S. TANNO KODAI MATH. J. 16 (1993), 171–180

THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE WITH DEFORMED METRICS

Dedicated to Professor Yoji Hatakeyama on his sixtieth birthday

By Shukichi Tanno

§1. Introduction.

It is known that the identity map Id_M of a compact Riemannian manifold (M, g) is a harmonic map. (M, g) is said to be unstable, if the Jacobi operator J defined by the second variation of the energy functional at Id_M has negative eigenvalues. The standard *m*-dimensional sphere (S^m, g_0) of constant curvature 1 is unstable for $m \ge 3$. More generally, unstable, simply connected compact (irreducible) symmetric spaces were determined (Smith [5], Nagano [3], Ohnita [4], Urakawa [11]).

In [9] the author studied instability of spheres $(S^m, g(t))$ with m=2n+1, as a class of homogeneous Riemannian manifolds which are not symmetric nor Einstein (cf. also Urakawa [12]), and gave the expression of some eigenvector of the Jacobi operator corresponding to a negative eigenvalue. The Riemannian metrics g(t) considered in [9] or [12] is related to the Hopf fibration (S^{2n+1}, g_0) $\rightarrow (CP^n, h_0)$, where (CP^n, h_0) denotes the complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4.

As the next step, we study the Riemannian metrics related to the Hopf fibration $(S^{4r+3}, g_0) \rightarrow (QP^r, h_0)$, where QP^r denotes the quaternion projective space. (S^{4r+3}, g_0) admits a Sasakian 3-structure $\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)}\}$. The dual vector fields $\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\}$ define the 3-dimensional distribution on S^{4r+3} whose integral submanifolds are fibers of the Hopf fibration. We define a 1-parameter family of Riemannian metrics g(t) on S^{4r+3} by

(1.1)
$$g(t) = t^{-1}g_0 + t^{-1}(t^{m/3} - 1) \sum_{\alpha} \eta_{(\alpha)} \otimes \eta_{(\alpha)},$$

where m=4r+3, and $0 < t < \infty$ (cf. Tanno [7]). The volume form for g(t) is unchanged for all t. The purpose of this paper is to show the following:

THEOREM. (i) For m=4r+3=7, 11, the sphere $(S^{4r+3}, g(t))$ is unstable. (ii) For $m=4r+3\geq 15$, and for $t\in(0, t_0(m))$ or $t\in(t_1(m), \infty)$, the sphere $(S^{4r+3}, g(t))$ is unstable, where $t_0(m)$ and $t_1(m)$ are given in §4.

(iii) For each eigenfunction f corresponding to the (non-zero) first eigenvalue $\lambda_1 = 4r + 3$ of the Laplacian acting on functions on (S^{4r+3}, g_0) ,

Received December 9, 1992.

(1.2) $f\xi_{(1)} + t^{m/3}k(t)\nabla\xi_{\text{grad}f}\xi_{(1)} + (1 - t^{m/3}k(t))((\xi_{(3)}f)\xi_{(2)} - (\xi_{(2)}f)\xi_{(3)})$

is an eigenvector corresponding to the negative eigenvalue $\mu(t)$ of the Jacobi operator $J_{(t)}$. k(t) and $\mu(t)$ are given in §4. The multiplicity of $\mu(t)$ is m+1 for almost all t in $(0, t_0(m))$ or $(t_1(m), \infty)$.

It is an open problem if the positivity of $\mu(t)$ (for $t_0(m) < t < t_1(m)$) is related to some geometric property, and if $(S^{4r+3}, g(t))$ is stable for $t_0(m) < t < t_1(m)$.

§2. Preliminaries.

Let (S^{4r+3}, g_0) be the unit sphere in the 4(r+1)-dimensional Euclidean space $E^{4(r+1)}$, where $E^{4(r+1)}$ is considered as a product space $Q \times \cdots \times Q$ of r+1 copies of the space Q of quaternions with the canonical metric. Let $\{x^{\sigma}, y^{\sigma}, z^{\sigma}, w^{\sigma}; \sigma=1, \cdots, r+1\}$ be the natural coordinate system of $E^{4(r+1)}$. Let $\{I, J, K\}$ be the quaternion structure of $E^{4(r+1)}$. If one considers a point $x=(x^{\sigma}, y^{\sigma}, z^{\sigma}, w^{\sigma})$ of S^{4r+3} as a unit vector in $E^{4(r+1)}$ and

$$Ix = (y^{\sigma}, -x^{\sigma}, w^{\sigma}, -z^{\sigma}),$$

$$Jx = (z^{\sigma}, -w^{\sigma}, -x^{\sigma}, y^{\sigma}),$$

$$Kx = (w^{\sigma}, z^{\sigma}, -y^{\sigma}, -x^{\sigma}),$$

as tangent vectors at x to S^{4r+3} , we get a field of orthonormal vectors $\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\}$ on S^{4r+3} . Each $\xi_{(\alpha)}$ is a Killing vector field on (S^{4r+3}, g_0) , and we have the following:

(2.1)
$$[\xi_{(1)}, \xi_{(2)}] = 2\xi_{(3)}, \quad [\xi_{(2)}, \xi_{(3)}] = 2\xi_{(1)}, \quad [\xi_{(3)}, \xi_{(1)}] = 2\xi_{(2)}.$$

The 3-dimensional distribution defined by $\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\}$ on S^{4r+3} is integrable and each integral submanifold is isometric to a unit 3-sphere in E^4 . This gives the Hopf fibration $S^{4r+3} \rightarrow QP^r$. Now let $\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)}\}$ be the dual of $\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\}$ with respect to g_0 . Then each $\eta_{(\alpha)}$ defines a contact structure on S^{4r+3} , and $\{\eta_{(\alpha)}, g_0\}$ is a Sasakian structure. Furthermore, $\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)}; g_0\}$ is called the canonical Sasakian 3-structure of (S^{4r+3}, g_0) . For each α ($\alpha =$ 1, 2, 3), we define a (1, 1)-tensor field $\phi_{(\alpha)}$ by

(2.2)
$$\phi_{(\alpha)} = -\nabla \xi_{(\alpha)}.$$

 $\phi_{(1)}, \phi_{(2)}$, and $\phi_{(3)}$ are canonically related to *I*, *J*, and *K*. We have the following relations:

(2.3)
$$\phi_{(\alpha)}\xi_{(\alpha)}=0, \qquad \eta_{(\alpha)}\phi_{(\alpha)}=0,$$

(2.4)
$$\phi_{(\alpha)}^2 X = -X + \eta_{(\alpha)}(X)\xi_{(\alpha)},$$

(2.5)
$$g_{\mathfrak{g}}(X, Y) = g_{\mathfrak{g}}(\phi_{(\alpha)}X, \phi_{(\alpha)}Y) + \eta_{(\alpha)}(X)\eta_{(\alpha)}(Y),$$

THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE

(2.6)
$$\nabla_{\xi(\alpha)}\xi_{(\alpha)} = \nabla_{\xi(\alpha)}\eta_{(\alpha)} = 0, \qquad L_{\xi(\alpha)}\phi_{(\alpha)} = L_{\xi(\alpha)}\eta_{(\alpha)} = 0$$

(2.7)
$$(\nabla_X \phi_{(\alpha)})(Y) = g_0(X, Y) \xi_{(\alpha)} - \eta_{(\alpha)}(Y) X,$$

(2.8)
$$\phi_{(\alpha)}\xi_{(\beta)} = -\phi_{(\beta)}\xi_{(\alpha)} = \xi_{(\gamma)}, \quad [\alpha, \beta, \gamma: cyclic]$$

$$(2.9) \qquad \phi_{(\alpha)}\phi_{(\beta)} - \xi_{(\alpha)}\eta_{(\beta)} = -\phi_{(\beta)}\phi_{(\alpha)} + \xi_{(\beta)}\eta_{(\alpha)} = \phi_{(\gamma)}, \qquad [\alpha, \beta, \gamma: cyclic]$$

where X, Y denote tangent vectors or vector fields, and $[\alpha, \beta, \gamma: cyclic]$ means that $\{\alpha, \beta, \gamma\}$ in (2.8) and (2.9) is a cyclic permutation of (1, 2, 3). This convention is used also in the following. Also, we have the following:

(2.10)
$$\eta_{(\alpha)}\phi_{(\beta)} = -\eta_{(\beta)}\phi_{(\alpha)} = \eta_{(\gamma)}, \quad [\alpha, \beta, \gamma: cyclic]$$

(2.11)
$$\nabla_{\xi(\alpha)}\eta_{(\beta)} = -\nabla_{\xi(\beta)}\eta_{(\alpha)} = \eta_{(\gamma)},$$

 $\nabla_{\xi(\alpha)}\xi_{(\beta)} = -\nabla_{\xi(\beta)}\xi_{(\alpha)} = \xi_{(\gamma)}, \quad [\alpha, \beta, \gamma: cyclic]$

(2.12)
$$L_{\xi(\alpha)}\phi_{(\beta)} = -L_{\xi(\beta)}\phi_{(\alpha)} = 2\phi_{(\gamma)},$$

$$L_{\xi(\alpha)}\eta_{(\beta)} = -L_{\xi(\beta)}\eta_{(\alpha)} = 2\eta_{(\gamma)}, \qquad [\alpha, \beta, \gamma: cyclic]$$

where L_x denotes the Lie derivation by X. Next, we define an operator L by

$$L=\sum_{\alpha} L_{\xi(\alpha)} L_{\xi(\alpha)}.$$

The restriction of L (for functions) to each integral submanifold (which is isometric to the 3-sphere) is identical with the usual Laplacian Δ acting on functions on (S^3, g_0) . Thus, we have the following (cf. Tanno [7]):

PROPOSITION 2.1. For a non-negative integer k, the eigenspace V_k corresponding to the k-th eigenvalue of the Laplacian Δ acting on functions on (S^{4r+3}, g_0) has the orthogonal decomposition;

$$V_{k} = W_{k,k} + W_{k,k-2} + \dots + W_{k,k-2[k/2]}$$

such that $f \in W_{k,\theta}$ satisfies

$$Lf = \theta(\theta + 2)f$$
.

§ 3. Riemannian metrics g(t).

We define $\{g(t); 0 < t < \infty\}$ such that $g(1) = g_0$ on S^{4r+3} by

(3.1)
$$g(t) = t^{-1}g_0 + t^{-1}(t^{m/3} - 1) \sum_{\alpha} \eta_{(\alpha)} \otimes \eta_{(\alpha)}.$$

For simplicity we denote g(t) by \tilde{g} , and g_0 by g in the following calculation. So, in the local coordinate expression we have

(3.1)
$$\tilde{g}_{jk} = t^{-1} g_{jk} + t^{-1} (t^{m/3} - 1) \sum_{\alpha} \eta_{(\alpha)_j} \eta_{(\alpha)_k} ,$$

(3.2)
$$\tilde{g}^{ij} = tg^{ij} - t(1 - t^{-m/3}) \sum_{\alpha} \xi_{(\alpha)}{}^i \xi_{(\alpha)}{}^j$$

LEMMA 3.1. The difference W_{jk}^i of the Christoffel symbols $\tilde{\Gamma}_{jk}^i$ and Γ_{jk}^i with respect to g(t) and g_0 is given by

(3.3)
$$W_{jk}^{i} = -(t^{m/3} - 1) \sum_{\alpha} \left(\phi_{(\alpha)j} \eta_{(\alpha)k} + \phi_{(\alpha)k} \eta_{(\alpha)j} \right).$$

Proof. By a classical formula we have

$$\begin{split} W_{jk}^{i} &= \widetilde{\Gamma}_{jk}^{i} - \Gamma_{jk}^{i} \\ &= (1/2) \widetilde{g}^{ir} (\nabla_{j} \widetilde{g}_{rk} + \nabla_{k} \widetilde{g}_{rj} - \nabla_{r} \widetilde{g}_{jk}) \,. \end{split}$$

Substituting (3.1) and (3.2) into the above, and using (2.2), etc., we have (3.3).

LEMMA 3.2. The Riemannian curvature tensor $\hat{R} = R_{(t)}$ of $\tilde{g} = g(t)$ is given by (3.4) $\tilde{R}^{i}_{jkl} = R^{i}_{jkl} + (1 - t^{m/3}) \sum_{\alpha} \{2\phi_{(\alpha)}, \phi_{(\alpha)}, \dots - \phi_{(\alpha)}, \phi_{(\alpha)}, \dots + \phi_{(\alpha)}, \phi_{(\alpha)}, \dots + \phi_{(\alpha)}, \phi_{(\alpha)}, \dots + \phi_{(\alpha)}, \phi_{(\alpha)}, \dots + \phi_{(\alpha$

$$(\xi^{(1)}) = \int_{\mathbb{R}^{d}} e^{-jkt} + (e^{-jkt}) \int_{\mathbb{Z}^{d}} (-\varphi(a)_{j}\varphi(a)_{kl} - \varphi(a)_{l}\varphi(a)_{l}\varphi(a)_{kl} + \varphi(a)_{k}\varphi(a)_{jl} + (\xi^{(1)})_{k}\varphi(a)_{l} - g_{jl}\eta_{(\alpha)_{k}}) - 2\eta_{(\alpha)_{j}}(\delta_{k}^{k}\eta_{(\alpha)_{l}} - \delta_{l}^{k}\eta_{(\alpha)_{k}}) + (1 - t^{m/3})^{2} \sum_{\alpha} \eta_{(\alpha)_{j}}(\delta_{k}^{k}\eta_{(\alpha)_{l}} - \delta_{l}^{k}\eta_{(\alpha)_{k}}) + (1 - t^{m/3})^{2} \sum_{[cyclic]} \{2\varphi_{(\alpha)_{j}}(\eta_{(\beta)_{k}}\eta_{(\gamma)_{l}} - \eta_{(\gamma)_{k}}\eta_{(\beta)_{l}}) + \varphi_{(\alpha)_{l}}(\eta_{(\beta)_{k}}\eta_{(\gamma)_{j}} - \eta_{(\gamma)_{k}}\eta_{(\beta)_{j}}) - \varphi_{(\alpha)_{k}}(\eta_{(\beta)_{l}}\eta_{(\gamma)_{j}} - \eta_{(\gamma)_{l}}\eta_{(\beta)_{j}}) + 2(\xi_{(\alpha)}{}^{i}\eta_{(\beta)_{j}} - \xi_{(\beta)}{}^{i}\eta_{(\alpha)_{j}})(\eta_{(\alpha)_{k}}\eta_{(\beta)_{l}} - \eta_{(\beta)_{k}}\eta_{(\alpha)_{l}})\}.$$

Proof. We calculate the following:

$$\widetilde{R}^{i}_{jkl} = R^{i}_{jkl} + \nabla_{k} W^{i}_{lj} - \nabla_{l} W^{i}_{kj} + W^{s}_{lj} W^{i}_{ks} - W^{s}_{kj} W^{i}_{ls} \,.$$

By (2.2), (2.7), etc., and (3.3) we have

$$\begin{aligned} \nabla_{k}W_{lj}^{i} - \nabla_{l}W_{kj}^{i} &= (1 - t^{m/3}) \sum_{\alpha} \left\{ 2\phi_{(\alpha)j}^{i}\phi_{(\alpha)kl} - \phi_{(\alpha)l}^{i}\phi_{(\alpha)jk} + \phi_{(\alpha)k}^{i}\phi_{(\alpha)jl} + \xi_{(\alpha)i}^{i}(g_{jk}\eta_{(\alpha)l} - g_{jl}\eta_{(\alpha)k}) - 2\eta_{(\alpha)j}(\delta_{k}^{i}\eta_{(\alpha)l} - \delta_{l}^{i}\eta_{(\alpha)k}) \right\}. \end{aligned}$$

As for $W_{lj}^{s}W_{ks}^{i}$, we calculate it directly as

$$W^{s}_{lj}W^{l}_{ks} = (1 - t^{m/s})^{s} \{ \sum_{\alpha} (\phi_{(\alpha)}^{s} \eta_{(\alpha)}^{j} + \phi_{(\alpha)}^{s} \eta_{(\alpha)}^{j}) \} \sum_{\beta} (\phi_{(\beta)}^{i} \eta_{(\beta)}^{j} + \phi_{(\beta)}^{i} \eta_{(\beta)}^{j}) \}.$$

Summing up the results, proof is completed.

LEMMA 3.3. The Ricci curvature tensor (\tilde{R}_{jl}) and the scalar curvature $\tilde{S} = S_{(t)}$ of $(S^{4r+3}, g(t))$ are given by

(3.5)
$$\hat{R}_{jl} = R_{jl} + 6(1 - t^{m/3})g_{jl}$$
$$+ (1 - t^{m/3})[-2m + (m-3)(1 - t^{m/3})] \sum_{\alpha} \eta_{(\alpha)_j} \eta_{(\alpha)_l} ,$$

THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE 175

(3.6)
$$\tilde{S} = tS - 3t(1 - t^{-m/3})[2 + (m-3)t^{m/3}]$$

The Ricci operator $\tilde{Q} = Q_{(t)}$ is given by

(3.7)
$$\widetilde{R}_{l}^{h} = t [m - 1 + 6(1 - t^{m/3})] \delta_{l}^{h}$$

$$-t(1-t^{-m/3})[2-(m+3)t^{m/3}]\sum_{\alpha}\xi_{(\alpha)}{}^{h}\eta_{(\alpha)}]$$

Proof. By contraction \tilde{R}_{jil}^i we have \tilde{R}_{jl} . \tilde{S} is given by $\tilde{g}^{jl}\tilde{R}_{jl}$. And, $\tilde{R}_l^h = \tilde{g}^{hj}\tilde{R}_{jl}$.

LEMMA 3.4. Each $\xi_{(\alpha)}$ is a Killing vector field with respect to g(t).

Proof. It suffices to show that $\xi_{(1)}$ is a Killing vector field with respect to g(t). $L_{\xi_{(1)}}g = L_{\xi_{(1)}}\eta_{(1)} = 0$ is trivial. By (2.12) we have

$$\begin{split} L_{\xi_{(1)}}(\eta_{(2)}\otimes\eta_{(2)}) &= 2(\eta_{(3)}\otimes\eta_{(2)} + \eta_{(2)}\otimes\eta_{(3)}), \\ L_{\xi_{(1)}}(\eta_{(3)}\otimes\eta_{(3)}) &= -2(\eta_{(2)}\otimes\eta_{(3)} + \eta_{(3)}\otimes\eta_{(2)}). \end{split}$$

Since g(t) is given by (3.1), proof is completed.

We define two operators Φ and Ψ acting on 1-forms by the following:

$$\begin{split} \boldsymbol{\Phi}(w) &= \sum_{\alpha} \phi_{(\alpha)}{}^{rs} \nabla_{r} w_{s} \cdot \boldsymbol{\eta}_{(\alpha)} , \\ \boldsymbol{\Psi}(w) &= \sum_{(\alpha, \beta, \gamma)} sgn \begin{pmatrix} 1 & 2 & 3 \\ \alpha & \beta & \gamma \end{pmatrix} (\nabla_{\boldsymbol{\xi}(\alpha)} w) (\boldsymbol{\xi}_{(\beta)}) \boldsymbol{\eta}_{(\gamma)} , \end{split}$$

where $sgn(\dots)$ denotes the signature of permutation.

PROPOSITION 3.5. The Laplacian $\tilde{\Delta} = \Delta_{(t)}$ for functions and 1-forms are given by

(3.8)
$$\Delta_{(t)} f = t \Delta f - t (1 - t^{-m/3}) L f,$$

(3.9)
$$\Delta_{(t)}w = t\Delta w - t(1 - t^{-m/3})Lw + 2t(1 - t^{m/3})\Phi(w) + 2t(1 - t^{-m/3})(1 - t^{m/3})\Psi(w).$$

Proof. (3.8) was proved in [7]. To show (3.9), we calculate the following:

$$\begin{split} \tilde{\Delta}w_i &= \tilde{g}^{rs} \tilde{\nabla}_r \tilde{\nabla}_s w_i - \tilde{R}^s_i w_s \\ &= \tilde{g}^{rs} \tilde{\nabla}_r (\nabla_s w_i - W^h_{si} w_h) - \tilde{R}^s_i w_s \\ &= \tilde{g}^{rs} (\nabla_r \nabla_s w_i - \nabla_r W^h_{si} w_h - W^h_{si} \nabla_r w_h - W^q_{rs} \nabla_q w_i \\ &+ W^q_{rs} W^h_{qi} w_h - W^q_{ri} \nabla_s w_q + W^q_{ri} W^h_{sq} w_h) - \tilde{R}^s_i w_s \,. \end{split}$$

First we check the following relation for each α ;

$$(3.10) L_{\xi(\alpha)}L_{\xi(\alpha)}w = \nabla_{\xi(\alpha)}\nabla_{\xi(\alpha)}w - 2\nabla_{\xi(\alpha)}w \cdot \phi_{(\alpha)} - w + w(\xi_{(\alpha)})\eta_{(\alpha)}.$$

Then we have

$$\begin{split} \tilde{g}^{rs} \nabla_{r} \nabla_{s} w_{i} &= t \nabla_{r} \nabla^{r} w_{i} - t(1 - t^{-m/3}) \{3w_{i} + (Lw)_{i} \\ &+ \sum_{\alpha} (2 \nabla_{\xi_{(\alpha)}} w_{h} \cdot \phi_{(\alpha)_{i}}^{h} - w(\xi_{(\alpha)}) \eta_{(\alpha)_{i}})\}, \\ \tilde{g}^{rs} \nabla_{r} W_{si}^{h} w_{h} &= t(1 - t^{m/3}) \{-3w_{i} + m \sum_{\alpha} w(\xi_{(\alpha)}) \eta_{(\alpha)_{i}}\}, \\ \tilde{g}^{rs} W_{si}^{h} \nabla_{r} w_{h} &= t(1 - t^{m/3}) \{\sum_{\alpha} \nabla_{\xi_{(\alpha)}} w_{h} \cdot \phi_{(\alpha)_{i}}^{h} - (\Phi(w))_{i}\} \\ &- t(1 - t^{m/3})(1 - t^{-m/3}) \{\sum_{\alpha} \nabla_{\xi_{(\alpha)}} w_{h} \cdot \phi_{(\alpha)_{i}}^{h} + (\Psi(w))_{i}\}, \\ \tilde{g}^{rs} W_{rs}^{q} \nabla_{q} w_{i} &= \tilde{g}^{rs} W_{rs}^{q} W_{qi}^{h} w_{h} = 0, \\ \tilde{g}^{rs} W_{ri}^{q} W_{sq}^{h} w_{h} &= -3t(1 - t^{m/3})^{2} t^{-m/3} (w_{i} - \sum_{\alpha} w(\xi_{(\alpha)}) \eta_{(\alpha)_{i}}). \end{split}$$

Summing up the above and using (3.7), we obtain (3.9).

LEMMA 3.6. For each α , $\eta_{(\alpha)}$ is an eigenform of $\Delta_{(t)}$;

(3.11)
$$\Delta_{(\iota)}\eta_{(\alpha)} = -2t[(m-1)t^{m/3}-2(1-t^{-m/3})(1+t^{m/3})]\eta_{(\alpha)}.$$

Proof. It is known that $\Delta \eta_{(\alpha)} = -2(m-1)\eta_{(\alpha)}$ holds. Furthermore we have

$$L\eta_{(\alpha)} = -8\eta_{(\alpha)},$$

$$\Phi(\eta_{(\alpha)}) = (m-1)\eta_{(\alpha)},$$

$$\Psi(\eta_{(\alpha)}) = -2\eta_{(\alpha)}.$$

By (3.9) we obtain (3.11).

Remark. If one wants to obtain geometric expressions of eigen 1-forms of the Laplacian $\Delta_{(t)}$ of $(S^{4r+3}, g(t))$, then the decomposition of V_k given by Proposition 2.1 and the expression (3.9) of $\Delta_{(t)}$ are helpful (cf. Tanno [8]).

§4. The Jacobi operator $J_{(t)}$.

The Jacobi operator $J_{(t)}$ acting on 1-forms on $(S^{4r+3}, g(t))$ is given by

$$(4.1) J_{(t)} = -\Delta_{(t)} - 2Q_{(t)}$$

and the local coordinate expression is $(J_{(t)}w)_i = -(\Delta_{(t)}w)_i - 2\tilde{R}_i^h w_h$ (cf. Smith [5]). The Jacobi operator $J_{(t)}$ for vector fields is understood by the natural correspondence between the space of 1-forms and the space of vector fields. In the following we use $J_{(t)}$ for 1-forms.

Putting $P(w) = \sum_{\alpha} w(\xi_{(\alpha)}) \eta_{(\alpha)}$, we have

THE IDENTITY MAP AS A HARMONIC MAP OF A (4r+3)-SPHERE

(4.2)
$$J_{(t)}w = -t\Delta w + t(1-t^{-m/3})Lw - 2t(1-t^{m/3})\Phi(w)$$
$$-2t(1-t^{-m/3})(1-t^{m/3})\Psi(w) - 2t[m-1+6(1-t^{m/3})]w$$
$$+2t(1-t^{-m/3})[2-(m+3)t^{m/3}]P(w).$$

PROPOSITION 4.1. For each α , we have $J_{(t)}\eta_{(\alpha)}=0$.

Proof. This follows from the fact that $\xi_{(\alpha)}$ is a Killing vector field and Killing vector fields belong to the null eigenspace of $J_{(i)}$. Also, the direct calculation using (3.7) and (3.11) is easy. q. e. d.

Let V_1 be the eigenspace corresponding to the first eigenvalue $\lambda_1 = 4r + 3$ of the Laplacian acting on functions on $(S^{4r+3}, g(t))$, and let $f \in V_1$. Then f satisfies $\nabla_j \nabla_i f = -fg_{ij}$. Therefore, we have

(4.3)
$$\xi_{(\alpha)}\xi_{(\alpha)}f = -f,$$

(4.4)
$$\boldsymbol{\xi}_{(\alpha)}\boldsymbol{\xi}_{(\beta)}f = \boldsymbol{\xi}_{(\gamma)}f.$$

LEMMA 4.2. Let $f \in V_1$. Then we have the following:

(1-i)
$$\Delta(f\eta_{(1)}) = -(3m-2)f\eta_{(1)} + 2df \cdot \phi_{(1)},$$

(1-ii)
$$L(f\eta_{(1)}) = -11f\eta_{(1)} + 4((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(1-iii)
$$\Phi(f\eta_{(1)}) = (m-1)f\eta_{(1)} - ((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(1-iv)
$$\Psi(f\eta_{(1)}) = -2f\eta_{(1)} + ((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(2-i)
$$\Delta(df \cdot \phi_{(1)}) = 2(m-1)f\eta_{(1)} - (m+2)df \cdot \phi_{(1)},$$

(2-ii)
$$L(df \cdot \phi_{(1)}) = 8f\eta_{(1)} - 3df \cdot \phi_{(1)} - 4((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(2-iii)
$$\Phi(df \cdot \phi_{(1)}) = -(m-1)f\eta_{(1)} + ((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(2-iv)
$$\Psi(df \cdot \phi_{(1)}) = 2f\eta_{(1)} - ((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(3-i)
$$\Delta((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}) = 4f\eta_{(1)} + 4df \cdot \phi_{(1)} - 3m((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(3-ii)
$$L((\xi_{(3)}f)\eta_{(2)}-(\xi_{(2)}f)\eta_{(3)})=8f\eta_{(1)}-7((\xi_{(3)}f)\eta_{(2)}-(\xi_{(2)}f)\eta_{(3)}),$$

$$(3-\text{iii}) \qquad \Phi((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}) = -2f\eta_{(1)} + (m-2)((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

$$(3-iv) \qquad \Psi((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}) = 2f\eta_{(1)} - ((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}).$$

Proof. Verification is done by a direct calculation using $(2.2)\sim(2.12)$. LEMMA 4.3. With respect to the projection P, we have

$$P(df \cdot \phi_{(1)}) = (\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)},$$

 $P(f\eta_{(1)}) = f\eta_{(1)} \text{ and } P((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}) = (\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}.$

Proof. The first identity is verified by (2.8).

PROPOSITION 4.4. For $f \in V_1$, $w_{[f,t]}$ is an eigenform of $J_{(t)}$ corresponding to $\mu(t)$ for each t $(0 < t < \infty)$, where $w_{[f,t]}$ is defined by

$$(4.5) w_{[f,t]} = f \eta_{(1)} + k(t) df \cdot \phi_{(1)} + (1 - k(t))((\xi_{(3)}f)\eta_{(2)} - (\xi_{(2)}f)\eta_{(3)}),$$

(4.6)
$$k(t) = [2(m-3)t^{m/3}]^{-1} \{m+2-2t^{-m/3}-6t^{m/3}\}$$

+[
$$(m+2-2t^{-m/3}-6t^{m/3})^2+12(m-3)t^{m/3}$$
]^{1/2}},

and $\mu(t)$ is given by

(4.7)
$$\mu(t) = t [-5 + t^{-m/3} + 6t^{m/3}]$$

$$-t[(m+2-2t^{-m/3}-6t^{m/3})^2+12(m-3)t^{m/3}]^{1/2}$$

For m=4r+3=7, 11, $\mu(t)$ is negative for all $t \ (0 < t < \infty)$. For $m \ge 15$, $\mu(t)$ is negative, if $0 < t < t_0(m)$ or $t_1(m) < t$, where

(4.9)
$$3(t_1(m))^{-m/3} = 2m - 1 - [(m-2)(m-14)]^{1/2}$$

Proof. We define $w_{[f,t]}$ by (4.5) with undetermined k(t). By (4.2), Lemma 4.2 and Lemma 4.3, we have

$$\begin{aligned} J_{(t)}w_{[f,t]} = t \{m-3-t^{-m/3}-2(m-3)t^{m/3}k(t)\} f \eta_{(1)} \\ &+ t \{-6-(m+7-3t^{-m/3}-12t^{m/3})k(t)\} df \cdot \phi_{(1)} \\ &+ t \{m+3-t^{-m/3} \\ &+ (m+7-2(m+3)t^{m/3}-3t^{-m/3})k(t)\} ((\xi_{(3)}f)\eta_{(2)}-(\xi_{(2)}f)\eta_{(3)}). \end{aligned}$$

Therefore, $J_{(t)}w_{[f,t]} = \mu(t)w_{[f,t]}$ holds, if k(t) is a solution of

$$(m-3)t^{m/3}k(t)^2 - (m+2-2t^{-m/3}-6t^{m/3})k(t)-3=0$$
,

and $\mu(t)$ is given by

$$\mu(t) = t [m - 3 - t^{-m/3} - 2(m - 3)t^{m/3}k(t)].$$

Because we are interested in the case where $\mu(t)$ is negative, we choose k(t) as the positive solution of the above equation. So, k(t) is given by (4.6), and consequently, $\mu(t)$ is equal to (4.7). t satisfies $\mu(t)=0$, if and only if

 $3t^{-2m/3} - 2(2m-1)t^{-m/3} + m^2 + 4m - 9 = 0$.

Therefore, two solutions $t_0(m)$ and $t_1(m)$ of the above equation are given by (4.8) and (4.9).

Remark. The values $t_0(m)$ and $t_1(m)$ for m=15, 19 are given by

$$t_0(15) = 0.6205 \cdots$$
, $t_1(15) = 0.6523 \cdots$,
 $t_0(19) = 0.6493 \cdots$, $t_1(19) = 0.7036 \cdots$.

PROPOSITION 4.5. Let $\Omega_{(t)}$ denote the eigenspace of $J_{(t)}$ corresponding to $\mu(t)$, and let $\Omega'_{(t)} = \{w_{[f,t]}; f \in V_1\}$. Then $\Omega_{(t)} = \Omega'_{(t)}$ and dim $\Omega_{(t)} = m+1$ hold except for at most countably many values of t in $(0, \infty)$.

Proof. Let $\{f_1, f_2, \dots, f_{m+1}\}$ be a basis of V_1 and define $w_{[f_{\rho}, t]}$ by (4.5) with $f = f_{\rho}$. For each t, the set

$$\{w_{[f_0,t]}; \rho = 1, 2, \cdots, m+1\}$$

is linearly independent. In fact, it suffices to see that the set $\{w_{[f_{\rho},t]}(\eta_{(1)})\} = \{f_{\rho}\}\$ is linearly independent. So, we have dim $\mathcal{Q}'_{(1)} = m+1$. For all $t, \mathcal{Q}_{(1)} \supset \mathcal{Q}'_{(1)}\$ is trivial. At t=1, we see that dim $\mathcal{Q}_{(1)} = m+1 = \dim \mathcal{Q}'_{(1)}$. Next, if t is near 1, then $\mathcal{Q}_{(1)} = \mathcal{Q}'_{(1)}$, and dim $\mathcal{Q}_{(1)} = m+1$. Since $J_{(1)}$ depends on t analytically, the case dim $\mathcal{Q}_{(1)} > m+1$ happens only for at most countably many values of t.

PROPOSITION 4.6. For each α , $L_{\xi(\alpha)}$ defines an isomorphism of $\Omega'_{(i)}$.

Proof. Since $\xi_{(\alpha)}$ is a Killing vector field with respect to g(t), two operators $L_{\xi(\alpha)}$ and $J_{(t)}$ are commutative. Thus, $L_{\xi(\alpha)}$ preserves $\Omega_{(t)}$. Since $\Omega_{(t)}=\Omega'_{(t)}$ except for at most countably many values of t, $L_{\xi(\alpha)}$ preserves $\Omega'_{(t)}$.

Remark. The expression (4.5) of $w_{[f,t]}$ is based on $\xi_{(1)}$ and $\phi_{(1)}$. Contrary to this, we define $w'_{[f,t]}$ and $w''_{[f,t]}$ by

$$(4.10) w'_{[f,t]} = f\eta_{(2)} + k(t)df \cdot \phi_{(2)} + (1-k(t))((\xi_{(1)}f)\eta_{(3)} - (\xi_{(3)}f)\eta_{(1)}),$$

$$(4.11) w''_{[f,t]} = f \eta_{(3)} + k(t) df \cdot \phi_{(3)} + (1-k(t))((\xi_{(2)}f)\eta_{(1)} - (\xi_{(1)}f)\eta_{(2)}).$$

Then we have the following relations:

$$\begin{split} & L_{\xi_{(1)}} w_{[f, t]} = w_{[\xi_{(1)}f, t]}, \\ & L_{\xi_{(2)}} w_{[f, t]} = w_{[\xi_{(2)}f, t]} - 2w_{[f, t]}', \\ & L_{\xi_{(2)}} w_{[f, t]} = w_{[\xi_{(3)}f, t]} + 2w_{[f, t]}'. \end{split}$$

Since $L_{\xi(\alpha)}w_{[f,t]}$ and $w_{[\xi(\alpha)f,t]}$ belong to $Q'_{(1)}$, we see that $w'_{[f,t]}$ and $w''_{[f,t]}$ belong to $Q'_{(1)}$. This means that the expression (4.5) based on $\xi_{(1)}$ and $\phi_{(1)}$ is

enough for our purpose.

Remark. Let X be a unit tangent vector at a point x of $(S^{4r+3}, g(t))$ satisfying $\eta_{(\alpha)}(X)=0$ for $\alpha=1, 2, 3$, then the sectional curvature $K_{(t)}(X, \phi_{(1)}X)$ is given by

$$K_{(t)}(X, \phi_{(1)}X) = t(4-3t^{m/3}).$$

So, it takes a negative value for $4 < 3t^{m/3}$.

References

- [1] P.F. LEUNG, On the stability of harmonic maps, Lect. Notes in Math., 949, Springer-Verlag, 1982, 122-129.
- [2] H. MUTO, On the stability of a three-sphere, Kodai Math. Journ., 12 (1989), 109-115.
- [3] T. NAGANO, Stability of harmonic maps between symmetric spaces, Lect. Notes in Math., 949, Springer-Verlag, 1982, 130-137.
- [4] Y. OHNITA, Stability of harmonic maps and standard minimal immersions, Tôhoku Math. Journ., 38 (1986), 259-267.
- [5] R.T. SMITH, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc., 47 (1975), 229-236.
- [6] S. TANNO, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. Journ., 31 (1979), 179-185.
- [7] S. TANNO, Some metrics on a (4r+3)-sphere and spectra, Tsukuba Journ, Math., 4 (1980), 99-105.
- [8] S. TANNO, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian manif. (Kaigai Pub.), Tokyo, 1983, 115-128.
- [9] S. TANNO, Instability of spheres with deformed Riemannian metrics, Kodai Math. Journ., 10 (1987), 250-257.
- [10] H. URAKAWA, On the least positive eigenvalue of the Laplacian for compact group manifolds, Journ. Math. Soc. Japan, 31 (1979), 209-226.
- [11] H. URAKAWA, The first eigenvalue of the Laplacian for positively curved homogeneous Riemannian manifold, Comp. Math., 59 (1986), 57-71.
- [12] H. URAKAWA, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer. Math. Soc., 301 (1987), 557-589.
- [13] Y.L. XIN, Some results on stable harmonic maps, Duke Math. Journ., 47 (1980), 609-613.

Department of Mathematics Tokyo Institute of Technology Japan