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REGULARITY CLASSES FOR OPERATIONS

IN CONVEXITY THEORY

BY CHRISTER O. KISELMAN

Resumo

Glatecaj klasoj por operacioj en la teorio pri konvekseco. Ni enkondukas
klasojn de glateco kiuj estas adaptitaj al la plej gravaj operacioj en la teorio
pri konvekseco. Plej ofte ili estas inter la klasoj C1 kaj C2.

Abstract

We introduce regularity classes which are adapted to the most important
operations in convexity theory. They are typically between C1 and C2.

1. Introduction.

The convex hull of a smoothly bounded set in Rn does not necessarily
have a boundary of class C'\ This elementary observation is at the origin of the
present paper. We ask what regularity such a convex hull must have, and we
construct regularity classes which are adapted to the operation .4^>cvx^4 of
taking the convex hull of a set in Rn, as well as to other operations which are
of interest in convexity theory: that of forming the vector sum A+B of two
sets A and B and that of projecting a convex set into a space of lower dimen-
sion. In all these cases, we reduce the question of regularity to that of a
marginal function f(x)=mfyF(x, y).

The simple example with A as the union of two disjoint Euclidean balls
shows that the convex hull cvxA need not have C2 boundary, but it is easy to
see that the boundary in this case is of Holder class CUί (i.e., the boundary is
described by a function whose derivative is Lipschitz continuous). Our regularity
classes are generalizations of this Holder class.

To describe the simplest case of our results, let A be a compact set in Rn.
If the boundary of A is of class C l f l , then A is a union of Euclidean balls with
radii bounded from below if A is convex, the converse holds. The property
of being such a union of balls is easily seen to be stable under the operation
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A^cvxA. Thus we see that dA of class C 1 1 implies dcvxA in the same class.
Given two compact convex sets A and B in Rn, n^2, with boundary of

class C*, &=1, 2, 3, •••, we may ask whether the boundary of their vector sum
A+B is also of class Ck. The answer is in the affirmative if and only if ^ = 1
or n—2 and k=2, 3, 4. The result for k—\, n arbitrary, is an easy exercise if
you recall that a convex set has a C1 boundary if and only if it possesses a
unique tangent plane at every boundary point. For n—2, the answer is in the
affirmative for k —2 (an easy exercise), for k=3 (also an exercise), and for k— 4
(not at all easy; see Boman [1990a]). For k=5 the answer is in the negative:
there exist two compact convex sets in R2 with C°° boundary such that d(A+B)
is not of class C 4 + ε for any ε>0 (Boman [1990a]). However, these sets possess
infinitely flat points, so one may ask what the regularity is in case dA and dB
are smooth and do not have infinitely flat points. The answer is C2 0 / 3. More
generally, if finitely many convex sets A} are given in R2 with C°° boundaries
without infinitely flat points, then 304i+ ••• +Ak) can be described in a local
coordinate system either by a straight line or by a function h(x)=xp+1g(x, x2lrrι),
where g is a C°° function of two variables satisfying g{0, 0)>0, and where
(p, m) is one of the pairs

(1,1), (3,1), (5,3), (7,15), (9,105), (11,315), (13,3465), (15,45045), (17,45045), ι

(Kiselman [1987, Theorem 5.4]). Such a function h is of Holder class Cp+ι+2/m

at least. In the case (p, m)=(5,3), which is the first class not contained in C°°,
the Holder class cp+1+2/m = C20/3 is optimal.

In higher dimensions the regularity drops considerably: there exist two
compact convex sets in R3 with boundary of class C°° such that d(A-\-B) is not
of class C2 (Kiselman [1986, Theorem 3.4]). However, again these sets have
infinitely flat points: is it true that d(A + B) is of class C2 if dA and dB are
real analytic? The answer is no in Rn when n ^ 4 (Boman [1990b]) and unknown
in R\ Therefore, looking for regularity results which are true in all dimensions,
we must accept weaker regularity than C2.

What about projections Rn+m-^Rn? If A is a compact convex set in R\
then its projection in R2 is of Holder class C2 + ε for some ε>0 if dA is real
analytic, but not necessarily of class C2 if dA is of class C°° (Kiselman [1986,
Theorems 2.2 and 3.4]). Boman's result about d(A + B) in # 4 not being of class
C2 shows that there is a compact convex set in RΊ with real-analytic boundary
whose projection in # 4 has boundary not of class C2.

Again, the conclusion is that to find regularity results which are true in all
dimensions, we must look below C2. The purpose of this paper is to study
regularity classes of convex sets and functions which appear naturally and are
independent of the dimension. They are typically between C1 and C2, in con-
trast to the classes that appear in low dimensions.

Of earlier work concerning dimension-independent regularity, let us mention
that of Krantz & Parks [1991], where the authors prove that the boundary of
the sum of finitely many compact convex sets is of Holder class C l s if one of
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the sets has this regularity, and that of Griewank & Rabier [1990], who prove
that the convex envelope of a function in C1>ε is in the same class, under a
kind of coerciveness hypothesis. The present paper arose out of an attempt to
simplify the approach of Krantz & Parks, whereas the work by Griewank &
Rabier was unknown to the author until the paper was more or less completed.
However, it unifies, generalizes, and perhaps even simplifies the earlier results,
so maybe publication is nevertheless justified.

All our classes appear in two versions: with and without local uniformity
in the constants. Under the Fenchel transformation a curious difference be-
tween these appear. In the last section we make a short study of this kind of
duality. There is some relation here with the study by Aze & Penot [ms].

I am grateful to Jan Boman for discussions and helpful comments on earlier
versions of this paper. I would also like to thank the referee for an unusually
careful reading of the manuscript, thus eliminating several inaccuracies.

2. Local comparison of functions.

Let h be a function on Rn with values in [0, +oo]. We want to consider
functions / such that x>->f(a+x) can be estimated from above by an afϊine
function plus h(x) near an arbitrary point a. We also want the comparisons to
be stable under a change of scale in the mdependent as well as in the dependent
variable; in other words, we compare f(a+x) not only with f(a) + L(x)+h(x)
but with f(a) + L(x)+Ch(cx) for all choices of positive constants c and C. We
are thus led to the following definition.

DEFINITION 2.1. Let a function h:Rn~->[0, +°o] be given. We shall say
that a function / : /2n->[— oo, + °o] is locally controlled by h from above if for
every point a^Rn such that /(c)£/2 there exist constants c—ca and C = Ca

and a linear function L such that

(2.1) f(a + x)^f(a) + L(x)+Ch(cx) for all XEΞR".

We shall write Bh=Bh(Rn) for the set of all / which are locally controlled by
h from above.

The sum in the right-hand side of (2.1) is a well-defined element of [—°°,
+ oo], for at most one term, Ch{cx), is infinite. We impose no condition if
/(α) = ±oo; in particular functions with only infinite values belong to every
class Bh.

Although Definition 2.1 has a sense for an arbitrary function h, we shall
often have reason to impose some condition on it. A weak and reasonable such
condition is

(2.2) There is a constant M such that 0<h(tx)£Mh(x) when 0£t£l,

A stronger condition is:



REGULARITY CLASSES FOR OPERATIONS 357

(2.3) Q£h(ίx)£th(x) for O^f^l, x^Rn.

Sometimes we will need

(2.4) 0^h(x)=o(\x\) as *->0,

which is weaker than

(2.5) h is convex, Λ(0)=0, and Λ'(0)=0.

A typical case, important in geometry, is when h(x)—\x\2 for \x\^l,
h(x) = + oo when | x | > l .

If h is identically zero, then a function with values in [—oo, +00] and with
at least one finite value belongs to Bh if and only if it is concave, does not
take the value +°o ? and admits a supergradient at every point where it has a
finite value.

Functions in Bh need not be differentiate, even in the case h(x)=\x\2, for
if /, g^Bh, then also min(/, g)^Bh. In particular all real-valued concave
functions are in Bh. Thus in general the linear function L is not unique.
However, if / and h are differentiate and /ι(0)=0, then L is uniquely deter-
mined and must be L(x)=ff(a)-x, so that (2.1) can be written

(2.6) f(a+x)£f(a)+f'{a)'X+Ch(cx).

If h is differentiate with /ι(0)=0, then real-valued convex functions in Bh are
differentiate, and for them (2.6) can be improved to

(2.7) f(a)+f'(a)>x<f(a+x)£f(a)+f'(a) x+Ch(cx).

Here the first inequality just expresses the fact that the graph of / lies above
its tangent plane. More generally, if h{x)—o{\x\) as x-+0 and /, —f(Ξ.Bh, then
/ is differentiate and

(2.8) f(a)+f'(a)'X-Cίh(cιx)£f(a+x)£f(a)+f'(a)-x + C2h(c2x).

If (2.2) holds we can get d=c2 and C i = C 8 in (2.8).
It is sometimes of interest to have some kind of uniformity in the constants

c and C in Definition 2.1. The following definition seems to work well in
many cases.

DEFINITION 2.2. We shall say that / is locally uniformly controlled by h
from above if for every aQ^Rn such that f(ao)^R there are constants c and
C such that (2.1) holds for all a near aQ with f(a) finite. We shall write
Gh=Gh(Rn) for the set of all / such that / is locally uniformly controlled by
h from above.

A weaker form of uniformity will be introduced in Section 4.

Example. It is easy to see that Bh and Gh are different in general. Let
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for example h{x)—x2 for x e β , I* 1^1, and h{x) — + <χ> elsewhere. We can then
just take /(#) = —vT*~ΰ or /(#) = — | x | + |x | 3 / 2 . But it does not help to require
that / be in C 1 : take f(x) = x3 sin (1/jc) for xΦO, /(0)=0. Then f^Bh\Gh.
We can take c o = C o = l , but when α=l/(27r?n—τr/2), c£Cα—>+°° as m->+°°.

It is also easy to construct examples of real-valued convex functions which
are in Bh but not in Gh:

PROPOSITION 2.3. Assume that h : Λn->[0, +00] satisfies (2.5) and that
Assume also that /z(x)>0 for xφO. Then there is a convex function in Bh\Gh.

Proof. Let us take a sequence aj^Rn with ajφO, a—>0 and such that
h(dj) is finite. Define / as the convex envelope of

χ\—> mm[2h{x), mιn[h{x) + h(j(x — aj))]']
j

Using Theorem 5.3 below we conclude that f^Bh (here we need that h^Bh).
Now in a neighborhood of a3 we must have f(x) = h{x) + h(j{x — aj)), at least
for infinitely many /'s. (Here we need h(x)—o(x).) If / did belong to Gh we
would get, for x close to aJf

which implies h(jx)<LCh(cx) for small *. Now the inequality h{jx)^Ch(cx) can
hold near the origin only if c^j or Cc^j. In fact, if c</, then the inequality
implies

which is possible only if l^Cc/j, since h(x)>0 for xΦO. Thus we cannot
choose both ca and Ca bounded: we must have caj^j or cajCajl^J for infinitely
many /'s.

3. Imposing conditions on the gradient.

It turns out that for convex functions, the kind of one-sided regularity ex-
pressed by (2.1) imposes a regularity on the function's gradient. To prove this
is the purpose of the present section.

DEFINITION 3.1. Let Ω be an open set in Rn, and let h: #7l-»[0, +oo] be
+ O3 outside the unit ball. We define the class Blth{Ω) as the class of all con-
tinuously differentiate functions / : Ω~>R such that for every point c e f l there
are constants c—ca and C = Ca such that

(3.1) \f'(aJrx)—f'(a)\\x\<*Ch{cx) for all x<BRn.

(The constant c shall be so large that if a-hx£Ω, then | c x | > l , making the
condition void.) The class Glth(Ω) is defined in the same way with the extra
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requirement that the constants ca and Ca shall be chosen as locally bounded
functions of a<=Ω. Finally we define Bιj&(Ω) and G^ΌMΩ) by replacing (3.1)
with the weaker inequality

(3.2) \{f'{a + x)-f'{a))>x\<Ch{cx) for all x^Rn.

The Holder classes C l ε with 0<ε5^1 are special cases of the regularity classes

GUh, viz. with h(x)=\x\ί+ε for | * | ^ 1 , Λ(x) = + oo for \x\>l.
That B&t differs from BUh follows from the example h(x) = xl+ \x2\

1+ε,
where 0 < e < l . Here \(h'(a+x)-h'(a))-x\^2h(x), so that Λe=β&KΛa), but the
inequality \h'(x)\\x\^Ch(x) is impossible (try x%— \xι\

a with l < α < l / ε ) , prov-
ing that h cannot belong to BUh.

THEOREM 3.2. Let h : Λn-»[0, + co] satisfy (2.3), and assume that Λ(*) = + oo
/or | x | > l . 77κm Bι'h(Ω)(ZBι

ά'o
h

t{Ω)(ZBh and GUh{Ω)dGι

d'o
h

t(Ω)(zGh for every
open set Ω. (We define the functions as being +00 outside Ω.)

In particular the hypothesis on h is satisfied if h is convex, /i^O and h(Q)
=0, for then h(tx)^(l-t)h(O)+th(x)=th(x).

Proof. If f(Ξ:C\Ω) we can write

provided α e f l and | x | is so small that the whole segment [α, α + *] is con-
tained in Ω. If now f^Bd'o

h

t(Ω) we can apply (3.2) at the point a and with x
replaced by tx, 0<t<l:

where the last inequality follows from (2.3). Thus

\f(a+x)-f(a)-f'{a) x\£[\(f'(a+tx)-ff(a)) x\dt^[ch(cx)dt=Ch(cx),
Jo Jo

wnich shows that (2.1) holds.
Since we can control the constants c and C, this also proves that G^tClGh.

Theorem 3.2 is proved.
On the other hand, we cannot of course infer any regularity of / ' from an

inequality like (2.1) or (2.6). However, if we add convexity the situation is
quite different; more generally we can assume that — / belongs to some class
Gh. Let us define F(X) as the set of all functions / : ̂ - > [ - 0 0 , +00] which
have real values in XczRn and take the value +°° in Rn\X.

THEOREM 3.3. Let h and k be two functions satisfying (2.2) and (2.4) and
taking the value +00 outside the unit ball. Then for every open set ΩdRn we
have



360 CHRISTER O. KISELMAN

F(Ω)nBhΓ\(-Gk)(ZB1

d^(Ω) and F(Ω)ΓΛGhn(~Gk)c:Gί

ά^(Ω),

where H(χ) = h{x) + k(x)-\-k(—x). If h and k are radial {i.e., functions of \x\),
then

F(Ω)r\BhΓ\(-Gk)ClB1' h+k(Ω) and F(Ω)Γ\GhΓ\{-Gk)cGι h+k(Ω).

It is not enough to assume that ±f^Bh to conduce that f^Bd'o
h

t; some
uniformity is needed:

Example. Let h(x)=x2 when x<=R, \x\^l, and h(x) = + oo outside this
interval. Define f(x)=x2$in \x\a, xΦO, /(0)=0, with a number a satisfying
- l < α < 0 . Then ±f^Bh, and / ' exists and is continuous. But fφBι-h{R)

Proof of Theorem 3.3. If f^Bh, -f^Bk, where h(x), k(x)=o(\x\), then
ff(a) exists at every point a where / has a finite value; see (2.8). We want
to prove (3.1) or (3.2) with h replaced by H, i.e., that

(3.3) \f'(a+x)-f'{a)\\x\£CH(cx)

or the weaker

(3.4) \(f'{a+x)-f'(a)) x\£CH(cx)

for a, a+x<=Ω. The hypotheses imply that for every a^Ω, there are constants
ca, Ca, da, Da such that

-f(a+x)+f{a)£-f'(a)'X+Dak(dax),

-f(a+x+y)+f(a+x)£-f'(a+x)'y+Da+xk(da+xy).

Moreover da+x and Da+X can be chosen to be bounded above for all a+x near
a, say for x^ω, ω a neighborhood of the origin. Adding these three inequalities
we get

(3.5) (

Now choose y=±x. This gives

(f'{a+x)-f'(a))'x£Cah(2cax)+Dak(daX)+Da+xk(da+xx),

which we can simplify to

\(f/(a+x)-ff(a))'

thanks to the assumption (2.2), putting
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x) and Cά=Mmax(C α , Da + supDa+x).

This is (3.4) with new constants. Note that we use ca and Ca only at the
point a, which is why we need not assume them to be locally bounded.

In the radial case we argue instead as follows. Choose y=λz=λ(f'(a+x)
-f'(a)) in (3.5). This gives

(3.6) λ\f'{a+x)-ff(a)\*igCah{ca(x+λz))+Dak{dax)+Da+xk{da+xλz).

If z=zf'{a+x)—f'(a)=0, (3.3) certainly holds. If not, we may choose λ—\x\/\z\,

and we note that h is to be evaluated at the point

whose distance to the origin is at most 2ca\x\. Thus (3.6) yields, since h and
k are radial,

\f'{a+x)-f'(a)\\x\=λ\z\2<Cah(2cax)+Dak(dax)+Da+xk{da+xx)

this proves (3.3) (with new constants).
Since the argument keeps track of the constants ca and Ca, it works also

to prove that f^Gιj£(β), resp. /eG l i Λ + *( i2) , if we strengthen the hypothesis
to

COROLLARY 3.4. Let f: Rn->[— oo, -f-co] be convex, finite in a convex open
set Ω and equal to plus infinity outside. Let h satisfy (2.3) and (2.4) and be + °°
outside the unit ball. Then f belongs to Bh(Rn) if and only if f belongs to
B^ΌMΩ). Similarly, f belongs to Gh(Rn) if and only if f belongs to G J Ό W ) .
// we assume in addition that h is radial, then f^Bh iff f^Bι>h{Ω) iff f^Bι^t(Ω),
and similarly for the G classes.

Proof. Theorem 3.2 says that Bιjo\(Ω)c:Bh and G\&{Ω)c:Gh. For the other
inclusions we just have to take k=0 in Theorem 3.3 and note that — / is in
Gk = G° if / is convex, real-valued in Ω and +oo outside.

Every convex function of class C1 belongs to some G1>h locally:

PROPOSITION 3.5. Let f^C\Ω) be convex in a convex open set Ω. Then for
every relatively compact convex open subset ω of Ω there exists a radial convex
function H with H^O, #(0)=0 and #'(0)=0 such that f\ω^GUH(ω).

Proof. The convexity gives

0<f(a+x)-f(a)-f'(a)'x£f'(a+x) x-f'(a)-x

£\f'(a+x)-f'(a)\\x\£\x\g(\x\)
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for a, fl+xGω. Here g is the modulus of continuity of / ' in ω. We now define

/(α)-/ ' (α) jc; a,

As a supremum of convex functions, h is convex, and f\ω^Gh by construction.
Moreover, h(x)£\x\g(\x\)—o(\x\), so Corollary 3.4 yields f\ω^GUH(ω) if we
define H as the smallest radial majorant of h.

4. Marginal functions.

In this section we study the marginal function f(x)=miyF{x, y) of a func-
tion F defined in RnxRm. To conclude anything about regularity, it is neces-
sary to assume that the infimum is attained for every x. Therefore it is
natural to assume that the partial functions F(x, •) are lower semicontinuous.
But this is not enough: we need some kind of coerciveness. We shall use the
following terminology:

DEFINITION 4.1. A function / : Y—>[— oo, -f °°], Y being a topological space,
is said to be coercive in Y if the sublevel sets {y^Y f(y)<s} are relatively
compact in Y for all real numbers s. We shall say that a function F: XxY->
[— cx>,-foo] is coercive in the y direction if all partial functions F(x, ) are
coercive in Y. Finally we shall say that F is locally uniformly coercive in the
y direction, if for every xo<^X, X being another topological space, the sublevel
sets {y^Y F(x} y)<s} are contained in a fixed compact subset of Y for all x
in some neighborhood of x0.

THEOREM 4.2. Let H; T^x/r-^O+co] and F: RnxRm->t-oo, +oo] be
given, let

(4.1) / ( * ) = inf F(x, y), x^Rn

f
y(=Rm

be the marginal function of F, and define h(x)=H(χ, 0) for x^Rn. Assume that
the infimum in (4.1 j is attained for every point X G / J " . (In particular this is true
if all partial functions F(x, •) are lower semicontinuous and F is coercive in the
y direction.) Then F^BH(RnxRm) implies f^Bh(Rn).

In applications of this theorem, most often h is given, and we define H on
RnχRm by

(4.2) H{x, y) = \
{ -j-co, yφQ.

For such H, the assumption F<=BH is a condition only on the partial functions

Proof. To every given a<=Rn with / ( α ) e # there is a point b^Rm such
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that f{a) — F{a, b). Then by definition there is a linear function L and con-
stants c=cCa,b)> C = C ( α > 6 ) such that

, b+y)£F(a, b) + L(x, y)+CH(cx, cy).

In particular, taking y=0,

F(a+x, b)£F(a, b) + L{x, 0)+CH(cx, O)=f(a) + L(x, O)+Ch(cx).

Now by the definition of /, / ( α + x ) ^ F ( α + x , b). This proves that f^Bh(Rn).
We would like to have a result analogous to Theorem 4.2 but with uni-

formity. A somewhat weaker uniformity than that of the classes Gh appears
naturally. The definition is as follows.

DEFINITION 4.3. Let h: #n->[0, -foo] be given. A function / : Rn~>[-™,
+ °°] is said to belong to Eh(Rn) if for every point ao^Rn such that f(ao)^R
and every number A there exist a neighborhood U of a0 and constants c and
C such that for every a<=U with f(a)<A there exists a linear function L such
that (2.1) holds.

Thus we now allow the constants c and C to blow up in a neighborhood of
a0, but only if f(a) tends to +00.

Obviously GhdEhdBh. A function in Eh which is locally bounded above
belongs to Gh, and therefore Eh=Gh if h is bounded above in a neighborhood
of the origin. For this reason Eh can often be replaced by Gh

f and it was not
needed in the previous sections. However, in general the classes Eh and Gh

do differ as shown by the followmg two examples.

Example. Define h(x)=0 for x^R satisfying — l<^#<;0, and
otherwise. Let f(x)=l/x, x>0; /(*)=0, x<0. Then f^Eh\Gh.

There are also convex functions in Eh\Gh, at least in three variables:

Example. Define h(x, y, z)—z2 when (x, y) = {0, 0), | z | 5 j l ; h(x, y, z) = + °°

otherwise. There is a convex function g in R3 which is C°° except at the
origin, satisfies 0^g(x, y, z)<x2-\-y2-\-z2, and equals x2-{-y2jrz2 outside small
neighborhoods U3 of the points aj=(l/j, I//3, 0), let us say g(xf y, z)=x2+y2+z2

when \(x, y, z)~aj\>zl/p. We require that the second derivative \d2g(a3)/dz2\
tend to +00 as /-» + oo. Then g<=Bh\Gh: if c3 and C3 are constants that can
serve in (2.1) at the point a3, then the product Cdc) must blow up. Now define
f(x, y, z)~g(χ> y, z) + x2/y when 3;>0, /(0, 0, z)—z2, and f(x, y, z) = + oo other-
wise. Then f^Eh\Gh. The constants blow up at the origin all the same, but
now / tends to +co at the special points; in fact, when f^A, then y^x2/A,
so only finitely many neighborhoods U3 are involved.

THEOREM 4.4. Let H, F and f be as in Theorem 4.2. Assume in addition
that (2.2) holds for H and that F is lower semi continuous in RnxRm and locally
uniformly coercive in the y direction. Then F(=EH(RnxRm) implies f^Eh{Rn).
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If moreover f is locally bounded above where it is less than -j-°°, then f^Gh(Rn).
(In particular this holds if h is bounded above in a neighborhood of the origin,
or if F is locally bounded above where it is less than +°° )

Proof. Let ao^Rn and Λ^R be given. In view of the semicontinuity and
the locally uniform coerciveness, there exists a compact neighborhood U of a0

such that

K={{a, b);a^U and F(a, b)^

is compact in RnxRm. The hypothesis F<=EH and condition (2.2) imply the ex-
istence of constants c and C such that for every {a, b)<=K with F(a,
there is a linear function L such that, for all (x, y)<^RnxRm,

(4.3) F(a+x, b+y)£F(a, b) + L(x, y)+CH{cx, cy).

For every a<EJJ such that — ° o < / ( α ) < ^ there exists b such that (a, &)<ΞίΓand
F(a, b)=f(a); hence (4.3) shows that

)^F(a, b)+L(xf 0)+CH(cx, O)=

This proves that

Example. One can construct F<=C°°(R2) such that F(x, y)—y2 when \xy\
^1/2 or | r y | ^ 2 , and F(x, y)^—VW\ everywhere, with equality when \χy\=l.
Then the marginal function is /(x) = — VT^T So if we put #(#, y)=\(χ, y)\2

for |(x, 3^)1^1 and +00 elsewhere, we see that F<=GH, f<=Bh\Eh. (Here Fis
coercive in the y direction without being uniformly so.)

Example. Put

y2+l/(y2-l/x2), x > 0 , \y\

F{x, y) = x>0, \y\£

f,
Then the marginal function is f{x)=2+l/x2 for x>0, f(x)—0 for x^O. Define
H(χ, y)=0 if y=0 and - l ^ x ^ O , H(x, 3/):= + oo elsewhere. Then F^GH, / e
Eh\Gh. (Here / is not bounded above near the origin; all other hypotheses of
Theorem 4.4 are satisfied.)

The infimal convolution

fΠg(x)= inf lf(x-y)+g(y); f(x-y)< + °o, g(y)<+<*>],
y<=Rn

of two functions is a special kind of marginal function. We formulate the
following particular case of Theorem 4.2 for them.

THEOREM 4.5. Let f, g: 72n->] — oo, +oo] be two lower semicontinuous }unc-
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tions. Assume that one of them is coercive and the other is bounded below. If
one of /, g is in Bh(Rn), then their infimal convolution fΠg^Bh{Rn). Similarly
for Eh.

Proof. The function F(x, y)=f\x — y)+g(y) is lower semicontinuous and
coercive in the y direction, so infyF(x, y) is attained. Define H by (4.2). Then
F i s in BH if f^Bh(Rn). (If g^Bh we consider f(y)+g(x — y) instead.) It
follows from Theorem 4.2 that the marginal function of F is in Bh. Now this
marginal function is exactly fΠg. The result for Eh follows because under
the hypothesis made, F is automatically locally uniformly coercive in the y
direction.

Remark. Of course we actually need only that F is coercive in the y direc-
tion, or locally uniformly coercive in the y direction, respectively the theorem
describes a simple case when this is true.

COROLLARY 4.6. Let /, g: Rn~>] — oo, +°°] be two lower semicontinuous
convex functions which are coercive in Rn and assume one oj them is of class Bh

for some radial function h satisfying (2.2) and (2.4) and being + 0 0 outside the
unit ball. Then fΠg^Buh(Ω), where Ω is the interior of the set where fΠg is
finite. If in addition one of /, g is in Eh, then fΠg^Gllh(Ω).

Proof. We only need to remember that fΠg is convex and apply Theorem
3.3.

5. The convex envelope.

Given a function / : Λ71—>[— co, -j-co] we denote by cvx/ the largest convex
minorant of /. We can express cvx/ as

(5.1) cvx/(*) = infΓφ^/(*>); λ^O, ΣΛ,=1, ΈλjXj=x, / ( * , ) < + ool.

(We put 0 (—oo)=0.) Here the infimum is taken over all p^l, all numbers λ}

and all points Xj^Rn satisfying the conditions indicated. Let us denote by f v{x)
the infimum in (5.1) with p fixed. Then for every convex function g<f we
have

It is also elementary to prove that for all t between 0 and 1 we have

This proves immediately that /oo=inf/ p =lim/ p is equal to cvx/. However, it
is important here not to let p tend to infinity. And in fact the sequence (fp)
is stationary; more precisely fp=fn+ι for all p^n+1. In other words, the
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following lemma holds.

LEMMA 5.1. In (5.1) it is enough to take p—n+1.

Proof. This follows from Caratheodory's theorem [1911: 200], but for com-
pleteness we shall include a proof. Assume first that / > —oo so that only finite
values f(xj)^R appear in (5.1). If p^n+2 and p points xu •••, xp are given,
there exist real numbers μlf •••, μp, not all zero, such that Σ/Ό—0 and ^ΣμjXj
=0. Hence in any linear combination x—^λjX3 the numbers λ3 can be replaced
by λj(t)=λj+tμj as long as the latter are nonnegative. We choose t as

ί = m a x [ - V Λ ; Λ > 0 ] ^ 0 if ί
3

and

In both cases ^(0^0 with equality for at least one index k. Then the number

Σ λj(t)f(χj)=Σ λjf(χj)+1Σ *£,/(*,) £ Σ J,/(*,)
l l l l

competes in the infimum (5.1), but now since JlΛ(f)=O, the point xk is no longer
needed. Thus we can eliminate one point at a time as long as p^n-\-2.

In the general case we apply this result to /C00=max(/(;c), c), c^R, and
let c->—oo; then /c-»/ and cvx/c->cvx/.

Simple examples like l/(l+x 2 ) and |# |+\/Γ*T show that the infimum in
(5.1) is not always attained, not even for coercive functions. However, if we
add a strong coerciveness hypothesis this is true. Let us say that / grows
faster than any linear function if f—L is coercive in Rn for every linear
function L. In particular this holds if / is +oo outside a bounded set.

LEMMA 5.2. Let f: Rn—>] — oo, +oo] be lower semicontinuous and assume that
f grows faster than every linear function. Then the infimum in (5.1) is attained
at every point x with C V X / ( Λ 0 < + ° ° .

The result in Lemma 5.2 does not hold if / assumes the value — oo. We
shall denote by dom / the set j x G β " ; f(x)< + °°} (the effective domain of / ) .

Proof. Suppose cvx/(x)< + oo and take a hyperplane H in Rn+1 which
contains (x, cvxf(x)) and has the graph of / on one side. If this hyperplane
is vertical, say equal to KxR where K is a hyperplane in Rn, then (cvx/)|#
is equal to cvx(/|#) and we can assume that the result is already proved by
induction. If H is not vertical, it is equal to the graph of an affϊne function
C + L, and we take sequences (xf)k<=N and {λf)k(ΞN, / = 1 , •••, n + 1 , with /(*})<+oo
such that ΣΛJ/OtJD tends to cvx/(x). By compactness the sequence {λj)k has
an accumulation point λj. If ^ = 0 we can say nothing about (*$), but we simply
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discard it, since it does not contribute to the sum. If λ}>0 on the other hand,
the sequence (xf) must have an accumulation point, for the value of / at x)
must appoach that of C+L, and the coerciveness of /— L keeps all the x) in
a bounded set. Let x0 be an accumulation point of (**)*, the limit of a sub-
sequence (jc*(i))t. The semicontinuity yields f(xj)^X\m inf f(x)^)> which shows
that J]λjf(Xj)^cyχf(x), so that the inίimum is attained.

THEOREM 5.3. Let f<=Bh(Rn) be lower semicontinuous and satisfy — co</
5J + OO. Assume that f grows faster than every linear function L. (In particular
this is true if f is equal to plus infinity outside a bounded set.) Let h be any
function with values in [0,+00]. Then f(=Bh implies cvxf^Bh. If h is radial
and satisfies (2.2) and (2.4), then cvxf(=BUh(Ω), where Ω denotes the interior of
cvxdom/.

Proof. For every point a^Rn with cvx/(α)<+co there are points a3 and
numbers λj^O, y = l , •••, n+ί, such that Σ ^ = l and g(a)=cvx f(a)=Σiλjf(aj)
(Lemmas 5.1 and 5.2). By definition of the convex envelope, we have for any x,

if we can choose y so that

Σ λjaj=

This is possible if λk>0: take y = x/λk- Using that / is controlled from above
by h at the point ak we see that

(5.2) g(a+x)<λk(f(ak) + L(y)+Ch(cy))+ Σ λJf(aj)=:g{a) + L(x)+λkCh(cx/λk).

This proves that g—QNxf^Bh. The statement about BUh(Ω) follows from
Theorem 3.3.

Remark. It is also possible to prove Theorem 5.3 using Theorem 4.2 if h
satisfies (2.2). We take ^ ε Λ , Xj&R", and define

and

F(x, y)=\
{ + 0 0 , XΪΞR71, yφ.Y.

(Here as usual 0 (+oo)=0.) We want to apply Theorem 4.2 to F, its marginal
function (4.1) being cvx/. Define H by (4.2). Then F^BH{RnxR^n+ι')2) (here
we need (2.2)). Clearly F is lower semicontinuous in all variables. But it is
not necessarily coercive in the y direction as can be seen from simple examples
(for w=l, F(x, 1, 0, 0, x2)=zf(x) does not tend to plus infinity as ^ - * 0 0 ) . How-
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ever, Lemma 5.2 is a satisfactory substitute for this, since all we need to know-
is that the infimum in cvxf(x)=infyF(x, y) is attained. Therefore Theorem
4.2 applies, and we can conclude that cvxf^Bh.

The uniformity of the constants is preserved under the operation f^cvxf
as shown by the following result.

THEOREM 5.4. Let h : #n->[0, +oo] satisfy (2.2). Assume that f: Rn->
] —oo,-f-oo] is lower semi continuous and grows faster than any linear function.
Then f^Eh implies

Proof. It seems we cannot use Theorem 4.4 due to lack of coerciveness.
We can instead argue as follows. Consider again (5.2), but take k this time so
that >U^l/(n + l). There is at least one such index. The function / is bounded
below, and it is no restriction to assume that /ί^O. We claim that
(n+ΐ)g(a). Indeed, since / ^ 0 ,

Thus, when g(ά) is bounded above, / is bounded above in at least one of the
points ak. Let now a vary in a neighborhood of a fixed point aQ under the
restriction g(a)<Λ. Then with our choice of k (depending on a), f(ak)^(n+l)Λf

so that ak varies in a bounded set and, if f^Eh, the constants c and C in (5.2)
remain bounded. We now use (2.2) and the fact that there is a lower bound
for Xk. Thus (5.2) shows that g is controlled from above by h in a uniform
way for all points a, in other words that g(=Eh.

COROLLARY 5.5. Let h : βn->[0, 4-00] satisfy (2.2). Let f: β n-*] —00, +°°]
be lower semi continuous and grow faster than any linear function. Assume in
addition that dom/ is open. Then f(=Eh implies c v x / e G Λ . // h is radial and
satisfies (2.2) and (2.4) and is 4-°° outside the unit ball, then c v x / e G l i f t ( β ) ,
where Ω=cvxάomf=άomcvxf.

Proof. When dom/ is open, then also cvxdom/=domcvx/ is open, so
cvx/ is locally bounded above there. This proves the corollary. We note that
if h is bounded above in a neighborhood of the origin, then f^Bh implies that
dom/ is open.

Example. If the boundary of Ω is not smooth, then its lack of smoothness
can be inherited by the convex envelope of a smooth function. Let us take for
example a convex domain

Ω={xtΞRn; \xn\+g(xi, - , U < 0 1 ,

where g is a convex function which is negative in some subset of Rn~ι, and let
us define f{x)~ — \xn\ in Ω, and as +00 outside. Then cvx f(x)=g(x 1, •••, xn-\)
in the set where g is negative. If we choose g and h so that gφ.Bh we there-
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fore get cvx f£Bh; similarly for Gh and Eh. But / G G Λ for every λ^O. A
slight modification gives f<=C°°(Ω). (In this case / is not lower semicontinuous
in Rn.)

Example. It may of course happen, even if the boundary of Ω is smooth,
that the constants ca and Ca degenerate as a~>dΩ. For Ω—R2, we let φ be a
test function which is equal to 1 near the origin and satisfies O ^ ^ l . Then

is in C°°(#2), so in particular f^Guh(R2), putting h(x)=\x\2 for | * | ^ 1 and
equal to +00 elsewhere. But cvx/(x)=|%i | 3 / 2 which is not in Bh. (The func-
tion is not coercive.) To get a similar example with Ω as the unit ball in Rn,
we can take φ^C°°(R), ( K ^ l , with φ(t)=O for t<Ll and φ(t)=l for t^2. Then

i x l 3 ' 2 , | * | < 1 , XiΦO,

1, | x | < l , x x = 0 ,

is C°° in the open unit ball, and as before c v x / U ) ^ l*il3 / 2 (Here the infimum
in (5.1) is attained for every x with XiΦO, although the function is not lower
semicontinuous as a function in Rn, nor coercive in Ω.)

6. Regularity of sets.

If / is a function of n — 1 variables in a regularity class Bh, we would like
to say that its epigraph

is a set of class Bh. This notion should be invariant under change of co-
ordinates. A convenient class of sets are those with C1 boundary, and then the
admissible coordinate systems are those which do not have the xn-axis (the line
xίz=zχ2z= ... — χn_1=zQ) in the tangent plane. Now it is easy to see that if h is
radial and satisfies (2.2), the condition on the epigraph to belong to the class
Bh is the same for all such coordinate systems. (It scarcely has a sense to define
regularity classes of sets for nonradial h.)

PROPOSITION 6.1. Let h: Rn~ι-^\β, + oo] be radial, bounded in some neigh-
borhood of the origin, and equal to +oo outside some neighborhood of the origin.
Assume that h satisfies (2.2). Let f be a Lipschitz function with /(0)=0. Con-
sider the epigraph epi/ in Rn and make a linear mapping T of Rn onto itself
such that, for some neighborhood ω of the origin, T(epifΠω) agrees with the
epigraph of a Lipschitz function g in a neighborhood of the origin. Then f^Bh

if and only if g^Bh. Similarly for Gh.

Proof. This is really obvious. The assumptions on h are natural since we



370 CHRISTER O. KISELMAN

are interested in local regularity properties.

DEFINITION 6.2. Let h : R71-1-*^, + 00] be radial, equal to + oo outside some
neighborhood of the origin and satisfy (2.2) and (2.4). Let A be a set with C1

boundary in Rn. Then we shall say that A is of class Bh or Gh if, in an
admissible coordinate system, the function whose epigraph agrees with A near
an arbitrarily given point of dA is of the same class as a function of n — 1
variables.

T H E O R E M 6.3. Let A be a compact set in R1lxRm of regularity class BH for
some function H in Rn+m~ι satisfying the properties of Definition 6.2. Assume
that its projection π(A) in Rn has a C 1 boundary {in particular this is true if A
is convex). Then π{A) is of class Bh, where h{xu •••, xn-i)=H(χlf •••, xn-u 0,
0, •••, 0). Similarly for Gh.

Proof. This follows from Theorems 4.2 and 4.4.

THEOREM 6.4. Let A and B be two compact convex sets one of which is of
class Bh for a function h satisfying the requirements of Definition 6.2. Then the
boundary of A+B is of class Bh. Similarly for Gh.

Proof. This is immediate from Theorem 4.5.
Krantz & Parks [1991: Theorem 3] prove this result in the case of Holder

classes C1>β,

THEOREM 6.5. Let A be a compact set in Rn of regularity class Bh for some
function h as in Definition 6.2. Then its convex hull cvxA is of class Bh.
Similary for Gh. In particular, if dA is of class C1 this is true also of dcvx A
and similarly for the Holder classes Cuε,

Proof. This is immediate from Theorem 5.3, Corollary 5.5, and Proposi-
tion 3.5.

Griewank & Rabier [1990: Theorem 4.2] prove this result in the case of
Holder classes CUε, 0 < e ^ l .

Note that Corollary 3.4 enables us to translate properties in terms of Bh, Gh

into properties in terms of Bίth and Glth, under some mild conditions on h.

7. Dual regularity classes.

We shall now define classes of functions which are analogous to the Bh by
using instead estimates from below.

DEFINITION 7.1. Given a function h : Rn->[0, +oo] we shall say that / : Rn

->[— oo, +oo] is locally controlled by h from below if for every point a(=Rn

such that / (α)eΛ there are constants c=ca>0 and C=Ca>0 and a linear func-
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tion L such that

(7.1) f{a+x)^f{a)+L{x)+Ch{cx) for all XEER11.

We shall say that / is locally uniformly controlled by h from below if for

every ao^Rn such that f(ao)^R there are constants c>0 and C>0 such that
(7.1) holds for all a near a0 with f(a)ς=R. We shall write Bh=^Bh(Rn) for the
set of all / which are locally controlled by h from below, and Gh~Gh(Rn) for
the set of all / such that / is locally uniformly controlled by h from below.

PROPOSITION 7.2. Every strictly convex function is locally in some class Gh

for a function h such that /ι(0)=0 and h(x)>0 for xφQ.

Proof. Let Γa denote the set of subgradients at a and define for a com-
pact set K contained in the interior of dom/,

h(x)—'mί[f(a + x)—f(a)—ξ-x a^K and ξ^Γa], x^Rn.
a.ξ

Then f\κ^Gh by construction. In view of the strict convexity, h(x)>0 for

The classes Bh and Gh are dual to the classes defined by control from above.
This duality is expressed by means of the Fenchel transformation. Given any
function / : Rn->[— oo, -foo] we define its Fenchel transform (or Legendre
transform or conjugate function) as

/(£)= sup [£•*-/(*)], | eβ» .
X(=RK

We shall see that essentially f^Gh if and only if / G G ^ . AS an example con-
sider the functions that we use to define the Holder classes:

1 Ί + e | v | < 1

1+e

for 0 < ε ^ l . Their transforms are

More generally, writing / « # if there exists a constant C such that
<Cg in a neighborhood of the origin, we see that h{x)^^\Xj\vJ with l<pj<
+ 00, h(x)= + 00 outside a bounded set, implies Λ(£)«Σ Ifyi9-7'̂  where g^

THEOREM 7.3. L#/ / : β n - > [ - cof -foo] ^^ β /6>iί;̂ r semicontinuous function in
Rn which grows faster than any linear function. Suppose that h{x)—o{\x\) as
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*->0. // f£ΞBh, then f^B~h> Also f^Eh implies

Proof. If / takes the value — oo, then / is identically +00, and if / is
identically +00, then / is — 00 identically; in these two cases the result is true,
so suppose that this is not the case. Then / is finite everywhere. For any
given a^Rn, there is a point a such that f(a)=a-a—f(a). The regularity
means that

(7.2) f(x)<f(a)+L(x-a)+Ch(c(x-a))

for all x. The linear function L must be L(x)=a-x. In fact, we have

a-(a+x)-f(a)£f(a+x)£f(a)+L(x)+Ch(cx),

which yields a x — L(x)<LCh(cx), and this is possible only if a-x = L(x). We
now calculate the Fenchel transform of the right-hand side of (7.2):

(7.3) suplξ x-f(a)-a (x-a)-Ch(c(x-a)y]
X

=KθL)+(ξ-a).a+Ch({ξ-a)/cC).
So

for all ξ. This means precisely that f^B^. The statement for the class Ga
follows because the constants c and C are bounded when a varies in a com-
pact set.

THEOREM 7.4. Let f: Rn-+[— 00, +00] be a lower semicontinuous function
which grows faster than any linear function. Assume that f is differentiable at
every point where it is finite. Let h: Rn-*[0, +00]. // f^Bh, then f<^Bh.

Proof. As before, if / is +00 identically or if / takes the value —00 the
theorem holds, so we can suppose that / is finite everywhere. Moreover we
know that to every given a^Rn there is a point a such that f{a)—a a—f{a).
The hypothesis f^Bh means, for every a such that f(a) is finite, that

(7.4) f(x)^f(a)+L(x-a)+Ch(c(x-a)).

Here the only choice for L is L(x)=f'(a)-x, since we now assume that f'(a)
exists. The Fenchel transform of the right-hand side of (7.4) at a is again
given by (7.3), so it follows that

f(ξ)^f(a)+(ξ-a) a+Ch((ξ-a)/cC)

for all ξ. Thus / G B S .



REGULARITY CLASSES FOR OPERATIONS 373

The hypothesis that / ' exists is of course not satisfactory, but it is necessary
as the following example shows.

Example. Let /(JC)=|JC | +(l/4)x4, XCΞR. Then f^Bh\Gh if we take h(x)
=x2/2 for \x\£l and equal to \x\—ί/2 outside this interval. But /(£)=
(3/4)((|f |-l)+) 4/ 3 which is not in Bh.

As this example suggests, things improve if we strengthen the hypothesis
to /€ΞG f t:

THEOREM 7.5. Let h : Λ-»[0, +00] be given, and let f: # n - > ] - o o , +00] be
a lower semicontinuous convex function which grows faster than any linear func-
tion. Assume that dom/ is open and nonempty. Then if f^Gh it follows that

Proof. We know that / is finite everywhere and that there exists, to every
given a, a point a such that / ( α ) = α a~f{a). Let b be any point such that /
is differentiate at b; this happens for a dense set of points in the effective
domain of /. At such a point we have, as in the proof of Theorem 7.4,

(7.5) / ( i g + , ) ^ / ( j 8 ) + 7 . f c + Λ ( , ) , , e Λ » ,

where β=f'(b). Here we have assumed that c—C~l, which is legitimate since
f^Gh and all points under consideration remain in a compact set. Let Γa

denote the set of subgradients at a point a; thus Γb—{β). Let further θa be
the subset of Γa formed by all limits of f'{bk) where bk is such that / is dif-
ferentiable at bk and bk~*a. Both Γa and θa are compact, and Γa=cvxθa>
Given any β^θa we have

(7.6) ?(βk + η)£?(βk) + η bk + ίί(η), η^Rn,

for some βk=f'(bk)-+β, bk-*a. We can pass to the limit in (7.6). Indeed, all
terms except perhaps ϊl are continuous in Rn. Thus
or equivalently

(7.7) ββ

We shall now extend the validity of (7.7) from θa to all of Γa :

(7.8)

We shall of course use that / is affine in Γa, specifically that f(β)+(ξ—β)-a =
f(a)+(ξ-a)-a for all ξ^Rn when a, β^Γa. Thus (7.7) implies, if we fix a
and let β vary in θa,

Since / is convex, this inequality can be replaced by the formally stronger
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where ^α denotes the convex envelope of the function ξ^Ίnίβ^θa h(ζ—β) To
get (7.8) it suffices to prove that φa(ξ)^h(ξ—a). This is easy. In fact, if a—
Σiλjβj with βj(=θa, λj^O, Σ ^ = l , then ξ=*Σλ&, where £,=&+£-«, so by
definition

This proves the theorem. It is the limiting process of passing from (7.6) to
(7.7) which saves us, and which cannot be done for f^Bh: then the constants
may blow up.

These theorems say that the transform of a function in a regularity class
Gh must be strictly convex in a certain sense, and conversely.

Let h~h satisfy the hypotheses of Theorems 7.3 and 7.5. Then f^Gh im-
plies f^Gh. This gives a new proof of Corollary 5.5 under the stated condi-
tions.
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