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Introduction.

Let R be an open Riemann surface and V be a union of a finite number
of regular subregions in R with disjoint closures. We assume that R—V is
connected. Denote by Cω(dV) the space of real analytic functions on dV and
by H(R—V) the space of harmonic functions on R—V, A linear operator L
from Cω(dV) to H(R—V) is called a normal operator if L satisfies the follow-
ing conditions:

Lf\dv=f,

min/ ^ L f <J max/,
dv dv

dv

The notion of normal operators was introduced by L. Sario [13]. He constructed
two normal operators Lo and Lx. Here we are specially concerned with L r

operator. If R is a compact bordered surface with smooth boundary, LJ is
characterized by the following additional properties:

i/=constant on βJ9

\. *dLJ=0,

where β, are the boundary components of R. For a general open Riemann
surface R, LJ is defined as lim^oo L\ nf, where {Rn\ is a canonical exhaustion
of R and L?» is the L roρerator from Cω(dV) to H(Rn-V).

Let Γh(R) be the Hubert space of real square integrable harmonic differen-
tials on R and Γh8e(R) be the space of semiexact differentials in Γh(R). Let us
denote by Γhm(R) the orthogonal complement of *Γhse(R) in Lh{R). Then LJ

Received October 14, 1992.

253



254 HISASHI ISHIDA

is characterized by the following properties:
There exist a harmonic function uhm on R with duhm^Γhm(R) and a

Dirichlet potential p on R such that

Lιf=uhm+p
on R—V and

for all dividing cycles c=d£? with ΩaR—V.
In [7], we introduced Γ(ϋi the space generated by the differentials of

generalized harmonic measures and Γhwe the space of harmonic differentials
which have vanishing periods along almost all weakly dividing cycles.

In the present paper we construct a normal operator Llf which is a
generalization of Li-operator. In contrast with Lif, Lj is characterized by
the following properties:

There exist a harmonic function wft on i? with duζύ,<=ΓQi(R) and a
Dirichlet potential p on R such that

Lif=ua+p
on R—V and

for almost all weakly dividing cycles c—dG with GczR—V.
Roughly speaking Lxf takes a constant value on each connected component

of the Royden harmonic boundary of R and *dL1f has vanishing period along
cycles dividing the components of the Royden harmonic boundary.

First, we shall define a finite partition (P) of the Royden harmonic boundary
and define the subspaces (P)Γ^(R) and (P)Γhwe(R) of Γh(R). Further we
shall define periods of a differential along components of the harmonic boundary.

Next, we construct (P)Li-operator and L roρerator. We also study an
extremal property of Li-operator.

Finally, we shall introduce a modulus function obtained from Li-operator
and give an example related to the topic.

1. Preliminaries.

Let R be an open Riemann surface and Γ=Γ(R) the Hubert space of real
square integrable differentials on R (cf. [2]). For ωu ω 2 e Γ(R), (ωly W2)R=

\ ωiΛ*ω2 denotes the inner product of ωu ω2. where *ω is the conjugate dif-

ferential of ω and \\ω\\R denotes the norm of ω on R.

We use the notation |ω | for the density Va2+b2\dz\ if ω—adx+bdy locally.
For the sake of convenience we recall some definitions of subspaces of Γ used
below. Let Γe be the space of exact differentials in Γ and ΓeQ be the closure
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of differentials of C^functions with compact supports. Let Γh the space of
harmonic differentials in Γ, Γhse be the space of semiexact differentials in Γh

and Γhe=ΓhΓ\Γe We denote by Γhm the orthogonal complement of *Γhsβ in
Γh, where *ΓX is the class of differentials conjugate to those in Γx. Then
the following orthogonal decompositions are well known:

ί e = l he eo

Let D(R) be the class of real continuous Dirichlet functions on R and
BD{R) be the class of bounded functions in D(R) (cf. [3], [14]). Let HD{R)
(resp. HBD{R)) be the class of harmonic functions in D(R) (resp. BD(R)) and
Do(R) (resp. BD0(R)) be the class of potentials in D(R) (resp. BD{R)). Since
dD0={df; /GDo|cΓ e o , we have (σ, dp)R^0 for any σ^Γh(R) and p^D0(R).
The class BD(R) forms an algebra and the class D(R) has the following lattice
property; if /, g^D(R) then fug=max(f, g) and /Γ\g=min(/, g) belong to
D{R).

Let /?* be the Royden compactiίication of R and Δ the (Royden) harmonic
boundary of R. Every function / in D(R) can be extended continuously to R*.
Since the extension of / is unique, we may use the same notation / for the
extension.

We know that BD{R) enjoys the following Urysohn's property. That is,
for any two non-empty disjoint compact sets KXf K2 in 7?* and two real values
0i, a2, there is a function / in BD{R) such that f — aτ on Kτ(i—1,2) and
m i n ^ ! , fl2)^/^max(αi, a2).

We use the following lemmas ([14]) in the sequal.

LEMMA 1.1. Let {fn} be a sequence of functions in BD0(R) and f a bounded
function on R. If ||rf/n||Λ is uniformly bounded and {fn\ converges to f uniformly
on every compact subset of R then f^BD0{R).

LEMMA 1.2. A BD-function (resp. D-function) f on R belongs to BD0(R)
(resp. D0(R)) if and only if f=Q on Δ.

LEMMA 1.3. Any B D-f unction (resp. D-f unction) f on R can be uniquely
decomposed into the form f=u + p, where u^HBD(R) (resp. HD(R)) and />e
BD0(R) (resp. D0(R)) (the Royden decomposition).

LEMMA 1.4. Every HD-functwn on R has μ-integrable boundary value on
A, where μ is the harmonic measure of Δ with respect to a point z^R.

2. Generalized harmonic measures.

DEFINITION. A harmonic function u on R is called a generalized harmonic
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measure if the greatest harmonic minorant M Λ ( I - M ) of u and 1 — u vanishes
identically on R ([5]).

LEMMA 2.1 ([7]). Suppose that u is a nonconstant generalized harmonic
measure with finite Dirichlet integral on R. For each 0 < r < l , set Gr={p^ R;
u(p)>r). Then

(du, ω)R= — \ *ω
JόGr

for any ω^Γh(R) with I |α>|<oo.
JdGr

We note that \ |ω |<oo for almost all r (0<r<l) , where each relative
jdGr

boundary of an open set is oriented so that the open set lies on the lefthand
side of the boundary (cf. [1], [9]).

DEFINITION. We say that an exact differential du on R belongs to the
class Γίάί(R) if there exists a sequence of functions {un}, each un being a real
linear combination of generalized harmonic measures with finite Dirichlet in-
tegral and \\dun—du\\R-^0(n->oo).

Then clearly Γζiι(R) is a closed subspace of Γh(R).

3. Partitions of the harmonic boundary.

DEFINITION. We say that ( P ) = ( P : δlf •••, δN) is a finite partition of the
harmonic boundary Δ if δl9 •••, δN are mutually disjoint nonempty compact
subsets of Δ and Δ=δ1KJ-~KJδN.

DEFINITION. An exact differential du in ΓQ,(R) belongs to the class
(P)Γ/Qi(R) if u takes a constant value on each part δj(l£j£N) of the partition
(P) of Δ.

PROPOSITION 3.1. The class (P)ΓQι(R) is a closed subspace in ΓQi{R).

Proof. Clearly (P)Γ£i(R)(zΓάi(K). Suppose that dun^{P)Γίί{R)9 du^
ΓQi(R) and \\dun—du\\R->0. We may assume that there is a point zo^R such
that un(z0)=u(z0)=0 and {un} converges to u uniformly on every compact
subset of R. Let un=c^ on δj(l£j£N).

First, we prove that {un} is uniformly bounded. Suppose that {un} is not
uniformly bounded. We may assume that c^υ^0 and c^2)->oo. Let M be an
arbitraly positive number. Then for sufficiently large number n, 0 U ( M W Π M ) = 0
on δi, =M on d2 and converges to O U ( M Π M ) uniformly on every compact
subset of /?. Let h be an HBD-function on R such that h—l on δ2 and /ι=0
on A-δ2. Then h(0\J(unΓ\M)-M) converges to h(Q\j(uΓ\M)-M) uniformly
on every compact subset of R. Further, for sufficiently large number n,



NORMAL OPERATORS CONSTRUCTED FROM GENERALIZED HARMONIC MEASURES 257

h(Q\j(unΓ\M)-M)ϊΞBDo(R) and

\\d(h(0\J(unnM)-M))\\R^\\d(hun)\\B+2M\\dh\\R

By Lemma 1.1, h(Q\j(uΓΛM)-M)^BD0(R) and M=uΓ\M^u on δ2. While,
HD-ίunction u is μ-integrable on Δ and μ(δ2)>0, where μ is the harmonic
measure with respect to z0. This is a contradiction. Hence, {un} must be
uniformly bounded and ικ=HBD(R).

Since {ciί*} is uniformly bounded, we may assume that there are constants
c°\ •••, c(ΛΓ) such that c&-*cφ (n->oo) for each /. For each δJ9 let g be an
HBDΛunction on R such that £ = 1 on δ3 and £ = 0 on Δ—δv Then g(un—c(

n

}))
^BD0(R). By the similar argument above, we conclude that g(u—ca:>)^BD0(R).
Hence u—ca^ on δ3. •

4. Weakly dividing cycles.

We say that c is a curve on i? if c is an image of a homeomorphic mapping
from an open interval or the unit circle into R. Let {ck} be a set of (at most
countable number of) oriented piecewise analytic curves clustering nowhere
in R.

Let (P)—(P: δu •••, δN) be a finite partition of the harmonic boundary Δ.
We say that a formal sum c=*Σck is a (P)-weakly dividing cycle in R if there
exists an open set G such that

(1) c=Σkife coincides with the relative boundary dG of G,

(2) 8GΓ\A=0,
(3) for each δJf it holds either δjc:Gr\A or ^ c z Δ - G ,

where the closure is taken in /?*.
In (1), dG is oriented so that G lies on the left hand side of dG. So, if

G is the complement of a curve 7 in R, then 3G is the sum of two oriented
curves γ+ and γ~ which have the same image as y and are oriented reversely.
We write (1) simply c—dG. While, in (2) dG is the topological relative boundary
of G in R.

We say that c is a weakly dividing cycle if (1) and (2) hold ([7]).

We say that a property holds for almost every curve or almost all curves
in a family of curves if the subfamily of exceptional curves has infinite extremal
length (cf. [11]).

DEFINITION. We say that a differential ω belongs to the class (P)Γhwe{R)

(resp. Γhwe(R)) if ω(=Γh(R) and \ ω=0 for almost all (P)-weakly dividing cycles

(resp. weakly dividing cycles) c.

We note that if ω<sΓ(R), then \ |ω |<oo for almost every weakly dividing
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cycle and (P)-weakly dividing cycle c.
We know that the class Γhwe(R) is a closed subspace in Γh(R), and that

the orthogonal decomposition

holds ([7]). By the similar argument, we can prove that (P)Γhwe(R) is a closed
subspace of Γh(R) and the following

PROPOSITION 4.1. rh(R)=(P)Γa(R)+*(P)Γhwe(R).

5. Periods along the harmonic boundary.

Let V be a union of a finite number of regular subregions of R with
disjoint closures. By a regular region we mean one which is relatively
compact and bounded by a finite number of disjoint analytic curves. Suppose
that R—V is connected. Let Γx be a subspace of Γh. We say that σ^Γx(R
— V) if a is a harmonic differential on a neighborhood of (R—V)\JdV and α e
ΓX{R-V).

Let (δ, A—δ) be a partition of Δ. For σ^Γh(R—V), we shall define the
period of σ along δ.

LEMMA 5.1. Let G be a subregion of R with piecewise analytic boundary.
Let σ be a harmonic differential on a neighborhood of GKJdG such that e / \ ( G )

|σ |<oo. // G π Δ = 0 , then \ σ=0.
3G JdG

Proof. Let 6 be the double of G along dG. If 6 is compact, then the
statement clearly holds. Hence, we assume that G is noncompact. Since G
has no Green's function, there exists an exhaustion {Ωn\ of G such that Ωn

is symmetric with respect to dG and

Since

we have [ (7 = 0.
JdG

DEFINITION. Let (3, Δ-<5) be a partition of Δ and vδ=vξ~v be an HBD-

function on R—V such that t/j=l on δ and vδ—0 on (Δ—δ)\JdV. We call vδ a
generalized harmonic measure of δ on R—V

Set Gr={p^R; vδ(p)>r\ for 0 O < l . Then 3Gr is a weakly dividing
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cycle such that GrΓ\A=δ and Gr^R —V. By Lemma 2.1, we have the following

LEMMA 5.2. Let σ£ΞΓh(R-V). Then

\ σ=(dvδ, *σ)Λ_F
jdGr

for almost all 0 < r < l .

DEFINITION. For σ^Γh(R—V), we define the period of σ along δ as

where r is the value for which Lemma 5.2 holds.

PROPOSITION 5.3. Let (β, A—δ) be a partition of A and c~dG be a weakly

dividing cycle such that GΓ\A=δ and GczR-V. Let a^Γh{R-V) with

oo. Then for almost all 0 < r < l ,

)dGr )c

Proof. There is a 5/λfunction w such that w — \ on δ, w—0 on R—G and
harmonic on G. Then the harmonic part of the Royden decomposition of w
on R—V is the generalized harmonic measure v$ of δ on R—V. By Lemma
5.1, for almost all 0 < r < l ,

σ=[ σ. m
d{iυ>r) JdGr

T H E O R E M 5.4. Let (P)=(P: δu •••, δN) be a partition of A and

Then σ(Ξ(P)Γhwe(R) if and only if [ σ=0 for all j .
jδj

Proof. Let v3~vξ~v be the generalized harmonic measure of δ} on R—V,
that is, Vj^HBD(R-V) such that v, = l on <5; and ^ = 0 on (A—δj)\JdV. We
extend v3 on R so that Vj=0 on V. Let Vj—WjΛ pj be the Royden decomposi-
tion of Vj on R. Then w3 is a generalized harmonic measure on R such that
u;,=1 on δj and 0 on Δ—δ3. Since ( d ^ , σ)ie=0 for σ^Γh(R), we have

WM>J, σ)R—{dvJ> σ)R-v

Hence, (P)Γ^(Λ) being generated by {</MO}(1^/SΛO proves the assertion. •

6. (P)L i-operator.

Let V be a union of a finite number of relatively compact regular subregions
of R with disjoint closures. We assume that R—V is connected.
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THEOREM 6.1. Let f^Cω{dV) and ( P ) = ( P : δu •••, δN) be a partition of the
harmonic boundary Δ. There exists a unique function u^HBD(R-V) satisfying
the follwoing conditions:

(1) u\dv—f,

(2) u^constant on δ3 (1^/^ΛO,

(3)

Proof. (Uniqueness) Suppose that uu U2ΪΞHBD(R-V) satisfying (1), (2), (3).
Then ux—u%—§ on dV and uλ—u2 is constant on each δ3. Let Vj=vξ~v is a
generalized harmonic measure of δj on R—V. Then (3) implies

*d(uί—u2)=(dvJ, d(u1—u2))R-v=0 (lrg/igJV).

Since ux—u2 is a linear combination of {vj}, we conclude that u1—u2=0 on
R-V.

(Existence) The matrix whose (i, /)-element is defined by

jδi

is s y m m e t r i c a n d pos i t ive def ini te . In fact, for rea l v a r i a b l e s xu •••, xN,

N

Σ
1

I .7 =

N

= Σ XχX)(dvu

and the equality holds if and only if Σ$=i#jdvj=0, i > e . χ^=0 for all /.
Let Hf^HBD(R-V) such that Hf=f on 3F and 0 on Δ. Consider the

function u^Hf+^Σf^CjVj where c3 are real constants. Then

Σ c^§ *dv,=^δ *du-\j§ *dHf.

There exist cu •••, c^ such that \ *du=;0(l^iί^N). Therefore, there exists

u satisfying (1), (2) and (3). • h

We denote the function u in Theorem 6.1 by (P)LJ.

THEOREM 6.2. The operator (P)Lί from Cω(dV) to HBD(R-V) is a normal
operator. That is, (P)Lλ is a linear operator satisfying the following conditions:

(1) (P)Lif\ar=f,

(2)
dv

(3)
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Proof. It is easy to see that (P)LX is a linear operator and satisfies (1).
We prove (2). Let (P)Lίf^cJ on 3,. It is clear that (/^Zj^l . Therefore,

it is sufficient to see that if /ί^O then all c3 are non-negative. Suppose that
there exists a Cj<0. We may assume that c} is the minimum value of (P)L1f
on Δ. Let δ={p(=A; (P)Lίf=cJ}. Then δ is a union of some parts of the
partition (P). For ε>0, let Gs-{p^R; (P)Lj(p)<Cj+ε}. Then, for almost
all sufficiently small ε>0, 5Gε is a weakly dividing cycle such that G εnΔ=δ,
and G ε c # - y and

( ) = - f *d(iP)Llf)<0.
JoGε

Thus there exists a part d* of (F) such that ί •d((P)£1/)<0. This contradicts
the property (3) in Theorem 6.1.

Finally we prove (3). Let v3—v^~v be the generalized harmonic measure
of δj on R—V. By the following Lemma, we have

*d((P)Lj)=0. m
j

LEMMA 6.3 ([7]). Suppose that V<ΞHD(R-V) and v=0 on A. Then

(dv, ω)a-v=

for any ω^Γh(R-V).

PROPOSITION 6.4. For every ftΞCω{dV),

Proof. We recall that (P)Lj=Hf+Ίl^iCjvJ in the proof of Theorem 6.1.
Then by Lemma 6.3,

\\d{(P)LjWR-V=(dHfy dmLJVR-r+JhcjidVj, d{{P)Lj))R-v
1
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7. Refinement of partions.

D E F I N I T I O N . Let ( P ) = ( P : δu •••, δN) and {Pf)=(P': δί, •••, δ'M) are parti-
tions of Δ. We say that ( P ' ) is a refinement of (P) if each δj is a subset of
some δi.

LEMMA 7.1. // (P') is a refinement of (P) then

for every f(ΞCω(dV).

Proof. Let u=(P)Lj and u'=(P')Lj. Let v'j=z\p-v be the generalized

harmonic measure of δ'3 on /?—F. Then U — U'^'ΣJ^ICJVJ, for some cJ
and

W(tt-ιO, dMθΛ-κ= Σl c;

Hence
(du, du%_v=\\du'\\2

R-v
and

Thus
\\du\\Λ-v>\\du'\\R-v.

8. Li-operator.

DEFINITION. We define a constant

where the infimum is taken over all finite partitions (P) of Δ.
Since ||dL0/H*-r^ll</i>ll*-K for any v^HBD(R-V) with v | 3 κ = / , it follows

that κR-V>0 for every non-constant function / (see [12], [14], [15] for Lo-
operator).

PROPOSITION 8.1. There exist a sequence of partitions {(Pn)} of A and u(Ξ
HBD(R-V) such that

(1) ( P n + 1 ) is a refinement of (Pn) ( n = l , 2, •••),

(2) \\du\\R-v=KR-v>

(3) M I S F = / ,

(4) \\d((Pn)lif)-du\\Λ.v—>0 (n->oo).
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Proof. There is a sequence of partitions (Pn) such that \\d(Pn)Lιf\\R-V-+
KR-v(n-^oo). By Lemma 7.1, we may assume that (Pn+ί) is a refinement of
(Pn) (w=l, 2, •••). Let un=(Pn)Lιf. By the same argument as in Lemma 7.1,
for n <m,

Hence, there exists a u^HBD(R-V) such that 1*1^=/, ||dwn-dw||*_r->0 (n-»
oo) and \\du\\R-V=κR-v •

We note that u does not depend on the choice of a sequence of partitions
in Proposition 8.1. In fact, suppose that {(P'n)} is another sequence of partitions
such that \\d(Pn)Lif\\R-V-^iCR-v (n->oo) and (P'n+i) is a refinement of (P'n) (n=
1, 2, •••)• Let u'n~{Pfn)Lιf and w'^lim^ooWn. There is a sequence of partitions
{(P Ol such that (PX+O is a refinement of (PS) and (Pg) is a refinement of
both (Pn) and (Pi) (w=l, 2, •••). Let u» = \ιmn^K = \imn^(P'βLj. By the
same argument as in Lemma 7.1, (d(u'£—un), dUn)R-V—§. Since \\du'£ — duff\\R-V

->0 and ||rfMn — du\\R-v->0

(du", du)R-V=\\m{du'^ dun)R.v
n-*oo

=\im\\duZ\\k-v=\\du"\\k-v.
n-*oo

Hence

Thus, u—u". Similarly, u = u'.

For any w<^HD(R), there exists a unique //D-function IR^v{w) on /?—V
such that IR-γ{w)—w on Δ and / β _ F (^)=0 on 9F. We call IR-V{w) the m
tremisation of u; to #—V. It is clear that IR-V is a linear operator.

LEMMA 8.2 ([7]). // u<=HD(R) with du^Γζ^iR) then dIR-V(u)<=Γζϊi{R-V).

THEOREM 8.3. For every / e C ω ( 3 F ) , there exists a unique function we
HBD(R-V) satisfying the following conditions-

(1) u\ar=f,

(2) there exist a harmonic function uQ, on R with duζiι^ΓQί{R) and a
Dirichlet potential p on R such that

p
on R—V and

(3) \ *du=0

for any partition (δ, A—δ) of A consisting of two parts.
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Proof. (Existence) We use the notation un=(Pn)Lιf and u in Proposition
8.1 and its proof. We have already proved (1).

We prove (2). Let Hf^HBD(R-V) such that Hf=f on 3V and Hf=0
on Δ. Since un-Hf=0 on dV, d(un-Hf)ς= Γjά(R-V). Hence d(u-Hf)(Ξ
ΓQi(R-V). We set un-Hf=Q and u-Hf=0 on V so that un-Hf, u-HftΞ
BD(R). The Royden decomposition gives un—Hf—wnΛ-qni u — Hf=w+q, where
wn, w^HBD(R) and qn, q^BD0(R). Since dwn^ΓQi(R) and \\dwn—dw\\R-+Q,
we have dw^ΓQι{R). We can extend Hf to a £ZVfunction on R so that

u = w+(q+Hf) on /?—V. Denoting w by w/^ and 0+77/ by p gives (2).
Finally, we shall prove (3). Let Vδ=v$~v be a generalized harmonic measure

of δ on /?•— V, By the note following Proposition 8.1, we may assume that
each CPn) is a refinement of (δ, A—δ). Then

\ *du=(dud, du)R-v—\ivn(dv§, dun)R-V =§.

(Uniqueness) Let u = uQι+p and w7—w'/s+ί' satisfy (1), (2) and (3). Then
hm

u-u'= ΪR-viuΆ-u'/O. By Lemma 8.2, d{u-uf)^ΓQi{R-V). There is a
hm

sequence {wn\ of HBD-ίunctions on R—V each wn being a linear combination
of generalized harmonic measures with finite Dirichlet integral on R—V, wn\sv
= 0 and \\dwn-d(u-u')\\R-v-*b. While, by (3), we have (dwn, d(u-u'))R-V=0.
Hence du — du'=Q. •

We denote the function u by LJ. Then \dLxf\R-V~KR-V{f).

THEOREM 8.4. The operator Lλ from Cω(dV) to HBD(R-V) is a normal
operator. That is, Lx is a linear operator satisfying the following conditions:

(1) Lιf\dv—f,

(2) min/ ̂  L J ^ max/,

(3)

Proof. We use the notation {Pn)Lι in Proposition 8.1. By Theorem 6.2,
(JPn)t\ are normal operators. By Proposition 8.1, {Pn)LJ converges to LJ
uniformly on every compact subset of R—V. Hence (1), (2) and (3) hold. •

9. An extremal property.

For every v^HBD(R-V) there exists a unique i/BD-function E(v) on R
such that E(v)=v on Δ. We call E(v) the extremisation of v (see [7], [8]). It
is clear that E is a linear operator and satisfies the following
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LEMMA 9.1. Let v^HBD(R-V) and v=w+p on R-V, where w^HBD(R)
and P<ΞBD0(R). Then E(v)=w. Moreover, if v=0 on dV then IR.v(E(v))=v
on R-V.

THEOREM 9.2. Let f^Cω(dV). The function LJ minimizes \\dv\\R-v in
v(ΞHBD(R~V) such that v\dv=f and

Proof. Let v^HBD(R-V) such that v\dV=f and dE{v)^ΓQι{R). Since
dE{v)-dE{Lj) GΞ Γ£(/?),# dIR-v{E{v)-E{LJ)) = d{v- LJ) e Γfa{R - V) by
Lemma 8.2. Hence there is a sequence {wn) of HBD-ίunctions on R—V such
that each wn is a linear combination of generalized harmonic measures with
finite Dirichlet integral, equals 0 on dV and \\dwn—(dv—dLj)\\R-V-+ΰ. Since
(dwn, d£i/)Λ-ϊr=0, (dυ, dL1f)p.v=\\dLίf\\R-V. Hence, \\dv\\R.v^\\dLJ\\R.v. m

10. Regular operators.

An operator L from Cω(dV) to HBD(R-V) is called a regular operator if

(1) Lf\sr=f,

(2) WL/, dLg)R-v=-\avf*dLg

for any /, ^eC ω (3F) ([17]).

THEOREM 10.1. lef (P) te α ^mϊβ partition of Δ.

regular operators.

Proof. It is sufficient to prove that (P)L1 satisfies (2). Let Hf^HBD(R~
V) such that Hf=f on dV and #/=0 on Δ. Then d{{P)Uf-Hf)^rf^{R-V).
Hence

{d{(P)Lj-Hf), d((P)Llg))R-V=0.
Thus

{d{{P)Uf), d((P)L1g))R.y=(dHf> d((P)Llg))R-V

11. Modulus functions.

Let Vo and Vx be two relatively compact regular subregions of R with
disjoint closures. We assume that R—V{i\jVι is connected. Let f=Q on dV0

and / = 1 on 37 l β Then ( *dI 1 /=| |di i/ | | i-κ 0 wκ 1 >0. Set ̂ =(2π/( *dL1f)Llf.

THEOREM 11.1. TΛ r̂̂  x̂/s/s a unique HBD-function qr on R—VQVJVX such

that
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(1) $ilav=O,

(2) qΛdv^ki=constant,

(3) £i(ίi l3r o ^r 1 )=§i on Λ -

(4) f

We call qx Li-modulus function on R—Vύ\jVι with respect to 3F 0 and dVx.

The constant β*1 is called the Lλ-modulus of R—V*\jVγ with respect to 3F 0

and dVx.
We denote usual Li-modulus function for Li-operator by qx (see [15]).

That is, qx satisfies (1), (2), (4) of Theorem 11.1 and Lx{qx\sv^dVl)=-qx on R—
VoWVΊ. If qx\dvx — kx, ekι is called the L rmodulus of R—V^KJV^ with respect
to dVQ and dVx.

12. An example.

Now, we consider a two sheeted branched covering surface of the unit
disk. Let D be the unit disk and {an}, {bn} be sequences of positive numbers
such that 0<a0<b0<ax<bx< <an<bn<~ and limn^Mfln=linin-*oo&n==l. Con-
sider the region obtained from D by deleting the closed intervals [α n , bn~\ {n —
0, 1, •••). Join two such copies, one being Do and another being Dx, crosswise
along [α n , ftn] (w=0, 1, •••)> so as to obtain a 2-sheeted branched covering
surface R of D. Denote by π the projection from R onto D. In [6], we
show that the number of components of the harmonic boundary Δ of R is at
most 2. Moreover, if intervals [α n , £n] are sufficiently small then Δ consists
of two components and if gaps (bn, an+i) are sufficiently small then Δ is con-
nected. (See [6, p. 639] for precise estimations.)

Let U be the sufficiently small disk with center 0 in D so that π~\U) con-
sists of two disjoint disk Vo in Do and Vx in Dx.

Denote by dDk the boundary of Dk corresponding to {\z\ =1} — {l}(fc=0, 1).
Note that every /ffi/Munction u on R—F0WFi is uniquely determined by the
boundary values on dV^KJdV ̂ KJdD^JdD^ Moreover, if du^ΓdiR-V^V^
then u is constant on dV0, dV1} dD0 and dDx respectively ([6]).

Let τ be the nontrivial covering transformation of R. Let ψ be the anti-
conformal automorphism of R which preserves the sheets Do, Dx and is identical
with the mapping z^z on each sheet.

Let / = 0 on dV0 and 1 on dVx. Since R has one Stoϊlow ideal boundary
component, Lx—(I)Lι for the identity partition (/)=(Δ). Let Lxf—k on Δ.
Since ( L i / > r = L 1 ( l - / ) = l - L 1 / , k=l-k. Hence fe = l/2.

Further, {Lifyφ τ^l-LJ. Hence LJ=l/2 on Wn[βn, W .

// Δ zs connected, then L1f=Lίf. If A is not connected, then LxfφLxf.
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Proof. We shall prove the latter half. Contraly to the assertion, suppose
that LJ=Lj. Then Lj=l/2 on Δ, hence on dDQ\JdDu and LJ=l/2 on

If Δ is not connected then there exists v^HBDiR—V^KjVx) such that v=0

on dVQVJdV1\JdD1 and v=l on dD0. Then dv^ΓQι(R-VQ\jVγ). Therefore,

(dv, dLιf)R.v=O. While,

{dv, dUf)R-y=(dυ,

-f W)>0.

For, v\Do—v\Dl is considered as an //BD-function on D—U—\Jnlan, bn~\ whose
boundary values equals 0 on (Un[fln, bn~])\JdU and equals 1 on 3D— {1}. This
is a contradiction. •

In the latter case, by Lemma 7.J. and its proof, we have \\dL1f\\R^vQ^v1>

jWn-v^v!- Therefore, k^k^
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