THE IDENTITY MAP AS A HARMONIC MAP OF A $(4 r+3)$-SPHERE WITH DEFORMED METRICS

Dedicated to Professor Yoji Hatakeyama on his sixtieth birthday

By Shukichi Tanno

§ 1. Introduction.

It is known that the identity map $I d_{M}$ of a compact Riemannian manifold (M, g) is a harmonic map. (M, g) is said to be unstable, if the Jacobi operator J defined by the second variation of the energy functional at $I d_{M}$ has negative eigenvalues. The standard m-dimensional sphere (S^{m}, g_{0}) of constant curvature 1 is unstable for $m \geqq 3$. More generally, unstable, simply connected compact (irreducible) symmetric spaces were determined (Smith [5], Nagano [3], Ohnita [4], Urakawa [11]).

In [9] the author studied instability of spheres $\left(S^{m}, g(t)\right)$ with $m=2 n+1$, as a class of homogeneous Riemannian manifolds which are not symmetric nor Einstein (cf. also Urakawa [12]), and gave the expression of some eigenvector of the Jacobi operator corresponding to a negative eigenvalue. The Riemannian metrics $g(t)$ considered in [9] or [12] is related to the Hopf fibration ($S^{2 n+1}, g_{0}$) $\rightarrow\left(C P^{n}, h_{0}\right)$, where $\left(C P^{n}, h_{0}\right)$ denotes the complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4.

As the next step, we study the Riemannian metrics related to the Hopf fibration $\left(S^{4 r+3}, g_{0}\right) \rightarrow\left(Q P^{r}, h_{0}\right)$, where $Q P^{r}$ denotes the quaternion projective space. $\left(S^{4 r+3}, g_{0}\right)$ admits a Sasakian 3 -structure $\left\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)}\right\}$. The dual vector fields $\left\{\xi_{(1)}, \boldsymbol{\xi}_{(2)}, \boldsymbol{\xi}_{(3)}\right\}$ define the 3 -dimensional distribution on $S^{4 r+3}$ whose integral submanifolds are fibers of the Hopf fibration. We define a 1-parameter family of Riemannian metrics $g(t)$ on $S^{4 r+3}$ by

$$
\begin{equation*}
g(t)=t^{-1} g_{0}+t^{-1}\left(t^{m / 3}-1\right) \Sigma_{\alpha} \eta_{(\alpha)} \otimes \eta_{(\alpha)}, \tag{1.1}
\end{equation*}
$$

where $m=4 r+3$, and $0<t<\infty$ (cf. Tanno [7]). The volume form for $g(t)$ is unchanged for all t. The purpose of this paper is to show the following:

Theorem. (i) For $m=4 r+3=7,11$, the sphere ($S^{4 r+3}, g(t)$) is unstable.
(ii) For $m=4 r+3 \geqq 15$, and for $t \in\left(0, t_{0}(m)\right)$ or $t \in\left(t_{1}(m), \infty\right)$, the sphere ($\left.S^{4 r+3}, g(t)\right)$ is unstable, where $t_{0}(m)$ and $t_{1}(m)$ are given in $\S 4$.
(iii) For each eigenfunction f corresponding to the (non-zero) first eigenvalue $\lambda_{1}=4 r+3$ of the Laplacian acting on functions on ($S^{4 r+3}, g_{0}$),

Received December 9, 1992.

$$
\begin{equation*}
f \xi_{(1)}+t^{m / 3} k(t) \nabla \xi_{\mathrm{grad} f} \boldsymbol{\xi}_{(1)}+\left(1-t^{m / 3} k(t)\right)\left(\left(\xi_{(3)} f\right) \hat{\xi}_{(2)}-\left(\xi_{(2)} f\right) \xi_{(3)}\right) \tag{1.2}
\end{equation*}
$$

is an eigenvector corresponding to the negative eigenvalue $\mu(t)$ of the Jacobi operator $J_{(t)}$. $k(t)$ and $\mu(t)$ are given in $\S 4$. The multiplicity of $\mu(t)$ is $m+1$ for almost all t in $\left(0, t_{0}(m)\right.$) or ($\left.t_{1}(m), \infty\right)$.

It is an open problem if the positivity of $\mu(t)$ (for $t_{0}(m)<t<t_{1}(m)$) is related to some geometric property, and if ($\left.S^{4 r+3}, g(t)\right)$ is stable for $t_{0}(m)<t<t_{1}(m)$.

§ 2. Preliminaries.

Let $\left(S^{4 r+3}, g_{0}\right)$ be the unit sphere in the $4(r+1)$-dimensional Euclidean space $E^{4(r+1)}$, where $E^{4(r+1)}$ is considered as a product space $Q \times \cdots \times Q$ of $r+1$ copies of the space Q of quaternions with the canonical metric. Let $\left\{x^{\sigma}, y^{\sigma}, z^{\sigma}, w^{\sigma}\right.$; $\sigma=1, \cdots, r+1$) be the natural coordinate system of $E^{4(r+1)}$. Let $\{I, J, K\}$ be the quaternion structure of $E^{4(r+1)}$. If one considers a point $x=\left(x^{\sigma}, y^{\sigma}, z^{\sigma}, w^{\sigma}\right)$ of $S^{4 r+3}$ as a unit vector in $E^{4(r+1)}$ and

$$
\begin{aligned}
& I x=\left(y^{\sigma},-x^{\sigma}, w^{\sigma},-z^{\sigma}\right), \\
& J x=\left(z^{\sigma},-w^{\sigma},-x^{\sigma}, y^{\sigma}\right), \\
& K x=\left(w^{\sigma}, z^{\sigma},-y^{\sigma},-x^{\sigma}\right),
\end{aligned}
$$

as tangent vectors at x to $S^{4 r+3}$, we get a field of orthonormal vectors $\left\{\xi_{(1)}\right.$, $\left.\xi_{(2)}, \xi_{(3)}\right\}$ on $S^{4 r+3}$. Each $\xi_{(\alpha)}$ is a Killing vector field on ($S^{4 r+3}, g_{0}$), and we have the following:

$$
\begin{equation*}
\left[\xi_{(1)}, \xi_{(2)}\right]=2 \xi_{(3)}, \quad\left[\xi_{(2)}, \xi_{(3)}\right]=2 \xi_{(1)}, \quad\left[\xi_{(3)}, \xi_{(1)}\right]=2 \xi_{(2)} \tag{2.1}
\end{equation*}
$$

The 3 -dimensional distribution defined by $\left\{\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\right\}$ on $S^{4 r+3}$ is integrable and each integral submanifold is isometric to a unit 3 -sphere in E^{4}. This gives the Hopf fibration $S^{4 r+3} \rightarrow Q P^{r}$. Now let $\left\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)}\right\}$ be the dual of $\left\{\xi_{(1)}\right.$, $\left.\xi_{(2)}, \boldsymbol{\xi}_{(3)}\right\}$ with respect to g_{0}. Then each $\eta_{(\alpha)}$ defines a contact structure on $S^{4 r+3}$, and $\left\{\eta_{(\alpha)}, g_{0}\right\}$ is a Sasakian structure. Furthermore, $\left\{\eta_{(1)}, \eta_{(2)}, \eta_{(3)} ; g_{0}\right\}$ is called the canonical Sasakian 3-structure of ($S^{4 r+3}, g_{0}$). For each α ($\alpha=$ $1,2,3$), we define a (1,1)-tensor field $\phi_{(\alpha)}$ by

$$
\begin{equation*}
\phi_{(\alpha)}=-\nabla \xi_{(\alpha)} . \tag{2.2}
\end{equation*}
$$

$\phi_{(1)}, \phi_{(2)}$, and $\phi_{(3)}$ are canonically related to I, J, and K.
We have the following relations:

$$
\begin{gather*}
\phi_{(\alpha)} \xi_{(\alpha)}=0, \quad \eta_{(\alpha)} \phi_{(\alpha)}=0, \tag{2.3}\\
\phi_{(\alpha)}^{2} X=-X+\eta_{(\alpha)}(X) \xi_{(\alpha)}, \tag{2.4}\\
g_{0}(X, Y)=g_{0}\left(\phi_{(\alpha)} X, \phi_{(\alpha)} Y\right)+\eta_{(\alpha)}(X) \eta_{(\alpha)}(Y) \tag{2.5}
\end{gather*}
$$

$$
\begin{gather*}
\nabla_{\xi(\alpha)} \xi_{(\alpha)}=\nabla_{\xi(\alpha)} \eta_{(\alpha)}=0, \quad L_{\xi(\alpha)} \phi_{(\alpha)}=L_{\xi(\alpha)} \eta_{(\alpha)}=0, \tag{2.6}\\
\left(\nabla_{X} \phi_{(\alpha))}(Y)=g_{0}(X, Y) \xi_{(\alpha)}-\eta_{(\alpha)}(Y) X,\right. \tag{2.7}\\
\phi_{(\alpha)} \xi_{(\beta)}=-\phi_{(\beta)} \xi_{(\alpha)}=\xi_{(\gamma)}, \quad[\alpha, \beta, \gamma: c y c l i c] \tag{2.8}\\
\phi_{(\alpha)} \phi_{(\beta)}-\xi_{(\alpha)} \eta_{(\beta)}=-\phi_{(\beta)} \phi_{(\alpha)}+\xi_{(\beta)} \eta_{(\alpha)}=\phi_{(\gamma)}, \quad[\alpha, \beta, \gamma: c y c l i c] \tag{2.9}
\end{gather*}
$$

where X, Y denote tangent vectors or vector fields, and $[\alpha, \beta, \gamma:$ cyclic $]$ means that $\{\alpha, \beta, \gamma\}$ in (2.8) and (2.9) is a cyclic permutation of (1,2,3). This convention is used also in the following. Also, we have the following:

$$
\begin{equation*}
\eta_{(\alpha)} \phi_{(\beta)}=-\eta_{(\beta)} \phi_{(\alpha)}=\eta_{(\gamma)}, \quad[\alpha, \beta, \gamma: \text { cyclic }] \tag{2.10}
\end{equation*}
$$

$$
\begin{align*}
& \nabla_{\hat{\xi}(\alpha)} \eta_{(\beta)}=-\nabla_{\hat{\xi}(\beta)} \eta_{(\alpha)}=\eta_{(\gamma)}, \tag{2.11}\\
& \nabla_{\hat{\xi}(\alpha)} \xi_{(\beta)}=-\nabla_{\hat{\xi}(\beta)} \xi_{(\alpha)}=\xi_{(\gamma)}, \quad[\alpha, \beta, \gamma: \text { cyclic }] \\
& L_{\xi(\alpha)} \phi_{(\beta)}=-L_{\xi(\beta)} \phi_{(\alpha)}=2 \phi_{(\gamma)}, \tag{2.12}\\
& L_{\xi(\alpha)} \eta_{(\beta)}=-L_{\xi(\beta)} \eta_{(\alpha)}=2 \eta_{(\gamma)}, \quad[\alpha, \beta, \gamma: \text { cyclic }]
\end{align*}
$$

where L_{X} denotes the Lie derivation by X. Next, we define an operator L by

$$
L=\sum_{\alpha} L_{\xi(\alpha)} L_{\xi(\alpha)} .
$$

The restriction of L (for functions) to each integral submanifold (which is isometric to the 3 -sphere) is identical with the usual Laplacian Δ acting on functions on (S^{3}, g_{0}). Thus, we have the following (cf. Tanno [7]):

Proposition 2.1. For a non-negative integer k, the eigenspace V_{k} corresponding to the k-th eigenvalue of the Laplacian Δ acting on functions on ($S^{4 r+3}, g_{0}$) has the orthogonal decomposition;

$$
V_{k}=W_{k, k}+W_{k, k-2}+\cdots+W_{k, k-2[k / 2]}
$$

such that $f \in W_{k, \theta}$ satisfies

$$
L f=\theta(\theta+2) f
$$

§ 3. Riemannian metrics $g(t)$.

We define $\{g(t) ; 0<t<\infty\}$ such that $g(1)=g_{0}$ on $S^{4 r+3}$ by

$$
\begin{equation*}
g(t)=t^{-1} g_{0}+t^{-1}\left(t^{m / 3}-1\right) \sum_{\alpha} \eta_{(\alpha)} \otimes \eta_{(\alpha)} \tag{3.1}
\end{equation*}
$$

For simplicity we denote $g(t)$ by \tilde{g}, and g_{0} by g in the following calculation. So, in the local coordinate expression we have

$$
\begin{equation*}
\tilde{g}_{j k}=t^{-1} g_{j k}+t^{-1}\left(t^{m / 3}-1\right) \sum_{\alpha} \eta_{(\alpha)_{j}} \eta_{(\alpha)_{k}} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{g}^{i j}=t g^{i j}-t\left(1-t^{-m / 3}\right) \sum_{\alpha} \xi_{(\alpha)}{ }^{i} \xi_{(\alpha)^{j}} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. The difference $W_{j_{k}}^{i}$ of the Christoffel symbols $\tilde{\Gamma}_{j k}^{i}$ and $\Gamma_{j_{k}}^{i}$ with respect to $g(t)$ and g_{0} is given by

$$
\begin{equation*}
W_{j k}^{i}=-\left(t^{m / 3}-1\right) \Sigma_{\alpha}\left(\phi_{(\alpha)_{j}^{2}}^{{ }_{j}^{2}} \eta_{(\alpha)_{k}}+\phi_{\left.(\alpha)_{k}^{2} \eta_{(\alpha)_{j}}\right) .} .\right. \tag{3.3}
\end{equation*}
$$

Proof. By a classical formula we have

$$
\begin{aligned}
W_{j k}^{i} & =\tilde{\Gamma}_{j k}^{i}-\Gamma_{j k}^{i} \\
& =(1 / 2) \tilde{g}^{i r}\left(\nabla_{j} \tilde{g}_{r k}+\nabla_{k} \tilde{g}_{r_{j}}-\nabla_{r} \tilde{g}_{j k}\right) .
\end{aligned}
$$

Substituting (3.1) and (3.2) into the above, and using (2.2), etc., we have (3.3).
Lemma 3.2. The Riemannian curvature tensor $\hat{R}=R_{(t)}$ of $\tilde{g}=g(t)$ is given by

$$
\begin{align*}
& +\xi_{(\alpha)}{ }^{i}\left(g_{j k} \eta_{(\alpha)_{l}} \sim g_{j l} \eta_{(\alpha)_{k}}\right)-2 \eta_{(\alpha)_{j}}\left(\delta_{k}^{2} \eta_{(\alpha)_{l}}-\delta_{l}^{2} \eta_{\left.(\alpha)_{k}\right)}\right) \tag{3.4}\\
& +\left(1-t^{m / 3}\right)^{2} \sum_{\alpha} \eta_{(\alpha)_{j}}\left(\delta_{k}^{2} \eta_{(\alpha)_{l}}-\delta_{l}^{2} \eta_{(\alpha)_{k}}\right) \\
& +\left(1-t^{m / 3}\right)^{2} \sum_{[c y c l i c]}\left\{2 \phi_{(\alpha)_{j}^{2}}{ }^{2}\left(\eta_{(\beta)_{k}} \eta_{(\gamma)_{l}}-\eta_{(r)_{k}} \eta_{(\beta) l}\right)\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.+2\left(\xi_{(\alpha)}{ }^{i} \eta_{(\beta)_{j}}-\xi_{(\beta)}{ }^{i} \eta_{(\alpha)_{j}}\right)\left(\eta_{(\alpha)_{k}} \eta_{(\beta)_{l}}-\eta_{(\beta)_{k}} \eta_{\left.(\alpha)_{l}\right)}\right)\right\} .
\end{aligned}
$$

Proof. We calculate the following:

$$
\tilde{R}_{j k l}^{i}=R_{j k l}^{i}+\nabla_{k} W_{l j}^{i}-\nabla_{l} W_{k j}^{i}+W_{l j}^{s} W_{k s}^{i}-W_{k j}^{s} W_{i s}^{i} .
$$

By (2.2), (2.7), etc., and (3.3) we have

$$
\begin{aligned}
\nabla_{k} W_{l j}^{i}-\nabla_{l} W_{k j}^{i}= & \left(1-t^{m / 3}\right) \sum_{\alpha}\left\{2 \phi_{(\alpha)_{j}^{i}} \phi_{(\alpha)_{k l}}-\phi_{(\alpha)_{l}^{2}} \phi_{(\alpha)_{j}}+\phi_{(\alpha)_{k}^{2} \phi_{(\alpha)_{j l}}}\right. \\
& \left.+\xi_{(\alpha)}^{i}\left(g_{j k} \eta_{(\alpha)_{l}}-g_{j l} \eta_{(\alpha)_{k}}\right)-2 \eta_{(\alpha)_{j}}\left(\delta_{k}^{i} \eta_{(\alpha)_{l}} \sim \delta_{l}^{i} \eta_{(\alpha)_{k}}\right)\right\} .
\end{aligned}
$$

As for $W_{i j}^{s} W_{k s}^{i}$, we calculate it directly as

$$
W_{j j}^{s} W_{k s}^{i}=\left(1-t^{m / 3}\right)^{2}\left\{\Sigma _ { \alpha } (\phi _ { (\alpha) ^ { s } } ^ { s } \eta _ { (\alpha) _ { j } } + \phi _ { (\alpha) } { } _ { j } ^ { s } \eta _ { (\alpha) _ { l }) } \} \Sigma _ { \beta } \left(\phi_{(\beta)_{k}^{2}}^{2} \eta_{(\beta)_{s}}+\phi_{\left.(\beta)_{s}^{i} \eta_{(\beta)_{k}}\right) .} .\right.\right.
$$

Summing up the results, proof is completed.
Lemma 3.3. The Ricci curvature tensor ($\tilde{R}_{j l}$) and the scalar curvature $\tilde{S}=$ $S_{(t)}$ of $\left(S^{4 r+3}, g(t)\right)$ are given by

$$
\begin{align*}
\tilde{R}_{j l}= & R_{j l}+6\left(1-t^{m / 3}\right) g_{j l} \tag{3.5}\\
& +\left(1-t^{m / 3}\right)\left[-2 m+(m-3)\left(1-t^{m / 3}\right)\right] \Sigma_{\alpha} \eta_{(\alpha)_{j}} \eta_{(\alpha)_{l}}
\end{align*}
$$

$$
\begin{equation*}
\tilde{S}=t S-3 t\left(1-t^{-m / 3}\right)\left[2+(m-3) t^{m / 3}\right] . \tag{3.6}
\end{equation*}
$$

The Ricci operator $\tilde{Q}=Q_{(\imath)}$ is given by

$$
\begin{align*}
\tilde{R}_{l}^{h}= & t\left[m-1+6\left(1-t^{m / 3}\right)\right] \delta_{l}^{h} \tag{3.7}\\
& -t\left(1-t^{-m / 3}\right)\left[2-(m+3) t^{m / 3}\right] \Sigma_{\alpha} \xi_{(\alpha)^{h}} \eta_{(\alpha)} .
\end{align*}
$$

Proof. By contraction $\tilde{R}_{j i l}^{2}$ we have $\tilde{R}_{j l}$. \tilde{S} is given by $\tilde{g}^{j l} \tilde{R}_{j l}$. And, \hat{R}_{l}^{h} $=\tilde{g}^{n j} \tilde{R}_{j l}$.

Lemma 3.4. Each $\xi_{(\alpha)}$ is a Killing vector field with respect to $g(t)$.
Proof. It suffices to show that $\xi_{(1)}$ is a Killing vector field with respect to $g(t) . \quad L_{\xi(1)} g=L_{\xi(1)} \eta_{(1)}=0$ is trivial. By (2.12) we have

$$
\begin{aligned}
& L_{\xi_{(1)}}\left(\eta_{(2)} \otimes \eta_{(2)}\right)=2\left(\eta_{(3)} \otimes \eta_{(2)}+\eta_{(2)} \otimes \eta_{(3)}\right), \\
& L_{\xi(1)}\left(\eta_{(3)} \otimes \eta_{(3)}\right)=-2\left(\eta_{(2)} \otimes \eta_{(3)}+\eta_{(3)} \otimes \eta_{(2)}\right) .
\end{aligned}
$$

Since $g(t)$ is given by (3.1), proof is completed.
We define two operators Φ and Ψ acting on 1-forms by the following:

$$
\begin{aligned}
& \Phi(w)=\Sigma_{\alpha} \phi_{(\alpha)}{ }^{r s} \nabla_{r} w_{s} \cdot \eta_{(\alpha)}, \\
& \Psi(w)=\sum_{(\alpha, \beta, \gamma)} \operatorname{sgn}\left(\begin{array}{lll}
1 & 2 & 3 \\
\alpha & \beta & \gamma
\end{array}\right)\left(\nabla_{\hat{\varepsilon}(\alpha)} w\right)\left(\xi_{(\beta)}\right) \eta_{(r)},
\end{aligned}
$$

where $\operatorname{sgn}(\cdots)$ denotes the signature of permutation.
Proposition 3.5. The Laplacian $\tilde{\Delta}=\Delta_{(t)}$ for functions and 1 -forms are given by

$$
\begin{gather*}
\Delta_{(t)} f=t \Delta f-t\left(1-t^{-m / 3}\right) L f \tag{3.8}\\
\Delta_{(t)} w=t \Delta w-t\left(1-t^{-m / 3}\right) L w+2 t\left(1-t^{m / 3}\right) \Phi(w) \tag{3.9}\\
+2 t\left(1-t^{-m / 3}\right)\left(1-t^{m / 3}\right) \Psi(w)
\end{gather*}
$$

Proof. (3.8) was proved in [7]. To show (3.9), we calculate the following:

$$
\begin{aligned}
\tilde{\Delta} w_{i}= & \tilde{g}^{r} \nabla_{r} \tilde{\nabla}_{s} w_{i}-\tilde{R}_{i}^{s} w_{s} \\
= & \tilde{g}^{r} \tilde{\nabla}_{r}\left(\nabla_{s} w_{i}-W_{s i}^{h} w_{h}\right)-\tilde{R}_{i}^{s} w_{s} \\
= & \tilde{g}^{r s}\left(\nabla_{r} \nabla_{s} w_{i}-\nabla_{r} W_{s i}^{h} w_{h}-W_{s i}^{h} \nabla_{r} w_{h}-W_{r s}^{q} \nabla_{q} w_{\imath}\right. \\
& \left.+W_{\tau s}^{q} W_{q i}^{h} w_{h}-W_{r r}^{q} \nabla_{s} w_{q}+W_{r i}^{q} W_{s q}^{h} w_{h}\right)-\tilde{R}_{i}^{s} w_{s} .
\end{aligned}
$$

First we check the following relation for each α;

$$
\begin{equation*}
L_{\xi(\alpha)} L_{\xi(\alpha)} w=\nabla_{\xi(\alpha)} \nabla_{\xi(\alpha)} w-2 \nabla_{\hat{\xi}(\alpha)} w \cdot \phi_{(\alpha)}-w+w\left(\xi_{(\alpha)}\right) \eta_{(\alpha)} . \tag{3.10}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& \tilde{g}^{r} \nabla_{r} \nabla_{s} w_{i}=t \nabla_{r} \nabla^{r} w_{i}-t\left(1-t^{-m / 3}\right)\left\{3 w_{i}+(L w)_{i}\right. \\
& \left.+\Sigma_{\alpha}\left(2 \nabla_{\xi(\alpha)} w_{h} \cdot \boldsymbol{\phi}_{(\alpha)_{2}^{h}}^{h}-w\left(\boldsymbol{\xi}_{(\alpha)}\right) \eta_{\left.(\alpha)_{i}\right)}\right)\right\}, \\
& \tilde{g}^{r s} \nabla_{r} W_{s i}^{h} w_{h}=t\left(1-t^{m / 3}\right)\left\{-3 w_{i}+m \Sigma_{\alpha} w\left(\boldsymbol{\xi}_{(\alpha)}\right) \eta_{(\alpha)}\right\} \text {, } \\
& \tilde{g}^{r s} W_{s i}^{h} \nabla_{r} w_{h}=t\left(1-t^{m / 3}\right)\left\{\Sigma_{\alpha} \nabla_{\xi(\alpha)} w_{h} \cdot \phi_{(\alpha)}^{h}-(\Phi(w))_{i}\right\} \\
& -t\left(1-t^{m / 3}\right)\left(1-t^{-m / 3}\right)\left\{\Sigma_{\alpha} \nabla_{\xi_{(\alpha)}} w_{h} \cdot \phi_{(\alpha){ }_{2}^{h}}^{h}+(\Psi(w))_{i}\right\}, \\
& \tilde{g}^{r} W_{r}^{q}{ }_{r} \nabla_{q} w_{i}=\tilde{g}^{r s} W_{r s}^{q} W_{q i}^{h} w_{h}=0, \\
& \tilde{g}^{r s} W_{r i}^{q} W_{s q}^{h} w_{h}=-3 t\left(1-t^{m / 3}\right)^{2} t^{-m / 3}\left(w_{i}-\Sigma_{\alpha} w\left(\xi_{(\alpha)}\right) \eta_{\left.(\alpha)_{i}\right)}\right) .
\end{aligned}
$$

Summing up the above and using (3.7), we obtain (3.9).
Lemma 3.6. For each $\alpha, \eta_{(\alpha)}$ is an eigenform of $\Delta_{(t)}$;

$$
\begin{equation*}
\Delta_{(t)} \eta_{(\alpha)}=-2 t\left[(m-1) t^{m / 3}-2\left(1-t^{-m / 3}\right)\left(1+t^{m / 3}\right)\right] \eta_{(\alpha)} . \tag{3.11}
\end{equation*}
$$

Proof. It is known that $\Delta \eta_{(\alpha)}=-2(m-1) \eta_{(\alpha)}$ holds. Furthermore we have

$$
\begin{aligned}
& L \eta_{(\alpha)}=-8 \eta_{(\alpha)}, \\
& \Phi\left(\eta_{(\alpha)}\right)=(m-1) \eta_{(\alpha)}, \\
& \Psi\left(\eta_{(\alpha)}\right)=-2 \eta_{(\alpha)} .
\end{aligned}
$$

By (3.9) we obtain (3.11).
Remark. If one wants to obtain geometric expressions of eigen 1 -forms of the Laplacian $\Delta_{(t)}$ of ($S^{4 r+3}, g(t)$), then the decomposition of V_{k} given by Proposition 2.1 and the expression (3.9) of $\Delta_{(t)}$ are helpful (cf. Tanno [8]).

§4. The Jacobi operator $J_{(t)}$.

The Jacobi operator $J_{(t)}$ acting on 1 -forms on ($S^{4 r+3}, g(t)$) is given by

$$
\begin{equation*}
J_{(t)}=-\Delta_{(t)}-2 Q_{(t)} \tag{4.1}
\end{equation*}
$$

and the local coordinate expression is $\left(J_{(t)} w\right)_{i}=-\left(\Delta_{(t)} w\right)_{i}-2 \hat{R}_{\imath}^{h} w_{h}$ (cf. Smith [5]). The Jacobi operator $J_{(t)}$ for vector fields is understood by the natural correspondence between the space of 1 -forms and the space of vector fields. In the following we use $J_{(t)}$ for 1 -forms.

Putting $P(w)=\Sigma_{\alpha} w\left(\xi_{(\alpha)}\right) \eta_{(\alpha)}$, we have

$$
\begin{align*}
J_{(t)} w= & -t \Delta w+t\left(1-t^{-m / 3}\right) L w-2 t\left(1-t^{m / 3}\right) \Phi(w) \tag{4.2}\\
& -2 t\left(1-t^{-m / 3}\right)\left(1-t^{m / 3}\right) \Psi(w)-2 t\left[m-1+6\left(1-t^{m / 3}\right)\right] w \\
& +2 t\left(1-t^{-m / 3}\right)\left[2-(m+3) t^{m / 3}\right] P(w) .
\end{align*}
$$

Proposition 4.1. For each α, we have $J_{(t)} \eta_{(\alpha)}=0$.
Proof. This follows from the fact that $\xi_{(\alpha)}$ is a Killing vector field and Killing vector fields belong to the null eigenspace of $J_{(t)}$. Also, the direct calculation using (3.7) and (3.11) is easy.
q.e.d.

Let V_{1} be the eigenspace corresponding to the first eigenvalue $\lambda_{1}=4 r+3$ of the Laplacian acting on functions on ($S^{4 r+3}, g(t)$), and let $f \in V_{1}$. Then f satisfies $\nabla_{j} \nabla_{i} f=-f g_{i \jmath}$. Therefore, we have

$$
\begin{align*}
& \xi_{(\alpha)} \xi_{(\alpha)} f=-f \tag{4.3}\\
& \xi_{(\alpha)} \xi_{(\beta)} f=\xi_{(r)} f \tag{4.4}
\end{align*}
$$

Lemma 4.2. Let $f \in V_{1}$. Then we have the following :

$$
\begin{equation*}
\Delta\left(f \eta_{(1)}\right)=-(3 m-2) f \eta_{(1)}+2 d f \cdot \phi_{(1)}, \tag{1-i}
\end{equation*}
$$

$$
\begin{equation*}
L\left(f \eta_{(1)}\right)=-11 f \eta_{(1)}+4\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right), \tag{1-ii}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(f \eta_{(1)}\right)=(m-1) f \eta_{(1)}-\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right), \tag{1-iii}
\end{equation*}
$$

$$
\begin{equation*}
\Delta\left(d f \cdot \phi_{(1)}\right)=2(m-1) f \eta_{(1)}-(m+2) d f \cdot \phi_{(1)} \tag{1-iv}
\end{equation*}
$$

$$
\begin{equation*}
L\left(d f \cdot \phi_{(1)}\right)=8 f \eta_{(1)}-3 d f \cdot \phi_{(1)}-4\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right), \tag{2-i}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(d f \cdot \phi_{(1)}\right)=-(m-1) f \eta_{(1)}+\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right) \tag{2-ii}
\end{equation*}
$$

(2-iv) $\quad \Psi\left(d f \cdot \phi_{(1)}\right)=2 f \eta_{(1)}-\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)$,
(3-i) $\quad \Delta\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)=4 f \eta_{(1)}+4 d f \cdot \phi_{(1)}-3 m\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)$,

$$
\begin{equation*}
L\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)=8 f \eta_{(1)}-7\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right), \tag{3-ii}
\end{equation*}
$$

(3-iii) $\quad \Phi\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)=-2 f \eta_{(1)}+(m-2)\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)$,
(3-iv) $\quad \Psi\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)=2 f \boldsymbol{\eta}_{(1)}-\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)$.
Proof. Verification is done by a direct calculation using (2.2) $\sim(2.12)$.
Lemma 4.3. With respect to the projection P, we have

$$
\begin{gathered}
P\left(d f \cdot \phi_{(1)}\right)=\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}, \\
P\left(f \eta_{(1)}\right)=f \eta_{(1)} \text { and } P\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right)=\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)} .
\end{gathered}
$$

Proof. The first identity is verified by (2.8).
Proposition 4.4. For $f \in V_{1}, w_{[f, t]}$ is an evgenform of $J_{(t)}$ corresponding to $\mu(t)$ for each $t(0<t<\infty)$, where $w_{[f, t]}$ is defined by

$$
\begin{align*}
w_{[f, t]}= & f \eta_{(1)}+k(t) d f \cdot \phi_{(1)}+(1-k(t))\left(\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right), \tag{4.5}\\
k(t)= & {\left[2(m-3) t^{m / 3}\right]^{-1}\left\{m+2-2 t^{-m / 3}-6 t^{m / 3}\right.} \tag{4.6}\\
& \left.+\left[\left(m+2-2 t^{-m / 3}-6 t^{m / 3}\right)^{2}+12(m-3) t^{m / 3}\right]^{1 / 2}\right\},
\end{align*}
$$

and $\mu(t)$ is given by

$$
\begin{align*}
\mu(t)= & t\left[-5+t^{-m / 3}+6 t^{m / 3}\right] \tag{4.7}\\
& -t\left[\left(m+2-2 t^{-m / 3}-6 t^{m / 3}\right)^{2}+12(m-3) t^{m / 3}\right]^{1 / 2} .
\end{align*}
$$

For $m=4 r+3=7,11, \mu(t)$ is negative for all $t(0<t<\infty)$. For $m \geqq 15, \mu(t)$ is negative, if $0<t<t_{0}(m)$ or $t_{1}(m)<t$, where

$$
\begin{align*}
& 3\left(t_{0}(m)\right)^{-m / 3}=2 m-1+[(m-2)(m-14)]^{1 / 2}, \tag{4.8}\\
& 3\left(t_{1}(m)\right)^{-m / 3}=2 m-1-[(m-2)(m-14)]^{1 / 2} . \tag{4.9}
\end{align*}
$$

Proof. We define $w_{[f, t]}$ by (4.5) with undetermined $k(t)$. By (4.2), Lemma 4.2 and Lemma 4.3, we have

$$
\begin{aligned}
J_{(t)} w_{[f, t]}= & t\left\{m-3-t^{-m / 3}-2(m-3) t^{m / 3} k(t)\right\} f \eta_{(1)} \\
& +t\left\{-6-\left(m+7-3 t^{-m / 3}-12 t^{m / 3}\right) k(t)\right\} d f \cdot \phi_{(1)} \\
& +t\left\{m+3-t^{-m / 3}\right. \\
& \left.\left.+\left(m+7-2(m+3) t^{m / 3}-3 t^{-m / 3}\right) k(t)\right\}\left(\xi_{(3)} f\right) \eta_{(2)}-\left(\xi_{(2)} f\right) \eta_{(3)}\right) .
\end{aligned}
$$

Therefore, $J_{(t)} w_{[f, t]}=\mu(t) w_{[f, t]}$ holds, if $k(t)$ is a solution of

$$
(m-3) t^{m / 3} k(t)^{2}-\left(m+2-2 t^{-m / 3}-6 t^{m / 3}\right) k(t)-3=0,
$$

and $\mu(t)$ is given by

$$
\mu(t)=t\left[m-3-t^{-m / 3}-2(m-3) t^{m / 3} k(t)\right] .
$$

Because we are interested in the case where $\mu(t)$ is negative, we choose $k(t)$ as the positive solution of the above equation. So, $k(t)$ is given by (4.6), and consequently, $\mu(t)$ is equal to (4.7). t satisfies $\mu(t)=0$, if and only if

$$
3 t^{-2 m / 3}-2(2 m-1) t^{-m / 3}+m^{2}+4 m-9=0
$$

Therefore, two solutions $t_{0}(m)$ and $t_{1}(m)$ of the above equation are given by (4.8) and (4.9).

Remark. The values $t_{0}(m)$ and $t_{1}(m)$ for $m=15,19$ are given by

$$
\begin{array}{ll}
t_{0}(15)=0.6205 \cdots, & t_{1}(15)=0.6523 \cdots \\
t_{0}(19)=0.6493 \cdots, & t_{1}(19)=0.7036 \cdots
\end{array}
$$

Proposition 4.5. Let $\Omega_{(t)}$ denote the eigenspace of $J_{(t)}$ corresponding to $\mu(t)$, and let $\Omega_{(t)}^{\prime}=\left\{w_{[f, t]} ; f \in V_{1}\right\}$. Then $\Omega_{(t)}=\Omega_{(t)}^{\prime}$ and $\operatorname{dim} \Omega_{(t)}=m+1$ hold except for at most countably many values of t in $(0, \infty)$.

Proof. Let $\left\{f_{1}, f_{2}, \cdots, f_{m+1}\right\}$ be a basis of V_{1} and define $w_{\left[f_{p}, t\right]}$ by (4.5) with $f=f_{\rho}$. For each t, the set

$$
\left\{w_{\left[f_{\rho}, t\right]} ; \rho=1,2, \cdots, m+1\right\}
$$

is linearly independent. In fact, it suffices to see that the set $\left\{w_{\left[f_{p}, t\right]}\left(\eta_{(1)}\right)\right\}=$ $\left\{f_{\rho}\right\}$ is linearly independent. So, we have $\operatorname{dim} \Omega_{(t)}^{\prime}=m+1$. For all $t, \Omega_{(t)} \supset \Omega_{(t)}^{\prime}$ is trivial. At $t=1$, we see that $\operatorname{dim} \Omega_{(1)}=m+1=\operatorname{dim} \Omega_{(1)}^{\prime}$. Next, if t is near 1, then $\Omega_{(t)}=\Omega_{(t)}^{\prime}$, and $\operatorname{dim} \Omega_{(t)}=m+1$. Since $J_{(t)}$ depends on t analytically, the case $\operatorname{dim} \Omega_{(t)}>m+1$ happens only for at most countably many values of t.

Proposition 4.6. For each $\alpha, L_{\xi(\alpha)}$ defines an isomorphism of $\Omega_{(t)}^{\prime}$.
Proof. Since $\xi_{(\alpha)}$ is a Killing vector field with respect to $g(t)$, two operators $L_{\xi_{(\alpha)}}$ and $J_{(t)}$ are commutative. Thus, $L_{\xi(\alpha)}$ preserves $\Omega_{(t)}$. Since $\Omega_{(t)}=\Omega_{(t)}^{\prime}$ except for at most countably many values of $t, L_{\xi(\alpha)}$ preserves $\Omega_{(t)}^{\prime}$.

Remark. The expression (4.5) of $w_{[f, \ell]}$ is based on $\xi_{(1)}$ and $\phi_{(1)}$. Contrary to this, we define $w_{[f, t]}^{\prime}$ and $w_{[f, t]}^{\prime \prime}$ by

$$
\begin{align*}
& w_{[f, t]}^{\prime}=f \eta_{(2)}+k(t) d f \cdot \phi_{(2)}+(1-k(t))\left(\left(\xi_{(1)} f\right) \eta_{(3)}-\left(\xi_{(3)} f\right) \eta_{(1)}\right), \tag{4.10}\\
& w_{[f, t]}^{\prime \prime}=f \eta_{(3)}+k(t) d f \cdot \phi_{(3)}+(1-k(t))\left(\left(\xi_{(2)} f\right) \eta_{(1)}-\left(\xi_{(1)} f\right) \eta_{(2)}\right) . \tag{4.11}
\end{align*}
$$

Then we have the following relations:

$$
\begin{aligned}
& L_{\xi(1)} w_{[f, t]}=w_{[\xi(1) f, t]}, \\
& L_{\xi(2)} w_{[f, t]}=w_{[\xi(2) f, t]}-2 w_{[f, t]}^{\prime \prime}, \\
& L_{\xi(3)} w_{[f, t]}=w_{[\xi(3) f, t]}+2 w_{[f, t]}^{\prime} .
\end{aligned}
$$

Since $L_{\xi(\alpha)} w_{[f, t]}$ and $w_{[\xi(\alpha) f, t]}$ belong to $\Omega_{(t)}^{\prime}$, we see that $w_{[f, t]}^{\prime}$ and $w_{[f, t]}^{\prime \prime}$ belong to $\Omega_{(t)}^{\prime}$. This means that the expression (4.5) based on $\xi_{(1)}$ and $\phi_{(1)}$ is
enough for our purpose.
Remark. Let X be a unit tangent vector at a point x of $\left(S^{4 r+3}, g(t)\right)$ satisfying $\eta_{(\alpha)}(X)=0$ for $\alpha=1,2,3$, then the sectional curvature $K_{(t)}\left(X, \phi_{(1)} X\right)$ is given by

$$
K_{(t)}\left(X, \phi_{(1)} X\right)=t\left(4-3 t^{m / 3}\right) .
$$

So, it takes a negative value for $4<3 t^{m / 3}$.

References

[1] P.F. Leung, On the stability of harmonic maps, Lect. Notes in Math., 949, Springer-Verlag, 1982, 122-129.
[2] H. Muto, On the stability of a three-sphere, Kodai Math. Journ., 12 (1989), 109115.
[3] T. Nagano, Stability of harmonic maps between symmetric spaces, Lect. Notes in Math., 949, Springer-Verlag, 1982, 130-137.
[4] Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tôhoku Math. Journ., 38 (1986), 259-267.
[5] R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc., 47 (1975), 229-236.
[6] S. Tanno, The first eigenvalue of the Laplacian on spheres, Tôhoku Math. Journ., 31 (1979), 179-185.
[7] S. Tanno, Some metrics on a ($4 r+3$)-sphere and spectra, Tsukuba Journ, Math., 4 (1980), 99-105.
[8] S. Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian manif. (Kaigai Pub.), Tokyo, 1983, 115-128.
[9] S. TANNo, Instability of spheres with deformed Riemannian metrics, Kodai Math. Journ., 10 (1987), 250-257.
[10] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, Journ. Math. Soc. Japan, 31 (1979), 209-226.
[11] H. Urakawa, The first eigenvalue of the Laplacian for positively curved homogeneous Riemannian manifold, Comp. Math., 59 (1986), 57-71.
[12] H. Urakawa, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer. Math. Soc., 301 (1987), 557-589.
[13] Y.L. Xin, Some results on stable harmonic maps, Duke Math. Journ., 47 (1980), 609-613.

Department of Mathematics
Tokyo Institute of Technology
Japan

