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PROJECTIVE SPACES IN A WIDER SENSE, I

BY KENJI ATSUYAMA

Introduction.

The purpose of this paper is to generalize the notion of projective spaces
in compact symmetric spaces. For pairs {o, p) of antipodal points in a com-
pact symmetric space M, we attach to each p a pair of totally geodesic sub-
manifolds (M+°, M_°) (simply denoted by (M+, M_)) in M. The general theory
of (M+, M_) has been developed by B. Y. Chen and T. Nagano and now it plays
an important role as a new method in the global study of compact symmetric
spaces (cf. [5], [6]). We generalize projective spaces in terms of (M+, MS).

The aim of our study was to find a geometry for exceptional Lie groups.
The compact Lie group F4C-52) is realized as the isometry group of the Cayley
projective plane and the non-compact Lie group £6(-26> is the projective trans-
formation group. For the compact exceptional Lie groups Eβ, EΊ and E8, we
would like to find good symmetric spaces which play the same role as the
Cayley plane does. The study originates from H. Freudenthal [7] and B. A.
Rozenfeld [10].

First we intended to solve a problem proposed by H. Freudenthal (p. 175,
[7]). Roughly speaking, it asks us whether the adjoint compact symmetric
spaces of type EJR, EVl and EW (in the sense of E. Cartan) can be regarded
as generalized projective planes. This problem was solved affimatively in
[2], [3] and [4].

We know a unified construction of real simple Lie algebras (cf. [1]). In
order to study the above problem, we constructed the usual projective planes
explicitly by making use of the unifield algebras. Then we encountered the
symmetric spaces of type EJR, EVL and EW, and moreover we obtained the real
and the complex Grassmann manifolds GΛ(4, 4n)* and Gc (2, In) (cf. Example
1.2). We found some common structures existing in these spaces (cf. Definition
1.1) and we called the symmetric spaces with such structures the projective
spaces in a wider sense (cf. [3], [4]).

In this paper especially the projective planes in the wider sense are studied.
For these planes we first establish a duality between points and lines (cf.
Corollary 1.8) and also give the intersection number of two lines. We list the
classification of the planes at the end of this paper.
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We summarize the notations used below. Let RPn, CPn and QPn denote
the real, the complex and the quaternion projective spaces respectively and let
&P2 be the Cayley projective plane. Let GR(n, m)=SO(n+m)/SO(n)xSO(m),
Gc(n, m)=SU(n+m)/S(UnXUm) and GH(n, m)=Sp(n+m)/Sp(n)xSp(m). Fora
compact symmetric space M, we denote by M* the adjoint space of M (cf. [8]).
It is also called the bottom space of M by Chen and Nagano.

1. Projective planes in a wider sense.

Let M be a compact symmetric space. For each p in M, the involutive
iso me try sp is called the symmetry at p. Let G denote the closure of the
group generated by all symmetries of M with respect to the compact-open
topology. For some point o in M, let Ko be the isotropy subgroup in G at o
(or we simply denote it by K). Then K is compact and M—G/K.

For g e G , the mapping Ad(g): h^ghg'1 is an isomorphism of G into itself.
Let e be the identity element of G and TeG the tangent space to G at e. We
put g*=dAd(g) (the differential of Ad(g) on TeG. Then gexp(X)(o)=
exp(g*(Z))(w) holds for X^TeG and u—g{o)^M. Hence, when we regard each
tangent space TVM (to M at v) as TυMαTeG, g*(T0M)=TuM holds.

Let p be an antipodal point of o on a closed smooth geodesic. Then the
orbit K(p) of p becomes a connected, compact, complete totally geodesic sub-
manifold. We call K{p) a polar and denote it by M+°(p). If it is one point, it
is called a pole. There exists a unique complete, connected totally geodesic
submanifold M-°{p) whose tangent space is the normal space of T0M+°(p). We
call M-°(p) the orthogonal complement of M+°(p).

DEFINITION 1.1. Let M be a compact, connected symmetric space. M is
called an n-dimensionαl projective space in the wider sense (n^2) if it satisfies
the following conditions:

(1) M is the bottom space,
(2) M has a sequence of totally geodesic submanifolds {Λ/J {i—l, ••• , n)

such that
(2-1) M—Mny MtZ^Mι-ί and each Mι-ί is a polar in Mlf

(2-2) the orthogonal complement of Mx-λ in Mt ii—2, •••, n) is conjugate
to Mi under the isometry group G.

We call the polar which is conjugate to Mx a line and, if M=M2, M is
called a projective plane in the wider sense. The incidence relation as a pro-
jective geometry is introduced into M by the inclusion relation of sets.

EXAMPLE 1.2. The examples of n-dimensional projective spaces in the wider
sense are RPn, CPn, QPn, Gc'(2, In) and GΛ(4, 4rc)*. For instance, in the case
of M=G C (2, 2n) we have M ^ G C ( 2 , 2Ϊ) ( l ^ i ^ n ) . Since M ^ G * ( 2 , 2) there,
the orthogonal complement of Mx in Mt+ι is conjugate to Gc(2, 2). The pro-
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jective spaces in the wider sense have been classified. If n ^ 3 , they are
GR(m, nm)*, Gc (m, nm) and GH (m, nm) where m is an arbitrary natural number.
Note that RPn = GR(l, w)*, CPn = G c ( l , n) and Q P n = G I Γ ( l , n).

The classification in the case of n—2 is listed in the last section. The
result was given essentially by Chen and Nagano [6]. According to the list
we notice that the space of type E\l has two kinds of structures of projective
planes in the wider sense. There is an important sequence of planes:

This sequence was the starting point of our study.

LEMMA 1.3. If M is a projective plane in the wider sense, it satisfies the
following properties

(1) for any p, q<=M, sp = sq is equivalent to p—q,
(2) there exists a polar M+°(p) such that sosp=sq holds for some

Proof. We can prove (1) and (2) by Chen's results in [6]. Namely
Theorem 4.1 says that sp=sq holds in M if and only if p—q or q is a pole of p.
And Theorem 5.1 asserts that if M has a pole it is a double covering space of
some symmetric space (that is, M is not the bottom space). (2) is also obtained
by Theorem 4.4. It shows that (2) holds if and only if M+°(p) and M-°(p) are
conjugate. •

Remark 1.4. Let M be a compact irreducible symmetric space. Then, if M
satisfies the above two properties, it becomes the bottom space. We can see
this fact from the explicit classification of the spaces which satisfy (1) and (2).
Hence we can use the properties (1) and (2) as the definition of projective
planes in the wider sense.

Let M be a projective plane in the wider sense and L{M) the set of all
lines. Let L(ό) be the polar M+°(p) which is conjugate to Mx. We define a
map L from M to L(M) by o-*L(ό). Since rank M_°(/>)=rank M, all lines have
the same rank as symmetric spaces.

LEMMA 1.5. // M+

u(v)=M+°(P) for u, v^M, then u=o holds.

Proof. Since p^M+°(p) (hence also p^M+u(v)), the symmetries su and s0

leave p fixed. Then the tangent space TPM to M at p has two direct sum
decompositions TpM=TpM+

u(p)φTpM-u(p) and TpM=TpM+°(P)ΘTpM.°(p)
where the subspaces are the (±l)-eigenspaces of the differentials ( s j * and (so)#
of su and s0 respectively. Since M+

u(p)=M+°(p), we obtain TpM+

u(p)=TpM+°(P)
and, hence, TpM-u{p)=TpM-\p). These implies (s j*=(s o )* in TPM. By
Lemma 11.2 (p. 62 [8]), we get su=s0. Therefore we have u—o for M is the
bottom space. •
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LEMMA 1.6. The map L is well-defined and bijective.

Proof. Let A be a maximal flat torus in M which passes through o and p.
Assume that M+°(v), v^A, is conjugate to M+°(p) under G. Then there exists
gtΞG such that gM+°(v)=M+°(p). Since gM+°(v)=M+gw(g(v)), we obtain g(o)=o
by Lemma 1.5. This means g^K0 and M+

0(v)=gM+°(v)=M+°(p). Thus L is
well-defined.

The surjectivity is known by the definition of L. The injectivity is an
easy consequence of Lemma 1.5. D

We can introduce a differentiate structure into L(M) since L is bijective.
Hence L(M) can be regarded as a symmetric space. It has the same structure
as M. Let π be a map, from M\JL(M) onto itself, which maps a point (resp.
a line) to some line (resp. to some point). If π satisfies the two properties

(1) τr2=identity map,
(2) p£Ξπ(q)&π(p)Ξ)q, for p, q^M,

then π is called a polarity. This gives a duality between points and lines in M.

PROPOSITION 1.7. The map L induces a polarity in M.

Proof. Since L is bijective by Lemma 1.6, we can define a polarity π by
π(p)=L(p) and π(L(p))=p. And π satisfies the condition (2) by Theorem
4.4 [6]. •

COROLLARY 1.8. A duality between points and lines holds in each projective
plane in the wider sense.

2. The intersection of two lines.

Let M be a projective plane in the wider sense. Throughout this section
M will be semi-simple as a symmetric space. Our aim is to determine the
intersection N of any two lines in M (See Theorem 2.11). We will see that ./V
is a finite set in general and the cardinal number #N of iV is constant for M.
For example, #iV=l, 1, 1, 1, 1, 3 and 135 according to RP2, CP2, QP2, &P2, Em,
EYl and Em. These numbers are listed later as #(M+). By the duality of M
(Corollary 1.8), the set of all lines, which pass through two points, has the
same structure as N. Hence, in the case of £IΠ, there exists in general only
one line which passes through two points.

We have a Cartan decomposition TeG — TeK@SSR with respect to the dif-
ferential (so)# (=dAd(s 0)) of Ad(s0) where M=G/K(K=K0). Since we identify
SMI and T0M, any geodesic of M, which passes 0 and has a tangent vector

, can be given by γ(t)=exp(fX)(o) where t^R and

LEMMA 2.1. // p^M satisfies spsq=sqsp for any q<=γ(t), then exp(tX) leave
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p fixed as a transformation of M.

Proof. Put a = at=exp(tX) and q—at{o) for t^R. Let J&GM satisfy the
above condition. Then we obtain, from sq—asoa~ι, that

SpSq=sqSp {==$ svasoa~ι — asoa~ιsv £=} a^Spa^Soa^SpaSo^^ su=sv,

where u = a~\p) and v=soa~\p). Since M is the bottom space, su=sΌ implies
u=v. On the other hand, Soa'^o^a holds because (so)*X=—X. From this we
have v—soa~ι(p)=aso(p) and hence a~1(p)=u=v=as0(p). Especially if we put
f=0, we have p=so(p). And a~\p)=a(p)f i.e., a\p)=p holds for any a(=at).
Since te# is arbitrary, we have a(p)=p. D

COROLLARY 2.2. Lβί ̂ 4 b<? α maximal flat torus in M which passes through o.
If a symmetry sp, p^M, commutes with any symmetry sq of A, then all iso-
metries exp(X), X^T0A, leave p fixed.

Let o, p^M. We denote by Kv the isotropy subgroup of G at p and put
Up = Kor\Kp. Let Up0 be the identity component of Up. And we denote the
corresponding Lie algebra by Up, and put ®=TeG and ^0—TeK0.

LEMMA 2.3. Let p, q be points of L(ό) with sosp=sq and let A be a maximal
flat torus in L(q) which passes through o and p. If a symmetry sryr<^L(o), com-
mutes with any su, u^A, then there exists &eexp($0) such that r=k(q) and
k(A)=A.

Proof. Assume that s r, rt~L(o), satisfies the above conditiom. Since
L{o)—Ko{p) and q, r^L(o), there exists geexp($ 0 ) such that r=g(q). Then
also $r=g*(®q) holds in ®, where g* is the differential of Aά(g). First we
show g*(2I)U9Ic:^n® r in ® where @=®0©3IΪ and ΪX=T0A. We know

)=tf from AdL(q) and Corollary 2.2. This implies 5ίC^ ς and hence
By Corollary 2.2 one also has 9ίC$ r because sr commutes with all

symmetries su, u^A. Since AaM, we get 5ίc9Jί. And g*(W)czWl can be ob-
tained from the following argument. Since g(o)=o, sog=gso holds. For any
Z(Ξ2ί, one has (s o )*^*(Z)=^*(s o )*(Z)=-^*(Z). Therefore ^ ( Z ) G 3 R .

We take Z e ^ ( 5 i ) and F G K such that these centralizers become g*(2ϊ) and
5Ϊ respectively (cf. p. 248 [8]). On the identity component Ur° we define a
differentiate function F:Ur°->R, by F(k)=B(X, k*Y) for ^eί/ r ° where B is
the Killing form of ©. Since £// is compact, we can assume that F takes an
extremal value at k — h. Then, it holds that, for any

[ Z ,
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Since «C9RrΛ r , / i * ( 7 ) e W ^ r holds. This implies [Z, /
because Z G ^ ( « ) and g*(2ί)CI$ϊn®r. So, we obtain J3(Z, Z)=0 for Z =
[Z, /i*(F)] in the above equation. This means Z = [X, /z*(K)]=0 because M is
semi-simple and so the Killing form B is negative definite. From the definition
of X and Y, this gives /ιG4)=gO4). If we put k — h~lg, k belongs to the
identity component of Ko and it satisfies the above properties: in fact, k(A) = A,
k(o)=o and k(q) = h-ίg(q) = h-ι(r) = r. D

Let p, q be points of L{p) with sosv — sq. Let A be a maximal flat torus in
L{q) which passes 0 and p. Define two subsets So and 5 in M by S0=L(o)Γ\A
and S = Π L(r). Since AaL(q), we have g e S by the duality. By Lemma 1.3

and the transitivity of points in L(o), for any u^L(o) there exists v^L(o) such
that sosu=sυ. Hence we can define a map 0 : S-+So by φ(u)—v because SaL(o).

LEMMA 2.4. L#ί w e M and Af be a maximal flat torus which passes through
o and u. Then (su)*(Z) =—Z holds for Z^T0A' where we regard T0A

f as a
sub space of T0G.

Proof. Let A' be a maximal flat torus which satisfies the above condition.
Take X^T0A

r such that u=exp(X)(o). Put at=exp(tX) for t^R and put
α = βi. Then for Z(ΞT0A' we have

a~ί=exp(—tZ)

because αexp(ίZ)=exp(ίZ)α and soexp(ίZ)so=exp(—tZ) hold. Hence (su)*(Z)
= ~ Z holds for Z ( Ξ 7 0 , 4 ' . •

LEMMA 2.5. T/ẑ  ma/) φ is well-defined and bijective.

Proof. If sosu=sυ and s o s u = s w hold, sv=sw gives z;==^ because M is the
bottom space. Next we show that φ{S)(ZS0. From Lemma 2.3, for any weS
there exists &eexp($0) such that u = k(q) and k(A) = A. Hence it holds that,
by k~ιsok=so and sosp=sq,

This implies φ(u) — k(p). And we have also k{p)^L{o)Γ\A because p^L(ό)Γ\A
and k(L(o)ΓλA)=L{o)Γ\A.

Next we show the injectivity. If φ(u)—φ(r) for some u, r^S, sosu=sosr

holds. Hence one has su=sr and so u = r because M is the bottom space. We
show the surjectivity. By Lemma 1.3, for any M G S 0 , there exists v^L{o) such
that sosu=sυ. Then, since sosv=su holds, we may show v^S. Let r^A.
Assume r=exp(X)(6>) with X<=T0A. Since o, u^A and su leave o fixed, we
have (sM)*= —1 on T0Λ by Lemma 2.4. Hence it holds that

sΌ(r)=sosu(r)=sosuexp(X)(o)=exp({so)*(su)*X)(o)=exp(X)(o) = r.
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This gives sr — svsrsv, that is, srsv=svsr. Since r^A is arbitrary and
by Lemma 2.3 there exists &eexρ(ίϊ0) such that v—k(q) and k{A)—A. There-
fore we have VΪΞS because q^S and k(S)=S. D

LEMMA 2.6. Let k^K0 and u, yeS. 77z<?ft k(u)=v is equivalent to kφ(u)
p).

Proof. Since sosu—Sφw, we have, by sok = kso,

Hence, k{u)—v is equivalent to kφ(u)=φ(v). D

COROLLARY 2.7. Far M G S , Uu—Uφiu^ holds.

We take three points {o, p, q\ and a maximal flat torus Λ as in Lemma 2.3.
The aim is to study the set of lines which pass through any two points u, y ε M .
Without loss of generality, we may assume v~o and w e i by the transitivity.
For any w G i , define two subsets by,

N{U)={V(ΞM\O, U

N0(u)={k(v)\zny V(ΞS0 and any k(ΞUu

0} .

We will see later that these sets are isometric (Proposition 2.10) and that So

and Uu (i.e., N0(u)) can be determined explicitly. Note that N0(u) is not
necessarily connected.

PROPOSITION 2.8. Let Af be another maximal flat torus in M which passes
through two points o, u^A. Then there exists k^Uu° such that k(A')=A.

Proof. We have a direct sum decomposition TeG-TeK®m where M=G/K
and m=T0M. Put W=T0A and W=T0A'. Take XZΞSH and YΪΞW such that
these centralizers become 21 and W respectively. Next we define a differentiate
function F:UU°-+R by F(k) = B(X, k*Y), k^Uu\ where B is the Killing form
of TeG. Since Uu° is a compact group, we may assume that F takes an ex-
tremal value at k = h. Then it holds that, for Z G I I M (=TeUu°),

= B{X, [Z,

], Z).

On the other hand, X and /z*(F) are tangent vectors to A and to /zG4r) at o
respectively. Since A and h(Ar) passes through o and u, (s0)* and (sM)# act as
- 1 for both X and A*(F) by Lemma 2.4. This gives [X, /Z*(F)]<ΞUM. Hence,
if we put Z = [Z, A*(F)] in the above equation, we get Z=0 because B is non-
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degenerate. This shows h(A')=A. •

LEMMA 2.9. N(u)={k(v)\any V(ΞS and any k^Uu

0} holds for each IKΞA.

Proof. Take v^N(u). Then we have o, u<=L(v) by the definition. Since
L{v) and M have the same rank, there exists a maximal flat torus A' of M
such that A'(ZL{v) and it passes through o and u. By Lemma 2.8, we can take
k^Uu° such that k(A')=A. Since kL(v) = L(k(v)), AdL(k{v)) holds. By the
duality, we get k(v)^S. Therefore we obtain v=k~1k(v)^k-1S for k~ι^Uu\
Conversely, we take v^S and k^Uu°. Then L(k(v))ZDk(A) holds by k(v)(=kS
and the duality. Hence we have L(k(v))^o, u since k(A)^o, u. Π

We define a map Φ: N(u)-*N0(u) by Φ(k(v)) = k(φ(v)) where we use the ex-
pression in Lemma 2.9 for N(u).

PROPOSITION 2.10. Φ is an isometry from N(u) to N0(u).

Proof. First we show that Φ is well-defined and injective by the follow-
ing arguments: for v, w^S and k, h^.Uu\ it holds that

(by Lemma 2.6)

The surjectivity of Φ can be given by that of φ.
Let C be a connected componect of N(u). Then, by Lemma 2.9, C must

meet S because Uu° is connected. So we may assume v(=CΓ\S. Then UVΓ\UU°
=UΦWΓΛUU° holds in G by Corollary 2.7. Hence C and Φ{C) become totally
geodesic submanifolds with the type U u°/UυίΛU u°. And, since both have the
induced metric from UU°/UVΓΛUU°, they are isometric. D

THEOREM 2.11. (1) The set of all lines which pass through o, U^ΞA becomes
a totally geodesic submamfold in M. It is isometric to N0(u).

(2) (the dual of (1)): The intersection of two lines L(o) and Liu), o, U(ΞA,
becomes a totally geodesic submanifold in L(M). It is isometric to N0(u).

Proof. We obtain (1) by Proposition 2.10 and (2) by the duality in Corollary
1.8. •

3. The determination of the intersection number of two lines.

In this section we keep the notation in §2 unless otherwise stated. Let p, q
be points of L(o) with sosp = sq. Let A be a maximal flat torus in L(q) which
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passes through o and p. The structure of the set of all lines, passing through
o, u^A, can be determined by N0(u) (cf. Theorem 2.11). Therefore we must
analyze the set So(=L(o)Γ\Λ) and the isotropy group Uu°.

We have a direct sum decomposition TeG~TeK(^SSSl with respect to the
involutive automorphism g-+sogso of G. Put ®=TeG and ®=TeK. Since A is
a maximal flat torus also in M, one obtains an eigenspace decomposition of ©
with respect to 91 where ty=T0A ($R=T0M). We review some facts on this
decomposition after O. Loos [9] (p. 58-p. 62).

Set Q(A)=sosA. Then Q(A) is a flat torus in G. When we consider the
adjoint representation AdQG4) of Q(A) on complexification © c of @, we have
an eigenspace decomposition

®c=(®c)AΘΣ®χ,

where (®c)Λ is the set of fixed points of AάQ(A) on ®c and {X} are the mutu-
ally different non-trivial characters of the representation with the correspond-
ing eigenspaces

<§χ={Z<Ξ©c I Ad Q(u)(Z)=X(u)Z for all u<=A}.

Each X corresponds to a linear form λ% on 9Ϊ by

for

where we denote λχ by λ for simplicity. We call λ a root relative to 2ϊ and
denote the set of roots by Δ.

Set, for ΛeJ,

®λ={ZtΞ®c i [ # , Z]=;(//)Z for all / / e « } .

It follows that © χ =©^ if Λ=/! χ eJ and ©^=0 if λΦO and Λ<£J. Here (®*)c=
(β c )*=(βc) i l where ® ^ = { Z e © | [ Z , ?l]=0}. Then we obtain

(l) βc=(«")cθ«cΘ^β J l,

where 21 is the sum over ^eJ and K*={*e«|[Z, «]=0}. Put Λji=Λπ
_;) and 3Jh=$m(©;0®-;O. Then it holds

(2) Λ=ftβ0JffJι and ^ ^

where 21 runs over positive roots.
Define a set Uχ by

Then we have

(3) VLU

where VLU is the Lie algebra of Uu (the isotropy group of o and u^A) and Σ
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runs over λ such that UEΞUλ. (3) gives the isotropy group exρ(llM) at we A
explicitly.

For o, u^A, set

Δ0={λ^Δ I SodUλ} and Ξu={λ^Δ | u^Uλ] .

When Ξu(zΔ0 (resp. ΞUΓ\{Δ—Δo)Φ0), we say that two points o and u are in
the general position (resp. in the singular position). Then, from the duality,
we also say that two lines L(o) and L(u) are in the general position (resp. in
the singular position).

EXAMPLE 3.1. Let M be an usual projective plane (being not in the wider
sense). Since M is of rank one, So consists of one point and Δ—Δo holds.
Hence ΞudΔ0. This means that two points are always in the general position.
We usualy say that there exists only one line which passes through any two
points.

LEMMA 3.2. So is a finite set.

Proof. We know from Lemma 3.15 in [6] that, in an abelian Lie group,
two antipodal points of the identity element are always antipodal to each other.
When we regard the base point o as the identity element, we may regard the
maximal flat torus A in M as an abelian Lie group. Hence any two u, v^S0

are antipodal to each other because So—L(o)Γ\A. This means that su leaves v
fixed and u is an isolated point in So. Since So is a compact discrete set, it is
a finite set. D

LEMMA 3.3. // o, u^A are in the general position, N0{u) is a finite set.

Proof. Assume that o, u^A are in the general position. Then ΞudΔ0

holds. The above identity (3) means that exρ(UJ leaves all elements in So

fixed. Therefore N0(u) = S0. By Lemma 3.2 we have that N0(u) is a finite
set. D

Let C be a component of the set of regular elements in the maximal flat
torus A (respL in T0A) (cf. p. 68 [9]). We call the closure C of C a (closed)
cell and, if O G C (resp. OeC), we call it a fundamental cell. From now on we
study the number of all cells in A. We will use the following notation:

D: a fundamental cell in T0A,
V\y V2, •-•, vι: the vertexes of D, where / is the rank of Mand the suffixes

{1, •••, /} correspond to that of the fundamental roots {λλ, •••, λι} respectively,
υ0: the origin of D,
cx: the number of all points in D which are conjugate to vx under the

affine Weyl group of T0A,
nx\ the number of all points in A which are conjugate to exp(vt)(o) under
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the affine Weyl group of T0A,
rx: the number of all cells which have υx as a vertex when we regard

T0A as the tangent space of some maximal torus in the universal covering
space of M.

However, if exp(vx)(o)=exp(v0)(o)=o in M, let cx, nx and rx denote the numbers
for vt/2.

PROPOSITION 3.4. For / e { l , •••, /}, riUilcx is equal to the number of all

cells in A.

Proof. Take any f e {1, •••,/}. In T0A(aT0M) there are nx points conjugate
to Vi and there are rt cells around vx. Since we count these rxnt cells cx times
repeatedly, rxni/cx becomes the number of all cells in A. D

If we regard the fundamental cell D and the extended Dynkin diagram of
M as those of some compact, simply connected, semi-simple Lie group G(M)
respectively, then the normalizer KX(M) of exp(^)(eG(M)) can be obtained from
the diagram by the same method as Borel-SiebenthaΓs one. However, if
exρ(^)(0)=exp(z;o)(0)=0 in M, let KX{M) denote the normalizer of exp(Vi/2)
(eG(M)). Let W(Kt) be the Weyl group corresponding to KX(M). Then the
order #W(KX ) of W(KX) is equal to rx. But, if the diagram is of the following
type, we must calculate r% directly because the corresponding G{M) does not
exist:

— o — o — o — — o — o —
where ® means (—l)X(the highest root). For example, we see this type when
M=S0(2n)/U(n) (n is odd), SU(n+m)/S(UnxUm) (nΦm) or Sp(n+m)/Sp{n)
XSp{m).

EXAMPLE 3.5. We consider G I =G2/SO(4) as M since it becomes a pro-
jective plane in the wider sense. Then M+=M-—S2-S2 (semi-direct product of
two spheres). As a symmetric space, M is irreducible and of rank two. Let
A be a maximal torus in M which passes through o and T0A its tangent space
at o. Let Δ be the set of roots of M with respect to A. Take a fundamental
root system {λu λ2} such that the highest root μ is equal to 2λι+%λ2. Then the
extended Dynkin diagram is

-μ λι λ

And a fundamental cell is given by

D={XZΞT0A I λ1(xί)^0) λ2(xi)^0 and

Let vu v2 be the vertexes of D corresponding to λλ and λ2 respectively.
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We regard the extended Dynkin diagram of the symmetric space M as that
of the simple Lie group G2 (in this case G(M) = G2 holds by chance). We denote
by Kt(M) (or simply by Kt) the normalizer of exp(^) in G2 (/=1, 2). In this
case Kχ=SO(4) and K2=SU(3). The diagrams, the types and the number of
elements of the Weyl groups for {ifj are given as follows:

O Ξ = Φ O type G2 r*=#(W(G2))=12 <ro=l,

@ O type ΛιxΛί r1=#(W(Kι))=4 Cι = l,

® O type Λ2 r8=#(W(tf,))=6 c2=l,

Then we have

the number of all cells in A=(#(W(G2))Xl)/c0=12

=(#(W(K2))Xn2)/c2=6n2,

where W(G2) denotes the Weyl group of G2. From these equations we obtain
nι=3 and n2—2. This means that the cardinal number of L{ό)Γ\A is 3 (=Wi)
because the orbit of exp(ι>i)(0) becomes L(o). Hence we can say that there
exist three lines which pass through any two points in the general position.

For this model it holds that nί=#(W(G2))/#(W(Kί)). Therefore nx is also
equal to the Euler number of G I .

We state here two facts about the Euler number X(G) of compact, semi-simple
Lie groups G. But we don't use them in our discussion.

First we consider a compact, semi-simple symmetric space M which is not
necessarily a projective plane in the wider sense. Denote by A a maximal flat
torus in M which passes through o. Let M+ be a polar of o. Assume that M+
is the orbit of exp(vi)(o) (or exp(vt/2)(o)). Then we have the following theorem
where n is the rank of M and Σ means the sum over all polars M+ of o.

THEOREM 3.6. 2n=l+Σcι#(W(G(M)))/c0#(W(Ki(M))).

This theorem can be obtained from two identities 2n—Σnτ (cf. Corollary 6.6 [5])
and ni=cι#(W(G(M)))/c0#(W(Ki(M))) (cf. Proposition 3.4). Notice that n o = l
always.

When M is a compact, semi-simple Lie group G, we set G+=M+ and e—o
(the identity element). Then G+=G/Kτ holds for some i and the isotropy group
Kt has the maximal rank.

THEOREM 3.7. X(G+)=cι#(W(G))/c0#(W(Ki)).

If G is simply connected, we know that c0—ct—1 and Kt is connected. Then
the identity becomes the well-known one. Moreover, we obtain a Chen-Na,gano's
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identity in Theorem 3.4 [6] from Theorem 3.6, 3.7. But their identity holds
for all compact Lie groups.

COROLLARY 3.8. 2n=l+ΣX(G+).

From the above arguments, we know that it is very important to determine
the numbers {cj . And so we have calculated them for all compact irreducible
symmetric spaces and for all orbits of exp (1^(0) (resp. exp(vi/2)(o)). In the
table at the end of this paper, we list {ct} for projective planes in the wider
sense.

EXAMPLE 3.9. Let M be a compact, irreducible symmetric space with the
Dynkin diagram of type C3. Then M has two locally isometric spaces. One is
the bottom space and the other is the simply connected space. The examples
of such M are Gc(3, 3)*, Gc(3, 3), C I (3)*, C I (3), GH@, 3)*, G"(3, 3), £ΠI(3)*,
£>ΠI(3), Sp(3)*, Sp(3), £VH* and £VΠ. Then the extended Dynkin diagram and
the highest root of M are always given by

—μ λx λ2 λz

©=>O CX=O and μ=2λx+2λ2+λι.

(1) Let M be the bottom space. Let each vertex vt of D correspond to the
simple root λt. Now o=exp(v0)(o)=exp(v3)(o) holds. Hence we have c0—2.
Since vx and v2 are conjugate, we get cx—2 (or c 2=2). The point conjugate to
vs/2 does not exist in D except itself. This means c 3 = l . Note that we use
the notations {c3> n3, r3} for vJ2. When we regard the above extended Dynkin
diagram of M a s that of Sp(3) (i.e., G(M)=Sp(3)), the numbers {rj can be
given by

(vβ) O ( X = O ro=#(W(Cs))=2s3! co=2,

(vi) ® O ^ = O r1 = #(P^(/l1xC2)):=2s2! Cj=2,

(vβ/2) O O O r3

Then we have three orbits of o, exp(vι)(o) and exp(v3/2)(o). By Proposition
3.4, we obtain

It follows that n x = 3 and nz—A. Certainly 2n — l + nι + nz holds, (cf. Theorem 3.6).

(2) Let M be simply connected. Then exp (vi)(o) and exp (v2)(o) are not
conjugate but they become two polars with the same type. The orbit of
exp (v3/2)(o) is not a polar since exp(v3Xo) is a pole ( = a polar consisting of one
point) of o. Hence there exist three polars which consist of the orbits of
exp(vi)(o) ( ι = l , 2, 3). So we can caluculate {r<} as follows. In this case, we
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use the notions {c3, n 3 , rz) for vz

(i>o) O O < = O r o =#(W(C 3 ))=2 3 3! cQ=l,

(v%) ®==>O O r2

>=233! c , = l .

The symmetry of the fundamental cell D disappears since all ^ = 1 . By Pro-
position 3.4, we have

x X C2))Xn1/c1=#(W(C2xA1))Xn2/c2=#(W(Cz))Xn3/Cs.

These identities give ni=3, n 2 = 3 and n 3—1. Also 2 n = l + W i + n 2 + n 3 holds.

EXAMPLE 3.10. (cf. [2]). Let M=E6/(Sptn(10)xT)/ZA ( = £ m simply) where
T is the one dimensional torus and Z 4 is the cyclic group of order 4. The
rank of M is two. Let A be a maximal flat torus in M and D a fundamental
cell of T0A. Take a fundamental root system {λu λ2} such that the highest
root μ is equal to 2Λi+2Λ2. Then we have the following:

a set of positive roots:

Δ+={λu λ2, 2λu 2λ,+λ2y λt+λt, 2λι^-2λ2},

the multiplicity of positive roots: 8, 6, 1, 1, 6, 8,

the extended Dynkin diagram: © = ^ - O = ^ O

the type of orbits M+ of exp(vtXo) as symmetric spaces:

(vθ G0R(2, 8) and (v2) Z)ffl(5),

the type of the orthogonal complement M_ to M+ :

(vO G0 Λ(2,8) and (v2) S2XGC(1, 5),

the cardinal number #(M+Γ\A): (vx) 1 and (v2) 5.

Hence

(M, A/+)=(£ffl, GOR(2,8)).

is a projective plane in the wider sense. In this plane L(o)ΓλA= {exp(vι)(o)\
holds, that is, So consists of one point. Let Ru be the set of positive roots
which satisfy u&Uλ. If u^AΓ\L{o), Ru={λ2f 2λu 2X,+X2, 2 ^ + 2 ^ } . If we
AnD]R(5), Ru={yίi+λ2, 2^!+2^2} or Ru={λu 2λx) (but these sets are conjugate
to each other). We know that u^AnDJR(5) if and only if u is on a closed
geodesic in A with the minimal length. Then moreover M G A satisfies the
condition ΞUΓ\(Δ—Δo)Φ0. Thus o and u are in the singular position. After
all, we obtain that
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(1) for two points in the general position, there exists only one line which
passes through them,

(1)* two lines in the general position intersect at only one point.
(2) for two points in the singular position, the set of all lines passing

through them becomes CP4 as a symmetric space.
(2)* the intersection of two lines in the singular position becomes CP±.

DEFINITION 3.11. Let p, q^M. We consider the two following statements
(a) and (b);

(a): p and q are in the singular position in the sense of symmetric spaces
(cf. p. 295 [8]).

(b): p and q are in the singular position in the sense of projective planes
in the wider sense.

Generally (b)=4(a) holds but the converse does not always hold. So, if (a)=£
(b), we call M of type I and, if not so, we call M of type Π.

EXAMPLE 3.12. The usual projective planes M (i.e., being not in the wider
sense) are of type Π since there does not exist two points in the singular
position.

Now we consider (£VΠ*, (TΈN)/Z2) with the type I . The rank of M is
three. Let A be a maximal flat torus in M and let D be a fundamental cell of
ToA. Take a fundamental root system {λu λ2, λ3} such that the highest root μ
is equal to 2λι-\-2λ2+λz. Then we have the following:

— μ λ i λ t λ *

the extended Dynkin diagram : ® = > Q
the type of orbits M+ of exp (vt)(o) as symmetric spaces:

(vO Em and {vj2) (TΈN)/Z2

where vγ and v2 are conjugate to each other and the orbit of exp (vΆ/2)(o) is a
polar of o since o=exp(v3Xo).

the type of the orthogonal complement M_ to M+:

(vi) S2XG*(2, 10) and (vs/2) (T EN)/Z2

the cardinal number #(M+ΓΛA): (vO 3 and (vs/2) 4
the Cartan matrix C for the set Δ of roots: C=(α ι ; ) ,

/ 2 - 1 0

C = - 1 2 - 1 .

\ 0 - 2 2

Define a basis {xt} of Toy4 by λi{xJ)—aιJ. Then the vertexes {i J of D are
given by
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v1=xί/2+xi/2+ Xs/2,

v2=x1/2+ x2 + x 3 ,

2 -f-3x3/2.

Since #(L(o)Γ\A)=4, we construct in A four conjugate points to exp (v3/2)(o)
explicitly. Let *e{ l , 2, 3, 4}. Then {x^ToA\λt(x)=0} is a wall in T0A.
Define a reflection map W% across this wall by x-*x—λi(x)x%/πi. We can find
four conjugate points {exp(zt)(o)} to exp (vJ2)(ό) when we operate {Wτ} to

repeatedly

Let i o ^

x3/4 (by W5(zi)=z2),

xji + x3/4 (by W2(z2)=z3),

]xJ4 + xJA (by W1(zs)=zi).

as before. Then it holds that

λ(zt)t=πiZ (ι = l, 2,3,4)

λ(zi)(=πiZ and λ(xx/2)eίπiZ (*=1, 2, 3).

The last condition gives Δo—0. This means that M is of type I because λ^Ξu

if and only if λ^ΞuΓ\(Δ—Δo).

In the following table we list the classification of projective planes (M, M+)
in the wider sense where M's are irreducible compact symmetric spaces. And
cQ (resp. ct) denotes the number of all conjugate points to the origin vQ (resp.
υx or vJ2) in the fundamental cell. The suffix /(>0) corresponds to the vertex
Vi or Vf/2 such that M+ is the orbit of exp(vx)(o) or of exp(vt/2)(o). #(M+)
denotes the cardinal number of the intersection

Classification of projective planes in the wider sense.

M M+
#(M + )

(Exceptional spaces)
£ Π
Em
£ V *
JEVI

£VI*
£YDI
EΏί
Fl
FR
Gl

S 2 G C ( 3 , 3)
G0R{2, 8)
4̂ I (8)/Z4

G0R(4, 8)

(T EN)/Zt

G(8,8)*
S2 £V1I
S2 C 1(3)

s 8

S2 5 2

(1,1)
(1,1)
(2,1)

(1,1)
(1,1)
(2,1)
(1,1)
(1,1)

(1,1)
(2,1)

(1,1)

12
1

36
3

12
4

135
12
12

1
3

Type

I
Π
I
Π
I
I
I
I
I
Π
I



340 KENJI ATSUYAMA

(Classical spaces)
AJR G(2p,q) G(p, p)XG(p,q-p)

(2pΦq, P£q)
G(2p,2p)* G(p, p) G(p, p)
G(p, p)* U(p)/Z2

Bl G(2p,q) G(p,p)XG{p,q-p)
(2pΦq, p<q, q:odd)

Cl C\ (n)* U I (n)/Z2

CΠ G(2p,q) G(p, p)XG(p,q-p)
(2pΦq, p^q)

G{2p,2p)* G(p, p) G(p, p)
Dl G(2p,q) G(pfp)XG(p,q-p)

(2pφq, p^q, q: even)

G0R(2p, 2p)*
Dm(2n)*

G(p, p)-G{py p)
UE(2n)/Z2

(1,

(2,
(2,

(2,

(2,

a,
(2,
(2,

(4,
(2,

1)

1)
1)

1)

1)

1)

1)
1)

(The
1)
1)

2pCp, (2p<q)

qCp, (2p>q)

2pι-'p/ ώ

2pCp, (2p<q)

qCP) (2p>q)

2pCp, (2p<q)

tCp, (2p>q)
2PCp/2

2pCp, (2p<q)

qCp, (2p>q)
type of G(4,

2ptjj/ώ

2"-1

π

π
I

I

I
(nΦί)

Π

Π
I

2) is Π)
I
I
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