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FINITENESS OF FUNDAMENTAL GROUP OF

COMPACT CONVEX INTEGRAL POLYHEDRA

BY MUTSUO OKA

§ 1. Introduction and statement of the result.

Let Δ t, i=l, •••, k, be given compact convex integral polyhedra in Rm. We

consider the following integer "combinatorial connectivity" a(Au •••, Ak) which

is defined in [Okβ] by

a(A1} "-, Δ Λ ) = m i n | d i m ( Σ Δ » ) - | / | ; / c ( l , ••-, k],

We assume that a(Au •••, Δ*)^0. For any integral covector P, we consider the

restriction P\&t to At of the corresponding linear function associated with P.

Let A(P; At) be the face where P\&t takes its minimal value ([Ok5, 6]). We

denote the lattice of the integral covectors by N. We define the subgroup

K(AU - , Δ*) of iVby

K(AU . . . , Ak)=<P^N; α(Δ(P; ΔO, •••, A(P; Δ * ) ) ^

Here (P^N; P G S > is the subgroup of N which is generated by the covectors

P i n 5. We also define Π1(AU •••, Ak):= N/K(AU •••, Ak). We call K(AU •••, Ak)

(respectively Πι(Au •••, Δ*)) the boundary lattice group (resp. the fundamental

group) of the £-ple of polyhedra {Au •••, Δ Λ }. The purpose of this paper is to

prove:

M A I N T H E O R E M (1.1). The boundary lattice group K(AU ••• , Ak) has rank

m if and only if a(Aly •••,

The geometric interpretation is as follows. Let hι(u), •••, hk(u) be Laurent

polynomials such that the respective Newton polygon Δ(Λt) is equal to At, for

2 = 1 , •••, k. Let us consider the var iety :

Z * = ( w e C * m ; A I ( M ) = ••• = A * ( α ) = 0 } .

We can choose the coefficients of hu •••, ΛΛ so that Z * is a non-degenerate

complete intersection variety in the sense of [Khl, 2, Ok4, 5 ] . See §4 for the

existence of such Laurent polynomials hx{u), •••, hk(u). Z* is non-empty if and
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only if a(Alf •••, Δ*)^0 ([Ok4]). Let I '* be a regular simplicial cone subdivi-
sion of the dual Newton diagram Γ*(hu •••, hk)=Γ*(Au •••, Ak) and let X be
the associated toric compactification of the ambient torus C*m. Let Z be the
compactification (—closure) of Z* in X. Recall that for each vertex P of Σ*,
there exists a corresponding rational divisor E(P) of X so that X has the
toric stratification

X=C*mΠcone<P1,.,Ps^Σ*E(P1, • • , P.)*

where £(Pi, - , P,)*=Γ\ί-i£(Λ)-Up^ 1 . . . ,p,^(P). Let E(P)=E(P)ΓΛZ. Note
that £(P) is non-empty if and only if α(Δ(P; ΔO, •••, Δ(P; Δ*))_^0 (Proposition
(5.4), [Ok4]). We will see in §2 that the above subgroup K(AU •••, Δ*) is
generated by those PeVertex(Σ*) such that E(P)Φ0 (Assertion (2.4), §2).

Let G be a finite abelian group. We denote by p(G) the minimal number
of generators of G. We say that Z* is full if aim At—m for each i—1, •••, k.
By Lemma (4.1) and Theorem (4.2) of [Ok5], we have:

THEOREM (1.2). (1) Assume that α(Δi, •••, Δ*)^0. Then the fundamental
group ΠX{AU •••, Δ*) zs generated by at most k elements. That is, p(Alt •••, Δ * )
<k.

(2) // π!(Z*)->πi(C* m ) is isomorphic, nx(Au ••• , Δ*) 2S isomorphic to the
fundamental group πx{Z). In particular, this is the case if Z* is full and m—k

2

In [Okβ], we have generalized the second assertion for a non-degenerate
complete intersection variety with a(Alf •••, Δ*)^2 which satisfies the monotone
support condition:

(Mn) dim( Σ Δ Λ = d i m Δ J f ; = 1 , •••,*.

Note that any full non-degenerate complete intersection variety with m—k^2
satisfies the monotone support condition. As an immediate corollary of Theorem
(1.1) and Theorem (1.2), we obtain the following.

T H E O R E M (1.3). (1) Assume that a(Au •• , Δ * ) ^ 1 . Then the fundamental
group /7i(Δi, •••, Δ*) is a finite abelian group with p(Πχ(Alf •••, Ak))^k.

(2) Assume that Z* satisfies the monotone support condition and a(Aίf -•• ,Ak)
^ 2 . Then the fundamental group πx(Z) is a finite abelian group and

The finiteness for the case k=l has been proved by [Okl] and the asser-
tion for the general case has been conjectured in [Ok5, 6]. In §3, we will
construct an algebraic surface whose fundamental group is isomorphic to an
arbitrarily given finite abelian group.
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§2. The proof of Main Theorem (1.1).

We first recall the construction of X ([K-K-M-S], [ K h l ] , [Dn2], [ E h ] ,

[Odl, 2 ] , [Ok4, 5]). Let A=(attJ)t=GL(m, Z) with d e t i 4 = + l . We associate

to A a birational morphism

which is defined by ^ ( z ) ^ * ? 1 ' 1 ••• Zm1>m, •••, zV*"1 ••• zlm'm). T h e morphism φA

satisfies the property : ΦA°ΦB—ΦAB In particular, {ΦA)~1—ΦA-^- Assume that
al>jQ>0y / = l , •••, m for some j 0 . Then ^ extends to C*nU{z; zjQ=0, zτφ0,

T h e dual Newton diagram Γ*(AU •••, Δ*) is the polyhedral cone subdivision

of the space of covector which is induced by the equivalence relation: P~Q<=>

A(P; At)=A(Q At), ι = l , •••, k. Let Σ* be a given regular simplicial cone sub-

division of the dual Newton diagram Γ*(Alf •••, Ak). Let 3i be the set of m-

dimensional simplicial cones in Σ*. For each σ=Cone(Pu •••, Pm)^JH, let C ?

be the aflfine space of dimension m with coordinate yσ=(yfftlf • ••, yσ>m). Here

Λ , •••, ̂ m are primitive integral covectors which generate σ and they are called

the vertices of a. Let P3—
ι{pι,j, •••, ί n . y ) f o r y = l , •••, m. We identify <τ with

the corresponding unimodular matrix (Pu •••, Pm)—(pi,j)> The original torus

C * m is identified with the maximal torus C * m : = {yσ^.Cf\ yσ,ιΦθ, i=l, •••, m}

of the coordinate space CJ1 through the isomorphism φσ: C * m - > C * m . J^ is covered

by the aflfine coordinate charts {Cf\σ^M}. Let <r=Cone(Λ, •••, Pm), τ=

Cone(Oi, •••, Qm)^M. We recall the gluing of these coordinate spaces, as we

use it later. T w o points of the different coordinate spaces U , , G C and u τ e

Cf are identified when and only when the birational map φσ-ιτ: Cf^Cf is

well-defined on yτ—uτ^Cf and M<,=0<r-iτ(uΓ). Let σ~xτ—{λx>3). This implies

that

TO

\/-l l) ^ J Zmi Λ l , j * I

Thus ^ t .^O for each i—l, •••, m if and only if Qj^σ. This is the case if and
only if Qj—Pι for some /. Changing the ordering of the vertices if necessary,
we can assume that σίλτ=Cone(Pί} •••, Ps) and Qt=Plf l<:i<Ls. Then the
matrix σ~ιτ can be written as

-i JIs AlΛ

\0 Λ.s

where /s is the sXs identity matrix and φσ-\τ is well defined precisely on
{# τeC?; ^r.t^O, s + l ^ ί ^ m } . Thus applying the same argument for r"1^, we
can see that

T yτ.tΦO,
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is biholomorphic. In particular,

(2.2) C ? - C ? = C ? n ( t U + i ^ ( Λ ) ) = { ^ e C ? ; yσ.t+ί •••

Recall that in the coordinate space C?, 2?(Pt) and E(Pt):= ZΓ\E(PX) are defined

by

where ha>Pv σ{yσ) is defined by the equality ha,Pi{ψσ(yσ))=ha)pιt σ(yσ) Ίl

Here d{P3\ Δa) is the minimal value of P, | Δ α . Note that Δ(Λ α ,p 4 )=Δ(P; Δ») and

£ ( P ) is a non-empty divisor if and only if α(Δ(P; Δ0, •••, Δ(P; Δ*))ϊ^0 by Pro-

position (5.4) of [Ok4].

Now we prove Main Theorem (1.1). Assume first that a(Au •••, Δ * ) = 0 .

There exists a non-empty subset /c:{l, •••, k) so that dim(St€=/ At)—1/| = 0 .
Take any integral covector P such that α(Δ(P; Δ0, •••, Δ(P; Δ*))^0. Then we

must have A(P;Aι)=Aι for any ί e / (Proposition (4.1), §4). This implies that

K is orthogonal to the aflfine subspace generated by Σnei Δ t . Thus rank(UΓ(Δi,

•••, Ak))^m— \I\. Now we assume that

(2.3) a(Au - , Δ * ) S 1 .

We have to show that rank (if (Δx, •••, Δ Λ ) ) = m . Let ^ be the set of the vertices

PeVertexCΓ*) such that a(A(P; Δx), •••, A(P; Δ*))^0. It is obvious that <P; P

A S S E R T I O N (2.4). The boundary lattice group K(Aίf •••, Ak) is equal to

Proof. Assume that P is an integral covector such that a(A(P; Δx), •••,

Δ(P; Δ Λ ) ) ^ 0 . P is not necessarily a vertex of Σ*. Let [ P ] be the closure of

the equivalence class of P in Γ*(Alf •••, Δ f t). It is easy to see that dim [ P ] =

m—dim(Σ?=1Δ(P; Δ t)). Let r = d i m [ P ] . As Σ* is a regular simplicial subdivi-

sion of Γ*(Alt •••, Δ*), there exists a simplicial cone <7=Cone(P!, •••, P r ) in J?*

such that Λ , ••-, Pr^LPl ( = t h e closure of [ P ] ) . Note that P < e c v for ί = l ,

•••, r as Δ ( P t ; AJ)ZDA(P; AJ), y = l , •••, &. It is obvious that we can write P =

St r=ifliPt for some rational numbers au •••, α r . We assert that a^Z for / =

1, - , r . Consider ar for instance. Then the assertion follows from the

equality:

Z 3 d e t ( Λ , .- , P r _ 1 ? P ) = d e t ( P x , •••, Pr-U Σ atPt)
t = l

= β r d e t ( P , , •••. Pr)=ar

Here det(Λ, •••, Pr) is the greatest common divisor of the rXr-minors of nxr-
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matrix (Pl} •••, Pr) as in § 3 of [Okl]. Q. E. D.

Let r=rank(K(Alf •••, Δ*)) and assume that r<m—l. We will show that
this gives a contradiction. Let KR=K(AU •••, Ak)®R be the linear subspace of
the real vector space of covectors NR—N®R. Taking a regular subdivision if
necessary, we may assume that the restriction of Σ* to KR is also a regular
simplicial cone subdivision of KR (§ 3, [Okl]). We consider the subset M of
coordinate charts 31 which is defined by:

r=Cone(ζ?!, •••, Qm)tΞ3li' <=Φ Qi^K(Au •••, Ak), l<i<r .

ASSERTION (2.5). The subfamily {Cf; σ^M'\ is a covering of Z.

Proof. Take an arbitrary point p^ZίλCf where σ=Cone (Pi, •••, Pm).
Changing the ordering if necessary, we may assume that p corresponds to
(0, •••, 0, at+i, •••, am) with atφ0, t+l^i^m, in this coordinate chart. This
implies that Pj^^V for j<Lt. In particular t^r. If t—r, σ^M''. Assume that
t<r. We can find a simplicial cone r=Cone((?i, •••, Qm) in M such that
QJ=PJ for y = l , .-., t. Then we see easily that p^ZίΛCf by (2.2). Q. E. D.

Let <y=Cone(Pi, •••, Pm) be a fixed simplicial cone in ^ ' . We consider the
canonical extension of the coordinate function ya,3 for r+l^j<m. They are
rational functions on X. We assert:

LEMMA (2.6). For any j , r+l^j^m, the restriction of the rational function
yσ,j to Z is holomorphic. In particular, it is constant on each connected com-
ponent of Z.

Proof. Take a coordinate chart Cψ, τ=Cone(Qlf •••, Qm)^3ί\ and let
σ~ιτ—(λt,j). Recall that the rational function yσ>J is written in the coordinate
chart C? as y<,tJ=yifil ~ yϊfi!*. By the assumption, both of {Pi, •••, Pr\ and
{Oi, •••, Or} are the basis of K(AU •••, Ak). Therefore the matrix σ~λτ—{λXiJ)
takes the following form:

0

Namely 2ltj=0 for r+l^i^m, l^j£r. Therefore we have y^^y&H1 •••
y}&m, for r+lύj^m. As Z π C f c { y r ; yτtlφ0, i = r + l , ~',jn}9 the above ex-
pression implies that ya>J is a holomorphic function on ZΓ\Cf. As Z is a
compact complex manifold, the second assertion follows immediately. Q. E. D.

Now we are ready to finish the proof of Theorem (1.1). We assume that
r<m. (Recall that r=rank(/£"(Δi, •••, Δ*)).) By Assertion (2.6), the restriction
yσ.mlz is constant on each connected component of Z. Let {δlf •••, δt} be the
values of ya,m\z- Let hσfk+ί(yσ):= yOtm—δ for <5eC. We can choose δ so that
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δφδlt •••, δι and the subvariety of Z*

P : = { ^ G C * m ; huσ(yσ)= ... =hk,σ(ya)=hk+ι,σ(yσ)=0}

is a non-degenerate complete intersection variety. See the Appendix in §4 for

the existence of such a δ. By the assumption δφδu •••, δt,V* is empty. Let

A't=A(ht.σ) for ι = l , .», k + 1. The assumption (2.3) implies that α(Δί, •••, Δ*)^l .

We assert that a(A[, •••, Δί+0^0. In fact, for any subset / c {1, •••, k+1}, we

have

^ 1 if

d i m ( Σ Δ ί ) - | / | if

if /={ fe+l} .

Thus again by Proposition (5.4) in [Ok4], F * is non-empty. This is a contra-

diction to the emptiness V*=0. This completes the proof of Theorem (1.1).

§ 3 . Construction of an algebraic surface with

a given fundamental group.

In this section, we will construct an algebraic surface which has an arbi-

trary given fundamental group. We first give several basic properties of the

boundary lattice group K(AU •••, Ak) and the fuudamental group Π^Au •••, Δ*)

(3.1) Let Aιt A't, i=l, -••, k, be compact convex integral polyhedra. We

say that {Δi, •••, Ak] and {Δί, •••, A'k) are similar if there exist integral vectors

Aίf •••, Ak and positive rational numbers ru •••, Vk so that A[—r'ιAi+Alf i=l,

•"yky and we write {Δx, •••, Δft}~{Δί, •••, Δ*}. Assume that {Aίf •• ,Δ i f e }~

{Δί, •••, A'k). Then it is immediate from the definition that

(3.1.1) K(Al9 •••, Ah)=K(Aί, - , Δί), Πx{Al9 - , Δ*)=/7i(Δί, - , ΔJ)

(3.2) There is a canonical action of the unimodular matrices SL{m Z) to

the set of compact convex integral polyhedra. Let ξ be a unimodular matrix

and let Δ be a compact convex integral polyhedron. We denote the image of

Δ by the action of ξ by Aξ. Then we have canonical isomorphisms which are

induced by the equality A(ξP; Δ ) = Δ ( P ; Aξ)

(3.2.1) K{AU . - , Δ*)sJΓ(Δf, . . . , Δf),

(3.3) Let /={/i, •••,*«} be a subset of {1, •••,&}. Then we have the

canonical inclusion: K(Alf •••, Ak)c:K(Aιv •••, Atg). This gives the canonical

surjective homomorphism:
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(3.3.1) Πλ{Au ... f Δ*) — > # i ( Δ t l , - , Δ,s) — > 0

(3.4) Let us consider the case : Δ x = ••• = Δ * = Δ . The corresponding variety
is called a strictly similar complete intersection variety ([Ok5, 6]). By the de-
finition, K(A, •• , Δ ) is generated by the (m—&)-skeleton of the dual Newton
diagram Γ*(Δ). Thus the calculation of K(A, •••, Δ) and /7X(Δ, •••, Δ) is easy.

Let G be an arbitrary finite abelian group. Now we construct an algebraic
surface M such that

Example (3.5). We first consider the case ρ(G)=l. Then we can write
G=Z/nZ. We consider the algebraic surface Mn which is the compactifica-
tion of

M*={(x, y, 2 ) G C * 3 ; h(x, y, 2 ) = * β V + y

and let An:— A(h). The dual Newton diagram is generated by four vertices:

P i = ( θ ) , P , = ( l ) , P . = ( - 2 ) , P 4 =( 3
\0/ \0/ \2n/ \-βn

Thus UΓ(Δn) is generated by integral covectors in Cone(Pt, Pj), l ^ / < / ^ 4 . Let
<Cone(Pt, Pj)}z be the subgroup which is generated by the integral covectors
in Cone(Pt, P$). Note that <Cone(Pz, P ; )>z is generated by Pt and P, if and
only if det (Pt, P>)=1. Otherwise <Cone(Pt, Pj)>z=<Pt, T} where T is an inte-
gral covector TeCone(P t, P̂  ) such that det(Pt, T ) = l . See the proof of Asser-
tion (2.4). In our case, <Cone (Pt, P, )>z-<P t, P,> for (i, y)=(l, 2), (2, 3). As
det (Px, P») = 2, det (Λ, P4) = 3 and det(P2, P4)=2, <Cone(Λ, P8)>z=<Pi, T>,
<Cone(Pi, P4)>z=<Pi, 5> and <Cone(P2, P4)>z=<P2^> where

T : = ( P ι + P , ) / 2 = ( - l ) , S:=(P4+Pi)/3=( 1 ), i?:=(P 4 +P 2 )/2=( 2

Thus /Γ(Δπ) is generated by covectors Px, •••, P4, T, S, i? and we can easily
see that

); α, ft, c e z j , Πι{An)=πι(Mn)=Z/nZ

Remark (3.6). To construct an explicit algebraic surface with fundamental
group Z/nZ whose topologίcal Euler characteristic or geometric genus is as
small as possible, the above example is not the best for n relatively coprime
to 6. Let

N*={(x, y,

Then we have πι{Nn)—z/nfZ where n/=n/gcd<w, 6). This series contains
many interesting surfaces. For example, N4 is called an Enriques surface and
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π1(Ni)=Z/2Z. N5 has the fundamental group Z/5Z and it is called a Godeaux
surface. We have studied these cases in [Ok3, Ok2].

Example (3.7). Let /, n be a given positive integer. We consider the case
that G=Z/nZ@Z/nlZ. We consider a strictly similar non-degenerate complete
intersection variety M%tl= {M<=C*4 h1(μ)=h2(u)=0} whose dual Newton diagram
is generated by five vertices:

1
0
0
0

, * 2 =

0
1

0
0

- i \
-1 p _
n ' P<~

0 /

- 1 \
- 2

-2n ' J

2/n /

/ i

p - 3

P s - 3n
\-6/n

For example, we can take

hi(u)=al,1u\lnullu\+ai,2ullnullu? i = l , 2.

Let Δn,ι=Δ(λ,(i0). As det(Pi, Λ)=2, det(Λ, Λ)=3 and det(P8, PB)=2, we have
<Cone(Λ, Λ)>x=<Λ, T>, <Cone(Λ, P5)>z=<Pι, Sx> and <Cone(P3, PB)>jr=<Λ, /?>
where T=(P 1+P 4)/2= ί(0, - 1 , - n , /n), S=(P 5+2P 1)/3= t(l, 1, n, -2/n) and /?=
(P5+P3)/2= ί(0, 1, 2w, -3/n). Thus UΓ(Δn>z, ΔΛlI) is generated by those vertices
and we have

a, b, c,

n, lf An, ι)=πx{Mn, t)=Z/nZ®Z/ίnZ.

Now we consider K(An. ι) As UΓ(Δn> z) is generated by 3-skeleton of Γ*(ΔTO> z),
we have to add <Cone(Pz, PJf Pk)>z to K{AUtU An,ι). First we have Es:=
(P1+P2+Ps)/n=t(0,0,1,0)e= Cone (Λ, P2, P8). Secondly -E4 :-=(P1+3P4+2P5)/6/?2
=«(0, 0, 0, -1). Thus we have K{AUtl)=N and /71(ΔniI)=0.

Example (3.8). Let w, m, / be given positive integers and assume that G =
Z/nZ@Z/nmZQ)Z/nmlZ. We consider an algebraic surface Mn,m,ι which is
the compactification of the non-degenerate complete intersection variety

; Aι(u)=Λ,(u)=A8(iι)=0}

whose dual Newton diagram is generated by six vertices
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1
0
0
0
0

/o
1

, P*=\ 0

\o
• p = l " '• H i s

\ o

- 3 n , P β =
-6nm
6nml I

Sn
12nm

-24nmll

For example, we can take

+ at,3(uTu4y
muΓ5+at,Muδγ

oo+aι,5uΓ+l, ί= l , 2, 3.

Let Δ=Δ(Λt). As det(Λ, Λ)=2, det(Λ, Λ)=3, det(Λ, Λ)=4, det(Λ, P5)=2,
det(Λ, P6)=3 and det(Λ, Λ)=2, we have

<Cone(Λ, P0>x=<Λ, Λ,4>, <Cone(Λ,

<Cone (Λ, P*)>M=<PI, Λ. β>, <Cone (P8,

<Cone (ft, P )>x=<P«, ft, •>, <Cone (P4,

and <Cone(ft, Pj)>g=<Pt, ft> for other (ι, ) as det(ft, P y ) = l . Here ft,4, •••, ft,6

are defined by

Pi,4=(Pι+P4)/2= ί(0, - 1 , - n , nm, 0)

P l i 6 =(Pi+P.)/3= ί (0, - 1 , - n , -2τ2m, 2nm/)

P l f β =(3P 1 +Pβ)/4= ί (l, 1, 2w, 3nm, -6nm/)

P 8 i B = ( P , + P , ) / 2 = l ( - l , - 2 , - n , -3nm, 3nm/)

P S i β =(P 8 +P β )/3= ί (0, 1, 3n, 4/2m, -8nm/)

P 4 t β =(P 4 +P β )/2= t (0, 1, 3n, 7nm, -Yλnmϊ).

Thus we can easily conclude that

and

Now we consider K(A, Δ) and /Γ(Δ). As generators of K(A, A) (respectively of
K(A)) we need to add <Cone(ft, P3f Pk)>z (resp. <Cone(ft, PJ9 Pk, ft)>z). For



190 MUTSUO OKA

brevity, we assume that m^O modulo 2, 3 and /^0 modulo 3. In addition to
the generators of K(A, A, Δ), we have the following in K(A, A):

Pi...8:= '(0, 0, 1, 0, 0)=(P 1 +P,+P,)/n

P l i 8 i 4 : = '(0, - 1 , - 2 + n , m, 0)=(P4+(2n-2)P,+(2n-l)Λ)/2n

P 8 i 4 t β : = f ( - l , - 1 , n, 3, -4β=(Pe+3P4+(6nm--2)P8)/6nro

p;> 3 > 5:=<(0, - 1 , - 1 + n , - m , m/)-(P5+(βn-3)P3+(6n-2)P 1)/6w

P1 # 4.δ :='((), - 1 , n, - 3 + n m , 2/)=(P6+(3nro-3)Pi.4+Pi)/3nm

and the following is also contained in K(A):

'(0, - 1 , n, 0, - l )=(P 6 +(12nm/-12n+4)P 3

+(12nm/-12n+3)P ι+12nP l t 8,β)/12nm/.

Thus /7χ(Δ, A)=Z/IZ and /7i(Δ)=0. We leave the details for the calculation
of this assertion to the reader.

Example (3.9). A polynomial h(u) is called strongly full if for any subset
la {I, •••, k}, the restriction h1 : = A|c/ is not constantly zero and dim(Δ(/ι7))
= | / | ([Okβ]). We also call Δ(A) a strongly full polyhedron. Assume that Δi,
-', Ak are strongly full and m—k^2. Then it is easy to see that Et\—

*((),•••, 1, ••• ,0) is in K(AU •••, Ak) for any i = l , •••, m. Therefore we have that
K(AU •••, Ak)~N and Πi(Au •••, Δ*) = 0. In particular, any non-degenerate
strongly full complete intersection variety of dimension m—k^2 is always
simply-connected. The simply connectedness of a smooth complete intersection
variety, with dimension greater than 1, in the projective space Pn can be re-
duced to this criterion.

General Case (3.10). Let nu •••, ns be given positive integers. We will
construct an algebraic surface whose fundamental group is isomorphic to Z/nxZ
© ••• @Z/nsZ. Probably we can construct such a surface as a strongly similar
non-degenerate complete intersection variety as we have constructed in the case
of s ^ 3 in Example (3.6), (3.7) and (3.8). However to give a uniform series at
a time seems fairly complicated as is already the case in Example (3.8). We
propose a slightly different point of view. We start from the product variety
of dimension 2s

W*=M*1χ - . xAf* f={(Mi, ~,ut)tΞC*u;ht(βix)=0,i=l, •••, s}

where ut=(xt, yu zx) and A<(u t)=xί n*2l+^! n*2?+z i+l. The surface M * t =
{M<eC*8;.A#(M0=0} is studied in Example (3.6). The surfaces Nn in Remark
(3.6) can be equally used for the following construction. Let Aι=A(hι). It is
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easy to see that

K(AU •••, Δt)=/C,(Δ1)x ••• X/f,(Δ,), Γ*(Δi, - , Δ t )=Γ?(Δ0x - xΓ*(Δ s)

where Ks(At) and -Γ*(Δt) are the boundary lattice group and the dual Newton
diagram of At as a polyhedron in i?3. Taking the product compactification X=
XiX ••• xXs associated with a product regular simplicial cone subdivision Σ*=
ΣiX ••• xΣs of Γ^AOx ••• χΓ?(Δ«), we can see that the compactification W of
W* is nothing but the product M n i x ••• χ M n s . Therefore

(3.10.1) π1(ίV)=Πί(Alf •••, Δ , ) = Z / n ! Z φ ••• ®Z/nsZ.

Let 5 '=Δ 1 + ••• +Δ S . Note that Ξ=AXX ••• xΔ s if we consider AtCiR3 and that
dim Ξ=3s. Now we consider the following non-degenerate complete intersection
variety of dimension 2 (= a surface) which is given as an iterated admissible
hypersurface section of W* in the sense of [Ok6] :

M * ^ { M G Ξ C * 3 S ; kj(u)=0, ; = 1 , - , 3s-2}

where kj(u)=hj(uj) for ; = 1, •••, s and {ks+ί(u), •••, ^ 3 S- 2(M)} are generic poly-
nomials with A(kj)=Ξ, for /, s + l ^ ; ^ 3 s — 2 . Let M be the corresponding com-
pactification. The following lemma and Theorem (1.2) implies that πι(M)=

• Q)Z/nsZ. Thus M is a surface which we are looking for.

LEMMA (3.11). We have K(AU •••, Δ,, Ξ, - , 5)=ϋί(Δ 1, •••, Δβ). (/fere
are (2s—2)-copies of Ξ in the left side.) Therefore

Π1(Al9 -,At,Ξ, , Ξ)=Π1(AU -.., As)=Z/n1Z® ••• ®Z/ntZ.

Proof. We have seen that K(AU •••, Δ,, Ξ, •••, Ξ)aK(Au •••, Δ.) in (3.3).
We have to show the opposite inclusion. Let ΛΓt be the lattice of covectors
corresponding to the variable u% and let pi: N-*Nt be the canonical projection
and let et: Ni~>N be the canonical inclusion. T h e n ψ: N'-tN^ ••- (&NS is an
isomorphism where ψ=Σl=i Pi and φ~ί = yΣl=ιcι. Let P^N and let Pι=ρi(P).
Then we have that

; Δ0, ~ , A(P; Δ5))^0Φ=Φ dim

Assume that PeiV satisfies α(Δ(P; Δ0, •••, Δ(P; Δ,))^0. Let ΛeiV, be as above
and let P't=ct(Pt)eN. Note that &(P0=0 for ^ i and pi(P't)=Pt. Thus it is
easy to see that

ί ,, ;
Δ(P;;Δ, )= and

U(ΛΔ) y

Thus dimΔ(P;; Ξ)^3s-2 and it is easy to see that
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a(Λ(Pl AJ, - , Δ(P[ Δs\ Δ(Pί Ξ), ..-, Δ(Pί Ξ))£0.

This implies that P't<=K(Alf •••, Δ,, Ξ, •» , Ξ). Thus P = Σ U ^ί is also contained
in K(AU •••, Δ,, Ξ, •••, Ξ). As {PeiV; α(Δ(P; ΔO, - , Δ(P; Δs))^0} generate
the boundary lattice group K(Al9 •••, Δf), this shows the opposite inclusion:
K(AU •••, At)cK(Au •••, Δ,, 5, ..., Ξ). This completes the proof.

§ 4. Appendix.

We consider arbitrary integral convex polyhedra Δi, •••, Ak in β m . An
integral point A of a convex polyhedron Δ is called a vertex of Δ if A is not
on any face of Δ of dimension greater than 0. Let {Altl, ••, Attβi} be the
vertices of At and let {Att€i+1> . , Altd.) be the other integral points of Δ t for
ι = l , ...,jfe. Put

h( t ) h ( ) Σ A

where f,=(ί, f J / -,tttdt). For each / = ( / 2 / - ^ y e C ^ ^ , we define

Let us consider the subset HJ:^ cυ(Au •••, Δ*) of the parameter space Cdίx •••
X(7 d * which is defined by * = & , -**, ^ ) e ^ 7 if and only if

(1) (Stability of Newton Polyhedra) A(hι,t.)=Aι, i = l, •••, fe and
(2) (Non-degeneracy) Zf is a non-degenerate complete intersection variety.

(1) is equivalent to tttJΦθ for l^j^eιt l ^ i ^ f e . Let P be an integral covector.
We say that P is trivial on {Δi, •••, Δ^} if Δ(P; Az)=At for each ι = l , •••, jfe.
In other words, P is trivial on {Au •••, Δ*} if and only if P is a constant func-
tion on Δi-i f-Δ*. Thus

P R O P O S I T I O N (4.1). / / P z's non-trivial on {AXy — ,Ak\,we have the inequality:

dim ( ΣΔ(P; Δt))<dim ( Σ Δt).

This is obvious from the general equality: Σ?=ιΔ(P; Δt)=Δ(P; Σt=iΔt). For a
non-trivial integral covector P, we define

Zf(P):={ιιeC*»; AliP(α, « = - =hk.P(u, tk)=0}

where Atip(ie, tι)^Aι^iP.Λotuju
A^κ

Let α=(α x , •••, αk) be a fixed parameter which satisfies the stability condi-
tion (1) and take and fix an /, l g / ^ d * . Put t(τ)=(αίf -••, αk.lf αk(τ)) and αk(τ)

••, αktdk). We consider the line in the parameter space
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Lι(a) which is defined by Lt(a)= {t(τ); r e C } .

T H E O R E M (4.2). Assume that we have chosen the coefficients ti=aι=(altU •••,
di.di) of hi for i=l, -" , k so that W* and Z*(P) are non-degenerate complete
intersection varieties for any non-trivial covector P on {Au •••, Δ*}. Then for
any fixed /, l<Ll<Ldk> Lι{a)~~cUΓ\Lι{ά) is a finite set where Lι(a) is the complex
line as above.

COROLLARY (4.2.1). CU is a non-empty Zanski open set.

Proof of Theorem (4.2). Let m'—dimQ]?=iΔι). By a change of Laurent
coordinates if necessary, we can assume that m—mf. We fix a regular sim-
plicial cone subdivision J * of Γ*(ΔU -•-, Δk) and let X be the corresponding
compactification of the torus C*m. As we have assumed m—mr

y P is non-trivial
for {Δi, •••, ΔΛ} if and only if P is a non-zero covector. Assume that the co-
efficients {tt,j=aUJ; l^j<dt> l<i<*k\ are given so that W* and Z*(P) are
non-degenerate complete intersection varieties for any non-zero covector. We
take an arbitrary l,1<l^dk, and we consider the one-dimensional family
( Z ί ( r ) ; r e C } of the divisors in Wa. Recall that

(4.2.2) Ziω-ZtM= U EtM{P)
FeVertexCl1*)

where jB#Crt(P):= E(P)Γ\ZUτ^ The base point locus of this family is the union
of the divisors Ea{P) such that AktιψΔ(P\Δk). The assumption that Z*(P) is
non-degenerate implies that Et^{P)=Ea{P) is also non-singular for any vertex
P e Vertex (21*). Applying Bertini's theorem ([G-H]) or Curve Selection Lemma
([M]), we conclude that {Zf(r)} are smooth except a finite number of exceptions
r=rχ, -,τμ. Q.E.D.

Proof of Corollary (4.2.1). By a change of Laurent coordinates if necessary,
w e c a n a s s u m e t h a t m=m\ Let π: Cdl-{0}X ••• xCd^-{0}-^Pdl-1X ••• x P ^ " 1

be the canonical projection and let ^^πi'Ό). As cU=π"1(cU), it suffices to
show that tF is a non-empty Zariski open set. Let

Z*={(u, π{t))<ΞC*mx(Pdι-ιX -. X P ^ " 1 ) ; hx{uy t1)= ••• =Λ*(α, tk)=0\.

We fix a regular simplicial cone subdivision Σ* of Γ*(Δlt ••• , Δ*) and let X be

the corresponding compactification of the torus C*m. Let J C ^ I X P ^ ^ X ••• X

Pdk~1 and let p: 3C-^Pd»-ίx ••• χPdk-1 be the projection. Let ^ be the com-

pactification (^closure in 3C) of S* in 2C. For each vertex P, let έ(P)=E(P)

χpdi-ιχ ... xpd*- 1 and let e(P)=ZΓ\β(P). Let S(P) be the set of singular

points of <?(P) as a complete intersection variety in £(P) and let S be the union

UpGvertexcj*) S(P). Let £=/>(S) and ^ ^ U ί - i U j i i U t . ^ O } . By the proper

mapping theorem ([Re]), p(Z) and D are analytic subsets of Pd^~ιx ••• x P ^ " 1 .

Thus they are also algebraic by Chow's theorem. If a(Δu •••, ΔΛ)<0 and Z*
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is non-degenerate, Z * ( P ) = 0 for any covector P. Thus dU=Pdi-ιx •

-/>(£). If α(Δi, •••, Δ*)^0 and Z* is non-degenerate, Z * ^ 0 (Proposition (5.4),

[Ok4]). Therefore <Ό = p(Z)-(D\jD'). Assume that <Όφ0. Then the trans-

versality argument shows that V is an open set in the strong topology. Thus

if cUΦ0 and a(Alf - , Δ*)^0, p{%)^Pd^lX ••• x P ^ ' 1 as J P ^ x ••• x P ^ " 1

is irreducible. Thus in any case <Ό is a Zariski open set. Therefore it suffices

to show that dUΦ0. Now the non-emptiness HJΦ0 follows easily from Theo-

rem (4.2) using the induction on k and mr.
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