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Abstract

We consider small random perturbations of dynamical systems {u¢(#)}os:
(0<e) on C(S*; R) when unperturbed dynamical systems {#°(#)}os; have the
only one asymptotically stable equilibrium point g (€C(S*; R)). The objects

under consideration are empirical measures which are marginal measures of

empirical processes at the exit time 5 of {u¢(¢)}es: from a bounded do-

main D(2g0) of C(S'; R), {u*(D}osizes, and {u*(zpD}oses1.

0. Introduction
Let S* denote the unit circle and consider the following equation;
oui(t, x)/0t=D,0%ui(t, x)/ox+ f.(x, ui(t, x), -,
0.1) uy(t, x)+e'%0%,(t, x)/0tox ,
uj(0, x)=g,(x), >0, xS, k=1, -, d, ¢>0.

Here D, (k=1, ---, d) are positive constants, and f,(x, u,, .-+, ug) (k=1, ---, d)
are Lipschitz continuous functions of S'XR?¢ to R, and {.(¢, x) (k=1, -, d)
are independent Brownian sheets, and g,(x) (k=1, ---, d) are continuous func-

tions of S* to R (see Walsh [19]).

It is known that the equation (0.1) has a unique generalized solution u(Z, x)
={uit, x)}&,. Moreover u*(t)=u‘(t, -) is a strong Markov process on the space
of continuous functions C(S'; R%) of S! to R% (see Freidlin [6], Theorem 1)
with the sup norm |-|¢cs1;7e). By a generalized solution of (0.1), we mean a
measurable function #%(¢, x) such that for any infinitely differentiable function
¢ of S' to R, t>0, and k=1, -, d,
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0.2) SSlui(t, x)go(x)dx——SSlgk(x)q)(x)dx
t
= s, DDA/ dxD+ F1x, uits, Dp(x)dsdx

e o, dx),

with probability 1 (see Freidlin [6] and Walsh [19]).

The study of the asymptotic behavior of u*(#) can be applied to the study
of tonnelling (see Faris and Jona-Lasinio [3]) and has connection with the
stochastic field theory (see Jona-Lasinio and Mitter [10] and references therein).

Before we state the large deviations theorem for u‘(f) obtained by Freidlin
[6], let us give some notations.

Denote by W20, T1xS'; R%) the space of functions of [0, T]XxS* to R*
with square integrable first and second order generalized derivatives in t<[0, T]
and in xS, respectively. Define the operator b from W% S!; R%) (=the space
of functions of S' to R® with square integrable second order generalized deri-
vatives) to L*S'; R%)(=the space of square integrable functions from S! to
R?%) by

(0.3) (@) (xX)=(Dp(d*pir(x)/dx*)+ fo(x, p(x)i1  for peW3(S'; RY).
Put

[71dgydt—bipw)| 3acsnnardt/2
04 Surlp) = it W0, TIXS'; RY),

o if peC([0, TIXS'; RONWEX[0, TIXS'; RY).
Then the following result is known.

THEOREM 0.1 (Freidlin [6], Theorem 6). For any T>0, Sir(p)/e s the
action functional for (P, U sisr,gecisiray, as €—0, in C([0, T]; C(S'; RY)),
that is, the followings hold.

(O) For any s>0 and g C(S*; R%) the following set @4 o, 7:(s) is compact
in C([0, T]; C(S*; R%) with sup norm;

(0.5) Do ri(8)={peC([0, TT; C(S'; RY); p(0)=g, Ser(p)<s}.

Sor(+) is lower semicontinuous in C([0, T]XS'; R%).
(I) For any g=C(S'; R%), s>0 and open set OCC([0, T]; C(S'; R%)),

(0.6) —inf{S,r(¢); p(0)=g, p=O0} <lim %nf ¢ log P,(u*€0),

uniformly in g and O for which inf{S.z(¢); ¢p(0)=g, p=O}<s.
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(I) For any g=C(S'; R%), s>0 and closed set ACC([0, T]; C(S*; R%)),
0.7) lim sup ¢ log P,(uc A)<—inf{S,r(¢p); (0)=g, p= A},

uniformly in g and A for which inf{Sor(¢); p(0)=g, p= A} <s.

Remark 0.1. From Theorem 0.1, for any T >0, 6>0 and any g C(S*; R%),
(0.8) lim P,(sup |us()—u’(t; @)leowsnra <=1,

&0 ostsT

where u°(¢; g) denotes the solution to (0.1) with e=0 and with «°0; g)=g.

Let D denote the bounded domain of C(S'; R%), with a sufficiently smooth
boundary 9D (see (H.1) below), which contains the only one asymptotically
stable equilibrium point g, of u° (see (H.2)). Put

0.9 tp=inf {t>0; u ()& D}.

In this paper we consider, as ¢—0, the asymptotic behavior of {u*(zht)}oses1 and
that of {ue(t)}l,s;s,%, and that of the following empirical measures on D=

DuUaD;
010 wB)={P1tuepdt/zs

where 1z denotes the indicator function for Borel set BCC(S'; R?). The finite
dimensional case was considered in Mikami [14, 15]. Although the results in
this paper can be proved for a more general class of stochastic processes, we
only consider the process in (0.1) for the sake of simplicity. For a large devia-
tions theorem for a more general class of stochastic processes, see Sowers [18].

Remark 0.2. We only consider the case the equilibrium point g,&D is of
attracting type. In the infinite dimensional case, the equilibrium point can not
be repulsive, since the stable manifold is always infinite dimensional (see
Foias, Sell and Temam [4], Mallet-Paret and Sell [12] and reference therein).
This is a difference between the finite dimensional case and infinite dimensional
one. We think that the sets A,\JA; in Mikami [15] is empty if D={g,}\UA,
UA,UA,, in the infinite dimensional case (see Mikami [15], (H.D)). Proposi-
tion 4.2 is a class of example for which U,(g,)\{g.}\UA;\UA,\UA; is not empty
for any 7 (see Appendix). Here U,(g,) denotes an r-neighborhood of g,.

Let us give the assumptions precisely.

(H.1) D is a bounded domain of C(S'; R%), with a sufficiently smooth
boundary dD in the following sense. There exist 7,>7:/2>0 such that the
followings hold; there exists a continuous function

(0.11) n: Uy (@D)ND — C(S*; R?)
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for which
0.12) g+ing,eDe  if geU,l,z(aD)mD, 2dist (g, 0D)<t<71y,
(0.13) g—tn,eD if 0<t<y,, geUTo(aD)mﬁ,

where we put U, (0D)={geC(S*; R?*); dist(g, 8D)<r,}, and for which for any
T>0 and s>0, there exists C(T, s)>0 such that

(0.14) Sor(ny)=C(T, s)Sor(p)+1),

for all ¢ for which Ser(¢)<s.
(H.2) There exists a unique asymptotically stable equilibrium point g,&D
of u°(#) and for any gD, u%t; g)eD for all 1>0.

Remark 0.3. (H.1) holds if D={geC(S'; RY); |glcwsirey <1} with n,=g.
(H.2) holds if f(x, u)=—u.

In section 1 we state our results which should be compared with the finite
dimensional case, Mikami [14, 15]. In section 2 we give lemmas which will
be used in section 3. In section 3 we prove our results. In section 4, we con-
sider a class of example which convinces us that A,\UA; in Mikami [15] is
empty if D= {gs} UA\UA,\UA;, in the infinite dimensional case.

1. Main results

In this section we state our results.

First of all, we give the large deviations theorem for the empirical mea-
sures p° (see (0.10)), as e—0. Before we state the theorem, let us give nota-
tions and the definition of the normalized action functional for p°, as e—0.

Let us denote by p(D) the set of Borel probability measures on D with the
Prohorov metric p (see lkeda and Watanabe [9], Chap. 1). For a function

{‘P(t)}ostsr (T>0), put
(LD t0.2d9)={ Lan(g()dt/ T
(see below (0.10) for notation).

DEFINITION 1.1. For g&D and pep(D), put

0 it p=d,,
(12) Lg<m={ , )
inf{Soz(¢); 0(0)=g, ¢(T)€0D, ppr=p, T<oo} otherwise,
where d,, denotes the delta measure on {g}. If the set over which the in-
fimum is taken in (1.2) is empty, then we consider that the infimum is oo.
The following theorem will be proved in section 3.
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THEOREM 1.1. Suppose that (H.1)-(H.2) hold. Then L.(p)/e is the action
functional for p* as e—0, that is, the followings hold.

(O) For any gD and any s>0, the following set is compact in p(D);
(1.3) O ()={pcspD); L(<s}.

(1) For any open subset O of p(D) and gD,
(1.4) —inf{L,(p); p=O} glingﬁ%nf ¢ log P(p°€0).

() For any closed subset A of p(D) and geD,
(1.5) lim sup ¢ log P,(re A)S —inf{L,(p); ps A}.

The following Corollary 1.1 can be obtained from Theorem 1.1, Freidlin
and Wentzell [7], p. 86, Theorem 3.4 by taking A=gp(D) and from (1.2).

COROLLARY 1.1. Suppose that (H.1)-(H.2) hold. Then the following holds;
for any gD and any 7>0,
(1.6) 151_{101 P(p(pef, 8,)<1)=1.

Before we state the next result, let us give the following notation; for a
function {¢(?)}es:, put

(1.7 T(p)=inf{t>0; ()& D}.

THEOREM 1.2. Suppose that (H.1) holds. Then Sor,(¢)/€ is the local action
functional with the decay order €' for {u‘()}osisss, as e—0, that is, for any

g€D and = C([0, «); D) for which ©(0)=g and for which

(1.8) gf dist(¢(t), dD)=0,

we have the followings;

(L9 lrm;l lim ionf ¢ log P,( sup |ue(t)—ﬂo(t)'0(S1;Rd)<7‘)=—sor(¢)(go),
g & ostst§

(1.10) lrif‘o‘ lirrgﬂsoup ¢ log Py( sup. [us O — ) cs1;ray <T)=—=Sor ().

oster

Before we state another result, we give the following definition.

DEFINITION 1.2. For ¢=C([0, 1]; D), put
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inf{Sor(@) ; (THH=¢(1), 0<t<1, for some T >0}
(=1d/dt| Lao, rixsy;ray | 6(Q) | 200, TIx81; RE)

(L.11) SP(p)=
—<Ld/dt, (@) Laco. rixs1; RA)) if p(l)eoD,

+ oo otherwise.

Finally we state the result on {u*(tHt)}osi<i.

THEOREM 1.3. Suppose that (H.1)-(H.2) hold. Then SE(p)/¢ s the local
action functional with the decay order €™ for {u(z5t)}es:s: as €—0, that s, SB(-)
is lower semicontinuous on C([0, 11; D); for any gD and ¢=C([0, 11; D) for
which ¢(0)=g and for which ¢(1)€0D, we have the followings;

(1.12) 1715)1 lir?qgnf ¢ log Pg(ossLtlgl [us(z5t)— ()| csi; ray <7)=—SH(¢),
(1.13) lrlilol lirrslj,up ¢ log Pg(osé%)1 Jus () — ()| cs1;ray <T)=—SH(¢).

Remark 1.1. By the lower semicontinuity of S%(-), we get, from Theorem
1.3, the following; B
() For any open subset O of C([0, 1]; D) and gD,

(L1 —inf{S3(e); 90, ¢(0)=g, p(1)€aD} =lim inf ¢ log Pp(u*(zp-)€0),

(II) For any compact subset K of C([0, 1]; D) and geD,
(1.15) —inf{S§(¢); e K, p(0)=g, ¢(1)€dD} =lim sup ¢ log P,(u*(th-)eK).

(1.15) does not hold for all closed set K. Otherwise by the contraction prin-
ciple, L,(0,,)=cc, which contradicts to Theorem 1.1.

Theorems 1.2 and 1.3 can be proved, from Lemmas 2.5-2.9 (whose proof
should be changed in infinite dimensional case), in the same way as in finite
dimensional case Mikami [15]. Therefore we omit the proof of the theorems,
but prove the lemmas.

2. Lemmas

In this section we state and prove lemmas which will be used in section
3. The assumptions (H.1)-(H.2) can be found in section 0.

The following lemma was used in Freidlin [6], although it was not clearly
stated. For the sake of completeness, we give the proof.

LEMMA 2.0. For any bounded set ACC(S'; R%), any T>r>0 and s=0, the
set of functions {{p(®)}rsisr; 9EUges Py.r0.71(8)} is pre-compact in C([y, T];
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C(S'; R%).
Proof. Put
2.1 8T(¢)Eé &Tldm(t, )/ dt—Dy0*Pu(t, +)/0x°| Facsy;rardt.
We define
2.2) B: C([0, o0); C(S*; R*)— C([0, =); C(S*; RY))
by the following; for ¢=C([0, c0); C(S'; R%))
(2.3) Bé¢=¢+w,
with
-, 0w (8, x)/0t=D,0*0(t, x)/0x%+ f (%, (¢, x)+w(t, x)),

00, x)=0, >0, x€S', k=1, -, d.

We first show that {{B7¢(t)}rsisr; ¢E\Usea Pporo.ri(s)} is precompact in
C(r, T1; C(S*; RY). For o€ Uzea Py ro.71(s),

(2.5) Sor(@)=S3r(B~'¢)=Str(B™'¢(-)—B'u’(- ; ¢(0))),
B7p(0)—Bu(0; p(0)=0,
since
OB~ ul(t, x)/0t=D,0*B'ui(t, x)/0x*,
(2.6)

B0, x)=u0, x), >0, xS, k=1, -, d.

From (2.5) and Theorem 0.1, (0), {B7'e®)—B'u(t; 0)}sisr; ¢ €
Ugea®@, 1o, r1(s)} is pre-compact in C([0, T]; C(S'; R%). It is easy to see that
{B™'u’(t; (00} rsesr; (0)= A} is pre-compact in C([7, T1; C(S'; R*). Hence
HUB ot} rsisr s @€ U gea Py, o, ra(s)} is pre-compact in C([y, T1; C(S*'; RY)).

Next we show that {{p(®)—B '@} esisr; ¢E\Usea Pg.ro.r1(s)} is pre-com-
pact in C([0, T]; C(S*; R%)).

Let us show that {{p(t)—B™'¢(t)}osisr; @EUgea Pg.ro.7i(s)} is uniformly
bounded in C([0, T1; C(S*; R%). For o(t, x)=¢#)—B'¢(t) (U geu P, 0. 71(5)),
by the Ito formula,

@7 o, x):S:E[ Fa(x+@DVIW(s), @(t—s, x+2D)VW(s)
+B lp(t—s, x+(2D,)*W(s))lds,

for t>0, xS, k=1, .-, d, where W(¢) is a 1-dimensional Wiener process (see
Ikeda and Watanabe [9]), and where we extend w(f, x) and f(x, u), periodically
in x, to [0, ©o)XR and RXR, respectively. From (2.7), by the Gronwall’s
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inequality,
(2.8) lwk(t, )| SCA+E2+| B @l oo, 73,0051 Rdy)) €XD (CH),
for t>0, xS, k=1, ---, d, where C denotes a constant which governs the

linear growth condition of the Lipschitz function f.

Let us show that {{p()— B '¢(t)}osisr; ¢EUgea Pp.10.71(8)} is equicontinuous
in C([0, T]; C(S*; R%). For t, h, a>0, k=1, -, d and x, yS* for which
[x—y|<a,

2.9) lwp(t+h, y)—wi(t, x)]

SSZ"”EUfk(y+(2Dk)l/2W(S), o(t+h—s, y+Q@2D )W (s))

B+ hs, 3D (s))] 1ds
+ B+ @D W), wth—s, y+@Da W (s)

+Blg(t+h—s, y+(2D ) *W(s))
— fr(x+@2D )W (s), w(t—s, x4+(2D,)"*W(s))
+B lp(t—s, x+(@2D)"*W(s))|1ds
Shsup{|fe(yy, o(s, y)+B7¢(s, y)); y.€S', 0=ss<t+h}
+C(ft{atsup{| B ¢(s1, y1)—B7¢(ss, y2))l ;
yi— 20 <a, ¥, 3:ESY, [si—s:| =h, 0=s,, 5,0+ A} }

+C(fk)S:sup{|w(u+h, yO—o(u, ¥))| ;

[yi—y:1<a, y1, y.€S'}du,

where C(f,) denotes the Lipschitz constant of f,.
By the Gronwall’s inequality, the proof is over. Q.E.D.

The following lemma can be proved in the same way as in Freidlin and
Wentzell [7], p. 110, Lemma 2.2 (see Freidlin [6], p. 687, lines 10-12).

LEMMA 2.1. Suppose that (H.2) holds. Then for any sufficiently small y>0,
there exists C,>0 and T,>0 such that for all T>0,

(2.10) SoT(S0)> CI(T_Tl):

for all {e®O}osesr for which <p(t)€DﬂUr(go)‘ (0Lt<T) and such that for all
T>0,
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(2.11) lim sup ¢ log Pty e DNU (g} O<t=T)<—C(T-T,),
uniformly in geDNU(g,).

The following lemma will be used in Lemma 2.3.

LEMMA 2.2. Suppose that (H.2) holds. Then any >0 and s>0, there exists
T>0 such that for any {(t)}isice (CD) for which Se(p)<s,

(2.12) (10, epetpnar=T.

Proof. For r>0, take a>0 sufficiently small so that if |g—gelcwsireySa,
then

(2.13) S°l<1P [u’(t; g)—golcwsyrey<7/2,

which is possible from (H.2).
Take {¢(t)}osica (CD) for which Seu(¢)<s. Put

inf{t>0; | () —golccs1;rar<a} for n=0,
(2.14) "=4 inf{t>1"1; o) —golocwsrey<a,

sup |o(s)—golcwsyrar 2T} for nz=1,
th-1<8<t

{ 0 for n=0,
st=
sup{t">t; |p(t)—golcstry=a} for n=1.

Then from (2.14),
Sg? snlﬁp(t)_golcosl;kd)<7’ for n=1,

tn-lgts

inftn lga(t)—golg(sn;m,ga for ngl

shst

(2.15)

From Lemma 2.1 and (2.15), there exists R=R(s, a)>0 such that
(2.16) t"—s"<R for n=0,

since Si(¢)<s, and there exists a constant C=C(s, @)>0 such that
(2.17) inf Sunen(9)=C

from Lemma 2.0.
Let us show that (2.12) holds from (2.15)-(2.17).
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L4 to oo tn
(2.18) SO lur<go>c(¢(t))dt:(go +5 Stn_])lyr(go)c(go(t))dt
t0 oo tn
:(S +3 Ssn>1gr(go)c(go(t))dt (from (2.15)

:<S:0+[,§]S::)lvr<go>c(¢(t>>dt (from (2.17))

<R+(s/C)R  (from (2.16)),

where [s/C] denotes the integer part of s/C. Q.E.D.

The following lemma is the statement (O) in Theorem 1.1 in section 1.

LEMMA 2.3. Suppose that (H.2) hold. Then for any g€D and any s>0,
the set @ ,(s) 1s compact m p(D) (see (1.3)).

Proof. Take {p"}5-,C @y(s) for which p"#d,,. For each nx=1, take
{p"W}osesrnC D (T"< ) such that

e0)=g, o"(T"edD, Lon,Tn=p",
Sora(p™)=s+1/n.

(2.19)

If {T"}%., is bounded, then there exist a subsequence {T"®}z., of {T"}5-,,
T>0 and a function {@(t)},s.sr such that

im T"®=T, oT)€oD,

koo

(2.20) .
lim sup lo"® ) —ot)] cst;rar=0,
)

kooo 0stsmin(T,TRCR)

(see Mikami [14], (2.11)), and such that

lim PonCk), Tn(Rd =y, T »

ko0

(2.21)
Lo(pty.r)=Ser(@)<s .

This can be proved in the same way as in Mikami [14], Lemma 2.2, (2.11)-
(2.12) (from Theorem 0.1, (O)).

If {T"}5-, is not bounded, then we can take subsequences {7"®}3, (—)
and {p"®}%, which converges to d,, from Lemma 2.2. Q.E.D.

The following Lemma 2.4 plays a crucial role in the proof of Theorem 1.1
and can be proved in the same way as in Mikami [15].

LEMMA 2.4. Suppose that (H.2) holds. Then for any gD and >0, the
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following holds;

(2,22) lin; sup lim sup ¢ log Pe(p(yt?, 0,027, 15=T)=—00.
—o00 &-0

The following lemmas can be proved in the same way as in Mikami [14]
(see (2.29)-(2.35) in Lemma 2.7).

LEMMA 2.5 Mikami [14], Lemma 2.5). Suppose that (H.1) holds. Then for
any R>0 and any {¢(t)}osisr for which ¢(0)eD, T(p)< R, and for which S,r(¢)

< oo, there exist functions {¢™(t)}osisr.1sn Which exst D such that
™ (0)=¢(0),
T(e") 1 T(p)  as n—oo,

lim sup |™#)— )] cest;re)=0,

n-oo 0stsR

Ll_r)ll Sor(@™)= Sor().

Proof. In Mikami [14], Lemma 2.5, (2.44), put
o) for 0<t<T(p)—1/k and T(p)+1/k<t<R,
(2.23)  o*)=3 oO+U—=T(p)+1/k)n,a,  for T(p)—1/k<t=T(p),
o)+ k(T(@)+1/k—t)(t—=T(0)+1/k)nyu)
for T(p)=t=T(p)+1/k .

Then the proof can be acomplished in the same way as in Mikami [14], from
(H.1) (see (2.29)-(2.35) in Lemma 2.7). Q.E.D.

LEMMA 2.6 (Mikami [14], Lemma 2.4). Suppose that (H.1) holds. Then for
any T>0 and any {p(®)}esesr for which o(0)eD, o(T)=dD, p(t)eD for all 0L
t<T and for which S,r(¢)<oo, there exist functions {¢™(t)}osisr.isn SuUch that

e"O)=¢0), T(p")=T,

lim sup |@"®)—¢®)] cist;ray=0,

n-oo 0stsT

Li_{rolg SoT(SDn):SoT(¢)-

Proof. As in Mikami [14], Lemma 2.4, (2.25), put

Ty=inf{t>0a,_.; (t)=dD},
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te=sup{T >t ; dist(p(t), dD)>71./2},
or=inf{t>T; dist(p@t), 0D)>11},
for #=1. As in Mikami [14], Lemma 2.4, (2.27), put

SD(t) if ¢,.,5t<7s,
(2.24) ™M)= e)—(t—T)n4u/m if 7.5t<0,—1/m,
SD(t)—(Uk—t)(t—Tk)7{¢(t) if g,—1/m<t<a.

Then the proof can be acomplished in the same way as in Mikami [14] (see
(2.29)-(2.35) in Lemma 2.7). Q.E.D.

The following lemma is used to prove Theorem 1.2 whose proof is not
given in this paper. Since the proof in finite dimensional case can not be
applied to the infinite dimensional case, we give the proof of Lemma 2.7.

LEMMA 2.7. Suppose that (H.1) holds. Then for any function {p)}es. for
which T(p)=00, Se(p)=s(p)<oo, info, dist(p(t), dD)=0,

(2.25) lim inf inf{S,x(¢); 6(0)=¢(0),
R0, 70
sup |&(t)—o®) | csy;rey <7, T(P)< R}
0stsR
_—<=Sooo(§0) .

Proof. Take t,>0 so that

(2.26) sup{lo®)—@(s)|cestray 5 [t—s| <t} <7:1/4

(see (H.1) for notation). Take a compact set K;CC(S'; R?) for which {p(t)<.
CK,. This is possible from Lemma 2.0, since S..(¢p) is finite. In fact, apply
Lemma 2.0 to the set {¢p(k+1); 0=t<2}i.iC\Ugep Pero.a(s(@))}.  Then {p(k+1);
0<t<1}3, is pre-compact in C([0, 1]; C(S*; R%)). Moreover {p(k+1); 0<t<1}5,
is pre-compact in C([0, 1]; C(S'; R*)) by Theorem 0.1, (O).

Put

(2.27) C,=max (1, max Anglewstray),
EEKlr\Un/z(aD)/\D

For any 7(r:/2>7>0), take N=N(y) such that

(2.28) 2C/N(H<r -

Put

(2.29) T¥=inf{t>0; dist(p(t), aD)<1/N},
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() 0=t<TY—ty),
(2.30) go’(t)z{ ¢ '
O +2n,0, =TV +1t,)/(Nty) (TY—t, <t<T").
Then ¢"(0)=¢(0) and

7 —
(2.31) ,,f}?g)wl‘/) O—e <y

from (2.27)-(2.28), and

(2.32) T(eN<TY,

since " (T¥)&D from (0.12) and (2.26)-(2.30). Put

2.33)  C=4r(atll/te+C()+  sup | f(x, W)+ Sav-ipra(n,)).

zeSl, ju1sCy

Then

(2.39) Sorn(PN=Sorn()+CCo(P)San -pra(@)'*+Co(1)/2,

since for TV —t,<t<TV),

(2.35) dor(t)/dt—bleT(t)=d )/ dt—ble®)+ f(-, ) —f(-, ¢'(1))
+2dn g/ dt—b(n,w))t—TN41,)/(Nty)
+21(-, npw)t—=TY41)/(Nts)+20 40y /(Nt,) .

The right side of (2.34) converges to S(¢) as 7—0, from (H.1), which com-
pletes the proof. Q. E.D.

The following lemma will be used to prove Theorem 1.2 and can be proved
in the same way as in Mikami [15], Lemma 2.9. Hence we omit the proof.

LEMMA 2.8. For any g€D, R>0 and any {¢t)}osisrCD for which ¢(0)=g
and for which T(p)<R,

(2.36) linrlinf inf {Ser(0); $(0)=g, &(T)ED, {H(t)}osisrD,
OSs‘tlgTHﬁ(t)—SD(t)|c<s1;Rd)§T, T<R}

ZSor ().

The following lemma plays an important role in Remark 1.3 and can be
proved in the same way as in Mikami [15].

LEMMA 2.9. Suppose that (H.1)-(H.2) hold. Then S§(-) (see (1.11)) is lower
semicontinuous on C([0, 17; D).
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3. Proof of the theorem

In this section we prove our results. The assumptions (H.1)-(H.2) can be
found in section 0. The proof of Theorem 1.1 is similar to that of Mikami
[14]. We give it for the sake of completeness, since p(D) is not compact in
the infinite dimensional case.

Proof of theorem 1.1. (O) is proved in Lemma 2.3. We first prove the
upper bound (1.5); We devide the proof into the following (3.1)-(3.2); for any
closed set ACp(D), #d,, and gD,

3.1 lim limsup ¢ log P(p €A, 5 R)S—inf{L ,(p); pA};
Rooo £=0
and for any y>0 and gD,
(3.2) lim lim sup ¢ log P,(p(¢*, 8,,)=27, 5= R)=—c0
Rooo €0

(see Lemma 2.4). (Notice that the probabilities above are monotone in R>0.
That is why we can take /im instead of limsup and liminf.)

Before we prove (3.1)-(3.2), let us show that (1.5) holds from (3.1)-(3.2).
For Acp(D), $8,, and gD,

(3.3) lim §up elog P,(prcA)

<max(lim lim sup ¢ log P,(p*'€ A, 75<R),

Roco -0

lim lim sup ¢ log P,(p(ys, 8,,)=dist(A, d,), 75> R))

Raco 60
<—inf{L,(p); p€ A}
from (3.1)~(3.2). For ACp(D), 2d,, r>0 and g€D,
(3.4) lim sup ¢ log P;(s'€ A)<0=—inf{Ly(); pe A},
from (1.2), since A>d,,.
Proof of (3.1). For R>0, closed set ACp(D), #d,, and g€D
(3.5) lirrsljup elog P,(*e A, tH5=<R)
=—inf{Ser(@); @(0)=g, p,r€A,
e()eDO0=t<T), p(T)€dD, T<R}

(from Theorem 0.1, (II) (see (1.1) for notation))
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=—inf{Ser(@); (0)=g, py.r€A,
e(t)eDO0<t<T), o(T)€dD, T<R}.
Let R— in (3.5). Then we get (3.1) (see (1.2)). Q.E.D.

Next we prove the lower bound (1.4). We actually prove the followings;
for pu+d,,, g&D and r>0,

(3.6) lim lim inf ¢ log P(o(zf, p)<1, th<R)=— L o(p)

Rooe -0

; for gD and >0,
(3.7) lirrg ionf elog Py(p(pf, 0,)<1)Z0(=—L ;(d,,)).

Proof of (3.6). For any R, y>0, p#0d,, and g€ D,
(3.8) lim ionf elog P(o(ps, 1)<7, T5<R)

= —inf{Ser(@); @(0)=g, e nt{g; p(ps. 7, V<7, T($)<R}}
(from Theorem 0.1, (I) (see (1.1) and (1.7) for notations))
=—inf{Ser(¢); P(0)=4g, p(tty.7¢p>, <7, T(P)<R}
(from Lemma 2.5)
=—inf{S,r(@); p(0)=g, o(tty.7, <7, PEDO=t<T),
o(T)edD, T<R} (from Lemma 2.6)
= —inf{Sor(p); (0)=g, p,.r=p, (T)€dD, T<R}.
Let R—co in (3.8). Then we get (3.6). Q.E.D.
Proof of (3.7). From the upper bound (1.5), for any g&D and y>0,
(3.9) lim P(p(pt, 8,,)21)=0,

which implies (3.7). Q.E.D.

4, Appendix
In this section we consider the following reaction diffusion equation;
4.1) ou(t, x; g)/ot=[0%u(t, x ; g)/0x%]/2+ f(u(t, x; g)) (>0, xS"),
u(, - ; g)=g(-X€C(S*; R)),
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where f(-): R—R is Lipschitz continuous.
The following proposition is a fact on the exponentially stable equilibrium
point,

PROPOSITION 4.1. For any stationary solution g, of (4.1) for which

(4.2) C*(g,)=lim sup sup [f(h4gox)— f(go(x))]/h<O0,
h-0 resl

there exists a constant ¢>0 such that
(4.3) sup{lu(t; g)—golcwsyp exp[—C*(go)t/2]; 120} =18 —&olcesiim
for all geC(S*; R) for which |g—golcwistm<c.
Proof. Take h>0 so that
(4.4) sup  [f(go(x)+u)—f(gu(x)]/u<C*(go)/2.

rzeSlociui<h

For g=C(S'; R) for which |g—golcwsim<h, take T=T(g, h)>0 such that

(4.5) sup |u(t; g)—golcwsym<h,
ostsT

which is possible from the continuity of u(z, x: g). Then by the Ito formula,

(4.6) u(t, x; 8)—go(x)

=E[{g<x+w<t>)—go<x+wam
xexp( [ Tr(utt—s, x+W(s); 8)— flgu(x+W(s))]

[Lult=s, x+W(s); @)~ g x+W(s)1ds ) |

for 0<t<T. Here W(.) denotes a 1-dimensional Wiener process (see Ikeda and
Watanabe [9]) and we put [ f(a)—f(a)]/{a—al=df(a)/du. From (4.6),

4.7) lu(t; &)—golcsum=1g—8gilcwsyr exp [C*(go)t/2],

for all 0<¢<T, which completes the proof from Lemma 2.0 with s=0. In fact
from Lemma 2.0, u(f, x; g) is uniformly continuous and T for which (4.7) holds
can be taken arbitraly large. Q.E.D.

If f(u)=—u/4, then from Proposition 4.1, 0 is an exponentially stable
equilibrium point. If f(u)=wu/4, then 0 is not a stable equilibrium point;
u(t, x; c)=cexp(t/4) is a solution for any constant ¢, and by the eigenfunction
expansion,
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(4.8 lim [u(t; Dlenm=0  iff | g(x)dz=0.

The following proposition shows that the convergence in (4.8) is not always
monotone.

PROPOSITION 4.2. For any stationary solution g, of (4.1) for which

4.9) C~(gy)=lim inf gfx [f(h+go(x)— f(go(x))]/h>0,

h-0

and any a>0, there exists a function g such that SSI(g(x)—go(x))dx:O, such that
lg—golcwsy,m<a and such that
(4.10) sup{lu(t; g)—golcwsup 3 20} >|g—golcwsup -
Proof. Take h>0 so that
(4.11) inf [ f(go(x)+u)—f(go(x))]/u>C=(g,)/2.
zesSl,ociui<h

Take a function g C(S'; R) such that for 0<x<2x,

@12 gto=|exp(—Rlx—x]9={ exp(~Rly—xI9dy/2m) |/ R+g:x).

Then

(4.13) lg—&ilesym=g()—go(m)=[1-C(R)]/R<a,

for sufficiently large R>0, where we put

(4.14) C(R)=|exp(—R1y—|dy/(2m).

For the function g in (4.12), we have, for sufficiently small >0,

(4.15) ut, ©; g)—go(7)
=|g—golcwsyr eXp(—2RE[W(t)*]/(1—C(R)+tC(g,)/2)
>1g—golowsym -

Let us prove (4.15). By the Ito formula, for 04,

(4.16) u(l, ©; g)—go(m)
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=E[{g(n+W(t))—go(7r+W(t))}
t
xexp(| L futt—s, 74+W(s); @)~ flada+W(s)]

/Lult—s, #+W(s); g)—go(fr+W(s))]dS)] .
Take T=T(g, h)>0 as in (4.5). Take 6>0 for which

(4.17) exp(—Ro*)—C(R)>0.
Then there exists C,=C,(0)>0 such that

(4.18) u(t, m; g)—go(xm)

>E [ {exp(—RW(t)Y)— C(R)} /R
xexp({ [ fut—s, 7+W($); @)~ flgom+W(s))]

[Lut—s, =+ W(s); g)—gux+W(s)1ds); sup [W(s)| <3|
—C(R)/R exp (tC(f))P(sup [W(s)|29)
= E[ {exp(—RW()")—C(R)} /R exp (tC~(g,)/2)]
—2C(R)/R exp (tC(f)P(sup |W(s)| 20)
= E[exp(—RW(#))—C(R)]/R exp (tC(g0)/2)
—2C(R)/R exp (tC(f)) exp (—C./t)

for sufficiently small T(g, h)>t>0, by the large deviations theory. Here C(f)
denotes the Lipschitz constant of f(u), and we considered as follows;

(4.19)  P(sup [W(s)|=0)
gZosuptP(lW(s)IZ'ﬁ/Z) (see Freidlin and Wentzell [7], p. 151, line 5)
<8<

=2P("*|W(1)| zd/2)<exp(—C./1),

for sufficiently small t>0 (see Freidlin and Wentzell [7], Chap. 3, section 2).
The last part of (4.18) can be estimated as follows;
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4.20) Elexp(—RW(#)*)—C(R)]/R exp (tC~(go)/2)
—2C(R)/Rexp (tC(f))exp(—C,/t)
=|g—8olcesy;r €Xp FC7(g0)/2{[1—C(R)](E[exp(—RW(#)*)—C(R)]

—2C(R)exp tC(/)—tC~(g0)/2—Cy/1))},
and

(4.21) [1—C(R)I""{E[exp(—RW(t)")—C(R)]

—2C(R)exp (tC(f)—tC~(go)/2—C,/t)}
Z[1-C(R)]{E[exp(—RW(t))— C(R)]—exp(—C./(21))}

(for sufficiently small ¢>0)
=1—(1+-exp(—C./(2t))—E[exp(—RW(1)")])/[1-C(R)]
=exp(—(3/2)(1+exp(—C,/(2))— E[exp(—RW(®)*/])/[1—-C(R)])
2exp(—(3/2)(exp(—C./(2)+REW(@)])/[1-C(R)])
zexp(—2RE[W(t)']/[1-C(R)])

for sufficiently small 1>0. In the second and the third inequality, we used the
following, respectively;

(4.22) 1—x=exp(—3x/2) for sufficiently small x>0,

(4.23) l—exp(—x)<x, for x>0.
Q.E.D.

From Proposition 4.2, the behavior of u(t; g) on C(S'; R) and that on
L*S'; R) are not always the same for small t>0. By the following proposi-
tion, they are similar to each other for sufficiently large ¢>0.

PROPOSITION 4.3. For any s, t>0, any g=C(S'; R), and any stationary
solution g, of (4.1)

(4.24) Ju(t; g)—golr2s,m=2m)"?| u(t; g)—golcsp
(4.25) |u(t+s; g)—golcwsyp €Xp (—C(f)s)
S2/(ms)VH(1—exp(—272/s) 2 ult; g)—8olL2sn;m) -

Proof. (4.24) is trivial. Let us prove (4.25). By the Ito formula, for 0<s
and t,
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(4.26) lu(t+s, x; g)—go(x)]|

=|& [{g(x+W(t+5))—go(x+W(f+S))}
xexp( | LAlt+s—a, x+W(@); )~ F(gu(x+W(a))]
[ult+s—a, x+W(a); §)—gu(x+W(a)lde)||

=|E[exp([[Lrut+s—a, x+W(@); @)~ flgatx +W(@))]
/[u(t+s—a, x+W(a); g)—go(x+W(a))]da)

X {utt, 5+W(); @)—gulx -+ WM} |
(from the Markov property of W(.))
=exp(C(NHE[{ult, x+W(s); g)—go(x +W(s)}*1/>.
The last part of (4.26) can be estimated as follows;
4.27)  E[C{u@t, x+W(s); ©)—gu(x+W(s)}*]

=Sk{u(t, x4+ g)—go(x+ )} exp (—y?/(2s))(2rs) " *d y

_ i’] SZz(k-}—l){u(t’ x—l—y ; g)_gO(x+3’)}23XP(—yz/(Zs))(Zn's)‘l/zdy,

k=-0J2nk

and for any integer %,

*.28) S::H) {ut, x+y; g)—go(x+y)}* exp (—y*/(2s))(27s) " *dy
sexp(—(@min(| k|, [k+1D7m)*/(2s)2as)™"*|ult; g)—&ol tecsyimy

which completes the proof. Q.E.D.
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