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INTERFERENCE OF TWO AEROPLANES

By TAKAFUMI MURAI

1. Introduction

We are concerned with the interaction problem in aerodynamics, and the
purpose of this note is to show the interference of two aeroplanes in terms of
the aerodynamic force (i. e. the lift). We confine ourselves to the 2-dimensional
theory, because the 3-dimensional force is considered as the integration of the
2-dimensional force, and the 2-dimensional results fit sufficiently for actual
phenomena. The density of our fluid is denoted by p this is a constant. The
2-dimensional frame is set up by the observer in an aeroplane. Our flow is 2-
dimensional, steady, incompressible and irrotational. Navier-Stokes's equation
with a constant viscosity is assumed. This is equivalent to assuming Euler's
equation of motion, because the viscosity term vanishes from the irrotationality.
Let Γ} 0 = 1, 2) be two compact sets in the complex plane C such that the bound-
ary dΓj of each Γ3 is a smooth Jordan curve except one sharp edge (i.e. the
trailing edge) a, with intersection angle 0. This is a model of the section of two
aeroplanes. An anti-analytic function f{w)—u-\-iv (i.e. df/dw=Q) in a fluid
domain Ω=C\J {<*>} —(Γi\JΓ2) is regarded as a steady flow obstructed by A w Γ 2

i.e. (u, v) means a 2-dimensional velocity field at this instant. The value c=
/(oo) means a uniform flow at infinity, and we consider that the flow / is in-
duced by the uniform flow c. We say that / satisfies the kinematic boundary
condition (KC) if f(w)dw is real-valued on dΩ—{aly a2}, where the orientation
of dw is chosen so that Ω lies to the left. This condition means that the
streamlines associated with / coincide with the configuration of Γ1UΓ2 on the
boundary. We say that / satisfies the Kutta-Joukowski condition (KJ) if the
boundary values f(a3) (j=l, 2) exist at the trailing edges a3 0 = 1 , 2). There
exists uniquely a flow fc in the fluid domain Ω satisfying (KC), (KJ) and fc{°°)
— c. The aerodynamic force (i.e. the lift) induced by the uniform flow c and
Λ w Γ 2 is defined by

!, c)= — i\ pc(w)dw,
joΩ

where pc(w) denotes the so-called static pressure i. e. a real-valued function
satisfying
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^\fc(w)\2=Con$t (WCΞΩ).

The lift coefficient of Γ1UΓ2 is denned by

) = max | J : ( Λ W Γ 2 , eiθ)\.
Q θ ϊ

The lift X(Γ]y c) and the lift coefficient X(Γj) are defined analogously (7 = 1, 2).
We show the following

THEOREM. X(Γ1\JΓ2)<X(Γ1)-\-X(Γ2).

This inequality is sharp in the following sense. For two smooth arcs Γ3

(7 = 1, 2) also, the lift coefficients £{Γ,), £(Γ2), X{ΓιVJΓ2) are defined analogously
once an endpoint of each Γ3 is chosen as the trailing edge. The equality
J 7 ( Γ 1 W Γ 2 ) = J : ( Γ 1 ) + J : ( Γ 2 ) holds, if ΓjczR (7 = 1, 2) and the right endpoint of
each segment is chosen as the trailing edge. Here R denotes the real line.
We remark that i ( Λ u Γ 2 ) , ΓxVJΓ2Φ0 is not positive in general; take / \ =
[—2, —1] and Γ2=\l, 2] with the trailing edges ± 1 , for example. The sub-
additivity of |£(-, c)\ for a fixed c does not hold. The airfoil data is seen in
[AD, G]. This paper is motivated by Suita's subadditivity [S] of analytic
capacity, and his method plays an important role.

2. Proof of Theorem

Throughout this section, Γ3 (7 = 1, 2) are smooth Jordan curves except the
trailing edges a3 (/=1, 2), E=ΓιUΓ2 and β=CU{«>}—£. We begin by not-
ing some basic facts. The zero lift direction ΘQ is a real number satisfying
£(E, eίθ°)~0, and the maximum lift direction ΘM is a real number satisfying

The following facts are elementary and interesting in themselves (cf. [Ml, pp.
158-162]). Suppose that £(E)ΦQ. Then

(1) The maximum lift direction θM is unique (mod2π).
(2) There exist two zero lift directions and ΘQ—ΘM±^/2 (mod2π).
(3) X(E, Ueίθ)=U2ieiθ cos (Θ-ΘM)X(E).
(4) fcΦ0 in Ω for all c^C.

It is not meaningless to recall that an aeroplane can fly with the aid of the
power 2 in (3). Since the proof of these facts is analogous as in [Ml], we
omit the proof and note only that Blasius's formula [M2, p. 173]
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plays an important role in the proof, where Cir(/C) denotes the circulation i.e.

First Step. We divide the proof into two steps. Let Een={au a2}, F=
[bu Cι~]\J[b2, c2~]aR, Fen—{bu cίt b2, c2). We choose F so that there exists a
conformal mapping

from Fc onto Ω. In this step, we show that

(5) X(E)<πp(cι-bί-{-c2-b2).

From a flow g=(fCo°φ)(')φ'( ) outside F, where cQ — eiθM. Then

jζ^=eκoM+a) (=e-iβf say).

A simple calculation shows that g is expressed as

=cosθ+isin θ{ Π ^ ή 7 g_^g=

for some J4, B ^R, where the branch of V ~ is chosen so that
Let ζJ=φ'i(a]) 0 = 1, 2). First we prove (5) assuming that

(6) ζ

Comparing the configurations of dFc and dΩ, we obtain φ'(Zj)=O 0 = 1, 2), and
hence g(ζ})=0 0 = 1 , 2). Thus

(7)
Π -/77

l l(
—Cj ^fr} S i n ̂  = £l C0S β

ί 2

π sin Θ —

where ε ; = l if £, is contained in the upper boundary, and ε; = —1 if ζ̂  is con-
tained in the lower boundary. By (7), it follows that

and hence
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A sin θ=
2~ ζl

Π
1

We have

X(E)=2πp I Cir (Λo) | =

-sin θ — A sin

(8) 1—bι

JrC2—b2

a—ζ«)| sin

i-^)(ζi-^7ϊ+ Π
i

Let

l^ζi-bu m=Ci—d, x=bt-cu L=ζ2-~b2, M=c2-ζ2.

Then the last quantity in (8) is equal to

l-m+L-Mγ

x+m+L

s a y >

Since

-{lm(x+mXx+m+L+M)+LM(x + L)(x+l+m+L)
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1
•{lm(x+m)(x+m+L+

+lM(x+m)(x + L)+mL(x+m+L+M)(x+l+m+L)}

+(/+ L){m+M){m+LY} =

we have

/l—m+L—M\2 , τ , i 1 / s > o (/l—m+L—M\2

Thus (5) holds in the case of (6).
In the case where (6) does not hold, we take a small number ε>0 and

modify E so that the complement of the modified set Eε is conformally equi-
valent to Fc, the trailing edges of Eε satisfy (6) and Λ(E)^Λ(Eδ)+ε. Then

Since ε>0 is arbitrary, we have (5).

Second step. It is sufficient to show that

(9) πp{c3-b3)<X{Γ3) (/=1,2).

This is essentially known in fact, Suita [S] shows that

(10) c3-b3<4r3 0 = 1,2),

where r3 denotes the outer radius of Γ3. A simple calculation shows that
£([—2rJt 2r3~])—kπpr3 {j—l, 2). Since each Γ) is conformally equivalent to
[—2r3} 2r3Y, Blasius's formula yields that X(Γ3)=4πpr3. Combining this equality
with (10), we obtain (9). Inequalities (5) and (9) immediately yield the required
inequality. This completes the proof of Theorem.

It seems not worthless to note here Suita's proof of (10). Without loss of
generality, it is sufficient to prove (10) for 7 = 1. Let φx be a conformal mapp-
ing from Γ\ onto Dc

Ti such that \φι(w)/w\=l-]-o(l) (u/->oo), where Dr denotes
the open disk with center 0 and radius r. The number rί is the outer radius
of A Let tc denote a conformal mapping from {Dri\Jφ1(Γ2)\c onto a Grotzsch
domain \Dr>\J[bf

2, c'2~\}c such that \rc(w)/w\=l+o(l) (w->oo). Then RengePs
inequality [T, p. 409] shows that r'λ<rx. (The equality does not hold, since

κ(w)/w\^l.) Form a conformal mapping φi—tc°φιJrrfι'/{ιcoφi) from Ω onto
{[-2rί, 2 r ί ] U [ δ ί + r ί 7 « , cf

2^r[2/cf

2~]}c. Then \φ2(w)/w\=l+o(\) (u/->oo). This
shows that Ar[ — cι—bu and hence cι—bι—Ar[<4:rι. Thus (10) holds.
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