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GAUSS CURVATURE OF GAUSSIAN IMAGE

OF MINIMAL SURFACES

BY Li HAIZHONG

Abstract

In this paper, we estimate the Gauss curvature of Gaussian image of
minimal surfaces in Rn(c), which equality case is exceptional minimal surfaces
in ^?4(c) defined by Johnson.

1. Introduction. Let Rn(c) be an w-dimensional simply connected space
form of constant curvature c. When c>0, Rn(c}—Sn(c) when c=Q, Rn(c)=Rn;
when £<0, Rn(c)=Hn(c). Let M be a minimal surface in Rn(c), we denote by
K(<*c) the Gauss curvature of M with respect to the induced metric ds2

M. On
M, we choose a local field of orthonormal frames eίt ••• , en in Rn(c) in such a
way that when restricted to M, e± and e2 are tangent to M and e3, ••• , en are
normal to M. Their dual forms are ωlt •••, ωn. The metric of M is dsM—
(ωι)2-f-ω2)

2. We consider Obata's Gauss map from M to the space of all totally
geodesic 2-subspaces in Rn(c} ([8]). Riemannian metric of Gauss map g(M) is
([8])

(1.1) g*(dsί)=Σ(ωiay=(c-K)dsjί,i, a

which is degenerate at points where K— c([8]). Let KG denote the Gauss
curvature of M with respect to g*(dso)> which is the Gauss curvature of the
Gaussian image of M.

When n=3, we have the following well-known result

THEOREM 1.1 (see Lawson [7]). Let M be a minimal surface in R\c) and
on M. Then

(1.2)
"* c-K '

When n^4, the following result is well-known

THEOREM 1.2 (see [1, 5]). Let M be a minimal surface in Rn. Then
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(1.3) KG<2,

and KG=2 on M if and only if M is a complex curve in C2.

In this paper, our purpose is to generalize above Theorem 1.2 to minimal
surfaces in Rn(c). Our main result is the following theorem

THEOREM 1.3. Let M be a minimal surface in Rn(c) and c—K^Q on M.
Then

(1.4) KG<*= c-K '

and equality holds in (1.4) on M if and only if n— 4 and

(1.5) \A\*=KN,

where |/L| 2 —Σα.t.X/i?^) 2 is the square length of the second fundamental form of
M and KN=^a>β!-ί<JR^βίJ is the normal scalar curvature of M in R4(c), i.e., M
is an exceptional minimal surface in R*(c) defined by Johnson in [6].

Remark 1.1. According to definition of exceptional minimal surface ([6]),
minimal immersions of the 2-sρhere S2 into R\c) are always exceptional
(Chern [3]) (these surfaces are called "superminimal" by Bryant [2]). Thus, by
Theorem 1.3, these surfaces satisfy KG=2—c/(c—K). We also note that notion
of exceptional minimal surfaces in R4(c) is equivalent to /^-surfaces by Y. C.
Wong ([13]).

2. Fundamental lemmas. We need the following lemmas to prove Theorem
1.3.

LEMMA 2.1. Let M be a minimal surface in Rn(c), then

(2.1) |7(M

// equality holds in (2.1), then we have

(2.1)' Λf n = Λf 1 2=ι

Proof. Let M be a minimal surface Rn(c). It is an elementary observation
that at each point the dimension of the image of the second fundamental form
A of minimal surface M is at most 2. Thus we may choose ez, •••, en so that
hίj=0 for all i, j and α^5, i, e., we may choose the basis elt ez, •••, en so that
the component h^ of A satisfy ([11])

(λ 0\ /O μ
(2.2) (Af,)= , (A*4,)=

\0 -λ) \μ O
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for some functions λ and μ. Let \ A \ 2 = Σ ι a , t j ( h f j ) 2 be the square length of the
second fundamental form of M and KN—Σa,β,i,jRlβi3 be the normal scalar
curvature of M. By (2.2) and Ricci equation we easily check that |^4|2=

Noting Σ*(Λfij02=Σ*(A?2*)2, 3^α^w, by (2.2), we have

k i.j.a

(2.3)

On the other hand, we have

(2.4)
\VA\*=2 Σ (Aft*)g=4 Σ (Aft*)'

*•*•« *•«

We get (2.1) from (2.3) and (2.4).
If equality holds in (2.1), then we know that equality holds in (2.4). Noting

that equality holds in (2.4) if and only if Afn = Λfι2=0, «^5. Thus we have
proved that if equality holds in (2.1), then we have (2.1)'. We complete the
proof of lemma 2.1.

LEMMA 2.2. Let M be a minimal surface in Rn(c\ then

(2-5)

and equality holds in (2.5) if and only if (1.5) holds, i.e., the following geometric
condition makes sense

(2.5)' λ=±μ.

Proof. Denote the matrix (h?j) by Ha, S^a^n. By Gauss-Codazzi-Ricci
equations it was shown in [12] that

= Σ Σ A&

(2.6) + ΣJ hf,h&Rβ.lta, β.i.j, k

Σ tr(HaHβ-HfHβγ- Σ (tr(HaHβW+2c\A\\
a, β a, β

By (2.2), it is easy to check the following formulas
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(2.7) 
â, β

(2.8)
a,β

Substituting (2.7) and (2.8) into (2.6), we get

(2-9)
= \VA\*+2c\A\'-±\A

From (2.9), equality holds in (2.5) if and only if Λ 2— μ2, i.e., λ=±μ, i.e.,
| A | 4 = KN. We complete the proof of lemma 2.2.

LEMMA 2.3. (Otsuki [10] or see Ogata [9]). Let M be a minimal surface in
Rn(c). If \A\**Q, KN^Q and λfn=/ιf12=0, (α^5) on M. Then there is a 4-
dimensional totally geodesic submanifold of Rn(c) such that M is contained in the
submanifold.

Remark 2.1. In [9], scalar fields K^ and NC2) are defined by

Obviously, by (2.2), \A\2=2K^=2(λ2+μ2), KN=

3. Proof of Theorem 1.3. Let M be a minimal surface in Rn(c) and
c—KφO on M, where K is the Gauss curvature of M with respect to the
induced metric dsjf. We choose the basis eί9 •••, en such that we have (2.2).
Let a—c— K=\ A\2/2>0, as well known, the Gauss curvature KG of the con-
formal metric σds2

M satisfies (see [4])

-.ft=.-e+^

By use of lemma 2.1 and lemma 2.2,

Combining (3.1) with (3.2), we obtain (1.4).
If equality holds in (1.4) on M, then equality holds in (3.2) on M, i.e.,

equalities hold in (2.1) and (2.5) on M. Thus we have (2.1)r and (2.5)' on M.
Combining this with lemma 2.3, we have n=4= and \A\*=KN (that is λ=±μ) on
M, i. e., M is an exceptional minimal surface in R*(c) defined by Johnson in [6].
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Let M be an exceptional minimal surface in R\c), i.e., \A\*=KN, i.e.,
λ=±μ on M. In this case, by λz—μ2= \A\z/k, we know that λ and μ are
smooth functions on M. Equalities hold in (2.3) and (2.4) by a direct check,
thus equality holds in (2.1). Combining this with (2.5)', we have proved that
equality holds in (1.4) from (3.1) and (3.2). We complete the proof of Theorem
1.3.
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