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NECESSARY CONDITIONS FOR MINIMAX CONTROL

PROBLEMS OF SECOND ORDER ELLIPTIC

PARTIAL DIFFERENTIAL EQUATIONS

BY JIONGMIN YONG

Abstract

In this paper, we study an optimal control problem with the state equa-
tion being a second order semilinear elliptic partial differential equation con-
taining a distributed control. The control domain is not necessarily convex.
The cost functional, which is to be minimized, is the essential supremum
over the domain Ω of some function of the state and the control. Our main
result is the Pontryagin type necessary conditions for the optimal control.
Ekeland variational principle and the spike variation technique are used in
proving our result.

§ 1. Introduction.

In this paper, we consider a controlled second order elliptic partial dif-
ferential equation

f -Ay(x)=f(x, y(x), u(x)), in Ω,
(1.1)

I 3>lao=0,

where Ω is a bounded region in Rn with a smooth boundary dΩ and f:Ωx

RχίI^>R is a given map satisfying some conditions. U is a metric space in

which the control variable u(-) takes values. Function jy( ) is called the state

of the system, which is to be controlled. Under certain conditions, for each

measurable function w( ), problem (1.1) admits a unique solution y( ) = y(- u(-))
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in some function space, say <y. Then, for a given set QQ<y, we may consider
a state constraint of the following type:

(1.2) y( ; « (

Next, we let h: ΩxRxU-^R and consider a cost functional

(1.3) /(n(.))=esssup h(x, y(x M( )), U(X)) .
XΪΞΩ

Then, our optimal control problem is to find a control u(-) such that the cor-
responding state y{- w( )) satisfies (1.1)-(1.2) and minimizes the cost functional
(1.3).

One of the motivation of our problem is the following: Suppose we would
like to control the state y(-), which is subject to (1.1)-(1.2), so that the largest
deviation of it from the desired one, say z(-), is minimized. In this case, we
need only to take

h(x, y, u)=\y—z(x)\*.

Since the problem is to minimize a "maximum", it is usually referred to as
a minimax control problem. Similar problem for ordinary differential equations
was studied by several authors, see [2, 3, 14]. The purpose of this work is
to derive Pontryagin type maximum principle for optimal controls of our pro-
blem. Since the cost functional is not smooth (in some sense), we adopt an
idea from [2, 3] to approximate it by the Lp-norm of function h(x, y(x), u(x))
and then let £->oo. In order the Ekeland variational principle applies, we need
the stability of the optimal cost. Namely, we need to show that the optimal
cost of the approximating problem approaches to that of the original one. Due
to the state constraint, we have to impose a condition to ensure such a stability.
On the other hand, since U is merely a metric space, and there is no convexity,
we use the spike variation technique as [7, 12, 21] in deriving the maximum
principle. We have proved the nontriviality of the Lagrange multiplier. It
should be pointed out that in [2] (for ODE systems with no state constraint),
the nontriviality of the Lagrange multiplier was not mentioned. Finally, we
note that the proof of [2] heavily relied on the dynamic programming and
viscosity solutions for HJB equations. These techniques, however, are not ap-
plicable for elliptic systems since we do not have the time variable here.
Besides, unlike in [2], we will not use the epi-convergence. For the comple-
teness, in this paper, we also present an existence result of optimal controls,
whose proof is basically similar to that given in [20], which was for Lagrange
type cost functional.

We refer the readers to [4, 14, 15] for standard optimal control theory of
finite dimensions, to [1, 5-7, 11-13, 18-21] for infinite dimensional counterpart.

To conclude this introduction, let us point out that our approach applies
to general second order elliptic partial differential equations, namely, we may
replace the Laplacian by a general second order elliptic operator with smooth
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coefficients. Also, we may consider quasilinear systems, boundary control pro-
blems as well as problems for parabolic equations. Some interesting extensions
will appear elsewhere.

§ 2. Preliminaries.

Let us start with some assumptions which will be assumed throughout of
the paper. Let Ω^Rn be a bounded region with a smooth boundary dΩ and
U be a Polish space ([10]). Let /, h: ΩxRxU-^R be given maps satisfying
the following:

( i ) f(%, y, u) and h(x, y, u) are differentiate in y and for some constant
L>0,

(2.1) 0<-fy(x, y, u), \f(x, y, u)\^L, V(*, y, u)

(2.2) \hy(x, y, u)\, |A(JC, y, u)\£L, V(x, y9 u)^

(ii) Maps /(#, 3;, M), /^(X, y, u), h(x, y, u) and hy(x, y, u) are continuous
on ΩxRxU.

Remark 2.1. The above conditions can be relaxed substantially, say, / a n d
/ y are merely measurable in x, the boundedness of / and h is replaced by the
linear growth in y, etc. We prefer not to get into such a generality since the
result will be similar and the main idea is the same.

Next, we define

<υ={u( ) : β->£/|tt( ) measurable}.

Any element u{-)kΞcU is referred to as a control. From [9, 17], we know that
under the above ( i ) , for any u( )ζΞcU, problem (1.1) admits a unique solution
y(-) = 3>(* "(•)) ''ΞW2'P(Ω)Γ\WI'P(Ω), for all p^l. Moreover, there exists a
constant C — C(p, L, Ω) such that

(2.3) \\y{.) κ(.))lk».p

Thus, by Sobolev embedding theorem, we have

(2.4) ||j/( ; tt( ))llci.«(fi)^C, Vκ( )e=<U,

with the constant C and α^(0, 1) being independent of w( ) Hereafter, C
will be a generic constant which could be different in different places. Now,
we let p>n be fixed and let ^ be a separable Banach space containing W\'P(Ω)
(topologically):

(2.5) y^Wl'p(Ω).

We let Q^ky be convex and closed. Then, by the above analysis, we see that
for any ui^tΞΊJ, we have
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(2.6) y( ; M( ) ) ^ .

Thus, the state constraint (1.2) makes sense. It is important to notice that
(1.2) includes many interesting cases. Let us point out some of them. We let
cg=C(Ω) and

(2.7) Q={y(')^cy\y(Xr)=aι, l^i£m} ,

for some xt^Ω, at^Rf l<,i<,m. Under this choice, (1.2) gives a pointwise
constraint for the state. If we take 4/=L p (β) and let

(2.8) Q = {y(')ey\y(x)^0, a.e.

for some h(')<ΞLp'(Ω)(p' = p/(p-l)), then, (1.2) gives another kind of interest-
ing state constraint. Moreover, it is also possible to replace (2.5) by

(2.9) y

Clearly, (2.6) is still valid. Then, we take Q]=C\Ω) and let

(2.10) Q=iy(')

for some xt^Ωy bi

cΞRn

y l<,z<Lm. Under this choice, (1.2) provides a pointwise
constraint for the gradient of the state. Similar constraints like (2.7) and (2.10)
for other types of optimal control problem were considered in [6, 7, 21]. We
may cook up some other interesting examples of state constraints. In what
follows, we will restrict ourselves to the case (2.5). The case (2.9) will not
be treated in this paper. Some relevant results will appear elsewhere.

Of course, for any given ui-)1-^, the corresponding state y( M( )) does
not necessarily satisfy the constraint (1.2). Thus, let us introduce

l M( )) satisfies (1.1)},

(2.11) JlQ={(y('), u( ))(=JL\y(>)-ΞQ},

), u( ))>=JlQ}.

Any element (y(-), u(-))<=JLQ is referred to as an admissible pair, and any
u(')^cUQ and the corresponding y(- M( )) are called admissible control and
state, respectively. The cost functional is defined as (1.3). Clearly, it is defined
for all w( ) ( ^ ^ Our optimal control problem can be stated as follows.

PROBLEM C. Find W( ) Ξ % such that

(2.12) /(«( ))=jnf/(tt(O).

Now, let us make some reductions. First of all, by scaling, we may assume
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(2.13) | f l |=measfl=l.

Next, we let

(2.14) h(x, y, W ) = - M ^ | ^ _ ^ ± I , V(x, y, u)^ΩxRxU.

Then, by (2.2), we know that

1 9 ϊ 4-1
( 2 Λ 5 ) 0<-2(1+1) » ' >• " ^ ϊ l ϊ i ) α V ( x ' * " > G f l x J l x £ 7

On the other hand, it is clear that to minimize /(M( )) is equivalent to minimize

y(tt( ))=esssupΛ(*, 3;(χ; M(.)), W(X)).
xe.Ω

Hence, without loss of generality, we may assume

(2.16) 0<a£h(x, y, u)<b<l, V(*, y, U)SΞΩXRXU.

We will keep assumptions (2.13) and (2.16) in the rest of the paper. Clearly,
under this assumption,

(2.17) esssup/ι(x, y{x), u(x))=\\h( , y(-), u(.))IU«(ί?)
x&Ω

To conclude this section, let us present an existence result for the optimal
controls. Now, we define

e(x, y)={(λ°, λ)cΞRxRn\λ°^h(xf y, u),
(2.18)

λ—f{x, y, u), for some IKΞU} .

Then, the following result holds.

THEOREM 2.2. Let β{x, y) be convex and closed for each (x, y)^ΩxR, let
JIQ be nonempty. Then, Problem C admits at least one solution.

Proof. Let {uk(')\ k^1d
cLJQ be a minimizing sequence of Problem C and

yk(') = y( uk(-)) be the corresponding states. Then, by (2.3), we may assume
that

yk(')^->y(')> in cφ),
(2.19) iv

yk(-)-^y('), in W*'?(Ω).

We may also assume
w

/(•, y„(.-), «»(•)) — /(•), m
(2.20) w

h{ ,yk{ ),uk{ ))^h{-), in
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Thus,

, -Ay(x)=fW> in Ω,
(2.21) {

On the other hand, by definition

(2.22) (h(x,yk(x),uk(x)),f(x,yk(x),uk(x)))c~e(x,yk(x)), a.e. x<=Ω.

Then, by Mazur's theorem and (2.19)-(2.20), we obtain

(2.23) (£(*), / ( * ) ) ΞCO£(X, y(x))=€{x, y(x)), a. e. x :=fl.

Now, by a Filippov type theorem ([20, 10]), we can find a u(-)^cU, such that

h(x)>h(x, y { x ) , ( ) ) ,
(2.24) ^ a.e. x e β .

1 / ( ) / ( () ())

Clearly, (j/( ), U('))<=ΞJIQ is an optimal pair. •

We see that the proof of the above result is very similar to that given
in [20].

§ 3. Necessary Conditions.

In this section, we state the Pontryagin type necessary conditions for
optimal controls of our Problem C. The proof will be carried out in the next
sections.

Let U( ):=CUQ be an optimal control and y(-) be the corresponding state.
We impose a further assumption.

(H) Let (yk(-), uk(-))t=Jl satisfy

where

d(y('), Q)= inf \\y(-)—g(')\\y.

Then,

(3.2)

This assumption seems crucial in our approach. We do not know if one
can remove this condition. Similar condition was used by the author in [19]
for treating nonsmooth problem. We will make some remarks on this assump-
tion a little later. Next, for any ui^^HJ, we introduce the variational system
associated with (5( ), «(•)), as follows:
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f -Az(x)=fy(x, y(x)z(x), *(*))+/(*. y(x), u(x))-f(x, y(x\ u{x)\ in Ω,
(3.3)

I z\aΩ=0.

Clearly, under our assumptions, for any w( )^TΛ there exists a unique solution
z( M( ) ) e ^ of (3.3). We define

(3.4)

This is called the reachable set of the variational system (3.3). It is clear that

We say that QcQf is finite codimensional in 0} if there exists a point Z<ΞQ,
such that span {Q—z} is a finite codimensional subspace in Qf and the relative
interior of cδ{Q—z} in span {Q— z\ is nonempty. It is not hard to see that
in the definition of codimensionality, the choice of the point z^Q is irrelevant.
Now, let us state our main result of this paper.

THEOREM 3.1. Let C5>( ), U(-))(ΞJIQ be optimal and let (H) hold. Moreover,
let Q be finite codimensional in <y. Then, there exist (ψ°, y>)e[—l, 0]X4/*\{0},

iκ<=(L-(0))*\{O} and ψ(')^Wl p'(Ω), pf = p/(p-l) a (1,
such that

[ -Λφ=fy(x, y(x), ΰ(x))ψ(x)+ψ°hy(x, y{x), ϋ(x))μ+φ,
(3.5)

(3.6) s\xppμ^{x^Ω\h(x, y(x), «(*))=||

(3.7)

(3.8) <sp, q ( - ) -

(3.9) ψ(x)f(x,$(x),ΰ(x))=maiXψ(x)f(x,y(x),u), a. e. xefl,,

(3.10)

(3.11)

/n ί/iβ case that h(x, y, u)=h(x, y), Ωo can be replaced by Ω, U{x)—U and U
can be any metric space.

In the above, we refer to (3.5) as the adjoint system, which is understood
as an obvious weak (or variational) sense. Condition (3.6) is understood as the
following: For any S c β 0 ,

(3.12) μ(S)=<μ,Zs>=0.

We refer to (3.8) as the transversality condition and (3.9) as the maximum
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condition. We see that if ψ( )Φ0, then, (3.9) gives some restriction on the
optimal control U{ ). Whereas, if ψ(-)=0, then, (3.9) is trivial. But, (3.5) tells
us that

(3.13) ψ"hy(x, y(x\ U(x))μ+φ=0.

This implicitly gives some restriction on ΰ{ ). By (ψ°, φ)Φθ, we know that
(3.13) is a nontrivial condition. Also, we should note that if

(3.14) h(x, y(x), ΰ(x))=\\h(>, y( ), U( ))\\L~ω,, a.e. x^Ω,

it could be that meas Ωύ—φ. When this happens, (3.9) does not tell us anyth-
ing. But (3.14) has already given us something.

To conclude this section, let us make some comments on (H). First of all,
if Q—y, i.e., there is no state constraint, then, (H) holds. Sectondly, if for
each (x, y)*ΞΩxR, the set f(x, y, U) is convex and closed, and h(x, y, U)ΞΞ
h(x, y), then, (H) holds. In fact, in this case, if (yk(')> uk(-))^Jl satisfying
(3.1), then, we can show that there exists a pair (j/( ), u('))^JLQ, such that
for some subsequence,

(3.15) \\yk(')-y(')\\wuPω,—^0.

Thus,

(3.16) m<J(u(-))£\imJ(uk(.)).

It is not hard to see that actually, if the conditions of Theorem 2.2 hold, then,
(H) holds. Hence, assumption (H) is very general.

§ 4. Approximation of the Control Problem.

Let us first give several results for elliptic equations.

LEMMA 4.1. Let C( )<ΞL°°(Ω), C(X)<0. Then, for any r>n, there exists a

constant C — C{r, ||c( )ilz«», Ω), such that for any solution z(-) of

ί —Az(x)=c(x)z(x)+g(x), in Ω,
(4.1)

I z\ao=0,

with g(-)ϊΞLr{Ω), it holds

(4.2) \\z{')\\w2,nΩ^C\\g{<)\\Lr{Ω,.

Proof. First, by [9, 16], we know that

(4.3) |l̂ ( )llL-(fl)^C||^(.)IUr(ί?),

with C=C(r, \\c\\Loof Ω). Then, by standard Lp-estimate, we obtain
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lk( )lk«.r(
(4.4)

This proves (4.2). •

COROLLARY 4.2. Let M( ), U(')~HJ and

(4.5) E = {xe-Ol M ( * ) - £ £ ( * ) } .

Lβί y( ) and j>( ) &£ ίΛβ sίαto corresponding to w( ) and M( ), respectively. Then,

(4.6) II^O

w/Λ̂ re C is independent of w( )

P r ^ / . Let ^( )=^( ) - K ) Then, *(•) satisfies

-Δz(x)=/(x, y(Λ), u(x))-f(x,

(4.7) = J/» ( A : ' y(x)+θz(x), u{x))dθz{x)

+ lf(x, yW, u(x))-f(x, y{x), u(x)WE(x).

Thus, by Lemma 4.1, we obtain

!W )lk2.r(
(4.8)

This gives (4.6). D

Now, let r ^ l . We define

(4.9) Jr(u(>))=(^Ωh(x, y(x M(.)), w(x

and let

(4.10) m r = inf Jr(
COeV

The following result is the stability of the optimal cost. This result is crucial
in the sequel.

THEOREM 4.3. Let (H) hold. Then, it holds that

(4.11) limmr=m=inf/(M(.)).
r-+oo VQ

To prove this result, we need the following lemmas.
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LEMMA 4.4. There exists a nondecreasing continuous function ώ: [0, oo)->
[0, oo) with cD(O)=O, such that for any (y(-), u(-))(=J, and a=R, there exists an
(y( ), U( ))<ΞJI satisfying

(4.12) h(x,y(x),fί(x))<a+ώ(\Ma\)9 a.e. xefl,

where

(4.13) Ma={xr=Ω\h{x, y(x), u(

and

(4.14) E={x

Proof. If I Mα I =0 or I Mα I =1 (recall | fl | =1), (4.12) is trivially true. Thus,
we let 0 < | M J < l . Let δ>0 be such that

(4.15) | M J < | ^ ( 0 ) | < 2 | M J ,

where 0§(x) is the open ball centered at x with radius δ. Then, we can choose
XI^ΞΩ, such that

(4.16) \JOδ(xt)^Ω.

By (4.15), we know that for each z^l, there exists an xι

zΞθδ(xι)\Ma. For
such xlf we know that

(4.17) h(xu y(χx), u

Then, we define
f u{x), x<~Ω\Ma,

(4.18) u(x)=\

Clearly, (4.14) holds. By Corollary 4.2, we know that there exists a constant

C, independent of w( ) and u(-), such that (j?( )=^( #(•)))

(4.19)

Now, for any xcΞΩ\Ma, we have (let ωΛ( ) be the modulus of continuity for

K%, y(χ)> U(x))=h(x, y(x), u(x))
(4.20)

For

Λ(Λ:, y{x), u{x))=h{x, y(x), u(xt))

(4.21) £a+ωh(\x-xt I +1 y(x)-j?(x)l +1 y(X%)-y(x)\)

^a+ωh(δ+C\Ma\
1>p+Cδ)<a+ωh(C\Ma\).
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Hence, (4.12) follows. Here, we have used the fact that the continuity of
y(x w( )) in x is uniform in M( ) G ^ (see (2.4)). D

LEMMA 4.5. Let (H) hold. Then, for any sequence (yr(')> ur( ))*ΞJί with

(4.22) \imd(yr( ), <?)=0,
r-+oo

it holds

(4.23)

Proof. Suppose (4.23) is not the case. Then, for some ε>0 and some
subsequence (still denoted by itself) (yr( ), ur( ))^J-Q, we have

(4.24)

Let

(4.25) Mr={x<~Ω\h(x, yr(x), ur(x))>fn-ε\.

Then,

(4.26) m-2e^Qh(x, yr(x), ur{x))rdx)''*^(m-ε)\Mr Γ
/r.

Thus,

(4.27) I Mr I ̂

On the other hand, by Lemma 4.4, there exists a (j?r( ), #r( ))<Ξ<Λ such that

(4.28) h(x, yr(x), ur(x))£m-ε+ώ(\Mr\),

and

(4.29) \{x^Ω\ur(x)Φur(x)}\£\Mr\ — > 0 .

Thus, Corollary 4.2 tells us that

d{yr{-\ Q)<C\\yr(.)-yr( yiw2,pω,+d(yr( ), Q)
(4.30)

£C\Mr\
l»+d(yr{-),Q)—*0.

Hence, by (H), we obtain

(4.31) limesssup/i(x, yr(x), ύr{x))^fn.
r-»oo XGΩ

This contradicts (4.28). Thus, (4.23) holds. •

Proof of Theorem 4.3. First of all, we have (recall 1421=1)
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(4.32) Jr(u(-))<J(u(')), Mu

Thus, it follows that

(4.33) \ϊmmr<Lm.
r-*oo

On the other hand, there exists (yr(-), ur(-))eiJlQ, such that

1
(4.34) Jr(ur j

Noting that yr(*)^Q, by Lemma 4.5, we have

(4.35)
T -»oo

Hence, our conclusion follows from (4.33) and (4.35). •

The idea of the proof for above result is taken from [3]. We have seen
that assumption (H) plays an important role.

§ 5. Proof of Theorem 3.1.

In this section we present a proof of Theorem 3.1. We first assume h
depends on u.

Let ΩoΦ0 (otherwise, there is nothing to prove). We introduce the so-
called Ekeland distance in <U:

From [8, 12], we know that (CI7, d) is a complete metric space. Now, for r > l ,
we define

(Γ / 1 \+Ί2 ϊ 1/2

ί1r(M( ))={[(/r(M( ) )-mr+-) J +</«(?(• I «(•)))*} ,

Then, it holds that

f F r(M( ))>0,
(5.2) I

Here, we have used Theorem 4.3. Thus, by Ekeland variational principle ([8]),
we can find a ur( )<^cU, such that

(5.3)

d(ur( ), u( ))^Vσr

Fr{ur(-))<Fr{U{-)),
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Next, we let s>0 such that (noting ΩoΦ0 and m=| |λ( , j>( ), U(')\\L°°^)

Then, we let

(5.5) Us(x)={u(=U\h(x, y(x), u)<Lm — s),

and define

(5.6) Γs(x)

It is clear that Γs: β->2ί/ is measurable and takes closed set values. Thus,
by Filippov's lemma ([10]), there exists a measurable selection vi^^HJ with
v(x)^Γg(x), a. e. x^Ω. We let cvs be the set of all such selections and let
HJl be the set of all w( )e<U given by

(5.7) (H

with y( ) G Φ j . Next, we fix any ui^^ΊJΐ. For any ^^(0, 1), let us make a
spike variation to the control: Let EpaΩ be undetermined satisfying

(5.8) \Ep\=p\Ω\=p,

and define

ur(x), x<=Ω\Ep,
(5.9) . . ,

x<^Ep,

Thus, up

r(>) is obtained by changing the values of wr( ) only on the set Ep.
Due to the fact that there is no convexity for U, only such perturbations are
allowed. Then, we see that

(5.10) d(ur('), up( ))£\Ep\£p.

We let yr(') and yp

r( ) be the states corresponding to the controls wr( ) and up

r( ),
respectively. From [7, 21] (see [11, 12] also), we know that there exists a set

satisfying (5.8), such that the following hold:

(5.11)

and

( (1--ZEP(X))LKX, yr(x), u(x)Y-h(x, yr(x), ur{x)γ-]dx=o{l),
(5.12) J i 2 V 9 p f
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where zr( ) is the solution of the following problem:

—Azr(x)=fy(x, yr(x), ur(x))zr(x)

(5.13) , 3>r(*), u(x))-f(x, yr(x), ur(x)), in Ω,

By (5.3), we see that as r-»oo,

(5.14)

w
>

s

m

in

with e( ) being the solution of

-Az(x)=fy(x, y(x), ΰ(x))z(x)

(5.15) f(x,y(x),u(x))-f(x,y(x),u(x)), in fl,

Now, taking β(.)=w£( ) in (5.3), we obtain (note (5.10))

where

(5.17)

and

(5.18)

' hr(x)=h(x, yr(x), ur(x)),

hr(x)=hy(x, yr(x\ ur(x)),

. δhr(x)=h(x, yr(χ), u(x)Y-h(x, yr{x\ ur(x))r,

ψ°r =
(Jr(ur( ))-mr+l/r)+

h (x v (x^Y'1

, (χ)— nr^X> Ur\XJ)

l|Λr( , Ur(>))\\lr}Q

_ dQ(yr(-))VdQ(yr( ))
ψr = Fr(ur{ ))

We should note that ψτ is always defined. It is clear that ([11, 12, 21])



MINIMAX CONTROL PROBLEMS 483

(5.19) (ψW+WφΛi/*^.

The function μr(x)^0 satisfies (note (2.16))

( 5 , 0 )

= I|A( , yΛΊ ur(-))huQ>^a, Vr>l ,
and

(5.21) \ΩμΛx)dx£\\μr(-)hr,(r-iUΩ> = l, V r > l .

Then, we may assume

(5.22) μr(.)-l>μ, in (L-(β))*,

for some μe(L°°(β))*. By (5.2)-(5.3), we have

(5.23) limFr(Mr( ))=0.

Thus, it follows from the definition of Fr(u(-)) that

(5.24) ί ίm/ r (u r ( ) )^m.
r -»oo

Then, combining with Lemma 4.5 and (5.3), we see that

(5.25) lim/ r(w r( ))=m.
r-nx>

Hence, by the definition of u( ) (see (5.7)), we obtain

K*, >r(*),δhrjX) ^/ r («r(O)f f K*, >r(*), vW) V Λ

rJr{Ur{ )Y-ldX= r Jfl.V /r(U r( )) ^

(5.26) <A( (h(x,y(x),v(x))+εrγdχ

r }ΩS\ m — εr /

r )Ω\ m—εr

where εr—>Ό. On the other hand, by the convexity of Q, we have

(5.27) <φr, q(')-zr(')>£0, V (̂ ) e Q .

Hence, by the finite codimensionality of Q and (5.19), similar to [21], we may
let

(5.28) \
{ ψr — > φ, in

for some (ψ\ ^)e[0, 1]X^*\W. Thus, we take limits in (5.27) to obtain the
transversality condition (3.8). Next, we take limits in (5.16) to obtain
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(5.29) 0£φ\μ, hy{'} y(>), «(•))*(•)> + <£, *(

Here, <&s is the reachable set of (3.3) with ui^^Vs. Then, we let

(5.30) ψ°=-φ°, φ=-φ,

which changes (5.29) to the following

(5.31) 0^φ\μ, hy(>, y(-\

We let φr(')^Wl'p'(Ω) be the solution of

(5.32)

By [1, 10, 16],

(5.33) I

Then, we may let

[ φr—>φ, in WUP'(Ω),
(5.34) { ,

[ φr —> φy in Lv (Ω).

Clearly, φ(-) is the solution of (3.5). Then, combining (5.31) with some straight-
forward computations, we can obtain

(5.35) 0^\ φ(x)ίf(x, 5f(x), v(x))—f(x, y(x), ΰ(x))2dx, VfC )^^** s>0.

Thus, the maximum condition (3.9) follows. Now, we show (3.6). If it is not
the case, then, there exists a set SczΩQ, such that

(5.36)

and for some ε>0, ro>l,

(5.37) h(x, yr(x), ur(x))<m-2e,

On the other hand, for r large enough, one has

(5.38)

Hence,

(5.40)

This contradicts (5.36). Thus, (3.6) holds. Finally, from (5.20) we see that
(3.7) holds.

In the case h is independent of u, δhr=0 and we can carry out the proof
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without considering Ωs and <US etc. Thus, the final conclusion of Theorem 3.1
follows. •
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