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§1. Introduction

The notion of Picard constant of a Riemann surface R was introduced in
[3]. Let HM(R) be the family of non-constant meromorphic functions on R.
Let P(f) be the number of values which are not taken by f in HM(R). Now put

P(R)= sup P(f).
feMR)

This P(R) is called the Picard constant of R. If R is open, then P(R)=2.
Further if R is an n-sheeted algebroid surface, which is the proper existence
domain of an n-valued algebroid function, then P(R)<2n by Selberg’s theory
of algebroid functions [7].

We now list up two results for the case of three-sheeted algebroid surfaces.
The first one is the following: Let R be a regularly branched three-sheeted
algebroid surface, that is, R is defined by y*=g(x), where g(x) is an entire
function with infinitely many simple or double zeros. Then P(R)=6, if and
only if g(x)=(e” —a)(e”—p);, aBf(a—p)+0, where H is a non-constant entire
function with H(0)=0 and a, B are constants. Further there is no regularly
branched three-sheeted surface R with P(R)=5 [1].

The second one is the following: Let R be a general three-sheeted alge-
broid surface. Then there are two kinds of surfaces R with P(R)=6. One is
defined by

(1) Vi (xoe" 4 x,)y +(a,1x0e" +%0)y —%5=0,

where x, is a non-zero constant, x,=da,+as+a,, Xx,=a,as+asa,+a,a, and x,=
a,asa, with non-zero different complex numbers a,, a,, a;, a, and H is a non-
constant entire function with H(0)=0. The other is defined by

(2) Y —(xoe™ +2,)y*+ {(a1+ ap)x0e” + 22} y—a1a:%,e7 =0,

where x, is a non-zero constant, x,=as+a,, x,=asa, with non-zero different
complex numbers a,, a,, a5, a, and H is a non-constant entire function with
H(0)=0 [5].
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In general it is very difficult to decide the exact value of P(R) of any
given surface R. Our problem is the following one: Is there any method to
prove P(R)=5 for three-sheeted algebroid surfaces? In the first place we shall
determine several three-sheeted algebroid surfaces R:

y3_51y2+52y—83=0
with P(y)=5. Then we shall give a method to prove really P(R)=5.

§2. Surfaces with P(y)=5

Let us put
F(z, )=y°—5:1y*+S,y—Ss.

By Rémoundos’ theorem [6] we may consider firstly

‘(F(z, 0) 1 ¢ ) ( Bie ]
F(z, a,) Bie™1 3 ¢ E
= or ,
F(z, as)| | B.e™: Bee2
F(z, a,) Bse*s Bse™s

where ¢;, B, B:, B: are non-zero constants and H,, H, H, are non-constant
entire functions satisfying H,(0) = H,(0)=H0)=0. The first one is the same
as the following simultaneous equation:

—Ss=¢i,
a,*—S1a,°+S:a,—S;=fe"1,
1a33—81a32+82a3—33=[32e”2,
a’—S,a.+S:a,—Ss=Pse”s.
Then by Borel’s unicity theorem [2]
€1=—02040y, H=H,=H;=H

and

(1204(04—“02)52_azas(aa—az)ﬁa+asa4(as—a4)ﬂ1:0 .

Further

a4,32—¢13133
S =————8H a a a
1= G aldi—ay) +a,+as+ay,

H
2= e’ +a,a;+asa,+aza
0304(04_03) 2lsg 34 2ly,

53:-‘(:1:0203&4 B

/IS _ 042,32—(132,83
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Let us compute F(z, A). Then

_ A{(—Aa+ 042).82—(032‘1403),33} o
- asaas—a,)

+(A—a,(A—as)(A—a,).

F(z, A)=A*—A*S,+AS;—S;

Suppose that F(z, A) does not reduce to a non-zero constant for any non-zero
constant A. Then there is no non-zero constant A for which A(asf:—a.B:)=
a’B:—a.’B,. Hence we have either a;8;=a,fB, or a,*f;=a.*B:;. In the former
case

(o) PP P

a, a; a;
and in the latter case

) BB B

a42 asz 022

Case (A). Then
Si=a,+a;+a,=y,,
Se=yee¥+a,a5+a,a,+a,a,=y,e¥ +7,,
Ss=0a,a:a0,=Y;

with y,=p8,/a;. Let us consider the discriminant of R: y°*—S;y*4+S,y—S,;=0.
Let us denote 1t by A, then

A=451353—512522-—18513253—]—4523—}-27832
=4y, 4Ly, L1y, 4o,

where £,=12y,—y,%, {i=12y,"—183:y:—2y:"y, and {=43:"ys—y:"Y:"—187:¥:s
+4v,°+27y,% which is equal to —(a,—as) (as—a.)%(a.—a,)*+0. We denote this
surface by Ryu.

Case (B). Then with the same notations y;, y,, ys as in (A)

Si=yee"+y1,  ye=—Pa/as’,
S2=Y2,
Ss=ys.
In this case the discriminant A of R is
A=4y*e " ys+Ley0° e +Liy0e” +Go,

where §,=12y,y:—3.%, {i=12yy:—2y:9."—18y.y; and {,=4y.>y:—y.°y."—
18y19:¥s+4y.°+27y,%, which is equal to —(a,—as)*(a;—a,)(a.—a)?*#0. We
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denote this surface by Rp.
The second one is the same as the following simultaneous equation:

—Ss=B,e"1,
{a23—81a22+52a2—53=cl,
]ass—Slas“—}-Szas—Ss:ﬁge’“,

a’—S:a.4S:a,—Ss=Sse"s3.

By Borel’s unicity theorem

c1=ay(a;—as)a;—a.),

H1:H2:H35H
and

0:04(a—a;)B:+(a:—as)(ai—a;)(as—a)Bi+a.as(a:—as)B:=0.

Then we have

H
(Slz —az—as(e&;_Ts)—(az‘Bz—'(az—as)ﬁl)"'a}i‘}'a4:
Sime— (a2 Be—(as— 0B+ a0
] 2 azas(az_'as) 2 M2 2 3 1 3C4,
Ss’:—ﬁleﬂ.

Now we pose the following condition: There is no non-zero constant A, being
different from a,, such that F(z, A) reduces to a non-zero constant. In this
case

ol
a,a4(a;—as)

+azas(az"‘as),31} +A(A—as)(A—a,)

dose not reduce to a non-zero constant excepting A=a,.
Case (C). —A%a:B.—(a:—as)B1) + A(a:?B.—(a.>—as»)B,) + azas(a,—a;)B, =
a(A—a,)* with some constant a0. Then

{022,32—<(122“"asz),@1} P=—4 {aZ,BZ_(GZ_as)ﬁl} azas(az—aa)ﬂx ,

which implies

F(z, A)= {—A%a.B:—(a:—as)B1)+ Al(a:*B—(a,’—as*)By)

022132:(&2—-03)2[9, .
Then

— ﬁleH 2
F(z, A)= ~ (A—a,*+A(A—as)(A—a,).

In this case we have
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Si=ye+y,  yo=—Pi/as’,
S:=2a,y0e¥+y:,  yi=as+a;, Y, =asa.,
Ss=a,*y.e?.
Then the discriminant A of y°—S;y%+S,y—S;=0 is
A=§syo*e’ T +6ryoPe®  +&1y0e™ +6o,

where
§s=4(a.’y1—a.’—a,y,)=—4a,(a,—a;)(a;—a)#0,

£:=8a,"y,"—36a.°y,:4+270a,*—8a,y,y.+30a,*y.— ¥,%,
§1=4a,%y,"—4a,y,2y,—18a,2y,9,—2y,y,°+24a,y.?,
Eo=—19.2(y"—2y.)=—as"a,*(as—a,)?+0.

We denote this surface by R..

Case (D). —A%*a.B:—(a:—as)B1) + A(a:’B—(a:*—as*)B1) + a.a5(a.—as) B, =
a(A—a,) with some non-zero constant a being independent of A. Then a,8,=
(a;—as)B, firstly and hence the above expression is equal to —as(a,—as)B.(A—as,).
Then we have

az—

- A B+ A(A—a)A—a).

F(z, A)=

In this case we have
Si=y1, Yo=—P1/0s,
Se=yoe¥ + s, yi=as+a, Yo=as0,,
Ss=a,y.e?.
Then the discriminant A of y*—S,y*+S,y—S;=0 is

A=4y2 e 4+-£,y,% 7 +-8,y,e7 + &, ,
where
£,=12y,+27a,*—18a;y,—y.%,

51=12y22—‘18(12)’13)2—63)123’2‘*'402))13 s
&o="(4y.—y.P)=—as’a.(a;—a,)+#0.

We denote this surface by Rp.
We now consider
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F(z, 0) [ ¢1 \ ,BleH‘ ]
{F(z, a) C ¢ ;
= or | |
F(Z, az) ﬁ;e”l | cZ
F(z, as) ﬁze”2J Bae¥e

The first one is the following simultaneous equation :

—Ss=c¢y,
{aﬁ—S,aﬁ-l—Szal—Ss:cz,
1a23—51a22+82a2—53=,312”‘,
a3 —S1a5°+S;a;—S;=Bre2.
By Borel’s unicity theorem H,=H,=H, as(a;—a,)B,=a,(a,—a,)B, and

€1(@s— a1 (@3 — Q1) — 20205+ a,a:a5(a3—a,)(a;—a,)=0.

Then
¢ Bie?

Sl:— +az+¢13_’_———“

a,0, ax(a,—a,)’

{ (a;+as)e, a;B,e”
Si=——————+a,a,——F——,
205 as(a;—a,)

83:—61 .

Now we pose the following condition: There is no non-zero constant B, being
different from a, and a,, such that F(z, B) reduces to the form ae®, where
a+0 and X: non-constant entire function.

B(B—a,) (B—az)(B—as)

F, B)= ax(a.—a;) az03

Bie® + (c;+Ba,a,).

Case (E). c¢;+Ba.ay=a,a4(B—a,). Then ¢;=—a,’a, and c;=—(as;—a,)a,
—a,)®. Further

B

Si=2a,+a ef, e LE—
1 2+ as+ Yo Yo a(@s—a,)

2= +2a,a5+a,y,e”,
Ss=—c;=a,%as.
In this case the discriminant A of y*—S,;y?*+S,y—S;=0 is
A=y, (—a,2y, e+ Ay 2T+ A yee + A,),
where

A,=4a,*-2Q2a,+as)a,*—2(a,+2a;5)a,a,+4a,a,,
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A;=(8a,*+20a,a;—as*)a,>*—(8a,*+38a,’a;+8a,a;*)a;,
—a,*+20a,%a;+8a,%a4?,
Ay=4a,(a,—a,)Xa,—a;)* #0.

We denote this surface by Rjz.
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Case (F). c¢,+Ba,as=a,as(B—a;). Then ¢;=—a,a:® and c;=—(as;—a,)¥a,

—a,). Further

B

— H —_——
Si=a;+2a;+y.e%,  ¥o= aa—a))’

S,=2a,a;+as*+a,y.e?,
Ss=—c1=a.a,".
In this case the discriminant A of y*—S;y*+S,y—S;=0 is
A=ypef(—a,*y T+ Ay, 2e* T+ Ay yoe + Ao),
where
A,=4a,*—2(a,+2as)a,*—2Q2a,+as)asa,+4a,a,®,
A, =(8as?+20a,a;—a,?)a,*—(8as*+38as’a,+8asa,%)a,;
—ag*+20as’a,+8a,%a,?,
Ay=—4ay(a;—as)a,—as)*+0.

We denote this surface by Rp.
The second one is the following simultaneous equation :

—Saz‘Bleyl ’
a,*—5:a,"+S,a,—S;=c;,
a,*—S:8,"+S,a,—Ss=¢:,

asss—S1as2‘|‘32(13—532ﬁzeH2 .

By Borel’s unicity theorem we have H,=H,=H, B.a,a,=p,(a;—a,;)a;—a,) and

€105(@3— ) —€28,(A3—a1)=0,a5(8,— 8, )(G3—a;) (A3 —a5).

Then

H

¢ Bie
Si=—-5 —ta,ta,—

{ ! a(as—a,) ' i a,a;’

a(as—a,) a,a,

132: €103 +a,a5— (al+az),313H )
53:—[9181{.
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Now we pose the following condition: There is no non-zero constant B, being
different from a,, such that F(z, B) reduces to the form ae*, where a+#0 and
X: non-constant entire function. We have

B(B—a,)

aai—ay Braa(as—a)—c).

H
F(z, B)=E(B—a,)B~a)+

Case (G). (B—a,)a,(as—a,)—c,=yB with a non-zero constant y, which is
independent of B. Then ¢;=—a,%(a;—a,) and ¢,=—a,*(as—a;). Further

1A,

1 _
{ 1=as— aﬂ el'=a;+y.e¥,

a,a,
Se=—PRie=a,a,y.e” .

152=— GT e g ot =(a,+an)ye®,
Then the discriminant A of R is
A=y,e"(Asyle’+ Asy.2e*F + Ay + A,),
where
Ay=4a,0,—(a,+a,)l*=—(a;—a,)*+#0,
Ay =—2(a,"—4a,a,+a:*)as—2(a,+a.)2a,—a,)a,—2a,)
Ay=—(a,*—10a,a,+a,*a,*—18a,a4(a,+a,)as+27a,%a,?,
Ao=4a,a,a,*+0.

We denote this surface by Rg.
Case (H). (B—a))a,(as—a,)—c,=y(B—a,). Then c¢;=a,(a;—a,)® and c,=
as(as—asz)®. Further
_ B
a,a;’
Sz=032+<az+az).3’oe”>

Sx=2¢13+yoe”, Yo

ngalagyoey.
The discriminant A of R is

A=y,e¥( Ay’ e*F+ Ay, 2e® T+ A .67 + A,),
where

As=—(a,—a,)*#0,
As=—2as*(a,+a,)—4as(a,*+4a,a:+a,?)
+2(a,+a.)2a,—a,)a,—2a,),
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Ay=—as*—8as¥a,+a,)+as*8a,*+46a,a,+8a,?)
—36a,a,(a,+a,)as+27a,%a,?,
Ay=—4a:¥(as—a,)as—a,)+0.

We denote this surface by Rjy.

§3. Riemann surfaces of P(R)=6

In introduction we have listed up two kinds of Riemann surfaces of six
Picard constant. We briefly introduce how to construct them. Let R be the
Riemann surface defined by

F(z, y)=9°—81y*4+S:y—S:=0,

where S;, S;, S; are entire functions. Suppose that P(R)=6. By Rémoundos’
theorem [6] we may consider the following two cases:

F(z, 0) I y Brel
(i) (ii)

F(z, b)) Co ¢

F(Z, bz) = ﬁleLl ’ = Co

F(z, bs) ,8291'2 ,8231‘2

F(z, b)) Bse*s Bses

Here c¢,, ¢, B8i, B:, fB: are non-zero constants. L, are non-constant entire func-
tions with L 0)=0 for j=1, 2, 3. Further b, b,, bs, b, are different non-zero
complex numbers.

Case (i). L,=L,=L;=L follows easily. Then

Slzxoe['"l‘xx ,
Se=b1xoe*+ x5,
Ss=x,

With onlgl/bg(bl'_bg>, x1:b2+b3+b4, x2=bgb3+b3b4+bzb4 al'ld XS:bgb3b4. Hence
the surface is defined by

Y —(x0e¥+x)y (b xoe" + x2)y — x5=0.
Its discriminant D is

D=—blxte*t +nsxo’e’ L+ noxoie®r + 1, X005+,
where

773=4b18—2b12x1—‘2b1x2+4x3 )
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Ne=12x,2%3—18b,x3— X,2—4b, %, X+ 12b,%x,—b,*x,*,
=12x,22,—18b, 2, %3 —18%, X3 —2%,X,°+12b, X,* —2b, x,° x5,
No=4x"x3—x,°x,"+27x,°—18x, X, x5+4x,°

= —(by—b3)%(bs—bs)*(bs—b,)*#0.

This surface is denoted by X,.
Case (ii). L,=L,=L,=L follows easily. Then

Si=x0e"+x,,
So=(b1+bs)x0e"+ x5,
Ss=b1byx,e"
with xo=—f,/b1bs, x1=bs+bs, x,=bsb,. Hence the surface is defined by
Yo —(xoeE+ 1)y 4 {(b1+bo)x o0t + xo} y —bibrxoe? =0.
Its discriminant D is

D=(b, —by)?xstet 4 7}375030““4‘ nzxozeﬂ'—l— 7]1xoeL+ o>

where

Ne=(2b,*—8b,b,+2b,%)x,+2(b;+b:)x,
—2(b14-b,)(2b,>—5b,b.+-2b,%),

e=(b:2—10b,b;+ b,%) 2+ 4(b,+b5) x 1 X3+ x5
+18(b,+by)b1byx1 —(12b,2+-6b,by+12b,%) x,—27b,%b,%,

Ny =—4b:byx > +2(b1 +bs) 2,2 x5+ 2%, 2,°+18b, by %1 x4
—12(b,+by)x4?,

No=1212%,2—4x,>=b3?b,*(bs—b,)*+#0.

This surface is denoted by X,.

§4. A lemma

It is necessary to give an explicit proof of the following.

LEMMA. Let R be the Riemann surface R4 defined by
Y8 —=819*4+S:y—Ss=0

with Si=x,, Se=x,e"+x,, Ss=x5, where x,, x1, x, and x; are constants, x,7#0,
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X1=0y+F A3+ A4, X3=0505+ 30,4204, X3=0203a,. Let F be a regular function
on R4. Then F is representable as

F=fi+f.y+1sy°,

where f,, f. and fs are meromorphic functions in |z|<oo, all of which are
regular at any points z satisfying H’(z)#0.

Proof. Let z, be a point satisfying H’(z,)+0.

Case 1). There are two different points of R, over z,. Of course one is
a branch point and the other is an ordinary point. Then y has two branches
y, and y, for which

Yi=Ap+ A(z—2))P P+ Ag(2—2,) PFHB+ -
with A,4,#0 and
Y2=Bo+Bi(2—20)*+ Ba(z2—2,)1"'+ -

with B,B,;#0. A,B,#0, since y does not vanish. If »=3, then y,*—x,y.*+
(x0T @+ x,)y,—x,=0 gives

Al+34°Ax(z—20)P %+ -+ —xl(Ao2+2AoA1(2“Zo)p/2+ )
+[xoeH“°) {I4e(z—2)+ -} +x2](Ao+A1(2_Zo)p/2+ ) —x3=0

with &, #0. This gives & x,e¥ %0 A4,=0, which is absurd. If p=2, then there
is the smallest index s for which

yi=AgFA(z—20)+ - + AN z—20) 2+ -
with an odd s and a non-zero constant A,*. Then we have
Al +3AA(z—20)+ - +3APAH(z—20) P+ -
— 1, (Al H2A4,A(z—20)+ -+ +2A, A (2—20)" %+ )
L xoe? @ {1+e1(2—20)+} + 2. J(Ae+ Az —20)+ -+ +AsH(2—20)""°
+ - —x,=0.
Hence from the coefficient of (z—z,)%2,

{3A4,°—2x, Ao+ x,07 ®0 4 x5} A*=0,
which gives
3A4,2—2x, Ao+ x0e 0+ x,=0.

The coefficient of z—z, is

{342 —2x,As+x,e" 0+ x,} A+ x,e¥ 0g, Ay=0.
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Hence x,e%¢9¢; A,=0, which is absurd. Hence
y1=Aet+A(z—2,)" 2+ Ag(z—20)+ -+

Then from the coefficient of (z—z,)""% of v,*—x,y,2+(xeeT® +x,)y,—x3=0.

{342 —2x,A¢+x,e¥ 0+ x,} A;=0.
Hence
3A4,2—2x,As+ x0T 0+ x,=0.

We shall make use of this relation later.
Similarly for the one-valued branch y, we have

Yo=By+Bi(z2—20)4--.

Assume that Fy=f+foy:+ fsy:2 and Fo=f1+ foy.+ fsy.® are pole-free at z,.
Then put

= An An-1 ee
Iy e T
f2 ﬁn ﬂn—l + -,

= e—zy

T Too
Sy T = T

with (ay, ﬂny 72)7%(0, 0, 0).
Then we have

F1=f1+f2y1+fsy12

_ Qn Ay
n (z—20)" + (z—z)"!

‘Bn u@n~1 1/2
+{(Z—Zo)" + (z—zg)" + } {Ay+Ai(z—2)" *+ Ap(z—20)+ -}

Tn Ta-1 . e
+{(z~—zo)" + (z—2z)" ! + }{Ao +2A4,A,(z—z,)"

+(A2+2A4,A:)(z—20)+ -} .

Then
an+19nAo+TnA02:0 s

BrAi+71:24,A,=0.
Similarly for Fo=f,+f,y.+ f:y.* we have
an+BaBo+71.B2=0.
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Hence {B.+7.(Ae+Bo)}(A;—By)=0. If Ay#B, then B,+7r.(4,+B,)=0. On
the other hand we have f,+27,4,=0. And if 7,0, we have 4,=B,, which
is absurd. If 7,=0 then we have B8,=a,=0, which is absurd. Therefore A,
=B,. By y.2—x,9.%+(x,e¥ @+ x,)y,—x;=0 we have

{3A,2—2x, A+ x,e7 0 4 x,} B+ x,e7 0 ¢, A;=0.

Hence we have an absurdity relation x,e¥v¢, A,=0.
Case 2). There is only one point of R, over z,. Then

y(z>:Ao+Ap(2_Zo)p/3+ e

If p=4, then the coefficient of z—z, of y3—x,y2+(x0e® @ +x,)y—x,=0 is equal
to x,ef®v¢g A,. Hence this vanishes, which is impossible. If p=3, then there
is the smallest index s for which

y:Ao+As(Z_Zo)+ v F A (z—20) P -

with s%0 mod 3 and non-zero A *. Then the coefficient of (z—z,)*® in the
Puisseux expansion of y®—x;y%+(x,e¥®+x,)y—x5=0 is equal to

3A2As*—2x, A As*+(x,e7 0+ x,) A *=0.
Hence
3A,2—2x,Ag+x0e"0 L x,=0.

On the other hand the coefficient of z—z, is equal to
(BAz2—2x, A+ 20070 4 x,) A+ x0e" 20 g, A,=0.

This is evidently impossible. Therefore p=2 or p=1.
Suppose that p=1 and further that y=A,+A,(z—20)""*+ As(z—2z)+ A(z—
20)*%+ - with A,#0. Then

F=f1+f2y+fay2

o Ap Ap-1
=z | ez

Bn By L8 _
Htog ey F A A2 A=z 4

T Tn-1 2 PSRNV 2, 5 )2/ ...
+{(z—zo)"+(z—zo)"“+ }{Ao +24,Ay(z— 200 P+ A (2—20) -}

Since F is pole-free at z,
(1n+13nA0+TnA02:0;
,BnA1+27nAoA1:O~

and
TnAlz-_—O .
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Then 7,=0 implies 8,=0 and a,=0. This holds for all n=1. Hence we
arrive at a contradiction.

Suppose that p=1 and further that y=A,+A;(z2—2,)""*+ As(z—2,)**+ As(z—
20)+-+- with A,A4,+0. Similarly we have

An +a8nA0+TnA02:0 ,
(,Bn +2TnAo)A1 =0
ISnA2+Tn<2A0Az+A12):0 .

and

These relations contain a contradiction similarly.
Suppose that p=2. Then y=A,+Ax(z—2)"*+As(z—2,)+ -+, AA,#0. In
this case

0=y— 2,924 (x0e" @ 4 x,)y — x5
=Al+3A,2Ay(z—20)** +3A2As(z2—20)+ -
—x,(A®+2A,Ax(z2—20)"*+2A,Ag(z—20)+ )
+ {xoe" (14 e(z2—20)+ )+ %2} (Aot As(2—20)*+ Ag(2—20)+ ) — 75 .
Hence we have
(3As2—2x,Ag+ x0e 0+ x,) A,=0
and (BA2—2x, A0+ x0T 0 4 x,)As+x007 *00 g, A,=0.

Therefore we have a contradiction.
Case 3). There are three ordinary points of R4 over z,. Then there are
three different branches of y around these points. Suppose that

Y1=Ao+A(z—20)" +

with p=2, A,A; =0. Then by y.°—x,y.+(xee¥®+x,)y, —x;=0 we have
xoe® 0, A, =0, which is absurd. Hence y,=A,+A(z—z))+As(z—2,)* + - .
Similarly

y2=Bo+Bz(2“‘Zo)+Bz(2—‘zo)2+"', BB+
and

¥s=Co+Ci(z2—20)+ Ca(z—20)*+--, C,C,+#0.

Let us put

frd an an-l “ee
fi= (2—2zp)" + (z—2zp)"! T

f2 1871 lsn-l +-

T —z)" + (z—z))"!

[N
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__Ta Ta-1
fo= (z2—zo)" + (2—2zp)"! o

Then F=f,+f.y+ fsy? should be pole-free at z, for any branch of y. Hence
an+,BnA0+TnA02=Oy
an'*‘ﬁnBo"*‘TnBoz:O;

an+BrCo+7,Co?=0.
Then
(Ba+7r(As+Bo))As—By)=0

(.Bn"]"Tn(Ao“‘“ Co))(Ao_ Co)=0 .

If Ay#B, and A,#C,, then Bp+7.(Ae+Bo)=Pn+7:(As+Co)=0. Hence 7,(B,—
Cy)=0. If B,#C,, then y,=0 and B8,=0, a,=0. This gives a contradiction.
Hence B,=C,. Therefore we have either A,=B, or A,=C, or By,=C,. Sup-
pose now A,=B,.

Then by y.2—x,9,2+(x0e¥ @ +x,)y,—x3=0 we have

and

Ag®—x, AP+ (x0e" 04 x5) Ap—x,=0,
(BA2—2x, A0+ x0eT 0 4 x,) A+ x007 0 g, A, =0.
Similarly for y, we have
(3B —2x,By+ x0T @0+ x,) B+ x0e7 0 ¢, By=0.
By A,=B, we have
(842 —2x,A¢+x,e7 0+ x,)(A;—B,)=0.

Suppose that A,=B,. Then 34,2 — 2x;A,+ x,e¥¢0 + x, =0, whence follows
xoe7*0¢ A,=0, which is impossible. Hence A,=B,. In general

{3As2—2x;1 Ao+ x0e7 0+ x5} A+ Pr(Ao, Ay, -, Amcy, €1, &+, Em)=0
and

{3A0°—2x, A0+ x0eH @0+ x5} B+ Pr( Ao, Axy -+, Am-s, €1, €, -, €n)=0,
if Ay=B,, Ai=B,, -+, An-1=Bn_,, Where ¢,, j=1, ---, m are defined by

xoeH(”’)'f'xzzxoeﬁ(zw+x2+xoeH(z°)j2 e(z—20) .
=3

Since 3A4,2—2x,Ap+ x,e¥*00+x,#0, we have A,=B,. Thus we have y,=y,,
which is absurd.

Similar lemma hold for the surfaces X;, Rz and Rg. Proofs are quite
similar. Further it is sufficient to prove Lemma for the surfaces R4, Rz and
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Rz. In §7 we show that, when ¢ is commonly appeared, Rp~R4, Roc~Rjpand
Rp~Rs~ Ry~ Rg, where ~ means the conformal equivalence by a suitable linear
transformation Y=ay+8. Evidently X,~X, too, if ¢ is common.

§5. Transformation formula of discriminants

Let R be the surface Rs: y*—S,y2+S,y—S:=0 with S;=7y,, Se=ye¥+ ¥,
Ss=y,;, where y, is a non-zero constant and y,=a,+as+a;, y.,=a.as+asa,+
a,a4, Ys=a,asa, and H is an entire function.

From now on we shall assume that the surface is of finite order, that is,

H is a polynomial.

The same assumption holds in §6 too.
Now suppose that P(R)=6. Then there exists an entire function f on R
with P(f)=6. We can make use of Lemma in §4. Then f is representable as

f=fi+ o+ 1yt
as in Lemma.
For simplicity’s sake we put F=f,—f. Then

Ftfay+fey*=0,
JsSs+(F—fsSo)y+(fo+ fsS1)y*=0,
(fot f3S1)Ss+(fsSs— f551Se— f250)y +(F+ f2S:+ fo(Si*—S2))y*=0.
By eliminating ¥ and y? we have

F3+Y F*+Y F+Y,=0,

where
YVo=12S:+f(S,"—2S,),
Yi=/12"Se+ f2fo(S51S:—3Se)+ f:%(S:*—285,Ss),
Yo=12Ss+ f22f35:1Sa+ fof:2S:Ss+ f4*Ss®.
This gives
A= fU,+ fU,—U,y=0
with

U1=3f1+Y0,
U2=3f12+2flyo+yl ’
Us=f18+f12Yo+f1Y1+Y2 ’

U,, U, and U, are all entire, since f is a three-valued entire algebroid function.
Let g be f—U,/3. Then g*+Ag+B=0 with
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A=3(-Us+30,),

B= o (29U, U s 270y).

Then the discriminant D is equal to 44°+27B% Hence

D=4U*U,—U*U,*—18U U U 3+4U > +27U ;2.

For simplicity’s sake we put

and

Then

1
A=—§(C¥1f22+azfzfs+asf32)’

a;=3S,—S.%,
Ay— —2513+75152—‘953 )
as=—5,"+45,25,—6S5,S;—S,*

B:2i7(ﬁ‘f23+182f22fs+[93f2f32+ﬁ4f33),

—25,°49S,5,—27S;,

B,=—65,*4-30S,2S,—545,5:—18S,?,
6S,°+335,°5,—455,25;—33S5,5,°4-27S,S;,
Bse=—25,°+125,'S,—185,°S;—155,25:>+365,5,5:—25,° — 27S,*

D=4A8+2732=2l7 (a4 B+ fo fo(12ar s +28:By)

+ 1ot f2(L2as s+ 12 2, +2 8, B+ 827
+ 12 [P (C4aiaras+4as® +28: B4+25:85)
+ 2 f s (L2aras®+ 1205 s +2 584+ Bs?)
+ fof £ (12aa5* +2 B4 fa)+ fo*(das®+ B.2)}

=A{f +45.Fo° [s+23S:"+So) [ 5" +(45,° +65:5:—2S0) /o f+°
+(S1*4+65:°S;—451Ss+5:%) f2* f5* +2(5:°S2— 5:*Ss + 815:° — S:5s) fo f°
+(5125:2—25,5:S5+ S5 f+°}

=A{fo* 425, fo2 fs (5P +S0) fo fs* (18— So) f+} %,
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where A is the discriminant of y°*—S,y%+S,y—S,=0, that is,
_4

7%
=485,35;—S5,%5,2—18S,S,S,+4-4S,*+27S.,?.

1
3 2
A +2—‘7/31

Let us put the above formula as

(3) D=A-G*.

G may have poles at most at zeros of H’.
We need more precise result on D=A-G?. Evidently the poles of G are
finite in number. Let us put

D=—b¥(xee"—7:)(xoe" —12)(Xoe" —73)(Xoe"—74)
and
A=4(yoe”—51)(yoe”—5z)(yoe”—53) .

Case 1). The counting function of simple zeros of A satisfies
Ny(r, 0, A)~3T(r, e¥),
that is, 6;#0, for i#={. Then
N(r, 0, A)=N,(r, 0, D)~mT(r, e*)
with m=1, 2, 4. Then L should be a polynomial, whose degree coincides with
the one of H. In this case we can return back y from f. Then we have
A=D-K*.
The number of poles of K is finite again. This gives that the zeros of G is
finite in number. Hence

(4) D=A-B- o

with a rational function 8. In this case we have 7=y, for j=k.
Case 2). Ny(r, 0, A~T(r, ef), that is, §,#0,=0s. Then

Nyo(r, 0, A)=Ny(r, 0, D)~mT(r, et)

with m=1, 2, 4. Then L should be a polynomial. Again we can return back
y from f. Then A=D-.K?*® Similarly we have a finite number of zeros of G.
Hence

D=ABe* .

Then the counting function of double zeros of A satisfies Ny(r, 0, A)~2T(r, &%)
and Ny(r, 0, D) ~ 2T(r, ¢*). Hence T(r, e¥)~ T(r, e¥). On the other hand
T(r, e®) ~ 2T(r, ), because that N,(r, 0, A) = Ny(r, 0, D) and Ny(r, 0, D)~
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2T(r, e%). This is a contradiction.
Case 3). A has no simple zero. Then

—b2(xoe" —11)(xoe" — T2 )Xo —Ts)(X0e" —74)
=4(yoe” —11)*-G*.

This is a contradiction.

§6. Theorems

We shall prove the following

THEOREM 1. Let R, be the Riemann surface defined in §2. Assume that
its discriminant Ag, satisfies

ARA=4yo”e3”+Czyo’e2”+C1yoe”+Co
with either C,=0 or {0, where {,=12y,—y,%, {;=123,°—18y,y:—2y,*y,. Then
P(R4)=5.

THEOREM 2. Let Rp be the Riemann surface defined in §2. Assume that
its discriminant Agpy has the form

Arp=4y3y0°" + 8 30%e* 481300 +8o
with either §,=12y,y5—3,*#0 or {;=12y,*y5—2:,"—18y,9:#0. Then P(Rz)=5.

THEOREM 3. Let Ry be the Riemann surface defined in §2. Assume that
its discriminant Ag, has the form

ARC=$3J’0323H+$23’02@2H+$1yoeﬂ+50
with either £,=8a,2y,°—36a,*y,+27a,*—8a,y,y,+30a:>y,—y:>=0 or &=4a,%y,*—
4023’123’2—180223)13’2—23113722'*‘24(123122—r";O. Then P(Rc)=5.

THEOREM 4. Let Rp be the Riemann surface defined in §2. Assume that
its discriminant Agy, has the form

ARD:4J’0333H+$2y0292H+§1yoeH+§o

with either £€,=12y,+27a,"—18a,y,—y,>=0 or £,=12y,2—6y,*y,—18a,y,y.+4a;y,*
=0. Then P(Rp)=5.

Proof of Theorem 1. Suppose that P(R,)=6. Then on R, there is an
entire algebroid function f for which P(f)=6. Suppose that f defines the
surface X;,. Then by (4)

D:ARA"BzeZM
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which is just the following identity:
—bxg'e* +naxe’ e+ naxetet i xee” + 1,
=4y’ T +Lyo° e+ y0e™ +Co) B .

Now we shall make use of the unicity theorem of Borel, which plays the de-
cisive role in our proof. Evidently we have

4T (r, e“)~Ny(r, 0, D)=N(r, 0, A )~3T(r, e").

We already proved that it is enough to consider this case. Hence
T(r, e”)fv-giT(r, el).

This relation makes our discussion simpler. Firstly assume that M=0. Then
—b12x0494L+ﬂ8x0328L+ﬂ2x0292L+7]1x0eL+7]o
:4‘82y03e8H’+ﬁ2C2y02e2H+‘82C1yoeH+‘BZC0 .

There remains only one possibility : 7n,=8%, —b.*x,*=45%y,*, 4L=3H and
Ps=70,=1=(,={,=0. However at least one of {,, {, does not vanish by our
assumption. Thus we arrive at a contradiction.

Next assume that M==0. Then

—b.2xgtett 4y x ot et o xe et 0, xeet 41
4B BT,y B e B
Now suppose that 3H+2M=0. Then
—b*x et nsxe’ et +naxoett 91 xoe" 41,
=48y’ + B Coyo’e ™ + FLiyoeH + B o .
There remains only one possible case:
no=48"y", —b’%'=8C, 4L=—3H, n=1=7=L=0=0.

This is again a contradiction. Still there are several subcases to be discussed.
However all of them lead to contradictions easily.
Suppose that f defines the surface X,. Then we have

D=Ag,- B?e*™
by (4), which is just the following identity :
—(bi—bo)2x o et e xo* L+ )y X0l 4 X ek 41,
=@yt T +Ly2e* T + L yoe" +Lo) pre? .
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There appear only two possible cases: Either 5o=48%C, —(b;—b:)*x,*=45%y,’,
M=0, 4L=3H and 7,=9,=1=0={=0 or 9,=48*y."—(bi—b.)"x,*=5C,, 2M=
—3H, 4L=—3H and 9,=%,=9,=0={(,=0. These two cases give the same
contradiction {,={,=0. Therefore P(R,)=5.

Proofs of Theorems 2, 3 and 4 are quite similar as in the one of Theorem 1.
So we shall omit their proofs.

THEOREM 5. Let Rg be the Riemann surface defined in §2. Assume that
its discriminant Agpy has the form

Arp=2y0e(—a.*y°e* + Az y,te®™ + Aryoe™ + As),

where either A,=4a,*—2(2a,+as)a,*—2(a,+2az)a,a,+4a,%a; 0 or A,=(8a*+
20(120.3'—a3z)a12—(8a23+3802203+802a32>01—a24+20a2303+802203:}ﬁ0. Then P(RE)
=5.

THEOREM 6. Let Ry be the Riemann surface defined m $§2. Assume that
its discriminant Ag, has the form

Arp=yoe¥(—a,*yo* e+ Azyste®™ + Aryoe + Ao)

with either A, =4a,*—2(a,+2a;)a,*—2(2a,+as)a;a,+4a,a* +0 or A;=(8as*+
20a,a5—a,?a,>—(8as*+38as2a,+8asa,)a,—as*+20as*a,+8a,’a,*#0. Then P(Rp)
=5.

THEOREM 7. Let Rg be the Riemann surface defined in §2. Assume that

its discriminant Ag, has the form

ARG=yoeH(—(al—az)2y03e3H+Azy0262H+A1yoe”+z40)
with either

A2:—2(012_’4alaz+ azz)as"‘z(al+az)(2012—50102+2(122)¢0
or
A1: —(alz'—"loa]ag“r azz)asz—lsalag(al—}' ag)ag+27alzazz7l:0 .

Then P(Rg)=5.

THEOREM 8. Let Ry be the Riemann surface defined in §2. Assume that
its discriminant Agy has the form

Arp=yie"(—(a1—a:)*yo*e* + A, p°e* + Aryoe™ + Ao)

with either
As=—2as"(a,+a,)—4as(a,*+4a,a.+a.?)

+2(a,+a.)(2a,*—5a,a,+2a.*)
=0
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or
A=—as*—8as%(a,+a,)+as*8a,’+46a,a,+8a,?)
—36a,ay(a,+ay)as+27a,%a,’
*0.

Then P(Rg)=5.

Proof of Theorem 5. Suppose that P(Rg)=6. Then on Ry there is an
entire algebroid function f for which P(f)=6. Suppose that f defines the
surface X;. Then we have

D=Ag,- B*e*"
by (4). This is just the following identity:
—b*x ettt maxgdett 4 naxgetl 4y xeel + 1,
=y (—a,*y’ T+ Ay p,°e* + A, yoe + Ag)Bre .

There remain only two possible cases: Either 2M=—H, 3H=4L, ns=9.=17.=
A;=A,=0 or 2M=—4H, 4L=-3H, n;=7,=79=A.=A,=0. These contradict
our assuption: Either A,+#0 or A,+0.

Similarly we have a contradiction, when f defines the surface X,.

Proofs of Theorems 6, 7 and 8 are quite similar as in the one of Theorem 5.

§7. Unsolved problems and Remarks

i) Let R4 be the Riemann surface defined in §2. Assume that its dis-
criminant Ag, has the following form:

ARA=43’0333H+C0 .

Is P(R,) still five?

Of course there are corresponding unsolved problems for Ry (x=B, C, D,
E, F, G, H).

ii) Let Ry and Ry be the surfaces P(Ryx)=5 and P(Ry)=5. Can we list
up all the analytic mappings of Ry into Ry?

iii) Let R and S be the surfaces of P(R)=6 and P(S)=5. Is there any
analytic mapping of R into S?

We shall now give some remarks. Let

F(z, »)=9*—S5:9*+S:y—S:=0
and
a’G(z, Y)=F(z, a¥ +p)
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:a‘o’[Ys—lez'f-TzY_Ts]:O

with A,a=—a,, Asa=a,—a, Aia=a;—a, and B=a,.
R, is defined by F(z, y)=0 with

Si=a,+as+a,,
Sz=yoe”+ Q303+ Q30,+a20a4,

Sszagasa4 .
Then
T1:A3+A4 ’

T2:Y09H+A3A4 ’
T3:A2Y0€H

with Y=2y,/a®. Then G(z, Y)=0 defines the surface R,. Evidently inverse
process is possible. Hence R, coincides with Rp.

Similarly we can show that Rp coincides with Rg.

Next we put

Aja=—a,;, A,a=a,—a;, Asa=a,—as;, [=as
Ry is defined by F(z, y)=0 with
Si=2a,+as+y.e?,
Ss=a,2+2a,a;+a,y.e",

83:(122(13 .
Then
T1:Y02H+2A3 >

TZZ(A1+A2)Y09H+A32 »
T3=A1A2YoeH

with Ye=y,/a. G(z, Y)=0 defines the surface Ry. Hence Ry and Ry are
coincident with each other.

Similarly we can show that Ry and R; are coincident with each other.
Next we put A,a=—a,, Asa=as;—a,;, Asa=a,—a, and B=a,. Ry is defined
by F(z, y)=0 with

Si=2as+as+y.e?,
Sg—_— agz+2agas+ alyoeH >

53:(12203 .
Then
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T,=Y,e"+A,+2A,,
To=AY e +24, A5+ As?,
Ty=A,As

with Y,=v,/a. Hence G(z, Y)=0 defines the surface Rr. This shows that Rz
coincides with Rp.
Therefore there are three types of Riemann surfaces of five Picard constant.

Acknowledgement. The authors wish to thank the referee for many va-
luable comments and suggestions.
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