an entire function $f(z) \in E(\Lambda, a)$, if and only if

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} k(r)=+\infty \tag{12}
\end{equation*}
$$

where $k(r)$ is defined by (8).
Remark 4. In the papers ([4], [5]), the following similar assertion is shown: There exists an function $f(z) \not \equiv 0$, which is represented by a gap power series (1) in a neighbourhood of zero, analytic and bounded in the angular domain $B(a)(0<a<\pi)$, if and only if $k(r)$ has a finite lower bound in $(0,+\infty)$.

2. Proofs of Theorems 1 and 2

W. H. J. Fuchs' lemma ([2], [6]) shows that the function

$$
\begin{equation*}
G(z)=\prod_{n=1}^{+\infty}\left(\frac{z-\lambda_{n}}{z+\lambda_{n}}\right) \exp \left(\frac{2 z}{\lambda_{n}}\right) \tag{13}
\end{equation*}
$$

is analytic in the half-plane $x=\operatorname{Rez}>-\lambda_{1}$, and

$$
\begin{align*}
& |G(z)| \leqq \exp \{x \lambda(r)+A x\} \quad(x \geqq 0) ; \tag{14}\\
& |G(z)| \geqq \exp \{x \lambda(r)-A x\} \quad(z \in D(\Lambda)) ; \tag{15}\\
& \left|G^{\prime}\left(\lambda_{n}\right)\right| \geqq \exp \left\{\lambda_{n} \lambda\left(\lambda_{n}\right)-A \lambda_{n}\right\} \quad(n=1,2,3, \cdots), \tag{16}
\end{align*}
$$

where $D(\Lambda)=\left\{z=x+i y: x \geqq 0,\left|z-\lambda_{n}\right| \geqq 8^{-1}, n=1,2,3, \cdots\right\}, r=|z|$ and $\lambda(r)$ is defined by (2). Stirling's formula implies that the Gamma function $\Gamma(z)$ satisfies

$$
\begin{equation*}
\left|\Gamma\left(\frac{1}{2}+\frac{2}{\pi} a z\right)\right|=\exp \left\{\frac{2}{\pi} a x \log ^{+}|z|-a|y|+c(x)\right\} \tag{17}
\end{equation*}
$$

where $|c(x)| \leqq A+A x$ for $x \geqq 0$. So the function

$$
\begin{equation*}
g_{0}(z)=\frac{\Gamma((1 / 2)+(2 / \pi) a z)}{(1+z)^{2} G(z)} \tag{18}
\end{equation*}
$$

is meromorphic and satisfies

$$
\begin{equation*}
\left|g_{0}(z)\right| \leqq\left(1+y^{2}\right)^{-1} \exp \{-x k(r)-a|y|+A x+A\} \tag{19}
\end{equation*}
$$

for $z \in D(\Lambda)$, where $k(r)$ is defined by (8).
Proof of the necessity of the conditions in Theorems 1 and 2 . We assume that a transcendental entire function $f(z) \not \equiv 0$, which is represented by a gap power series (1), is bounded in the angular domain $B(a)=\left\{z=r e^{i \theta}:|\theta| \leqq a\right\}$. Let $M(r, f)$ be defined by (6). Then the function $\varphi_{0}(t)$ defined by (11) is a convex function of t and satisfies (3) with $\varphi(t)$ replaced by $\varphi_{0}(t)$. The coefficients $\left\{a_{n}\right\}$ of (1) satisfy

$$
\begin{equation*}
\left|a_{n}\right| \leqq \exp \left\{\varphi_{0}(\sigma)-\lambda_{n} \sigma\right\}, \quad(n=1,2, \cdots) \tag{20}
\end{equation*}
$$

for any real number σ.
The function $h_{0}(z)$ defined by

$$
\begin{equation*}
h_{0}(z)=G(z) \int_{0}^{+\infty} f(w) w^{-z-1} d w \tag{21}
\end{equation*}
$$

is analytic in the band $0<x<\lambda_{1}$, and for any real number σ,

$$
h_{0}(z)=G(z) \int_{e^{\sigma}}^{+\infty} f(w) w^{-z-1} d w+\sum_{n=1}^{+\infty} \frac{G(z)}{\lambda_{n}-z} a_{n} \exp \left\{\sigma\left(\lambda_{n}-z\right)\right\} .
$$

This implies that the function $h_{0}(z)$ admits an analytic continuation (the continuation is again denoted by $h_{0}(z)$.) on the half-plane $\{z: x=\operatorname{Rez}>0\}$.

By Cauchy's formula,

$$
h_{0}(z)=\sum_{n=1}^{+\infty} \frac{G(z)}{\lambda_{n}-z} a_{n} \exp \left\{(\sigma+i t)\left(\lambda_{n}-z\right)\right\}+G(z) \int_{L(\sigma, t)} f(w) w^{-z-1} d w
$$

for $x>0$ and for any real numbers σ and t such that $|t| \leqq a$, where

$$
L(\sigma, t)=\left\{r e^{i t}: e^{\sigma} \leqq r<+\infty\right\} .
$$

Taking $t=-a$ if $y \geqq 0$, and taking $t=a$ if $y<0$, we obtain that

$$
\left|h_{0}(z)\right| \leqq x^{-1} \exp \{\varphi(\boldsymbol{\sigma})-\sigma x+x \lambda(r)-a|y|+A x+A\}
$$

for $x>0$ and any real number σ. So the function $h(z)=h_{0}\left(8^{-1}+z\right)$ satisfies

$$
|h(z)| \leqq \exp \left\{-\psi_{0}(x)+x \lambda(r)-a|y|+A x+A\right\}
$$

for $x \geqq 0$, where

$$
\begin{equation*}
\psi_{0}(x)=\sup \left\{x \sigma-\varphi_{0}(\sigma): \sigma \in(-\infty,+\infty)\right\} . \tag{22}
\end{equation*}
$$

Applying Carleman's formula ([2]) for the semi-ring $\{z: 1 \leqq|z| \leqq R, x \geqq 0\}(R>1)$ to the function $h(z)=h_{0}\left(8^{-1}+z\right)$, we have

$$
-A \leqq \frac{1}{2 \pi} \int_{1}^{R}\left(\frac{1}{y^{2}}-\frac{1}{R^{2}}\right) \log |h(\imath y) h(-i y)| d y+\frac{1}{\pi R} \int_{-\pi / 2}^{\pi / 2} \log \left|h\left(R e^{i \theta}\right)\right| \cos \theta d \theta .
$$

Therefore

$$
-A-\lambda(R) \leqq-\frac{2 a}{\pi} \log R+\frac{4}{\pi R} \int_{0}^{\pi / 2}\left(-\psi_{0}(R \cos \theta) \cos \theta\right) d \theta
$$

By (22), for any real number σ,

$$
\int_{0}^{\pi / 2} \psi_{0}(R \cos \theta) \cos \theta d \theta \geqq \int_{0}^{\pi / 2}\left[\sigma R \cos \theta-\varphi_{0}(\sigma)\right] \cos \theta d \theta=\frac{\pi}{4} R \sigma-\varphi_{0}(\sigma),
$$

and again by (22),

$$
\begin{equation*}
\frac{2 a}{\pi} \log R-\lambda(R)+\frac{4}{\pi R} \psi_{0}\left(\frac{\pi}{4} R\right) \leqq A \tag{23}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\psi_{0}\left(\frac{\pi R}{4}\right) \geqq \frac{\pi R}{4} \tilde{\varphi}_{0}(R)-R \tag{24}
\end{equation*}
$$

is obtained from (22) by taking $\sigma=\tilde{\varphi}_{0}(R)$. As $\tilde{\varphi}_{0}(s)$ is increasing for s large enough. From (23) and (24), we have

$$
\begin{equation*}
k(R) \geqq k .(R) \geqq \tilde{\varphi}_{0}(R)-A \tag{25}
\end{equation*}
$$

If $f(z)$ is of finite φ-order at most ρ, then for any $\rho^{\prime}>\rho$,

$$
\begin{equation*}
\varphi_{0}(t) \leqq \varphi\left(\rho^{\prime} t\right) \tag{26}
\end{equation*}
$$

for t large enough, and so

$$
\begin{equation*}
k(R) \geqq k .(R) \geqq \tilde{\varphi}_{0}(R)-A \geqq \frac{1}{\rho^{\prime}} \tilde{\varphi}(R)-A \tag{27}
\end{equation*}
$$

for sufficiently large R. We obtain the inequality (7) by taking $R=\varphi(r)$ and letting $\rho^{\prime} \rightarrow \rho$.

If $f(z)$ is of finite lower φ-order at most λ, then for any $\rho^{\prime}>\lambda,(27)$ holds for a set of values of R which is unbounded above. We obtain the inequlity (9) by taking $R=\tilde{\varphi}(r)$ and letting $\rho^{\prime} \rightarrow \lambda$.

Proof of the sufficiency of the conditions in Theorems 1 and 2. Suppose that one of (7) and (9) holds, then $k .(r)$ in (10) is well-defined and unbounded on $[0,+\infty)$. Since $\Lambda=\left\{\lambda_{n}\right\}$ is a strictly increasing sequence of positive integers, there exists a twice continuously differentiable function $p(r)$ defined on $[0,+\infty)$ such that

$$
|p(r)-\lambda(r)| \leqq A ; \quad 0 \leqq r p^{\prime}(r) \leqq 1
$$

Let $q(r)=p(r)-(2 a / \pi) \log ^{+} r, q .(r)=\inf \left\{q\left(r^{\prime}\right): r^{\prime} \geqq r\right\}$ and $r_{2}>r_{1}$. If $q .\left(r_{2}\right) \geqq q$. $\left(r_{1}\right)$, then

$$
\begin{aligned}
0<q \cdot\left(r_{2}\right)-q \cdot\left(r_{1}\right) & =\sup \left\{q \cdot\left(r_{2}\right)-q\left(r^{\prime}\right): r_{1} \leqq r^{\prime} \leqq r_{2}\right\} \\
& \leqq \log r_{2}-\log r_{1},
\end{aligned}
$$

which implies that there exists a differentiable and strictly increasing function $l(r)$ defined on $[0,+\infty)$ such that

$$
\begin{equation*}
l(0)=0 ;|l(r)-q \cdot(r)| \leqq A ; 0 \leqq r l^{\prime}(r) \leqq 1 ;|k \cdot(r)-l(r)| \leqq A \tag{28}
\end{equation*}
$$

So the function $f(z)$ defined by

$$
\begin{equation*}
f(z)=-\frac{1}{2 \pi i} \int_{-i \infty}^{+2 \infty} g_{0}(w) z^{w} d w \tag{29}
\end{equation*}
$$

is continuous, bounded and not identically zero in the angular domain $B(a)$, where $g_{0}(w)$ is defined by (18). By Cauchy's formula,

$$
\begin{equation*}
f(z)=\sum_{k=1}^{n} a_{k} z^{\lambda} k+f_{n}(z) \tag{30}
\end{equation*}
$$

for $n=1,2,3, \cdots$, where the coefficients

$$
\begin{equation*}
a_{k}=\Gamma\left(\frac{1}{2}+\frac{2}{\pi} a \lambda_{k}\right)\left(1+\lambda_{k}\right)^{-2}\left(G^{\prime}\left(\lambda_{k}\right)\right)^{-1} \tag{31}
\end{equation*}
$$

are the residues of $g_{0}(z)$ at the poles λ_{k}, and

$$
\begin{equation*}
f_{n}(z)=-\frac{1}{2 \pi i} \int_{\lambda_{n}+(1 / 2)-i \infty}^{\lambda_{n}+(1 / 2)+\infty} g_{0}(w) z^{w} d w \tag{32}
\end{equation*}
$$

From (11-17) and (28-32), we have

$$
\begin{equation*}
\left|f_{n}(z)\right| \leqq \exp \left\{A+\left(A+\log ^{+}|z|-k .\left(\lambda_{n}\right)\right)\left(\lambda_{n}+2^{-1}\right)\right\} \tag{33}
\end{equation*}
$$

for $z \in B(a)$ and that the coefficients $\left\{a_{n}\right\}$ satisfy

$$
\begin{equation*}
\left|a_{n}\right| \leqq \exp \left\{-\lambda_{n} l\left(\lambda_{n}\right)+A \lambda_{n}+A\right\} \tag{34}
\end{equation*}
$$

for $n=1,2,3, \cdots$. Therefore, from (33) and (34), we see that the function $f(z)$ is an entire function represented by a gap power series (1) and bounded in the angular domain $B(a)$. So $f(z)$ belongs to $E(\Lambda, a)$ and its maximum modulus $M(r, f)$ satisfies

$$
\begin{equation*}
M\left(e^{t}, f\right) \leqq \sum_{n=1}^{+\infty}\left|a_{n}\right| \exp \left(\lambda_{n} t\right) \leqq \exp \left\{\varphi_{1}(t+A)\right\} \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{1}(t) & =\sup \{t u-u l(u): u \geqq 0\} \\
& =\sup \{u(t-l(u)): u \geqq 0,1(u) \leqq t\} . \tag{36}
\end{align*}
$$

There exists a positive function $u(t)$ defined on $(0,+\infty)$ such that

$$
\begin{aligned}
& 0 \leqq t-1(u(t))=u(t) l^{\prime}(u(t)) \leqq 1 ; \\
& \varphi_{1}(t)=u(t)[t-l(u(t))] \leqq u(t) \leqq \tilde{l}(t),
\end{aligned}
$$

where $t=\tilde{l}(s)$ is the inverse function of $s=l(t)$.
If (9) holds, then by (28), we have

$$
\limsup _{r \rightarrow+\infty} r^{-1} l(\varphi(r))=\limsup _{r \rightarrow+\infty} r^{-1} k \cdot(\varphi(r)) \geqq \frac{1}{\lambda} .
$$

So, for any $\varepsilon>0$, there exists an increasing and unbounded sequence $\left\{r_{n}\right\}$ such that

$$
l\left(\varphi\left(r_{n}\right)\right) \geqq \frac{r_{n}}{\lambda+\varepsilon}=\rho_{n}, \varphi_{1}\left(\rho_{n}\right) \leqq \tilde{l}\left(\rho_{n}\right) \leqq \varphi\left[(\lambda+\varepsilon) \rho_{n}\right] .
$$

Therefore, by (35) and (36), for given any $\varepsilon>0$,

$$
\liminf _{t \rightarrow+\infty} t^{-1} \tilde{\varphi}\left[\log M\left(e^{t}, f\right)\right]=\lim _{t \rightarrow+\infty} \sup t^{-1} \tilde{\varphi}[\varphi((\lambda+\varepsilon)(t+A))]=\lambda+\varepsilon,
$$

which implies that the entire function $f(z) \in E(\Lambda, a)$ is of finite lower φ-order at most λ.

If (7) holds, we have

$$
\liminf _{r \rightarrow+\infty} r^{-1} l[\varphi(r)] \leqq \liminf _{r \rightarrow+\infty} r^{-1} k \cdot[\varphi(r)] \geqq \frac{1}{\rho} .
$$

So, for any $\varepsilon>0$, there exists a positive constant $A(\varepsilon)$ such that

$$
l[\varphi(t)] \geqq \frac{t}{\rho+\varepsilon}, \quad \varphi_{1}(t) \leqq \tilde{l}(t) \leqq \varphi[(\rho+\varepsilon) t]
$$

for $t \geqq A(\varepsilon)$. Therefore, by (35) and (36), for any $\varepsilon>0$,

$$
\limsup _{t \rightarrow+\infty} t^{-1} \tilde{\varphi}\left[\log M\left(e^{t}, f\right)\right] \leqq \limsup _{t \rightarrow+\infty} t^{-1} \tilde{\varphi}[\varphi((\rho+\varepsilon)(t+A))]=\rho+\varepsilon,
$$

which implies that $f(z) \in E(\Lambda, a)$ is of finite φ-order at most ρ.
Proof of the necessity of the condition in Corollary 1. If there exists an entire function $f(z) \not \equiv 0$, which is represented by (1) and is bounded in the angular domain $B(a)$, then the function $\varphi_{0}(x)$ defined by (11) is convex and satisfies (3). So $f(z)$ is of φ_{0}-order 1 and consequently by Theorem 1 , we have the necessary condition (12).

Proof of the sufficiency of the condition in Corollary 1. If (12) holds, then there exists an increasing, unbouded and concave function $\tilde{\varphi}(x)$ defined on $[0,+\infty)$ satisfying $k .(x) \geqq \tilde{\varphi}(x)$ such that the inverse function $x=\varphi(r)$ of $r=$ $\tilde{\varphi}(x)$ is convex and satisfies (3). We see from Theorem 1 that there exists an entire function $f(z) \not \equiv 0$, which is represented by (1) and is bounded in the angular domain $B(a)$. This completes the proof of Corollary 1.

In conclusion, it is my pleasure to thank referee for his very helpful comments.

References

[1] J. M. Anderson and K. G. Binmore, On entire functions with gap power series, Glasgow Math. J., 12 (1971), pp. 89-97.
[2] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954.
[3] J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1973.
[4] G.T. Deng, Uniqueness of some holomorphic functions, Chin. Ann. of Math., 7B (1986), pp. 330-338.
[5] G. T. Deng, On Watson's problem and its applications, Bull. Sci. Math. 2 serie, 109 (1985), pp. 4-15.
[6] W.H.J. Fuchs, On the closure of $\left\{e^{-t} t^{a_{v}}\right\}$, Proc. Cambridge Philos. Soc., 42 (1946), pp. 91-105.
[7] A. J. Macintyre, Asmptotic paths of integral functions, Proc. London Math. Soc. (3), 2 (1952), pp. 286-296.

Department of Mathematics
HuaZhong University of Science and Technology WUHAN 430074
People's Republic of China

[^0]: * The Project supported by National Science Foundation of China.

 Key Words: Entire Function. Gap Power Series.
 AMS Subject classifications number. 30D10, 30D20.
 Received September 29, 1992 ; revised March 8, 1993.

