T. MURAI
KODAI MATH. J.
16 (1993), 355—360

INTERFERENCE OF TWO AEROPLANES
By TAKAFUMI MURAI

1. Introduction

We are concerned with the interaction problem in aerodynamics, and the
purpose of this note is to show the interference of two aeroplanes in terms of
the aerodynamic force (i.e. the lift). We confine ourselves to the 2-dimensional
theory, because the 3-dimensional force is considered as the integration of the
2-dimensional force, and the 2-dimensional results fit sufficiently for actual
phenomena. The density of our fluid is denoted by p; this is a constant. The
2-dimensional frame is set up by the observer in an aeroplane. Our flow is 2-
dimensional, steady, incompressible and irrotational. Navier-Stokes’s equation
with a constant viscosity is assumed. This is equivalent to assuming Euler’s
equation of motion, because the viscosity term vanishes from the irrotationality.
Let I', (=1, 2) be two compact sets in the complex plane C such that the bound-
ary 0I", of each [7, is a smooth Jordan curve except one sharp edge (i.e. the
trailing edge) a, with intersection angle 0. This is a model of the section of two
aeroplanes. An anti-analytic function Ff(w)=u-d (i.e. df/0w=0) in a fluid
domain 2=C\U{co} —(["\\UIl,) is regarded as a steady flow obstructed by I',\Ul";
i.e. (u, v) means a 2-dimensional velocity field at this instant. The value c=
f(0) means a uniform flow at infinity, and we consider that the flow f is in-
duced by the uniform flow ¢. We say that f satisfies the kinematic boundary
condition (KC) if f(w)dw is real-valued on 02— {a,, a,}, where the orientation
of dw is chosen so that 2 lies to the left. This condition means that the
streamlines associated with F coincide with the configuration of I",\/I", on the
boundary. We say that f satisfies the Kutta-Joukowski condition (KJ) if the
boundary values f(a,) (=1, 2) exist at the trailing edges a, (=1, 2). There
exists uniquely a flow f. in the fluid domain @ satisfying (KC), (KJ) and (o)
=c¢. The aerodynamic force (i.e. the lift) induced by the uniform flow ¢ and
'\ UTI, is defined by

LTy, O=—i|, pw)dw,

where p.w) denotes the so-called static pressure i.e. a real-valued function
satisfying
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pw)+£ | fo(w)*=Const  (w=2).
The lift coefficient of I",\UI", is defined by
LT\ U)=max | £L(I\UT, ¢%)].
0sfs2rn

The lift .£(I",, ¢) and the lift coefficient .£(/";) are defined analogously (7=1, 2).
We show the following

THEOREM. L\ )< LU )+L().

This inequality is sharp in the following sense. For two smooth arcs I,
(7=1, 2) also, the lift coefficients .L(I"), L(Iy), L{I"\\UI;) are defined analogously
once an endpoint of each 7, is chosen as the trailing edge. The equality
LI\ IM)=(")+.L(7) holds, if I';cR (=1, 2) and the right endpoint of
each segment is chosen as the trailing edge. Here R denotes the real line.
We remark that .£(/,\UI), I''UI,+ @ is not positive in general ; take [',=
[—2, —1] and [I,=T[1, 2] with the trailing edges +1, for example. The sub-
additivity of |.£(-, ¢)| for a fixed ¢ does not hold. The airfoil data is seen in
[AD, G]. This paper is motivated by Suita’s subadditivity [S] of analytic
capacity, and his method plays an important role.

2. Proof of Theorem

Throughout this section, I, (j=1, 2) are smooth Jordan curves except the
trailing edges a, (j=1, 2), E=I"\\Ul", and 2=C\U{>} —E. We begin by not-
ing some basic facts. The zero lift direction 6, is a real number satisfying
L(E, ¢!%)=0, and the maximum lift direction 6, is a real number satisfying

L(E, etm)y=ie%n L(E).

The following facts are elementary and interesting in themselves (cf. [M1, pp.
158-162]). Suppose that .L(E)+0. Then

(1) The maximum lift direction 8, is unique (mod 27).

(2) There exist two zero lift directions and 6,=60y+7/2 (mod 27).
(3) L(E, Uet?)=U?e* cos (0—0y).L(E).

4) f.#0 in Q for all c=C.

It is not meaningless to recall that an aeroplane can fly with the aid of the
power 2 in (3). Since the proof of these facts is analogous as in [M1], we
omit the proof and note only that Blasius’s formula [M2, p. 173]

L(E, ¢)=2rpcCir(fo)
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plays an important role in the proof, where Cir(f.) denotes the circulation i.e.

Cir(fo= g fw)duw.

First Step. We divide the proof into two steps. Let E.,={a,, a.}, F=
[by, €1 J\U[bs, cs]R, Fo,=1{bs, ¢y, bs, ¢c;}. We choose F so that there exists a
conformal mapping

pQ=e*+do+d,/C+ - (lal<m)
from F°¢ onto 2. In this step, we show that
®) L(E)=7mp(c,—bi+cy—bs).
From a flow g=(f.,°¢)(-)¢’(-) outside F, where ¢,=e'’». Then
g(o)y=ePur® (=gt say).
A simple calculation shows that g is expressed as

N =, p_ 1
g(C)—cosﬁ—i-zsmO{Jl;Il\/c_bj +(AC+B)JI=11 V(b }

—05)(C—c5)
for some A, B=R, where the branch of 4/ is chosen so that +/x >0 (x>0).
Let {,=¢'(a,) /=1, 2). First we prove (5) assuming that
6) L1, GeEFen .

Comparing the configurations of dF° and 02, we obtain ¢'({,)=0 (=1, 2), and
hence g({;)=0 (j=1, 2). Thus

i— ez 1 _
. {H\/C b +B) I=I 1@ b;)(Cl—cj)l}Sma €, cos 6
Lo—cy|
{H\/ Lm b;)(Cz—cj)l}Smﬁ—sZ s,

where ¢,=1 if {, is contained in the upper boundary, and e,=—1 if {, is con-
tained in the lower boundary. By (7), it follows that

(AL, +B) sin 0=—[(& —c )l i—co)lsin 0+¢, H \/|(C1 J)(Cl c;)lcos @

(AL+B) sin 0= (L:—c.)(Loa—¢2)| sin O —c¢, H VI (&2 bj)(Cz—CJ)|COS 0,

and hence
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A sin 6= [(Ce—c)(Ce— 02C)I+C|(C1 ¢ )(i—ca)i sin

— (e T VIGEEIG e + e T VTG BG—)l foos 6

=(c;—{i+e,—Es) sin 6

— (e T VIGBIETE e I VTG feos 0.
We have

L(E)=2rp|Cir(f¢))| =27 p|Cir (g)!

c,—bi+c.—b,

:2”91 2

ﬁnO—AsmO'

®) =220 | {2 70F =0 (ot 4 e ) sin 0

+ oo T VIG=BXG= e +a 1V IG—bG =2 poos 0]

§2np({5‘:-[)‘——|_2—621~(61~cl+62—é12)}2

1

(Cz Cu)? {,IIl \/I &— J)(Cl CJ)I + II \/m}z)lm'

Let
1=81—by, m=c;—§, x=b,—c,, L=0y—byy, M=c,—(s.

Then the last quantity in (8) is equal to

an({l—m+2L—M}2

{\/lm(x+m)(x-|—m+ LMY+ ~VIMx+ L) x+H+m+ L)} )”2
x+m- L

=2rp {(b—_m%éi/l)z_*_}{}llz , say.

Since

=(7+—7;1;-T)2_ {Im(x+m)x+m+L+M)+LM(x+ L) x+I+m+L)

+2IM (x+m)(x+ L) vmL(x+m+ L+M)x+I+m-+ L)}
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1 ,

ém{1m(x+m)(x+m+L+M)+LM(x+L)(x—|-l+m+L)
+IM(x+m)(x+ L)+mL(x+m+ L+M)x+I+m+ L)}

1
(x+m+ FL)?

+({+ LYm+M)m+ L)} =+ LY(m+M),

{(+ L)(m+M)x*+2(+ LY (m~+M )m+ L)x

we have
2mp (I ) s (T m+L M rar Domt )

<mo(l+m+L+M)=mp(c;—b,+cs—bs).

Thus (5) holds in the case of (6).

In the case where (6) does not hold, we take a small number ¢>0 and
modify E so that the complement of the modified set K. is conformally equi-
valent to F°, the trailing edges of E. satisfy (6) and .L(E)<.L(E.)+¢e. Then

-f(E)évf(Es)'i’Eéﬂp(cl_b1+02—b2)+5 .

Since ¢>0 is arbitrary, we have (5).

Second step. 1t is sufficient to show that
) mo(c;—bpy< LUy (=1, 2).
This is essentially known; in fact, Suita [S] shows that
(10) c;—b;<4r, (1=1,2),

where r, denotes the outer radius of I',, A simple calculation shows that
L([—2r,, 2r,])=4mpr, (=1, 2). Since each ['{ is conformally equivalent to
[—2r,, 2r,]°, Blasius’s formula yields that .£(/";)=4mpr,. Combining this equality
with (10), we obtain (9). Inequalities (5) and (9) immediately yield the required
inequality. This completes the proof of Theorem.

It seems not worthless to note here Suita’s proof of (10). Without loss of
generality, it is sufficient to prove (10) for y=1. Let ¢, be a conformal mapp-
ing from I'¢ onto D%, such that |@,(w)/w|=1+0(1) (w—<0), where D, denotes
the open disk with center 0 and radius ». The number 7, is the outer radius
of I';.. Let £ denote a conformal mapping from {I_)lejqjl(lﬂz)}c onto a Grotzsch
domain {ﬁriu[bé, cs1}¢ such that |k(w)/w|=1+0(1) (w—o0). Then Rengel’s
inequality [T, p. 409] shows that »;<7,. (The equality does not hold, since
lk(w)/wl=£1.) Form a conformal mapping ¢,=x-d,+7*/(k°¢,) from £ onto
{[—2r1, 2rJULbs+7%/bs, cs+7i?/cs]}e. Then |¢y(w)/w]|=140(1) (w—o0). This
shows that 4r{=c,—b,, and hence ¢,—b,=4r;<4r,. Thus (10) holds.
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