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1. Introduction

Let EF be a foliation on a manifold M. We say that SF is tangentially affine
if M is covered by a collection of ^-distinguished charts for which the co-
ordinate transformations are affine in the direction tangent to £F. This notion
is, in a sense, dual to that of transversely affine foliation ([In]). Tangentially
affine foliations appear in several branches of mathematics: for example, a
Lagrangian foliation on a symplectic manifold is tangentially affine (See [AN]),
and a supermanifold (in the sense of Rogers [Ro]) over a finite dimensional
Grassmann algebra has a family of tangentially affine foliations ([BG], [RC1],
[RC2], [CRT]).

The following problems naturally arise: (1) Which foliation admits a tan-
gentially affine structure? (2) Given a tangentially affine foliation SF on a com-
pact manifold M, does there exist a leafwise affine function on M which is non-
constant along leaves of EF? And if so, how many? Problem (1) is studied in
[Fu] under additional condition that all leaves are affinely complete. As for (2),
the authors cannot find any positive answer in the literature.

The purpose of this paper is to give complete answers to these problems
for the 2-torus T2. The results are as follows.

THEOREM 1. Every codimension one smooth foliation on T2 admits a tan-
gentially affine structure.

Example. There exists a tangentially affine foliation on T2 admitting a
leafwise affine function which is nonconstant along leaves.

THEOREM 2. Let <3 be a tangentially affine foliation on T2 and F a leafwise
affine function on T2 for <S. Then F is uniquely determined by the values on the
union of compact leaves of 3.

THEOREM 3. Let <3 be a tangentially affine foliation on T2 and L a compact

Received December 10, 1991.

32



AFFINE FOLIATIONS 33

leaf of <3. Suppose that L has a contracting holonomy on its right side. Let U
be a small right neighborhood of L and J. the vector space of all leaf wise affine
functions on U. Then dimjZ is 1, 2 or oo.

At the end of this paper we make a short remark on the 3-dimensional case :

PROPOSITION. The Reeb foliation on the 3-sphere admits no tangentially affine
structure.

The authors would like to express their gratitude to A. Inoue for bring-
ing the theory of supermanifolds to their attention. They would also be grateful
to T. Mizutani, S. Matsumoto, N. Tsuchiya, A. Sato, Y. Mitsumatsu and H.
Nakayama for helpful discussions.

2. Definitions

DEFINITION. Let £F be a codimension m foliation on an (ra+£)-dimensional
manifold M. 3 is tangentially affine if M is covered by a collection of £F-
distinguished charts with coordinates (x, y)^RmxRp such that 3" is locally
given by x^constant and that the coordinate transformations are of the form
(a(x), β ( x , y)), where β is affine in y.

Observe that a tangentially affine foliation induces on each leaf an affine
manifold structure.

DEFINITION. Let 3" be a tangentially affine foliation on a manifold M. A
real valued function / on M is leaf wise affine (resp. leaf wise polynomial, leaf wise
constant) if, for each leaf L of £F, the restriction of / to L is affine (resp.
polynomial, constant).

Remark. An affine manifold is a codimension 0 tangentially affine foliation.
Polynomial functions on compact affine manifolds are studied in [GH] and [Fr],

Throughout this paper we denote by <V the standard tangentially affine
foliation on R2 by lines parallel to the y-axis.

3. Proof of Theorem 1

In this section we prove Theorem 1. Let 3 be any smooth foliation of T2.
If £F has no Reeb components, then £F is the suspension of some diffeomorphism
g of S1 (=R/Z). Lift g to a diffeomorphism g of R satisfying g(x + l)=g(x) + l,
and define diffeomorphisms T and G of R2 by T(x, y)=(x + l, y) and G(x, y)=
(ίί(x\ 3> + l) Then the quotient of (R2, <V) by T and G is (T2, 3) with a tan-
gentially affine structure induced from that of cv, as desired.

Next we consider the case where £F has Reeb components. Let Llt •••, Lr

be the boundary leaves of the Reeb components of 3 and Rlf •••, Rs the com-
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pletions of the connected components of T2—L1U ••• \JLr. Each (Rϊf

 (3\Ri) is
either a Reeb component or a foliated [0, l]-bundle over S1. If Rt is a foliated
[0, l]-bundle, denote the monodromy diffeomorphism by g: [0, 1]-»[0, 1]. By
identifying the boundary points of [0, I]2 by G(xt y)=(g(x), y+ϊ), we obtain
from cv a tangentially affine foliation on an annulus diffeomorphic to 3 Rt. If
RI is a Reeb component, let glf g2: [0, e)->[0, ε) be the holonomy contractions
of the boundary leaves, where ε>0 is small. Let A be the union of the half
circle (x—2)*+y2=4, x^2, and the two line segments y = ±2, Q<*x<ί2. Let
( l / 2 ) A = { ( x , y)\(2x, 2y)^A\. LetO<δ<εand choose smooth maps Λ » : (—3, e+δ)
->jR(ί=1, 2) with the following properties: A{(s)>0 for all s, hi(s)<s for all
s>0, Λi(s)=gi(s) for Q^s<δ and A<(s)=s/2 for s>ε—δ. (Such maps clearly
exist.) Let T(x, y)=(x, y+2), H^x, y)=(hM, y-1) and Ht(x, y)=(ht(x), y+ΐ).
We define a diffeomorphism G from a small neighborhood of A onto (1/2) A as
follows: G(x, y)=ToHί-T~l(xf y) if y>Q and x^ε, G(JC, y)^=T-^H^T(xt y) if
3><0 and Λ ^S, and G(x, y)—(x/2, y/2) if Λ ^ε. Denote by B the region in R2

bounded by four curves A, (1/2)A, {0}x[l, 2] and {0}X[-2, -1]. On 5,
identify Λ with (1/2)^4 by G. Then from <^ we obtain a tangentially affine
foliation on an annulus diffeomorphic to (3\Rl. Now for each Rlt i—l, •••, s,
choose a region £t and a diffeomorphism Gτ as above. By using translations
and reflections, we can glue the corresponding sides of £t's tangent to £(? and
finally obtain a tangentially affine foliation on T2 diffeomorphic to £F, as desired.
This completes the proof.

Remark. A given foliation on T2 may possess different tangentially affine
structures (See the next section).

Remark. Unlike tangentially affine foliations, transversely affine foliations
on T2 must satisfy some strong topoiogical conditions (See [In] and [Ts]).

4. Leafwise affine functions nonconstant along leaves

In this section we construct two examples of tangentially affine foliations
on T2 which admit leafwise affine functions nonconstant on some leaves. In the
first one, the foliation has no Reeb components and in the second one, the folia-
tion consists of two Reeb components. Note that foliations constructed in the
preceding section do not admit such leafwise affine functions, because all non-
compact leaves of them are affinely unbounded. A somewhat "unusual" con-
struction is needed to obtain the desired examples.

Example 1. Let T be the diffeomorphism given by T(x, y)=(x+2π, y). Let
)=#+1/2 sin x and J5(^)=cos(a~1(^))—cos x. For x with a(x)Φx, put b(x)

~B(x)/B(a(x)). Then it is easy to check that b extends to a nowhere vanishing
smooth function on R. Now we define a diffeomorphism G by G(x, y) —
(a(x), b(x)y + ϊ). G sends the c-axis to the line {y = l}. Identify the boundary
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points of [— π, π]X[0, 1] by T and G. Then we obtain from the product folia-
tion cv a tangentially affine foliation £F on T2. Observe that 3 contains two
compact leaves. Define a leaf wise affine function F for cy by F(x, y)=B(x)y
+cos%. Then one can readily check that F satisfies the equations F=F°G and
F=F°T. Hence F induces a leaf wise affine function F on T2 for £F. Since B
vanishes exactly on the two compact leaves of £F, it follows that F is noncon-
stant along each noncompact leaf of 3", as desired.

Remark. Let D=Rx[Q, 1]. The "developing image" \J^-~Gn(D) of T2 is
illustrated in Fig. 1. Observe that the affine structure of each noncompact leaf
is a bounded interval, while the affine structure of each compact leaf is a
quotient of a half line. Thus, in this foliation, a leaf of "bounded length" coils
around a circle leaf endlessly!

\
\

\

\

\
Fig. 1.

Example 2. Let A be the union of two line segments y — ±2, \x ^2, and
two half circles (*-2)2-}-;y2=4, x^2 and Oc+2)2+;y2:=4, x^-2. Let (1/2)Λ=
{(x, y)\(2x, 2y)^Λ}. We will define C°° even functions b, c, B and C so that
they satisfy the following equations: (1) c(x)+2b(x)=l, (2) B(x)=B(x/2)b(x)
and (3) C(x)=B(x/2)c(x)+C(x/2). Let 0<ε<l and let λ:R-+R be a monotonic
decreasing C°° function such that λ(x)=l for x ^1—(2/3)ε and >l(Λ:)=0 for
|x|^l-e/3. Set C(^;)^^)(l-x2). For | % | ̂ 1-ε, set B(^:)rrr3x2/7. Then by
(3), C(Λ ) is uniquely determined for 0< \x\ <2-2ε and φ;)=—7 if 0< | x | ̂ 1-ε.
So we define c(0) =—7. Now by (1), b(x) is determined for x\<>2—2ε, hence,
by (2), B(x) is also determined for \x\<^2—2ε. Repeating this procedure, we
can determine b, c and B on whole R. Their graphs are pictured in Fig. 2.
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Now we define a diffeomorphism G from a small neighborhood of ^4 onto a
small neighborhood of (1/2)A by G(*, y)=(x/2, b(x)y+sgn(y)c(x)), where sgn(v)
— 1 if ;y>0 and —1 if y<0. Then G is well-defined on a neighborhood of A
and GCA)=(1/2)A Let S be the annulus bounded by A and (1/2) A. By identify-
ing the boundary points of S by G, we obtain from cy a tangentially affine
foliation on T2 which consists of two Reeb components.

Define a leaf wise affine function F on a neighborhood of S by F(x, y)=
B(x)y+sgn(y)C(x). Then it is easy to check that F satisfies F=F°G. Hence
F induces a leafwise affine function F on T2. Since B vanishes exactly on the
two compact leaves of the foliation, it follows that F is nonconstant along each
noncompact leaf, as desired.

5. The space of leafwise affine funcfions

In this section we investigate the space of all leafwise affine functions for
a tangentially affine foliation on T2. First we will prove Theorem 2.
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Proof of Theorem 2. Let ff and F be as in the assumption of Theorem 2.
Denote by K the union of all the compact leaves of £F. Let U be a connected
component of TZ—K. The completion U of £7 is either a foliated interval
buraite τwei the tircΛe oτ a Reeb component. It suffices to show that, m each
case, F\U is uniquely determined by F\dO.

First we consider the case of a foliated interval bundle. In this case, %\U
is obtained as follows : Let g be a local diffeomorphism of R2 of the form
g ( X f y)=(a(x), b(x)y + l), where α(0)=0, α(l) = l and α(#)<* for all Q<x<l and
&(*)>0 for all O^x^l. # is obtained from the square [0, I]2 by identifying
[0, l]χ{0} with [0, 1]X{1} by g. EF | 0 is induced from the product foliation
^^constant. We assume that there exists a nonconstant leaf wise affine function
P on U. F lifts to a nonconstant function F on [0, I]2 of the form F(x, ;y)=
5003> + COO satisfying the invariance condition F^g—F, or equivalently, B(x)
= B(a(x))b(x) and C(*) = B(a(x)) + C(fl(x)). Then we have S(α *(*)) =

J&(αv(*))-1 and CW=β(x)Σί-ιIβ^&(α1,(x))-1 + C(fl IW), for any fe and
, where we write αv(x)=flβ ••• °αU) 0> times). Thereίote, ίoτ x with B(x)

=£0, the limit H(x)=Σ,k>^ΐlί=lb(av(x)Γ1 exists and

C(x)=B(x)H(x)+C(Q). (1)

Also, we have B(a,k(x))=B(x)Uί^ιKa-v(x)) and
6(α_v(jc)), for any k and />0, and thus, for x with 5(^)^=0, the limit K(x)

Σ?»oΠί-ι6(α-ι;W) exists and

C(A;) = C(l)-5(Λ:)/ί(Λ:). (2)

By (1) and (2), we have

and

for x with B(x)ΦQ. Now suppose there is some 0<Λ:<1 such that B(x)=Q.
Then for all &eZ, CU)=C(a*W) = C(0)=C(l). This with (3) and (4) implies
that B is identically zero and C is constant, contradicting our assumption. Thus
B(x)φQ for every 0<*^1. Hence, by (3) and (4), F\U is determined by F\dU.

Next we consider the case of a Reeb component. In this case, £F | U is
obtained as follows: Let A be the curve consisting of two line segments {y —
±2, 0<x^2} and a half circle {(x-Z)2+yz=4, x^2} . Put (l/2)A={l/2(x, j)eΞ
β2 |(Λ;, 3^)eΛ}. Let D be the closed subset of R2 surrounded by two curves A
and (1/2) A and two line segments {x— 0, 1^ | y | ^2} . Let g be a diffeomorphism
from a neighborhood of A onto a neighborhood of (1/2)^4 such that g(x, y)=
g+(x, y) for j^O and ,̂ y)=g-(x, y) for 3;^0, where g±(x, y)=(a±(x\
b±(x)y+c±(x)) and fl±(0)s=0, a±(x)<x for Λ:>0, ^+=^_ and c±^0 near Λ:=4.
Now, assume that there exists a nonconstant leafwise affine function F on U.
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fi lifts to a nonconstant function F on D of the form F(x, y)=F+(x, y) for jy^O
and F(x, y)=F.(x, y) for y^O, where F±(x, y)=B±(x)y + C±(x), satisfying the
condition F+=F- near [2,4]χ{0} and the invariance condition F g=F.
Similarly to the foliated bundle case, we see that, for x with B±(x)ΦQ, there
exists the limit H±(x)=Σ^ιC±(ak-ιW)ΊJi=lb±(av(x)')-1 and it holds that C±(*)=
B±(x)H±(x)+C±(0). From this we have

and

for all x near [2, 4], Here H+(x)φH-(x), for, otherwise, we must have C+(0)
= C_(0). But this implies that F is constant, contradicting the assumption. By
a reason similar to the foliated bundle case, B±(x) cannot vanish for any ;c>0.
Since it is easy to see that B± and C± are uniquely determined by their restric-
tions to a small neighborhood of [2, 4], (5) and (6) imply that 3\U is deter-
mined by %\dϋ. This completes the proof of Theorem 2.

Let JL be the space of all leaf wise affine functions on T2 with respect to £F.
If £F has no compact leaves, then JL consists only of globally constant functions,
hence dim^=l. If £F has compact leaves, then by Theorem 2 we see that
dim JL is not greater than the number of the compact leaves of 31. But in order
to determine the exact value of dim J, we need further information on the be-
havior of leafwise affine functions near compact leaves: Let g be a diffeomor-
phism of the form g(x, y)=(a(x), b(x)y + l) where α(0)=0 and Q<a(x)<x and
b(x)>Q for 0<Jt5^1. Identifying the side y=Q with the side y — l by g, we ob-
tain from the product foliation cy on the rectangle [0, I]2 a tangentially affine
foliation £F on a cylinder-like surface 5 with corner. £F has a unique compact
leaf L corresponding with x—0. What we are interested in is the behavior of
a leafwise affine function on a small neighborhood of L. Let J0 be the vector
space of all leafwise affine functions F on S which vanish on L. We may
regard Fas a function on [0, I]2 which is affine in y, such that F(0, 30=0 and
F°g—F. Then we have the following.

THEOREM 3. dim JLQ is 0, 1 or oo.

We prove Theorem 3 by a series of lemmas.
Put qk(x}=Itt=lb(av(x)Yl and #(x)=Σiι?*(*).
Let B(x)y + C(x)<^JL0. Then B and C satisfy the invariance condition B (x)

=B(a(x))b(x) and C(x)=B(a(x))+C(a(x)). By this condition, we have B(ak(x))
=B(x)qk(x), C(x)=B(x)H(x) and C(anW)=B(x)Σ>ΐ=n+ι<lkW for 0<x^l and
fe, rc>0.

Recall that a function φ is said to be flat at 0 if y><r)(0)=0 for all r^N.

LEMMA 1. // there exists F(x, y)=B(x)y + C(x)^JLQ such that B or C is
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nonflat at 0, then dimjZ0—1.

Proof. Since B(x)=C(a-1(x))—C(x)f if C is flat, so is B. So we may as-
sume that C is nonflat. Suppose there exists another #ιOO:v + CιOO^-Λ which
is not a scalar multiple of F. For jt>0 near 0, put E(x)=Bι(x)/B(x)(=Cι(x)/
COO). Then E is not a constant function and satisfies that E(x)=E(a(x)).
From this and the nonflatness of C it follows easily that E(x)C(x) cannot ex-
tend to a smooth function at 0, which contradicts that Cί(x)=^E(x)C(x).

LEMMA 2. // α'(0)<l, then dimjl0^l.

Proof. Choose constants 0<α<l, β>0 and m^N so that b(x)<β and αOO
<α% for 0<*^1, and that amβ<l. Let F be any element of J0 and B the
coefficient of y in F. Suppose that B(x)^0 for some #>0. Since B(an(x))=
B(x)/UKQ

1b(ak(x)), we have

B(x) ^ B(x) B(x} 1

as n tends to oo. This implies that B is not flat at 0. Then by Lemma 1,
we have that dimjZ0^l. This proves Lemma 2.

We define B by B(x)=IK=<>b(av(x))/b(av(l)). The following lemmas are
proved by some calculations.

LEMMA 3. B(x) ^s C°° and positive for 0<Jt<U, and satisfies B(x)=

LEMMA 4. // H(XO)<^> for some x0>0, then H(x) is C°° and positive for
<;i, and H(an(x))/H(an(x0)) converges to 1 C™ '-uniformly on any compact

subset of (0, 1].

Recall that there exists a C1 function / (which is C°° for #>0) such that
a is the time one map of the vector field —f(x)d/dx (See [Se]).

The following lemma is easily proved by induction.

LEMMA 5. Let E and C be C°° functions on (0, 1] such that E(a(x))=E(x)
for all 0<#5jl. Then, for each /2^0 and x with C(flnOO)=£0, w

(ECYl\an(x})=C(an(x))f(an(x}YlFl

where gnW=(log| C(an(x))\)' and Ft is a polynomial in the functions
f^\x\ g$\x) and f^(an(x))f(an(x)Y-i (O^i^O which is defined inductively as
follows- F,=E, Fl+l = (

We make the following remark : Assume that H satisfies the hypothesis of
Lemma 4. Let B and C be C°° functions on (0, 1] such that B(x)=B(a(xy)b(x)
and C(x) =B(x)H(x). Then gn(x}^og\B(x)gn(x)H(an(x))/qn(l)H(an(l))\Y con-
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verges to g(x)= (\og\B(x)/B(x)\y for x with B(x)ΦQ. If we further assume
fl/(0)=l, then since lim^o/^M/M^-O ([Se, 3.6]), Ft(x) converges to some
function G t ( x ) as n-»oo for x with B(x)Φθ. And we have Gι+ί/f=gGι

LEMMA 6. // α'(0)=l and if for any /;>0 there exists *0>0 such that

n(x0))~l^Σ(k==n+ιQk(Xo) converges to 0 as n->oo, then dirnJo^00-

Proof. Put Δx= x — a(x). By [Se, 2.9] and Lemma 4, we have

_

<* n(* o))

as n-χχ>. Hence, by the hypthesis, we have that /(flnOO)~zS*=n+i#*00 con-
verges to 0 uniformly on any compact subset of (0, 1]. Now, take arbitrary C°°
functions B^Q and BQ on [α(l), 1] satisfying (B<(a)ft)co(l)=Sir)(l)/v for each
r^O and ι=0, 1. We^define C°° functions Bt and C t on (0,1] by Bi(ak(xy) =
Bi(x}qk(x) and Ci(x)=Bt(x)H(x). Applying Lemma 5 to C—Cl and E = C 0 / C ί f

we have, for any /;>0,

5ίI)(α»)=flι/(fln)-1 Σ 0*^— >0
fe=n + ι

/v <v

as n^oo uniformly on [α(l), 1]. Thus C0 (and hence also BQ) is extended to
a C°° function on [0, 1] (and is flat at 0). Therefore B0(x)y + C0(x)(Ξ J0. Hence
dim J0— °°, completing the proof.

LEMMA 7. // fl'(0) = l αnύ? ί/ ί/z^r^ exists /0^0 swc/z ί/zαί, /or any
f(an(x}Yl**Σΐk=n+lqk(x) does not converge to 0 as w— »oo. Then dimjZ 0 is either
0 or 1.

Proof. Assume that Jί0 contains a nonzero function B(x)y + C(x). Put
/=/o+l. Then, applying Lemma 5 with E = l, we have

C«\an(x*))=B(x)f(an(x)Yl Σ ^WΛ
ft=n + l

Since this quantity must converge as w->oo, we have Gz(;0=limn^ooFz(Λ;)=0 for
x with B(x)ΦQ. If we solve the first order linear differential equations G^+
gGm—Gm+l/f (0^m</) successively (downward on m), we finally obtain the

J x
g(x)dx~λB(x}/B(x}~^\-\λih(xY on each connected com-

ponent of the set { x \ B ( x ) ^ Q } , where Λ^O and Λ are constants and h(x)—

—dx/f(x). We may consider h as a coordinate on (0, 1], Since (d/dh)l(B/B)

ΞΞO, B/B is a polynomial in h on (0, 1]. If we replace x by a(x), then B/B is
multiplied by 1/6(0) while h(a(x)}=h(x)-l. From this, we have that λt=Q (j^l)
and we can conclude that β must be a constant multiple of B. Lemma 7 is
proved.
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The proof of Theorem 3 is complete.

Remark. By making a little more effort, we can describe the structure of
JIQ concretely: In the case where dimJo^00,

JZ0— {BQ(x)(y+H(x)) I BO is as in the proof of Lemma 6} .

In the case where dimJ0— 1> either of the following holds: (i) α'(0)<l and
b(Q)=a'(Q)-m (meΛO, or (ii) β'(0)=l and ft(0)=l. Ih the case (i), by [St], J:here
is a diffeomorphism φ such that φ(a(φ~1(x)))=a/(Q)x. Define B by B(x)=
φ(x)mB(x). Then

JLι={cβ(x)(y+H(xy)

In the case (ii),

JL9={cB(x)(y+H(x» I

In various cases we can calculate the dimension of J0

Example 3.
Case I. α'COXl.

( i ) 6(θ)=α'|(0)-m (for some
( ii ) otherwise =} dim JZ0 =0.

Case II. a(x)=x-xn+
( i )
(ii)
(iii)
(iv) b(x) = l+βxl+ - (l^/^n-2, /3<0)=>dim J0=0.

(vi) other wise =φ dim Jo^O.
Case III. G(Λ:)=Λ: — (a positive flat function).

( i )
(i i)
(iii)
(iv)
(v) b(x)=l + (a flat function).

(v-1) V / 3 % such that_/(f l n

(v-2) not (v-1), but 5 and 5/ί are C°° on [0, l]=^dimjlo=l.
(v-3) otherwise ̂ 4 dim Jo^O.

If we use Theorems 2, 3 and Example 3, we can determine the space of
all leafwise affine functions on a tangentially affine foliations on T2 in almost
all cases.

6. A remark on the 3-dimensional case

Let <3 be a codimension one foliation on a closed 3-manifold. Then an



42 TAKASHI INABA AND KAZUO MASUDA

obvious necessary condition for £F to admit a tangentially affine structure is
that each leaf can admit at least one affine manifold structure. Proposition
shows, however, that the condition is not sufficient.

Proof of Proposition. Let L be the torus leaf of the Reeb foliation £F.
Choose two oriented loops a and β in L so that a is a vanishing cycle in the
one Reeb component and that β is a vanishing cycle in the other Reeb com-
ponent. Denote by Φ : πί(L)-*Aff(R2') the holonomy homomorphism (for defini-
tion, see [GH]) associated with the affine structure of L. Let {αt}0gί<ι be a
continuous family of loops such that a0=a and that at, f>0, lies in a plane leaf
Lt. Then, obviously, for any £>0 the holonomy along at induced from the
affine structure of Lt is the identity because of the 1-connectedness of Lt. This
with the fact that at converges to a implies that the holonomy Φ(ά) must be
the identity. By the same reason, Φ(β) is also the identity. Consequently Φ
must be trivial, which is absurd. This proves the proposition.
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