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Abstract

We consider small random perturbations of dynamical systems { u ε ( f ) } 0 ^ t

(0<ε) on C(S1; 7?) when unperturbed dynamical systems {w°(0}osί have the
only one asymptotically stable equilibrium point go (^C(S1 /?)). The objects
under consideration are empirical measures which are marginal measures of
empirical processes at the exit time τε

D of { u ε ( t ) } G < ί t from a bounded do-

main £(Ξ5£0) of CCS 1 ;^), {tt W J o i t s r , and {Mβ(rf)0}ost*ι.

0. Introduction

Let S1 denote the unit circle and consider the following equation;

dul(t, x)/dt=Dkd*uί(t, x ) / d x z + f k ( x , ul(t, x\ •••,

(0.1) Mj(ί, *))+ε^32ζ*α, x)/3tdx,

wί(0, *)=£*(*), t>Q, xtΞS1, k = l, ••-, d, ε>0.

Here Dk (k — l, •••, d) are positive constants, and f k ( x , u ί f •••, ud) (k = l, •••, d)
are Lipschitz continuous functions of SlxRd to R, and ζk(t, x) (k = l, •••, d)
are independent Brownian sheets, and g k ( x ) (k = lf •••, d) are continuous func-
tions of Sl to R (see Walsh [19]).

It is known that the equation (0.1) has a unique generalized solution uε(t, x)
= {uε

k(t, x)}Sί=ι. Moreover uε(t)=uε(t, •) is a strong Markov process on the space
of continuous functions CCS1; Rd) of S1 to Rd (see Freidlin [6], Theorem 1)
with the sup norm \C(SI;R<D By a generalized solution of (0.1), we mean a
measurable function uε(t, x) such that for any infinitely differentiate function
φ of S1 to R, ί>0, and fe = l, -, d,
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(0.2) \ uKt, x)ψ(x}dx-\ gk(x)Ψ(x)dx
J S i J S*

= ('(β|[uί(sfJ Oj S l

with probability 1 (see Freidlin [6] and Walsh [19]).
The study of the asymptotic behavior of uε(t) can be applied to the study

of tonnelling (see Paris and Jona-Lasinio [3]) and has connection with the
stochastic field theory (see Jona-Lasinio and Mitter [10] and references therein).

Before we state the large deviations theorem for uε(t) obtained by Freidlin
[6], let us give some notations.

Denote by Wϊ*([Q, T]xS x; Rd) the space of functions of [0, jΓJxS1 to Rd

with square integrable first and second order generalized derivatives in fe[0, T]
and in x&S1, respectively. Define the operator b from W\(Sl; Rd) (=the space
of functions of S1 to Rd with square integrable second order generalized deri-
vatives) to L\Sl; 7?d)(ΞΞthe space of square integrable functions from S1 to
Rdϊ by

(0.3) b(φ)(x)=(Dk(d2φk(x)/dxz)+fk(x, φ(x)))d=ι for

Put

' ^\dφ(t)/dt-b(φ(t))\

if(0.4)

if peC([0, T]xSx;

Then the following result is known.

THEOREM 0.1 (Freidlin [6], Theorem 6). For any T>0, Soτ(φ)/ε w
action functional for (Pg, u't\stsT,gecisi;Rd), as e—>0, in C([0, T] COS1

ί/iαί is, ί/ie foil owing s hold.
(O) F0r αw^ s>0 and g^C(S1; Rd) the following set Φg,ιo,τι(s) is compact

in C([0, T] C(S1 Rd)) with sup norm

(0.5) ΦtfCo.n(s)Ξ{9>eC([0, T] C(Sl

semicontinuous in C([0,
(I) For 0723; geCίS1; #d), s>0 and open set OcC([0, T]

(0.6) -inf{Sor(y>);y>(0)=£, ψ^O] ^lim inf s log Pg(uε(Ξθ),

uniformly in g and O for which inf{S0r(^)ί φ(Q)—g,
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(II) For any g^.C(Sl Rd), s>0 and closed set ΛcC([0, T] C(SX Rd)),

(0.7) limsupεlogP^(wεe^)^-inf{S0r(^);^(0)=^ φ^A},
ε->0

uniformly in g and A for which inf {S0r(#>); φ(ty=g, φ^A}^s.

Remark 0.1. From Theorem 0.1, for any T>0, 3>0 and any geC(Sl; Rd\

(0.8) HmP,(SUp | M (0-M β (ί ;^) l (7(5l ;Λd)<ί)=l,
e-*0 O S t δ Γ

where u\t',g) denotes the solution to (0.1) with s— 0 and with w°(0;g)— g.

Let D denote the bounded domain of C(S1 Rd), with a sufficiently smooth
boundary 9Z) (see (H.I) below), which contains the only one asymptotically
stable equilibrium point gϋ of u° (see (H.2)). Put

(0.9) r&Ξinf{ f>0; u'(ϊ)£D).

In this paper we consider, as s— »0, the asymptotic behavior of {wε(τy)}0^ίίi and
that of {w ε(f)}osί<ςrfy and that of the following empirical measures on DΞ

(0.10) μ'W

where 15 denotes the indicator function for Borel set BdC(S1; Rd). The finite
dimensional case was considered in Mikami [14, 15]. Although the results in
this paper can be proved for a more general class of stochastic processes, we
only consider the process in (0.1) for the sake of simplicity. For a large devia-
tions theorem for a more general class of stochastic processes, see Sowers [18].

Remark 0.2. We only consider the case the equilibrium point g^D is of
attracting type. In the infinite dimensional case, the equilibrium point can not
be repulsive, since the stable manifold is always infinite dimensional (see
Foias, Sell and Temam [4], Mallet-Paret and Sell [12] and reference therein).
This is a difference between the finite dimensional case and infinite dimensional
one. We think that the sets A2UA3 in Mikami [15] is empty if D— {g0}^.Aι
\JA2\JAZ, in the infinite dimensional case (see Mikami [15], (H. D)). Proposi-
tion 4.2 is a class of example for which Ur(gQ)\{g0}UAl^jA2\JΛs is not empty
for any γ (see Appendix). Here Ur(g0) denotes an ^-neighborhood of g0.

Let us give the assumptions precisely.
(H.I) D is a bounded domain of C(S1 Rd), with a sufficiently smooth

boundary 3D in the following sense. There exist ?Ό>?Ί/2>0 such that the
followings hold; there exists a continuous function

(0. 11) n : UrQ(dD)πD — > C(SX Rd)
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for which

(0.12) g+tng<ΞDc if g<=Urilz(3D)r\D, 2dist(g, 9D)^t

(0.13) g-tng(ΞD if 0<f<n,

where we put UTo(dD)^{g^C(S1 Rd); dist(g, dD)<γQ\, and for which for any
T>0 and s>0, there exists C(T, s)>0 such that

(0.14) SβΓ(n9(.,)^C(T, s)(SβΓ(ip)+l),

for all )̂ for which Soτ(φ)^s.
(H.2) There exists a unique asymptotically stable equilibrium point

of M°(ί) and for any #e/3, u\t; g)<ΞD for all f>0.

Remark 0.3. (H.I) holds if D={g<=C(S1; Rd); |g |c<si ; *d)<l} with n,=g.
(H.2) holds if f ( x , u)=-u.

In section 1 we state our results which should be compared with the finite
dimensional case, Mikami [14, 15]. In section 2 we give lemmas which will
be used in section 3. In section 3 we prove our results. In section 4, we con-
sider a class of example which convinces us that A2\JA3 in Mikami [15] is
empty if D= (g^^jA^A^A^ in the infinite dimensional case.

1. Main results

In this section we state our results.
First of all, we give the large deviations theorem for the empirical mea-

sures με (see (0.10)), as ε-»0. Before we state the theorem, let us give nota-
tions and the definition of the normalized action functional for με, as ε-»0.

Let us denote by ρ(D) the set of Borel probability measures on D with the
Prohorov metric p (see Ikeda and Watanabe [9], Chap. 1). For a function

put

(1.1) μφ

(see below (0.10) for notation).

DEFINITION 1.1. For g<=D and μ<=p(D), put

ί 0 if μ=δgQ,
(1.2) Lβ(μ)=\

( mf{SoT(φ); <p(0)=g, φ(T)€Ξ3D, μψ,τ=μ, T<oo} otherwise,

where δgQ denotes the delta measure on {g 0} If the set over which the in-
fimum is taken in (1.2) is empty, then we consider that the infimum is oo.

The following theorem wil l be proved in section 3.
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THEOREM 1.1. Suppose that (H.1)-(H,2) hold. Then Lg(μ)/ε is the action
functional for με as ε-»0, that is, the fallowings hold.

(0) For any g^D and any s>0, the following set is compact in ρ(D);

(1.3) Φβ(s)= {μζΞp(D)

(1) For any open subset O of ρ(D) and

(1.4) -mf{Lg(μ); μ(Ξθ}^\immf slog Pg(με^O) .

(II) For any closed subset A of p(D) and g&D,

(1.5) l imsup ε log Pg(μ'eA)^ — inf (Lg(μ) μ<=A\.

The following Corollary 1.1 can be obtained from Theorem 1.1, Freidlin
and Wentzell [7], p. 86, Theorem 3.4 by taking A=p(D) and from (1.2).

COROLLARY 1.1. Suppose that (H.1HH.2) hold. Then the following holds;
for any g^D and any 7>0,

(1.6) ΐunPβ(p(μ , d

Before we state the next result, let us give the following notation; for a
function {φ(f)}Q&t, put

(1.7) T(φ)=mf{t>Q; φ(t)<£D}.

THEOREM 1.2. Suppose that (H.I) holds. Then SOT(φ)(φ)/ε is the local action
functional with the decay order ε"1 for {uε(t)}Q^t^τε

D as ε— >0, that is, for any

and y>eC([0, oo); D) for which φ(Q)=g and for which

(1.8) mfdist(φ(t\ dD)=Q ,
ί>0

we have the fallowings

(1.9) lim lim inf ε log P8( sup |M t(ί)-ίP(Olc(5i;Λd)<r)=-Sβr(¥,)(?>),
- - Ψ T

(1.10) lim lim sup ε log Pβ( sup I we(0
r-° ε-° osίsr|j

Before we state another result, we give the following definition.

DEFINITION 1.2. For y>eC([0, 1];15), put
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'inf{Sor(0);0(TO=^(f), O^f^l, for some T>0}

(1.11)
— (dφ/dt, fe(9)>L2(co,r]x5i;«d)) if

°° otherwise.

Finally we state the result on {

THEOREM 1.3. Suppose that (H.1)-(H.2) ΛoW. TTzerc S?ι(y>)/e zs fAβ local
action functional with the decay order ε"1 for .{us(τε

Dt)} 0^t^ι 0s ε^O, ί/zαί zs, S?ι( )
ί's lower semicontinuous on C([0, !];/)); /0r any ge£) and ^>eC([0, 1] D) for
which φ(0)=g and for which φ(ϊ)^dD, we have the followings;

(1.12) lim lim inf ε log P8( sup | us(τε

Dt)-
γ-*o e-*0 Ogίs i

(1.13) lim lim sup ε log P8( sup | wε(ry)-

Remark 1.1. By the lower semicontinuity of 5fi( )> we get, from Theorem
1.3, the following;

(I) For any open subset O of C([0, 1] D) and

(1.14) -inf {Sa(^); ^eO, y>(0)=5 , y>(l)e3/?}^lim inf ε log P^(Mβ(ri, )eO),

(II) For any compact subset K of C([0, 1] D) and gtΞD,

(1.15) -inflS?^); ye/ί, p(0)=g, ω(l)e3D} ^limsup ε log Pg(uε(τ£

D-)^K).

(1.15) does not hold for all closed set K. Otherwise by the contraction prin-
ciple, Lg(dgo)—oof which contradicts to Theorem 1.1.

Theorems 1.2 and 1.3 can be proved, from Lemmas 2.5-2.9 (whose proof
should be changed in infinite dimensional case), in the same way as in finite
dimensional case Mikami [15]. Therefore we omit the proof of the theorems,
but prove the lemmas.

2. Lemmas

In this section we state and prove lemmas which will be used in section
3. The assumptions (H.1)-(H.2) can be found in section 0.

The following lemma was used in Freidlin [6], although it was not clearly
stated. For the sake of completeness, we give the proof.

LEMMA 2.0. For any bounded set AdC(S1 Rd\ any T>7>0 and s^O, the
set of functions {{p(f)}rs«z ; φ^\J g^A Φ 8,ιo,τϊ(s}} is pre-compact in C([_γ, T]
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C(Sl Rd».

Proof. Put

(2.1) Slτ(φ)=jl^\dφk(t, )/dt-Dkd
2φk(t, )/dxz\l2(Sί.Rd)dt.

We define

(2.2) B : C([0, oo) COS1 R*)) . — > C([0, oo) CζS1 Rd))

by the following; for 0eC([0, oo); CCS1; Λd))

(2.3) BφΞΞφ+ω,

with

3ω*(f, x)/dt=Dk3
2ωk(t, x ) / d x 2 + f k ( x , φ(t, x)+ω(t, *)),

(2.4)
α>Λ(0, *)=0, f>0, seS1, fe = l, •••, d.

We first show that {{B~lφ(t)}γ^t^τ\ φ^^Jg&AΦg>LQ,τι(s)} is precompact in
C(|>, T] CίS1 /?d)). For

(2.5) SOΓ(?))=S!!r

since

dB~lul(t, x}/dt=Dkd
2B~lul(t, x)/dx2 ,

(2.6)
β-MCO, x)=MΪ(0, %), ί>0, xeS1, )fe = l, •», flί.

From (2.5) and Theorem 0.1, (O), {{B^φffi-B^u^t; p(0))}0ί«Γ; ^ e
U^eκΦ^,co,r](s)} is pre-compact in C([0, T] C(Sί 7?d)). It is easy to see that
{{B-lu\t; ?)(0))}^«Γ; p(0)e^} is pre-compact in C([r, T] CCS1; #d)). Hence
{{B"V(0}rί«r;?>eU ί€AΦg.co,n(s)} is pre-compact in C([r, T] COS1 ^d)).

Next we show that {{ψ(t)—B~lφ(f)}^t^τ\ψ^\Je^AΦg.^,τ^(sί)} is pre-com-
pact in C([0, T] C(Sl Rd)).

Let us show that {{φ(t)—B~lφ(t)}Q<,t^τ', φ^\J g^A Φe,ιo,τι(s)} is uniformly
bounded in C([0, T] CfS1 Rd)). For ω(t, x)=φ(t}-B~lφ(t) (φ(=Ξ\J gζΞA Φg,Lo.τι(s)\
by the Ito formula,

(2.7) ωk(t, x)=\tElfk(x-{-(2Dk^W(s\ ω(t-s, x+(2Dk?»W(s))

+B-lφ(t-s, x

for ί>0, Λ eS1, k = l, •••, J, where TF(ί) is a 1-dimensional Wiener process (see
Ikeda and Watanabe [9]), and where we extend ω(ί, *) and /(^, M), periodically
in x, to [0, oo)χ^ and RxR, respectively. From (2.7), by the GronwalΓs
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inequality,

(2.8) \ωk(t, x)\^

for ί>0, x^S1, k — \, •••, dy where C denotes a constant which governs the
linear growth condition of the Lipschitz function /.

Let us show that {{φ(i)—B~lφ(t)}^t^τ'>φ^^Jg^AΦg,^,τ^)} is equicontinuous
in C([0, T]; C(S1 Rd)). For f, Λ, α>0, A? = l, ••-, d and x, y^S1 for which

x— y\<a,

(2.9)

+ h \ ωtt+h-s,

, ω(t+h-s, y+(2Dk)
l'*W(sfi

S t
sup{|ύ>(w + A, yί)-ω(u,

0

where C(fk) denotes the Lipschitz constant of fk.
By the GronwalΓs inequality, the proof is over. Q. E. D.

The following lemma can be proved in the same way as in Freidlin and
Wentzell [7], p. 110, Lemma 2.2 (see Freidlin [6], p. 687, lines 10-12).

LEMMA 2.1. Suppose that (H.2) holds. Then for any sufficiently small γ>Q,
there exists d>0 and 7\>0 such that for all T>0,

(2.ιo) sβr(?>)>c1(τ-r1),

for all {φ(t)}0st*τ for which (p(t}^D^Ur(gQ}c (O^^T) and such that for all
T>0,
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(2.11) lim sups log P^u^t^Dr^Urίg
ε-*0

uniformly in g^DrΛUr(goY.

The following lemma will be used in Lemma 2.3.

LEMMA 2.2. Suppose that (H.2) holds. Then any γ>0 and s>0, there exists
T>Q such that for any {φ(t)}^t<00 (c/3) for which

(2.12)

Proof. For f>0, take α>0 sufficiently small so that if \g—
then

(2.13) sup \u0(t;g)-g0\C{Si;Rd)<r/2,
0<ί

which is possible from (H.2).
Take {^(OίosKoo (c/5) for which SQOO(φ)<s. Put

for n=0,

(2.14)

^sup \φ(s)—g0\c{si;Rd^f} for

0 for n=0,

Then from (2.14),

sup \φ(t)—g0\c<si .Rd)<7 for rc^l,

^ ^ inf |^(0—golσ(βi;Λcf)^α f o r n ^ l .

From Lemma 2.1 and (2.15), there exists R=R(s, a)>0 such that

(2.16) tn-sn<R for n^O,

since S000(φ)^s, and there exists a constant C —C(s, #)>0 such that

(2.17) mfS$ntn(

from Lemma 2.0.
Let us show that (2.12) holds from (2.15H2.17).
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(2.18) S"1<M»,>«W<"=(S"+Σ!ι £I_,)W*o>^WXί

=(j%Σj^)lpr(,0)c(^(0)rfί (from (2.15)

/ f ί O C β / ( 7 ] f ί Λ \

=(]o + nΣ ]s Jltfr(,0)c(y>(0)^ (from (2.17))

^R+(s/C)R (from (2.16)),

where [s/C] denotes the integer part of s/C. Q. E. D.

The following lemma is the statement (O) in Theorem 1.1 in section 1.

LEMMA 2.3. Suppose that_(H.2) hold. Then for any g^D and any s>0,
the set Φ8(s) ^s compact in ρ(D) (see (1.3)).

Proof. Take {μn}n=ιC. Φ g ( s ) for which μn^δgQ. For each n^l, take
(Γ7l<oo) such that

SoTn(

If {Tn}n^ι is bounded, then there exist a subsequence { T n ( k > } ΐ = 1 of {Tn}~βl,
T>0 and a function {>( ί ) }os t^r such that

H m T n ( * ) = T, φ(T)<=ΞdD,

(2.20)
lim sup I^^
/?->oo o < ί g m ι n ( Γ , Γ n ( ^ ) )

(see Mikami [14], (2.11)), and such that

lim μφn(kϊ,τn

(2.21)
Lg(μ

This can be proved in the same way as in Mikami [14], Lemma 2.2, (2.11)-
(2.12) (from Theorem 0.1, (O)).

If {Tn}n=ι is not bounded, then we can take subsequences {T7 l ( έ )}?Lι (— >0°)
and {μn(k)}ΐ=ι which converges to <^0, from Lemma 2.2. Q. E. D.

The following Lemma 2.4 plays a crucial role in the proof of Theorem 1.1
and can be proved in the same way as in Mikami [15].

LEMMA 2.4. Suppose that (H.2) holds. Then for any g^D and r>0, the
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following holds',

(2,22) lim sup lim sup ε log Pg(ρ(με, <5,0)^r, τ£

D^T)=-™ .
T->OQ ε-»0

The following lemmas can be proved in the same way as in Mίkami [14]
(see (2.29H2.35) in Lemma 2.7).

LEMMA 2.5 (Mikami [14], Lemma 2.5). Suppose that (H.I) holds. Then for
any /?>0 and any {φ(t)}^t^R for which ψ(ϋ)^D, T(φ)<R, and for which SoR(φ)
<°o, there exist functions {φn(t)}Q^t^R>ι^n which exit D such that

T(φn)]T(φ) as n

lim sup \φn(t)

\imSQR(φn)=SQR(φϊ.
n-»oo

Proof. In Mikami [14], Lemma 2.5, (2.44), put

' φ(ί) for Q^t^T(φ)-l/k and

<t) for

. φ(t)+k(T(φ)+l/k-tχt-T(φ)+l/k)nφu>

for

(2.23)

Then the proof can be acomplished in the same way as in Mikami [14], from
(H.I) (see (2.29)-(2.35) in Lemma 2.7). Q. E. D.

LEMMA 2.6 (Mikami [14], Lemma 2.4). Suppose that (H.I) holds. Then for
any T>0 and any {φ(ί)}0st*τ for which φ(Q)&D, φ(T)tΞdD, φ(t)^D for all (K
t<T and for which SoT(φ)<°°, there exist functions {φn(t)}0^t^τ,ί^n such that

T(φn)=T,

lim sup \φn(t)— φ(t)\C(s^,Rd)—Q ,
n^oo osίδΓ

lim SaT(ψn)=S,τ(φ) .
W->oo

Proof. As in Mikami [14], Lemma 2.4, (2.25), put
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τ Λ =sup{T Λ >ί; dist(φ(t),

σk = mf{t>Tk;dιst(φ(t),

for k^l. As in Mikami [14], Lemma 2.4, (2.27), put

φ(t) if

(2.24) φ(t}—(t—τk)nψ(t}/m if

φ(t)-(σk-t)(t-τk)nφ(t) if σk~

Then the proof can be acomplished in the same way as in Mikami [14] (see
(2.29H2.35) in Lemma 2.7). Q. E. D.

The following lemma is used to prove Theorem 1.2 whose proof is not
given in this paper. Since the proof in finite dimensional case can not be
applied to the infinite dimensional case, we give the proof of Lemma 2.7.

LEMMA 2.7. Suppose that (H.I) holds. Then for any function {φ(t)}0^t for
which T(φ)— oo, S(ίoo(φ) = s(φ)<^) inf0<ί dιst(φ(t), dD)—Q}

(2.25) lim inf inf {SoR(φ) <S(0)=p(0) ,
R^oo, γ-+0

sup \ φ ( t ) - φ ( t ) \ c < s i ; R d ) < ΐ , T(φ)<R]

Proof. Take t0>0 so that

(2.26) suρ{ |ρ(f)-ί0(s) |c<si;Λd>; \t-s

(see (H.I) for notation). Take a compact set KldC(S1 ] Rd) for which {φ(t\&t

C/^i. This is possible from Lemma 2.0, since S000(φ) is finite. In fact, apply
Lemma 2.0 to the set {φ(k+t)}Q^t^2}ΐ=1c:^JgeDΦg,L0.^(s(φ))}. Then \φ(k+t);
0^^1}JL2 is pre-compact in C([0, 1] C(Sl Rd)). Moreover {φ(k+t);
is pre-compact in C([0, 1] C(S1 Rd)) by Theorem 0.1, (O).

Put

(2.27) Cι=max(l, max
gζΞKlΓJJrιι2(

For any γ(γ
ί
/2>γ>0)

)
 take N=N(γ) such that

(2.28) 2Cί/N(r)<γ.

Put

(2.29) T^Ξinf{ί>0; dist(φ(t), dD}<
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ί φ(t)
(2.30) ψf(t)=\

Then φr(Q)=φ(Q) and

(2.31) sup \φ*(t)-φ(t)\<r

from (2.27M2.28), and

(2.32)

since φr(TN)^D from (0.12) and (2.26M2.30). Put

(2.33) C0(r)Ξ4r2(^0(l/ίo + C(/)+ sup |/(*,
xeS1. i t ί isCi

Then

(2.34)

since for t(TN

(2.35) dφr(t)/dt---b(φr(t))=dφ(t)/dt-b(φ(t))+f('9 φ(t))-f( ,

, nφ<t>)(t--TN+t0)/(NtQ)+2nφ<t)/(Nt0).

The right side of (2.34) converges to 500o(^J as T-->O, from (H.I), which com-
pletes the proof. Q. E. D.

The following lemma will be used to prove Theorem 1.2 and can be proved
in the same way as in Mikami [15], Lemma 2.9. Hence we omit the proof.

LEMMA 2.8. For any g(=D, R>Q and any {p(ί)}os«rc5 for which φ(Q)=g
and for which T(φ)<R,

(2.36) l iminf inf {Soτ(φ); φ(Q)=g, ώ(T)<=dD,
r-o

sup

The following lemma plays an important role in Remark 1.3 and can be
proved in the same way as in Mikami [15].

LEMMA 2.9. Suppose that (H.1)-(H.2) hold. Then Sft( ; (see (1.11)) is lower
semicontinuous on C([0, 1] D).
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3. Proof of the theorem

In this section we prove our results. The assumptions (H.1)-(H.2) can be
found in section 0. The proof of Theorem 1.1 is similar to that of Mikami
[14]. We give it for the sake of completeness, since $(D) is not compact in
the infinite dimensional case.

Proof of theorem 1.1. (0) is proved in Lemma 2.3. We first prove the
upper bound (1.5). We devide the proof into the following (3.1)-(3.2); for any
closed set Ac.ρ(D), ^δgQ and

(3.1) lim limsupεlog Pg(με(ΞA, τε

D<R)<-mf ( L g ( μ )
Λ-»oo ε_»o

and for any γ>Q and g^D,

(3.2) lim lim sup ε log Pg(p(μ', δgj^γ, τί^R)^-^
R-*oo e-»0

(see Lemma 2.4). (Notice that the probabilities above are monotone in
That is why we can take lim instead of limsup and liminf.)

Before jve prove (3.1H3.2), let us show that (1.5) holds from (3.1)-(3.2).
For Ac.ρ(D), ^δg0 and

(3.3) lim sup ε log Pg(με^A)
ε->0

^max(lim lim sup ε log Pg(
β-»oo ε-»θ

lim limsup ε log Pg(p(με, dgQ)^dist(A, δgj, τί>R))

from (3.1H3.2). For Adp(D\ ^δgQ, γ>ΰ and

(3.4) lim sup ε log Pg(με^A)^0=-mf{Lg(μ)
ε-»0

from (1.2), since A^δgΰ.

Proof of (3.1). For tf >0, closed set Adp(D), ^δgQ and g<ΞD

(3.5) lim sup ε log Pg(μ ς=A, τί^
δ-»0

(from Theorem 0.1, (II) (see (1.1) for notation))



62 TOSHIO MIKAMI

= -mf{SoT(φ);φ(Q)=g, μψ,τ^A,

φ(t)^D(Q£t^T), φ(T)£ΞdD, T<R}.

Let #->oo in (3.5). Then we get (3.1) (see (1.2)). Q. E. D.

Next we prove the lower bound (1.4). We actually prove the followings
for ^δg, g^D and

(3.6) lim lim inf ε log Pg(p(με, μXr, τ*D<R)^-
/2_»oo e-»0

for g<=D and f>0,

(3.7) l i m n f ε log Pβ(p(μ , δ

Proof of (3.6). For any R, γ>0, μ^δgG and

(3.8) lim inf ε log Pg(p(με, μ}<f, τ£

D^R)
s->0

^-mf{SGR(φ)',φ(Q)=g, φ<Ξlnt{φ; p(μφ,τ^, μ)<r, T(φ)<R}\

(from Theorem 0.1, (I) (see (1.1) and (1.7) for notations))

= -mf{SQR(φ);φ(Q)=g, p(μφ,T(ψ,, μ)<r, T(φXR}

(from Lemma 2.5)

= -mf{SQT(φ);φ(0)=g, p(μφ,τ, μXr, φ(t)

φ(T)(ΞdD, T^R} (from Lemma 2.6)

^-mf{SoT(φ);φ(W=g, μφ,τ=μ, φ(T)^SD

Let ^—oo in (3.8). Then we get (3.6). Q. E. D.

Proof of (3.7). From the upper bound (1.5), for any g^D and f>0,

(3.9) lίmP,(|θ(/ι , ίίβ)^rt=0,

which implies (3.7). Q. E. D.

4. Appendix

In this section we consider the following reaction diffusion equation

(4.1) du(t, % £)/3f=[32tt(f, K g)/dxzy2+f(u(t, x g)) (ί>0,
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where /(•)• R^R is Lipschitz continuous.
The following proposition is a fact on the exponentially stable equilibrium

point.

PROPOSITION 4.1. For any stationary solution g0 of (4.1) for which

(4.2) C+(£0)ΞΞlim sup sup [/(Λ+£0(*))-/teo(*))]/λ<0 ,
Λ,-»0 reS1

there exists a constant c>Q such that

(4.3) sup{ I u(t g)-g. \ CISI .R) exp [- C+(g,)t/2~] f ̂ 0} ̂  \g-g0 \ σ(5ι.Λ)

for all g eCOS1; R) for which \g—g0\C(sι;R)<c.

Proof. Take /z>0 so that

(4.4) sup [_f(g»M+u)-f(g()(xm/u<C+(g0)/2 .
*e51.o<|tίi<A

For geCCS1; /?) for which |^-g 0 lc<5i;Λ)<Λ, take T=T(g, Λ)>0 such that

(4.5) sup | u ( f ; g ) — £0 c ( s ι ; Λ ) < Λ ,
O^ίsΓ

which is possible from the continuity of w(ί, Λ; : g). Then by the Ito formula,

(4.6) u(t, x g)—g0(x)

for Q<t<T. Here WC ) denotes a 1-dimensional Wiener process (see Ikeda and
Watanabe [9]) and we put \_f(a)-f(a)']/l_a-a~\ = df(a)/du. From (4.6),

(4.7) U(t ^)-^0 1 COSl Λ) ̂  I ̂ -^0 I C(51;

for all Ogί^T, which completes the proof from Lemma 2.0 with s— 0. In fact
from Lemma 2.0, u(t, x g) is uniformly continuous and T for which (4.7) holds
can be taken arbitraly large. Q. E. D.

If f(u)— — u/^, then from Proposition 4.1, 0 is an exponentially stable
equilibrium point. If f(u)=u/4, then 0 is not a stable equilibrium point;
u(t, x; c)~ cexp(£/4) is a solution for any constant c, and by the eigenf unction
expansion,
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(4.8) lim\u(t;g)\c(si;R)=0 iff ( g(x)dx=Q.
ί-»oo J S*

The following proposition shows that the convergence in (4.8) is not always
monotone.

PROPOSITION 4.2. For any stationary solution gQ of (4.1) for which

(4.9) C-feo)=lim inf inf [/(λ+£β(*))-/teo(*))]/A>0 ,
7z,-»0 x&Sl

and any α>0, there exists a function g such that I (g(x)—g0(x))dx=Q, such that
Js1

\g-go c(si;R)<a and such that

(4.10) S U p { | w ( f ; g) — g

Proo/. Take /z>0 so that

(4.11) inf [/
^e5i ,o<iM|<Λ

Take a function ^eCCS1; R) such that for 0^%^2^

(4.12) g(x)=e*v(-R x-π

Then

(4.13) \g-g0\c^,R,=g(π)-g0(π)

for sufficiently large /?>0, where we put

(4.14) C(/?)-(2πexp(-^|^-
Jo

For the function g in (4.12), we have, for sufficiently small f>0,

(4.15) u(t, π;g)-gt(π)

Let us prove (4.15). By the Ito formula, for O^ί,

(4.16) u(t, π;g)-g,(π)
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-s, π+W(s) g))-f(g/)(π+W(s))) ]

/\_u(t-s,

Take T=T(g, Λ)>0 as in (4.5). Take <5>0 for which

(4.17) exp(-Rδi)-C(R)>Q.

Then there exists Cl = Cι(δ)>Q such that

(4.18; u(t,π;g)-gl,(π)

^ E Γ {exp ( - RW(t)1) -C(R)}/R

f-s, π+W(s);g))-f(go(π+W(s)m

/Lu(t-s, π+W(s);g)~g,(π+W(smds , sup

-C(/?)/Λexρ(fC(/))P(sup

-2C(R)/R exp (ίC(/))P( sup

-2C(R)/R exp (ίC(/)) exp (- d/ί)

for sufficiently small T(g, Λ)>ί>0, by the large deviations theory. Here C(/)

denotes the Lipschitz constant of /(w), and we considered as follows

(4.19) P(sup \
OgS^ί

<2suρP(\W(s)\^δ/2) (see Freidlin and Wentzell [7], p. 151, line 5)

for sufficiently small ί>0 (see Freidlin and Wentzell [7], Chap. 3, section 2).
The last part of (4.18) can be estimated as follows;
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(4.20) E^v(-RW(ty}-C(R)~]/Rz*v(tC-(g»

-2C(R)/R exp (tC(f)) exp (-CJt)

-2C(R) exp (tC(f)-tC-(g0)/2- C

and

(4.21) [l

-2C(/?)expftC(/)-ίC-(ίro)/2-C1/0}

(for sufficiently small ί>0)

for sufficiently small ί>0. In the second and the third inequality, we used the
following, respectively

(4.22) l-x^exp(--3;c/2) for sufficiently small *>0,

(4.23) 1— exp( — Λ:)^Λ:, for ; t>0.

Q. E. D.

From Proposition 4.2, the behavior of u(t;g) on C(S1;R) and that on
L^S1 R) are not always the same for small f >0. By the following proposi-
tion, they are similar to each other for sufficiently large £>0.

PROPOSITION 4.3. For any s, ί>0, any g<^C(Sl;R), and any stationary
solution go of (4.1)

(4.24) I u(t g)-g0 1 Lusi n^&π)1'* u(t g)-g0 \ ctsi-.

(4.25) \u(t+s ^)-^olc(siiJί) exp(-C(/)s)

Proof. (4.24) is trivial. Let us prove (4.25). By the Ito formula, for 0<s
and ί,



LIMIT THEOREMS ON THE EXIT PROBLEMS 67

(4.26) u(t+s,x;g)-gt(x)\

= ε[te(x+W(t+sϊ)-gt(x+W(t+s))}

-α, x+W(a); g))-f(

/[u(ί+s-α, x+W(a) *)-

£[exp(j|[/(M(f+s-α, x+W(a); g»-

/\_u(t+s-a, x+W(a) g)-go(x+W(a)ft

X { u ( t , x+W(s);g)-gt(x+W(s))}]\

(from the Markov property of W( ))

The last part of (4.26) can be estimated as follows

(4.27) £[{w(f,

{u(t,
R

and for any integer k,

(4.28) [U (*+ 1 ){κ(
J2r *

^exp(-(2min( | fe | , I ^ + l|)7r)2/(2s))(27rs)-1/2 | u(t ^)-

which completes the proof. Q. E. D.
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