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1. Introduction.

This paper is a continuation of previous paper [6].
Let £ be a bounded domain in R? with smooth boundary 0£2. Let @ be a
fixed point point in £. Let B(e, W) be the disk of radius ¢ with the center .

We put 2., =0\ B(e, w). Consider the following eigenvalue problem
(1.1 —Au(x)=Au(x) xe8.
u(x)=0 xsdR

u(x)—i—ke"aaTu(x):O xE€0B(s, W).

Here % denotes the positive constant. And ¢ is a real number. Here 9/dv,
denotes the derivative along the exterior normal direction with respect to Q..

Let p;(¢)>0 be the j-th eigenvalue of (1.1). Let g, be the j-th eigenvalue
of the problem

(1.2) —Au(x)=2u(x) xe0
u(x)=0 rcoR .

Let G(x, ) be the Green function of the Laplacian in £ associated with
the boundary condition (1.2).

Main aim of this paper is to show the following Theorems. Let ¢;(x) be
the L*-normalized eigenfunction associated with u,. We have the following.

THEOREM 1. Assume that p, is a simple eigenvalue. Then,

pi(e)=u;—2r@,()*/(log €)+0(|log €| %),
for ¢=1.
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THEOREM 2. Assume that p, is a simple eigenvalue. Then,
piE)=p;+Q e "+ R;e*4+-0(*7) (—1<o<0)
piE)=p;+R;e#+Qe' " +0(’|log e])  (—2<o=—1)

& =p+ R +0 log e)  (9=-2),
where

Q,=Q@r/k)p,(W)*

R;=—mn(2|grad ¢;(®)|*— p;0,(W0)") .

Remark. The case ¢<[0, 1) is treated in [6]. It is curious to the authors
that the asymptotic behaviour of g;(e)—g, is the same when ¢<—2. For the
related papers we have Ozawa [7], [8], [9], Rauch-Taylor [10], Besson [3],
Chavel [4] and the references in the above papers.

For other related problems on singular variation of domains the readers
may be referred to Anné [1], Arrieta, Hale and Han [2], Jimbo [5].

2. Outline of proof of Theorem 1 and Theorem 2.
We introduce the following kernel p.(x, y).
2.1 pe(x, Y)=G(x, y)+g(e)G(x, WG, y)
+h(EXVWwG(x, @), VoG, y)>
+i(e)XHwG(x, W), HoG(W, y)) ,

where
. Ao L Ou ov
NVou(W), Vv (W)= §1a7nawn lw=w
0*u v .

Hou(@), Ho@) = 3 lw=1

ma=10W m0W, OWm0W,

when w=(w,, w,) is an orthonormal frame of RZ2. Here g(¢), h(e), i(¢) are
determined so that

(2.2 pe(x, y)+ks"ai‘pe(x, y)  x<0B(e, W)

is small in some sense.
If we put

(2.3) g(&)=—@—(2n)"* log e+ k(2m) ')
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(2.4) h(e)=(ke’—e)/(2re) '+ k(2m) 'e?7?) (6<0)
=0 (e21)

and

(2.5) i(e)=he’/(w e+ 2km~"e"®) (a<0)
=0 (ez1),

the above aim for (2.2) to be small is attained. Here

r=lim (G(x, @)+@2x)"" log|x—w|).

Z=w

Let G.(x, y) be the Green function of the Laplacian in £. associated with
the boundary condition (1.1).
We put

GH0={,6, »f»dy

C.N0)=\, G(x, f(»)dy
and

PSR=\, b5, DFGIY  (9<0)

=[ pux 9)fdy (o2,

In case of ¢<0, P. cannot operate on LP?(£) because of the existence of
h(e)-term and i(e)-term in (2.1).

Let T and T. be operators on £ and £., respectively. Then, |T|,, T/,
denote the operator norm on LP(R), L?(RQ.), respectively. Let f and f. be
functions on £ and £., respectively. Then, || f],, [If:l, . denotes the norm on
L*(92), L?(£.), respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof
of Theorem 1 is the following.

THEOREM 3. Fix ¢=1. Then, there exists a constant C such that
(2.6) X PX—~G. . =Cellog e
holds. Here X. is the characteristic function of Q..

Since G. is approximated by X.P.JX. and the difference between P. and
X.P.X. is small in some sense, we know that everything reduces to our investi-
gation of the perturbative analysis of G—P.. This is the outline of our proof
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of Theorem 1.

Next we outline the proof of Theorem 2. One important part of our proof
of Theorem 2 is the following.

THEOREM 4. Fix <0. Then, there exists a constant C such that

2.7 I(P—G)Xppz.=Ce®7  (—1<a<0)
<Ce|log ¢ (e=-1)
holds.
We fix j and put
2.8) pe(x, y)=G(x, y)—mp;e*-G(x, W)GW, y)

+g(e)G(x, W)G(E, y)
+h(e)XVuG(x, @), VG, y)7E(x)E(y)
+i(e)}XH G (x, W), HoG@, y)>6(x)E(y)

where £ (x)eC>(R?) satisfies |&(x)|<1, &(x)=1 for x=R>\B(e, W), &(x)=0
for x=B(e/2, W) and &.(x—W) s rotationary invariant. Furthermore we put

(P.f)x)=| ulx, F .

The other important part of our proof of Theorem 2 is the following.

THEOREM 5. Fix ¢<0. Then, there exist a constant C such that
2.9) 1t P.— PX)@jlls. . <Ce?*  (—1<a<0)

<C¢®|log ¢ (e=-1)
holds.

Since (2.7) and (2.9) are both o(e?), we know that everything reduces to our
investigation of the perturbative analysis of G—P.. This is the outline of our
proof of Theorem 2.

3. Preliminary Lemmas.

We write B(e, w)=B.. Next Lemma is proved in Ozawa [6].

LEMMA 3.1. Fix o<l. Assume that u,(x)=C>($.) satisfies

Au(x)=0 x4,
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u(x)=0 x<of

Max{ us(x)+ke”g§i(x)l; xeaBs}:Ms,

then
(3.1) luellp =Ce' "M,  (1=p<+o0)

holds for a constant C independent of .

407

Remark. In Ozawa [6], 6=0 is assumed. But this assumption is not re-

quired to get the above Lemma.

Now we want to estimate ||u.|, . for ¢=1 under the same assumption of

u. as above. We have the following.

LEMMA 3.2. Fix MeC=(0B.), 6=1 and q>0. Then there exists at least

one solution of

3.2) Av(x)=0  x=R>B,

3.3) ve(%) +ks"g—32(x)=M(0) x=+e(cos 0, sin )
satisfying

(3.4) ve(x) | <Ce'~" Max | M (0)[(L+[log r|)  for r=e

3.5) lv.(x)| = C Max | M(0)[(|log [/ log ¢] DU (p—g)~1120)

for ¥>e, where r=|x—1W| and q' satisfies (1/9)+(1/¢")=1.
Proof. We put x=w-+r(cos 4, sin ) and
ve(x)=a, log r+ i (b, sin 70+, cos 7O)(— ) 'r .
e

Then it satisfies Av.(x)=0 for x=R* B.. We see tnat

v,

ve(x) +ks"-a~(x) =S+ f} (s, sin j@+t,cos 78)=M(0)
YV redB, =1

2B
implies
ao(log &— ksa_l):So
bse™(—(1/ 1)~ ke"™)=s,
cse™(—(1/j)—ke? )=t,
for j=1.

Thus we have
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(3.6 lve(x)| < [solog 7| /(ke’ '+ ]log ¢])
oo 1/2/ o . 1/2
H(Dsr+19) (S e/ma+jke)
=1 =1
Using the Holder’s inequality, we have

3.7) i (/PP (L4 ke 1)

1/q

=(B i) (ke

(e J(r0 — e ))”"'(S:(l+ke"“s)‘2qu)”q

ZC(e/(r—eg))t/veg=Co-bia
=Ce'""U(r—e)™"  for r>e.

By (3.6), (3.7) and the inequaiity

so+ 2 +92C[TIMO)12d0 < ' Max | MO

we get
[v(x)| < 50|+ |log 7| /(ke”"")
o 1/2 d 1/2
2 2 ;-2 —1.1-0
H( S erth) (Z57) ke
<CMax|M(0)|e'-°(1+|log r|) for r=¢,
and
lve(x)| =C Max | M(0)|(([log 7|/[log &|)+eMP=710(r—g)71/2)
for »>¢. Thus the proof is now complete. g.e.d.

We have the following.

LEMMA 3.3. Fix o=1 and ¢>o. Under the same assumptions of u. n
Lemma 3.1,

(3.10) luellp,e < CMc(llog e| ! +e/®-7/) (1< p<2q’)

holds tor a constant C independent of «.

Proof. By Lemma 3.2 and using the same repeating construction of the
functions ».‘™ in Proposition 1 of Ozawa [7], we have

(3.11) lue(x)| SCM(llog 7[/|log e| +e@/2 /D (r —g)=1/2)
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for r>e.
We fix R>0 such that QCB(R, w). Then, we have

(3.12) SQ(r—e)“”’“'dx§27rSRr(r——s)‘p’“’dr
R+e
ganS (r—e)-P0dr<C  for 1< p<2q’.

By (3.11) and (3.12), we get (3.10). q.e.d.

4. Proof of Theorem 3.
From this section to section 7, we assume ¢=1. By (2.3) we know that
“.1) g(e)=2r(log &)"*+0(|log ¢|~?).

We take an arbitrary fixed point x<0B,. Without loss of generality we
may assume that @=(0, 0) and x=(e, 0).
We put
S(x, »)=G(x, y)+(1/27) log | x—y|.

Then, S(x, y)=C(2x Q).
We put p.(x, y) as before. Then, we have

, 0
pe(x, y)—ke 3x—1ﬁe(x, ¥)

z=(8,0)
—Gx, y)— ke Glx, y)—gle)ke” O S(x, B)G(, 3)
=G(x, ¥ Eaxl , y)—g(e aax1 , w,y
g(eX(—(2m)"" log s+S(x, @)+ k(2x)'e*G(T, 3).
Let y=S(v, w). Then, S(x, W)=7+0(e) as ¢—0. Since

g(e)(—(2m)~" log e+7+k(2r) e’ H=~1,

we get the following.

0
4.2) pe(x, y)—ks"ézpe(x, ¥)

r=(¢&,0)

0
=G(x, y)— G(W, y)—/es”(,EG(x, ¥)

+8(e)(O(e)—ke” 3%1 SCx, ))G(, 7).

We take an arbitrary f<L?(2.) and put f=X.f. From (4.2), we get
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3 (P.Y0—ke” - (P 3)

z=(e, 0)

=GP0~ (@) ke (G )

I a "y
+8(e)(0(0)— ke - S(x, w) )G,
By the Sobolev embedding theorem

1G Pl grsecgy <CIFI,=Cliflp.e
if =1-2/p, 2<p<oco. Therefore we get

4.4) [GH) () —(GF)@W) < Cel flp.
WGHWZClfllp.e

'3%(0 OIS

for p>2, x=(e, 0) and w=(0, 0).
From (4.1), (4.3) and (4.4) we have the following.

PP —ker PP |

=(&0)
SCle+e+g@)e+e N flp.e
=Celflp.-

We put X.PX.—G.)f=v. Then, v=X.P.f—G.f and v satisfies the assump-
tions in Lemma 3.3 with M.=Ce|/f|, ., because G.f satisfies the given Robin
condition on dB.. By Lemma 3.3 we have

[vllp,e=C(llog |7 4-e/20=2ID)e] f1 5
=Cellog el f 5.
for p>2 and ¢>o. Therefore,

“xepexs—Ge”p‘séce l IOg 3 I !

for p>2.
By the duality argument

IX.PX.—G.|, .<Cellog e| !

for p’ satisfying (1/p)+(1/p’)=1. Now by the Riesz-Thorin interpolation theo-
rem we get Theorem 3.
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5. Convergence of eigenvalues for ¢=1.

At first we want to estimate |P.—G|,. We take an arbitrary ve L¥ Q).
Then, by the definition and the Sobolev embedding theorem we have

(5.1) (P)(x)=(Gv)(x)+g(e)G(x, W) Gv)(b)
(5.2) lGvl.<Clvl, .
Thus,

I(Pe—Gwll.<Clg(IIG(-, D)l
=Clg@®Ilvl.<Cllog e| vl .

Therefore we get the following.

LEMMA 5.1. There exists a constants C independent of ¢ such that
(5.3) [P.—G|,=C|log €|

holds.
Next we want to estimate |P.—X.PX.||,. Since

Pe'_'xepsxs=<1‘xs)Pexs+Pe(1—xe) ’
we have

(5'4) ”Pe—xspexellzé”(l-xs)Psxsuz_}"IIPE(I'—XS)”Z .
By (5.1) and (5.2) we have
IA=XXPL= |A=XX)GV) o+ | g() A —=X)G(-, DNGvY()ll,

1/2
=C1B.1" ol +Clg@|(], 160k, @)1%dx) 1ol

=C(e+1ge)lellog eDllvl.
=Celvl..

Therefore we get

(5.5) [A=2)Pc|,=Ce

”(1—x5>PsXs”2§CE
Since we have the duality
((1—Xs)Ps)*=Pe(1—X€),

we get

(5.6) IP.(1=X)l.<Ce.
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By (5.4), (5.5), (5.6) we get the following.

LEMMA 5.2. There exists a constant C independent of ¢ such that

”Ps_stsxs“2§ CE

holds.
By virtue of Theorem 3, Lemma 5.1, Lemma 5.2, we see that there exists a
constant C independent of j such that

6.7 [ps(e) ' —p, | £C(ellog e| 7'+ |log | ' +¢)

<Clloge|™?
holds.

We need more precise estimate for the left hand side of (5.7) to get Theo-
rem 1. By (5.7) we know that the multiplicity of p,(¢) is one for small ¢
when the multiplicity of y, is one.

6. Perturbational Calculus for P..

In this section we consider the behaviour of eigenvalues of P. as ¢ tends
to 0.
We put A,=G and
(A fXx)=G(x, WNGf)D).
Then,
P.=A+g(e)A, .
It is easy to see
[All,=C  (1<p<eo).
Furthermore we put
Ae)=2,+g(e)a,

d(e)=do+g(e)p,

so that A(e) and ¢(e) is an approximate eigenvalue of P. and an approximate
eigenfunction of P., respectively.

As the standard techniques of perturbation theory, we solve the following
equations.

Let A, be a simple eigenvalue of A, At first

(6.1) (Ao—20)¢y=0, [Poll=1.
Next we solve the following equations;

(6.2) (Ao_/zo)#h:(ll_Al)ﬂbo
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6.3) (¢o, ¢1)2=0 ,

where (,), denotes the inner product on L*£).
By the Fredholm alternative theory, we see that

(6-4) 21:(A1¢'o, ¢’o)2

is the condition such that the unique solution ¢, of (6.2), (6.3) exists.
Hereafter we put A,=g,”'. Then ¢,=¢,. We see that

(6.5) A= [(Go)(W) "= g, 2 (W)

(6.6) (Pe—A(e))p(e)=g(e)(Ai— A1) .
By the Fredholm theory, we see that

(6.7) ¢l = Clidi— Aulleligoll. < C .

By (6.6), (6.7), we have
I(P.—2(e)d(e)= 1 g() 1P Ar—Aullell ¢l
<Clg(e)|*’<C|log ¢|~*.

Therefore, we get the following.

LEMMA 6.1. There exists a constant C independent of ¢ such that

(6.9) I(Pe—A(e)g(e)l.=C|log e |~
holds.
Next we want to estimate ||(Ps—A(e))(1—X)d(e)lls,.. We put L.=1—1X..
we have
(6.10) (Pe—i)h(e)= 3 T,
where

T,=G1.¢,

Ty=g(e)G1,
Ts=g(e)AXegho
T.=g(e) Akgh

on 8., since A(e)X.(e)=0 on Q..
We get

(6.11) 1Tl e S I Tsllo=C- [ Xep, .= Ce .
Also,

413

Then,
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ITelle, e <Clg(e)] - [ Xeghnlls -
Notice that
1=(—20) (= Apo— Aughs) .
Then,
1Zehsllo< Cl A eihillo+ 12 Aspollat- 12 Aoghillo)
<O(Mbe([, 166, w)1mdx) " +1l)

<G(e+ellog e|+€)=<Cellog €.
Therefore, we get

(6.12) [Tslle..=Clg(e)lellog e| <Ce.

Furthermore, we have

(6.13) ITs+Tills, < L [ Ardegpolla+ | (&) 1*| Aeghi]
<C(I1g@)|1Xello+ 1 ge)[®)
<C(e|log e|'+|log e|™*)
<Cllog ¢|2.

Summing up (6.10), (6.11), (6.12) and (6.13), we have the following inequality.
1(6.10)]l, .= C(e+e+|log | *)<C|log ¢| .

Therefore, we get the following.

LEMMA 6.2. There exists a constant C independent of ¢ such that

I(P.—AeNA—X)p(e)lls, . = C|log e| -2
holds.

7. Proof of Theorem 1.

Now we are in a position to prove Theorem 1. By Theorem 3, Lemma
6.1 and 6.2, we have

(G —ANXe(eDlo, e S NG —XPXellz, | P&z, e+ (P —Ae)eh(e), «
+(Pe—A(NA—X)P(E)]s, o
=C(cllog e[ ()l :+ | log €| >+ |log €] ~2)
<Clloge|-2.
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Here we used the fact that [¢(e)l..=(1/2, 2) for small e. Therefore, there
exists at least one eigenvalue A*(¢) of G. satisfying

(7.1) [A¥(e)—A(e)|=C|log e|~*.
We here represent A(s) explicitly as follows:
(7.2) Ae)=p, " +gle)p, ()
=p,7 2 p, (W) (log €)' +0(]log €| 7*).

By (7.1), (7.2) and the fact (5.7), we see that A*(¢) must be g;(e)~'. Then,
we get
[ pi(e) ™ —(p, ™ +2mp, (W) (log €))| =Clog e| ~*.

Therefore, we get the desired Theorem 1.

8. Proof of Theorem 4.

From this section we assume ¢<0. By (2.3), (2.4) and (2.5), we see that

8.1) ge)=—Qr/k)e' ' +0(s**? | log ¢|)
h(e)=2re*+0(e*7)
i(e)=(n/2)e*+0(e’7).

At first we want to estimate |P.—G.|,.. We take an arbitrary fixed point
x€0dB.. Without loss of generality we may assume that @=(0, 0) and x=
(&, 0).

We put S(x, y) as before. Then, we have the following formulas (8.2),
(8.3) in p. 263 and (8.4) in p. 264 of Ozawa [7], respectively.

8.2) NwG(x, B), VuG(W@, 3))

=(27r8)'132)1 G@, y)+<NVwS(x, @), VuG(W, y)»
for x=(e, 0), Ww=(0, 0).
8.3 a%(V,,,G(x, W), Vo G0, y))

0 N 0 N .
=—(27r)“e‘2a—w10(w, y)+»a7l—<vw5(x, W), VoGO, y)>

for x=(e, 0), w=(0, 0).



416 SHIN OZAWA AND SUSUMU ROPPONGI

86 O CHLGG, ), HGG,

2
=—2r"te?

a . -
553G, y)+371<HwS(x, W), H,G(W, y)>

for x=(e, 0), w=(0, 0).
The same calculation yields

8.5 HyG(x, ), HyG(, y))

2

55 G, )+ CHoS(x, W), HuG(@, 3)>
1

—xle?

for x=(e, 0), w=(0, 0).
We put p.(x, v) as before. By (8.2), (8.3), (8.4) and (8.5), we have

(8.6) P, )—ke? a% P, Demco= B Ly,

where
Li=G(x, y)

L,=g(eX—@2r)™" log e+7+@2r) ke NG, y)

L3=g(e)(0(e)— ks"“aixlS(x, 171))G(u~;, ¥)

Li=(@r) (e 4 ke Dh(e) - G, 3)—ke” 50 G(x, )
1 1

62
ow,®

Lszh(s)<va(X, 11}), va(‘w’ y)>

Li=n""(e*+2ke’%)i(e) G, y)
—ke”h(s);Jc—(VwS(x, W), VoG, y))

L.=i(e)}XHS(x, ), HoG(W, ¥))
—ke"i(S)a%dle(x, W), H,G(@, y))

for x=(e, 0), w=(0, 0).
Here we used the fact that

S(x, W)=r+0(e) as ¢—0.
By (2.3), (2.4), (2.5) and (8.6), we get the following.
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®.7) P, y)—ker D px, )]
N £ y axl € ) x=(¢g, 0)
=G(x, 3)— G, y)—e 20— G(d, 3)
- y J’ wr J’ awl ’ y
+56) (01— ke* £—s<x, )G, )

—ke* (52 Gx, 1) 50 GB, )= 5oL, 3)

+L6+ L7 .
We take an arbitrary fe=L?(2) which is zero on B.. By (8.7), we have

®8)  PFI—ke L (P e

+g<e)(0<e>—kev%5<x, w))(Gfxw)

—ks"(a (G 50 (Gf)(w> ¢35 (Gf)(w))
+h(e)TuS(x, B), VulGFND))

— ke b5 TuS(x, ), TG

+i(e)XH »S(x, W), Ho(G )W)
—kevi(s>£:<ﬂw5(x, ), Ho(G @) .

We want to estimate (8.8). By the Sobolev embedding theorem,

”Gf”(;l+z'(g)§cnf“p,e

for p>2, t=1—-2/p.
Therefore, we have

(8.9) HGA@)ZCIFllp.e
D)| < Ce*|| Fll e

o s o m o
5. 67— 5G| SC'I .
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for p>2, x=(e, 0).
Furthermore,

(8.10) I @apan|=c(( 1y—wi7dy) " 171
ow, 2,
<Cliog ¢ || fls.  (p=2)
<ClFl.  (p>2)

for n=1, 2, where p’ satisfies (1/p)+(1/p’)=1. Also,

@11 oo €)= (], 1y=017a5)"” 171,..

SCe | fllpe  (0>1)

for 1<m, n<2.
Summing up (8.8), (8.9), (8.10) and (8.11), we get

(P.J)(x)—ke? 5%<Pef><x>|x=<s,o>

SC(M* 4614 g9(e7 461 "YP)F 7 2 gt+o-2P) | Fll,

SCe™ U2 fliy..

for p>2.

We put (P,—G.)f=v. Then, v satisfies the assumption in Lemma 3.1 with
M,=Ce?*'=%?| f|,.., because G.f satisfies the given Robin condition on 9B..
By Lemma 3.1, we have

Ivllp, < Ce' =267~ |5 o < Ce® 7| fll ..

for p>2. Therefore,
[P—Gllp, . =Ce®72? (p>2).
By the duality argument and the Riesz-Thorin interpolation theorem, we

get
[Pe—Gells,e=Ce®?  (p>2).

We take an arbitrary S<(0, 1) and put p=2/(1—p). Then, we have the fol-
lowing.

PROPOSITION 8.1. Fix B<(0, 1). Then, there exists a constant C independent
of & such that

[P.—Glls, < Ce'*#
holds.

Next we estimate [(P;—G)Xplz.. We put (P.—G)X.p)=v.. As we
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get (8.8), we have
ov.

N 1(x) lz=ce.o=1o(e)—ke?(I,(e)—Iy(e))+Is(e),

(8.12) ve(x)— ke’ ox

where

0
1o(&)=(GA 1) (%)~ (GXegps)(i0) —e¢ ow (GX) (W)

1,(e)=a%((igoj)(x)—(5%l~ +65?;1§)(G§0j>(w)

[2(5)= a%l (Giﬁo;)(X}—(;,i—Lau—; +€£F)(Gze‘ﬁj)(w)

H©=g(e( 0 ke )2 S(x, )Y Gpid)
+h(E)VwS(x, D), Vul(GAap)W))
— ks?h(e) 5 <TuS(, ), TulGapi)D)
+i(e)\H ,S(x, W), Hy(GLe;) (D))
—ke%(a)% CHyS(x, W), Hup(GAupy)())
for x=(¢, 0), w=(0, 0).
Here we put Z.=1—X. Using (8.9), (8.10), (8.11) with 7=ZX.p,, we have
(8.13) [I(e)| =Cellgsllp,s=Ce
(8.14) [ s(e)| =C(lg(e)|e”+1h(e)|e”+i(e)|e”e ' P) ;i p. s
SCete2*+etto72/7)
=C(e+e**%)  for p>2.
Since Go;(x)=p, " '¢;(x), we have
(8.15) [1(e)| =Cée®.

Furthermore, we have the following estimation (8.16) in p. 267 of Ozawa [7].

(8.16) [1x(e)] =Ce®|log €.
Summing up (8.12), (8.13), (8.14), (8.15) and (8.16), we have
v,(x)—ke"avz (X)) 2=ce.00 | S C(e+%(e2+e?|log e|)+e+e2+7)

0x,
<C(e+¢&**?|log ¢]).
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By Lemma 3.1, we have

lvelle,e = Ce'~?(e+€**7 |log e|)=C-H(e) .
Here,

(8.17) H(e)=¢?""+¢*|log ¢|
<Ce¢*° (—1<e<0)
<Ce?|log ¢| (e-1).

Therefore, we get Theorem 4.

9. Convergence of eigenvalues for ¢<0.

We introduce the following kernel p.(x, ).

.1 Pe(x, »)=G(x, y)+g(e)G(x, W)GW, y)
+h(E)XNWG(x, W), VoG, P)PA(2)Xe(y)
+i(e)}XH,G(x, W), H,G@, y)X(x)X(y)
And we put

(PufXx) = Bz, 9)7 (.

Notice that (1—X.)X.=0 in A(e)-term and z(e)-term of (9.1). Therefore, as we
get Lemma 5.1, we get the following.

LEMMA 9.1. There exists a constant C independent of ¢ such that

9.2) [P.—2PX[,<C(c+ | g(e)|e|log €|)
=Ce.

holds.

Next we want to estimate ||[P,—G|,. We take an arbitrary ve L?(2). Then,
we see that

(P.—Gw)(x)=g(e)G(x, W) Gv)(W)
+h(e)XV G (2, W), Vip(GL) W)X x)

+i(e)}XHG(x, B), Hy(GX0)W)HXL(Y).
Therefore,
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9.3) I(P.—Gwl,

=1g@NGE, w6yl
d

P ip| @ N
. dx) la—E(GXev)(w)

+1h(s)] 2(59

G(x, )

» 1/p 0° N
dx) |a“‘“wmaw,, (GAv)()

—I—li(S)Im,én:l(S.Q |awf;w,, Glx, )

holds for p<1.

We have
9.4) IGvle<Clvll, (p>1),
a P 1/p " 1/p
9.5) (SQJBTEG("’ )| dx) §C<S9i]x—w| Pdx)
=Cllog ¢|'? (p=2)
SCe¥?Pt (p>2),
for n=1, 2, and
0° L 1/p s 1/p
(9.6) (SQS am G(x, U)) dx) éc(g!}g |x—w| de)

=Cer  (p>1)

for 1<m, n<2.
By (9.3), (9.4), (9.5), (9.6) and using the estimation (8.10), (8.11) with f=X.v,
we see that

I(P.—Gwl.= C(Ig(e)vl+ 1 h(e)| llog |2 |log &]*||v]ls,
+li(e) e~ 'e [vllz,e) .
=C(e'?+e’|log e +e)lvl.
<C(e7+e*|log e Dlvl,

holds for an arbitrary ve L%(2). Therefore, we get the following.

LEMMA 9.2. There exists a constant C independent of ¢ such that

[P.—Gll.<C(e'"7+¢"|log €)

holds.

Notice that the j-th eigenvalue of P, is equal to the j-th eigenvalue of %.PX..
We fix B=(0, 1). Then, by virtue of Proposition 8.1, Lemma 9.1 and 9.2, we see
that there exists a constant C independent of j such that

9.7 [ pfe) —p, | S C(e P tet+em7+-¢?|log | )= Ce
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holds.

We need more precise estimate estimate for the left hand side of (9.7) to
get Theorem 2. By (9.7), we know that the multiplicity of p,(e) is one for
small ¢ when the multiplicity of g, is one.

10. Perturbational Calculus for P..

In this section we consider the behaviour of eigenvalues of P, as & tends
to 0. We put A, A, as before. And we put

(A= G(x, W), Viu(GESNWPHE(x)
(As/)x)={HWwG(x, @), Huw(GE [ )W)HE(X).

Then,

E=A0+g(5)141+h(€)A2+i(5)A3 .
where
(10.1) g(e)=g(e)—mu;e*.

Furthermore, we put
Ae)=2o+g(e)A1+h(e)Aa+i(e)As
d(e)=¢o+Z(e)P1+h(e)po+i(e)hs

so that A(e) and ¢(e) is an approximate eigenvalue of P. and an approximate

eigenfunction of P., respectively.
Let A, be a simple eigenvalue of A4,. At first we set

(10.2) (Ae—=2)e=0,  l¢oll,=1

Next we solve the following equations:

(10.3) (A==l — Ao,  (Po, $1)e=0
(10.4) (Ae—20)2=(Ae—As)Po, (o, P2):=0
(10.5) (Ae—2)ps=As—A)Po, (o, P)e=0

where (,), denotes the inner product on L*2). By the Fredholm alternative
theory we see that

(10.6) /zn':(Angbo; ¢'0)2 (n=1,2,3)

is the condition such that the unique solution ¢, ¢, ¢, of (10.3), (10.4), (10.5)
exists, respectively.

Hereafter we put A,=pg,”'. Then ¢,=¢,.

We have the following:
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LEMMA 10.1. For a constant C independent of e,
1Al,=C  (p>D)
[A:ll,<Cllog el  (p=2)
scgrrt (p>2)
[Asll,<Ce™  (p>1)
hold.

Proof. The same estimate as (9.4), (9.5) and (9.6) yields
1A fl,=Clfl,  (p>D)

1< 30, |5

DB, 210w,

G(x, w)

ax) |52 @)
<Cliogellifls  (p=2)
<cerilfl,  (p>2)

145153 (1, |52

0w 0w,
<Ce?|Ifl» (»>1),

Glx, ) ”dx)””

o N
w0, (GEf)()

because £.(x)=0 for x=B.;,. Therefore, we get the desired result. q.e.d..
By (10.6) we see that

(10.6) [2n | S 1(Andho, Do) SCIALIP  (n=1,2,3)

for p>1.
Then, by the Fredholm theory and the estimate of the L?(£) norm of the right
hand side of (10.3), (10.4) and (10.5), we get the following *

LEMMA 10.2. For a constant C independent of e,
lll,=C  (p>D
sl ,<C|log ¢| (p=2)
SCePt (p>2)
lgsll,<Ce™®  (p>1)
hold.

In view of (10.2), (10.3), (10.4) and (10.5), we have
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(10.8) (P.— X)) =F (&) (A1— A1+ h(e)(As— A pa+1(6)(As— As)hs
+5(e)h(e)(Ai— )Pz +(A— A1)
+h(&)i(e)(As— AP+ (As—As)he)
+i()8()(As— )1 +(A1—21)¢hs) -

By (10.7), (10.8), Lemmas 10.1 and 10.2, we see that

(10.9) [(P.—A(e))(e). < C(g(e)*+e|log €|+ Z(e) || log )

SC(1g(e)| +e*|log e|)*.
By (10.1) we have

(18(e)] +¢*|log e|)®
SC(e'7+e?|log ¢ < C(e* 7 +e*|log e )=C-H{(e).

Therefore, we get the following.

PROPOSITION 10.3.  There exists a constant C independent of ¢ such that
(10.10) I(P.—2(e)p(e) < C-H (e)

holds.
Furthermore we want to estimate |[(Pe—G)Xp(e)ls.. We fix B<(0, 1).
Then, by Proposition 8.1, Lemma 10.2, Theorem 4 and (10.1), we have

[(P.—G)Xegp(e))]2
SNP—=G)A:p)lls,

HIPe—Gells, (1 2() | I ullat 1 A(e) I hallz+15(e) [ lighsll2)
< C(H(e)+e'*F(e'7+¢*|log ¢ )
=C(1+ePHH ()< C-H(e).

Therefore, we get the following.

PROPOSITION 10.4. There exists a constant C independent of & such that

[(Pe—G)Xegp(e))]le,. = C-H (e)
holds.

11. Proof of Theorem 5.

We put
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J(x; )= Po—PXw)(x) for ve LP(RQ).

Then, we see that

(11.2)

AJ(x;0)=0 x4,
]e(x H U):O xEﬁQ .

As we get (8.8), we have

(11.3)

where

Ju(x; v)—ke"a%]e(x ) oo

=n§641n(e; v)+:§8 In(e; v)—ke’(I(e; v)+1(e; v)

I 0)=(6L)0)— (G~ 50~(GEAwD)

I 0) =@ 06—k 5L S(x, B))GRaD)
Ii(e; V== Glx, BYGO)D)
(e 0= (G0~ e )GEAD)
Ii(e5 0)=h(EXTuSCx, 0), TulGELDN)

ke B3 TuS(x, ), Tu(GELD)
I(e ; v)=i(e)XHwS(x, @), Hu(GEX)(@))

—ke"z’(s)é%(HwS(X, ), Ho(GEA0)@))

Lole 3 v)=—reptse? a—i—lcw, DY Go)()

for x=(¢; 0), @=(0, 0).
By the Sobolev embedding theorem, we have

(11.4)

Also,

(11.5)

| I(e; v)| < Cellevll,+CelleAvl
<Celvl, (p>2).

| Iie; w1sClg@)le(], Hogly—wl 17 dy) ™" ol

=Ce**?llogellvl, (p>1)

425
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(11.6) Hie;v)|=Cellog elfvll,  (p>D)
L7 | Le; DISCelul,  (p>D)
L) s viscin@le(], | ly—wldy) " pl,

SCe Pl (p>2)

(11.9) s oiscliote(], - y—wlray) ",

Be\Be/2o

§_C54+“"2/p||vl|p (p>1),

where p’ satisfies (1/p)+(1/p))=1.
Since B(e, w)C B(2¢, x) for x=(e, 0) and w=(0, 0),

(11.10) iesor=c(|  r—yay) ol

B(2¢, )

+({,,,, 19wl ds) o,

£, r-wiwes) ",

sCe ol  (p>2).

Summing up these facts, we have

(11.11)

0
Je(x; v)_ksaé;;]e(x ;W z=ce 0

SCe ol  (p>2).
By (11.2), (11.11) and Lemma 3.1, we have
1T 5 e, e S Ce 2P0l (p>2).

Therefore we get the following.

LEMMA 11.1. There exists a constant C independent of ¢ such that
(11.12) [ e 5 Ve, e SCe2 20|,
holds for any ve L?(2) (p>2).

By the way, we have the following formula (11.13) in p. 271 of Ozawa [7].

(11.13) I(e; o)=—(e/2)pw)+O0(c?|log ¢|)

It is easy to see
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(11.14) Lio(e; @)=(e/2)p W)+ O0(").
Thus, we have
(11.15) [Ii(e; @+ T(e; )| = Ce?®|log .
Summing up (11.3), (11.4), (11.5), (11.6), (11.8), (11.9) and (11.15), we have

(11.16) S5 ke - 1k @)l
<C(e+e*7|log el).
By (11.16) and Lemma 3.1, we have
(11.17) [Je(- 5 @lle,e=Ce'~?(e+€**7 |log e|)=C-H (e).

Therefore we get Theorem 5.

Furthermore we want to estimate || /.(- ; ¢(e))l.... By (11.17), Lemmas 10.2
and 11.1, we have

1TeC 5 leDlle, e ST (5 @lla e+ 18T (-5 Pi)lla,e
H1h@NT (5 dalle, e 12N Te(- 5 Po)lls, e
SC(e*7+e|log e| +e°~7 72/ P e’ +et7%/7)
<C(e*"+e*|log e|)=C-H(e)  for p>2.

Therefore we get the following.

PROPOSITION 11.2. There exists a constant C independent of ¢ such that

”(Psxs_xei;e)gb(s)”?. sé C * H(E)
holds.

12. Proof of Theorem 2.

Now we are in a position to prove Theorem 2. By Propositions 10.3, 10.4
and 11.2, we have

G- —a(NAep(eD]o. e <C-He).

Notice that [¢(e)ll,..=(1/2, 2) for small e.
Therefore, there exists at least one eigenvalue A*(¢) of G. satisfying

(12.1) [A%(e)—A(e)|=C-H(e).

We here represent A,, 4, 4; as follows:
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(12.2) 2= [(Go(D) [*=pts (W )?

(12.3) A= Vu(GE)(@), Vu(GEDo) (D))

=3 (-2 6w, vEIpdY) 1o
(12.4 A= CH (GEPD), HalGESID)
= 3 (505, G0 DEOIPAY s

We see that

s 6, MDAy s

=c(,, ly—wl*dy=Clloge|  (1=m, n=2).
NB, /s
Thus, we have
(12.5) A;=0(|log ¢|?%).
Also,
0

(12.6) G o500 DAY | oi

= 175 (DI T(E)

)22] aw,, (22} 11 12 ,

where

1P@=— 50 S, DA—E0NpNdY | u-

19©=— 30 Lw, DA-80NeMdy s

for n=1, 2.
Here, we put

L(w, y)=Gw, y)—S(w, y)=—(2x)"log lw—y]|.
We see that

(12.7) 1T (e)| < CSB ldy<C'e  (n=1,2).

Furthermore, we have the following formula (12.8) in p. 271 of Ozawa [7].
(12.8) [1{P(e)| = Ce?|log ¢ (n=1, 2).

Summing up (12.3), (12.6), (12.7) and (12.8), we have

(12.9) A=y, grad @ (i0)|*+0(e*|log ¢l).



SPECTRA OF THE LAPLACIAN 429
By (12.2), (12.5) and (12.9), we see that
(12.10) A&)=p,7 +2(e)Ai+h(e)Ao+i(e)ds
=p," =, 7Qs " — 1,7 R e’ +O(e* [log € |*)+0(e*7*7 | log ¢l),

where @, and R, are as mentioned before.
By (12.1), (12.10) and the fact (9.7), we see that A*(e) must be p;(e)™'.
Then. we have

[pei(e)™ —(p, ™ — Q8" " — p1,7* R je?) |
=C-H(e)+C(e'|log e|*+&*7*7|log )
=C(e*7+¢’|log e| +¢*|log ¢]|°+**7|log ¢)
<C(e*"+¢llog el).

Therefore, we get the desired Theorem 2.
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