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ON THE NUMBER OF BRANCHES OF BIFURCATION POINTS

BY MAREK IZYDOREK ANd S^AWOMIR RYBICKI

Introduction.

Let O be an open subset of RnxRk. Consider a continuous map /: O^Rn

satisfying /(O, Λ)=0 for all

O is called the set of trivial zeroes of /. The main question in bifurcation
theory concerns the existence of nontrivial solutions of the equation

(1) /(*, X)=Q

i.e. we ask if the set 5£ :={(*, λ)^O — Q: f ( x , λ)=Q] is nonempty.
The answer for this question one usually gets by searching connected sets

of zeroes of / bifurcating from Q or more precisely by looking for the set of
bifurcation points ^(f):=cl(2>')Γ\ΰ.

In multiparameter bifurcation problems (&>1) the following questions can
be raised:
1) What assumptions one should put on / in order to get bifurcation for the
equation (1) ?
2) What is the local (and global) structure of the set of bifurcation points

Many authors have considered these questions (see e.g. [A], [A. A.],
[A.F.], [Bl], [B2], [I.M.P.V.]).

In 1956 M.A. Krasnosielski proved in [K] his famous bifurcation theorem
(for one dimensional parameter space) which gives sufficient conditions to the
existence of bifurcation points for the equation (1), in terms of the Brouwer
topological degree.

This theorem has many generalizations proceeding in various directions.
Replacing an Euclidean space Rn by any Banach space X, continuous map

/ by a compact perturbation of identity and using the Leray-Schauder degree
instead of the Brouwer degree we get an infinite dimensional version of
Krasnosielski theorem see [MA], [Rl], [R2].

On the other hand multiparameter theorems in finite and infinite case have
been proved in [A], [C], [C.H.], [P].
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If Λ0<Ξ $(f)c.Rk , k>l, is isolated there exists a small sphere S*"1 around
Λ and ε>0 such that for all λ^Sk~\ 0<||*||^e, f ( x , Λ)^0. For isolated bifur-
cation points J. C. Alexander has defined in [A] a topological invariant which
is an element of the homotopy group πk-ι(GL(n, /Z)) and which nontriviality
implies the global bifurcation for (1) at (0, Λ0)e£λ

However, if &>1 the existence of isolated bifurcation points is not generic.
That is why our aim is to research the local structure of the set of bifurcation
points (in case £—2, 3) instead of looking for isolated bifurcation points.

Using the Brouwer topological degree we examine the bifurcation phenomena
associated with ordinary differential equations and the classical Dirichlet
problem.

Our aproach is going to be made via singularity theory.
Recently K. Aoki, T. Fukuda, Wei-Zhi Sun and T. Nishimura using the

topological degree derived a formula which computes the number of analytic
curves of zeroes emanating from a critical zero of some analytic germ
F: (Rk, OM/2*-1, 0) (in case k=2 [A.F.S.], in general case [A. F.N.I]).

This result can be succesfully applied in our considerations due to the fact
that instead of searching the set of bifurcation points .$(/) we can construct
(under some additional assumptions on /) an analytic germ Φ : UdR2—>R such
that

After this introduction the paper is organised into three parts.
In the first part, for an analytic map f:OdRnxRz—>Rn the number of

branches of bifurcation points is expressed in terms of the topological degree
of a map which is constructed explicitly in terms of / (Th. 1.2.).

Next, we restrict our considerations to the case the partial derivative of /
is of the form

where η^λ) are homogenous polynomials and Aτ are real nXn-matrices.
In this situation the map

ΦW):=det(Dx/(0, λ))

is just of the type mentioned above and additionally is a polynomial map.
This in turn allows us to apply a computer program, written by Andrzej

£ecki from Institute of Mathematics of Gdansk University, in order to compute
the topological degree of appropriate map and consequently (by [A.F. N.S.I])
determine the number of branches of the set ^(/) (locally in £7=domΦ).

Proceeding further we define a set of regular sequences of matrices
&(n\ ηi, , ηk) (Def. 2.1.) and we prove that <R(n; ω0, ••• , ωq) is an open and
dense subset of (M(n))β+1 (Th. 2.1.), where ωiW)=^Γt 4.

Finally the above results we apply to a boundary value problem
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*(0=(Σ ηi(X) At)(x(t»+Ψ(t, X(0, λ)
(2) V^ y

and to the Dirichlet problem

(3)
ί) in D

w=0 on 3D

here T t are linear operators for i=l, ••• , & and ?P* is an nonlinear perturbation.
In the case k=2 and ηl(X)=^>lf η2(X)—X2 linear parts of both problems are

of the form B—λl'Al—λ2'A2.
This kind of linear operators has been considered by S.N. Chow and J.K.

Hale (see [C. H.]) and R.S. Cantrell (see [C]) but our methods and results are
completely different.

In particular Theorem 3.1. gives a description of the set of bifurcation
points of the problem (2) in an open neighbourhood of Q^R2 and Theorem 3.2.
gives the similar results for (3).

The authors wish to express their gratitude to dr Zbigniew Szafraniec from
Gdansk University for many stimulating conversations.

1. The structure of the set of bifurcation points.

Let /: RnxR2->Rn be a continuous map such that /(O, λ)=Q for all
Define the set of nontrivial zeroes of / by

Zf={(x, λ)<=RnxR2: f ( x , λ)=Q and

DEFINITION 1.1. Any point λQ^R2 is said to be a bifurcation point of /
provided (0, Λ0)ed(Z/). The set of all bifurcation points of / we will denote
by

Suppose that H: R2—>R2 is a continuous map such that Oe/22 is an isolated
point in H~l(Q\ Let DdR2 be a disc with center at the origin and let

To simplify the notation the topological degree of H we will denote by
degff instead of deg(ff, D, 0).

Define a map Φ : R2-*R by the formula

Φ(JO=det(Dx/((U)).

Note, that Φ(^)=0 for λ^
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Choose any λ^Φ~l(Q) and assume that there is a disc D(λG)C.R2 with the
center at λQ such that λ0 is an isolated critical point in the set X=Φ~l(Q)ίΛD(λo)
(i.e. Λ0ejβ2 is an isolated point in the set {λ<E:X: DΦ(λ)—Q}). Without loss of
generality we can suppose Λ 0— 0.

For sufficiently small D=D(Q) the set X— {0} is empty or is a disjoint sum
of the finite number of analytic curves.

Putting ω(λ)—λl+λl we can formulate the following theorem.

THEOREM 1.1. Let V = d e t ™ ~ and let #=(7, Φ): (R\ 0)->(#2, 0).
0(Xι, X2)

Then Oejβ2 is an isolated point in H~l(ty and the set X consists of exactly
2 deg// analytic curves emanating from 0. Π

Theorem 1.1. has been proved in more general case in [A. F.N.I] and
[A.F. S.]. But only the above version will be needed in our considerations.

Notice that if deg//=0 then the point Oe/22 is an isolated point in the
set Φ'XO). This is a case the Alexander invariant can be applied (see [A]).

We are interested in the case deg//>0. Theorem concerning this situation
states as follows.

THEOREM 1.2. // deg#>0 then Xr\D^<B(f)Γ\D. In other words, there is
2 deg// analytic curves of bifurcation points emanating from O^R2.

PROOF. From Theorem 1.1. we have 2 deg// analytic curves amanating
from Oeβ2 and consisting of zeroes of Φ only.

Since each λ^φ-\0)Γ\D} λi-Q, is a regular point of Φ we get λ<=&(f).
D

This theorem will be applied later to proof Theorem 3.1. and 3.2.

2. Regular matrices.

In this part of paper we will consider the case in which the partial derivative
of / is of some special form.

k
Namely, assume that Dx/(0, λ)= Σ rii(λ} Aτ, where ηt(λ) are homogenous

t = l

polynomials of the same degree and Aτ are real nXn-matrices. Adopting
notations from Section 1 we have

The following lemma easily follows from the standard arguments of the
polynomial theory.
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LEMMA 2.1. // Φ^O then Φ~l(0) is a sum of a finite number of 1-dimensional
linear subpaces of R2 or is equal to {0}. D

By M(n) we shall denote the set of all real nXn-matrices and consider the
space (M(n))9+1 as a metric space with the metric which is defined as follows:

p((A0, .- , Aq\ CBo, - , J3ς))=max{|αί,-ft{,l : *', /=!, - , w} .

DEFINITION 2.1. Any sequence (A, ••• , ^U)<Ξ(M(n))fe is said to be a regular
sequence of matrices (with the respect to a sequence of homogenous polynomials
of the same degree ( η ί f ••• , η k ) ) if Φ: RZ-+R defined by the formula Φ(λ)—

det( Σ ηi(λ) AΛ has no critical zeroes in R2— {0}. The set of all regular
\ τ=i /

sequences will be denoted by 3l(n\ ηlt ~ , ηk}
Notice, that for any sequence ( Λ ί f ••• , Ak)^&(n; ηlt ••• , ηk) the map Φ(X)

— detί Σ i)i(X)-A^\ satisfies the assumptions of Theorem 1.2., that is why it is
\ί = l /

of our interest to know whether the set of regular sequences of matrices is
"big" or "small" in some sense. If a sequence ( A l f ••• , /U)e^(n; ηlf ••• , ηk}
then OeJR is a regular value of Φι=Φ\sι. From the transversality theorem
it follows that each map from some neighbourhood ί/cC^S1, R) of Φl has this
property.

The question is, if for any neighbourhood U of Φi one can find a map
Φ2^U which can be expressed by using a regular sequence of matrices i.e.
if there exists a sequence (Xlt ••• , Xk)^&(n; η ί f ••• , ηk} such that

The answer for the question is given by the following theorem.

THEOREM 2.1. For arbitrary sequence of homogeneous polynomials ηίt ••• , ηk

of degree q the set &(n ηlf •- , ηk) is an open subset of (M(n})k . Moreover
the set 3l(n ω0, ••• , ωq) ts an open and dense subset of (M(n))Q+1, where ωι(λ)

Proof. First we prove that <R.(n; τjι, ••• , ίy Λ ) is an open set.
Let ( A l f '" , Ak)^&(n; ηlf ••• , ηk\ then we have Φ^O. Consider a map

Φί : S1-^R which is a restriction of the map Φ to the unit circle.
Since Φi is transversal to {Q}^R there exists an open neighbourhood U

of Φi in C\Sl, R) such that each map Φ<Ξ£/ is also transversal to
Define a map ζ:(M(n)}k-*C\Sl, R) by the formula

for
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Since ζ is a continuous map, ζ~\U) is a open neighbourhood of ( A l f ••• , Ak)
in M(n)h, moreover ζ~1(ί/)c^(n; ηι, ••• , ηk) so the openness is concluded. In
particular the set <R(n ωQ, ••• , ωq) is open.

Now we turn to the density of &(n ω0, ••• , ωβ).
To prove this we will show that for any positive number ε there exists a

regular sequence of matrices (B0, ••• , Bq) with

If (^40, ••• , Az)^ &(ft; ω0, ••• , ωq) then our statement is obvious that is why
we can assume that (A0, ••• , Aq)<£&(n ω0, ••• , ωβ).

There are two posibilities to be considered, Φ=0 and Φ^O.
In the first case it is easily seen that for any positive number εi one can

always find a sequence (X0, ••• , Xq)^(M(n))q+1 such that

-,*g)=£0 and X(Z0, -,Xβ), (Ar ,

So having proved the case Φ^O the general result will be derived.
Without loss of generality we can assume that the line λz~0 is not included

in the set of zeroes of Φ. Putting λ2=l we get a polynomial of one variable
Φ(Λ, 1).

Clearly, the set of zeroes of the polynomial Φ(λlf 1) is in one-to-one core-
spondence with the set of all 1-dimensional subspaces of R2 included in Φ^O).

Let {ti , tr, MI, •••, us} be the set of all real roots of the polynomial
Φ(λίf 1). Suppose that each tτ has a multiplicity α t>l and each uτ has a
multiplicity which is equal to 1.

Our polynomial Φ(λlt 1) can be expressed in the form Φ(λίf l)=

det/Σωί(Λι, l)Άι\=det(Vι(λι\ •••, Vn(λ\)}> where Vi(λι) is the z-th column-

vector of the matrix Σβ>ίWι, 1)Ά

Choose any £>0. We will find a sequence of matrices (X0, ••• , Xq) such
that the set of zeroes of the polynomial ζ(XQ, ••• , Xq)(λι, 1) is equal to
{ti, -" , try MI, ••• , M,}W{M ί + ι } , where the multiplicity of tι equals al — 1, the
multiplicity of us+1 equals 1 and the rest of multiplicities are not changed.
Additionally, distance between (AQ, •••, Aq) and (XQ, •••, Xq) will be less than

The method proceeds as follows. Vectors VΊ(ίι), ••• , Vn(t\) are linearly
dependent, because Φ(tlf 1)=0. Therefore, there exists a vector, say Fn(^ι),
which can be expressed in the form

Vn(tι)= "Σ jβ^ F/ίi), where ^

From this we claim
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Therefore Φtf,, l)=det(K1W1), -, Pn-iW.), (Λ-ί1

Now, for arbitrary t we can consider a polynomial Φ(Λι, 1)=(Λ— ίi— ί)
- , Vn-,(λ), V,α) - ί

For sufficiently small t the polynomial Φ(λ, 1) has all properties mentioned
above.

Putting £=e (αι+ ••• +α r— r)'1 we can proceed this method as long as we
get a polynomial ζ(£0, ••• , Bq)(λίf 1) with all roots of the multiplicity equals 1.

But this means that (J50, ••• , Bq)^&(n; ωQ, ••• , ωα) and from the triangle
inequality of metric we have

so our proof is concluded. D

Although it is possible that <R(n; ηi, ••• , ι?*)=0 for some η ί f ••• , 77*, never-

theles one can always express a map ΦU)=detf Σ r)i(λ) AΛ in the form Φ(λ)=

det( Σω<(JΪ) βt), where ωt(>l)= ̂ Γ' 4. In this sense Theorem 2.1. states that
\ t = 0 /

the case the origin is the only critical zero of Φ(X) is a generic one.

Example 2.1. As an example we consider the following situation. Let
AO, A^M(n) be a pair of normal matrices e.g. Ao Ai^A^Ao and Ai-A*=
A* AZ for /=0, 1.
Denote by <j(^4t) the spectrum of the matrix Alt

Assume that
1) if z0e(τ(^4o) and zl^σ(Al) are complex numbers then they are lineary inde-
pendent over R,
2) all real eigenvalues of matrix Aτ are different among themselves for *'=0, 1,
3) if βj, a\^σ(Al) are reals then vectors (βj, a§) and (a\, aΐ) are lineary inde-
pendent.

By Theorem 12' page 265 in [G] the above assumptions imply (A0, A)e
&(n\ λi, λ*).

It means that (0, 0)^/22 can be the only critical zero of the polynomial

3. Applications.

We start with ordinary differential equations.
Let h: RxRnxR2->Rn be a C2-map which is of the form
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such that

ψ(t, 0, ;i)=0 and -|̂  (t, 0, ;t)=0 for all (ί, λ)<=ΞRxR2.
ox

Consider the following boundary value problem:

(1)

The problem of the existence of solutions of (1) can be replaced by the
associated bifurcation problem in the following way.

For Banach spaces JΓ={;ceC l([0, 1], Rn): Jt(0)=jc(l)} and F^C°([0, 1], Λn)
we can define a family of operators L(λ): X-> Y by the formula:

At)-
/

We would like to notice that L(0) is a Fredholm operator of the Fredholm
index 0 which will be important in our further considerations.

Additionally, let Ψ: XxR2->Y be a map defined as follows Ψ(x(t\ Λ)=
ψ(t, x(t\ λ).

Now we define an operator F: XxR2~>Y putting

It is easily seen that the solutions of the problem (1) are in one-to-one
correspondence with the solutions of the equation

Let us recall that for 7=det(-xτT-
L-.-7-) we have defined a map //— (7, Φ):

\ σ(/ι, /2) / k

(R\ 0)->(Λ2, 0), where Φ as before is defined by Φ(Jl)=det( Σ vi(λ)Άl\
\l = l /

Since the origin is an isolated zero of H the topological degree can be
used.

THEOREM 3.1. // a sequence (Aίf ••• , Ak}^&(n\ rjl9 ••• , ηk} and deg//>0
then there exist an open neighbourhood U of the origin of R2 and exactly d(Φ)=
2 άQgH intervals lly ••• , /d(φ) emanating from 0 such that

In particular, 0<Ξ/22 is a bifurcation point of F.

Proof: Since L(Q):X-+Y is a Fredholm operator of the Fredholm index
0 we can express Banach spaces X and F as a direct sums kerL(0)0^f0,
ΓoθimL(O), respectively. In this case kerL(O) and Y0 are spaces consisting
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of constant maps.
Applaying the Lapunov-Schmidt reduction to the equation F(x(t), λ)=Q we

obtain a map /: Ωr\(RnxR2)->Rn defined by the formula

/(*, *)=( Σ ιji(λ) At) x + Ψ(x, λ),
\l = l /

where Ω is sufficiently small open neighbourhood of (0, 0)e/2nXJR2 (see [RB]
for more details).

The map / satisfies all the assumptions of Theorem 1.2. and our proof is
completed. D

Remark 3.1. If AQ, Aλ are normal matrices as in Example 2.1. then

D

Now we turn to the partial differential equations. Namely, we want to
consider Dirichlet problem on 3-dimensional disc.

Let DCL V be an open unit disc in a nontrivial 3-dimensional real represent-
ation of the group S1.

For a Sobolev space H\D) denote X={u^H\D)\uldD^Q} and Y=H\D)=
L2(D).

The action of the group S1 on D induces a ^-action on the spaces X and
Y by the formula

ζg u,

Then the Laplace opertor Δ: X-+Y is a S^equivariant linear isomorphism.
Let us define linear operators Aίf ••• , Ak: X-+Y putting Ai(u)—a(gi u)

for some gi^S1 and a: X-*Y which is the inclusion. Additionally, set Ak+ι —
Id.

Assume that τjίf ••• , ηk+ι : R*-*R are homogeneous polynomials which
satisfy the following conditions :
1) 7ι(Λι, λ, 1), ••• , 7*Wι, λ, 1) are homogenous polynomials of the same degree,
2) tfn-itfi, Λ, λ)=^,

Suppose that Ψ:XxR*-+Y is a map such that F(0, ^)=0 and DUΨ(Q, A)=0
for all ^e/23.

Consider the following Dirichlet problem

Δ(u)=( Σ|__ __ m
(2)

on

Our aim is to research the set of bifurcation points of (2).
It is easy to see that the solutions of the problem (2) are in one-to-one

correspondence with zeroes of an operator F: XxR*-+Y which is defined as
follows:
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(3) F(u, Λ ) = Δ - Σ ?,W) Λ)(κ)-y(u, λ ) .

We recall a description of eigenvalues and eigenvectors of the Laplace
operator on 3-dimensional disc.

Denote by (Jv(μ): v^R] the family of Bessel functions.
Let {μj10: /— 1, 2, •••} be the set of all positive zeroes of Jv(μ\
Then all eigenvalues of A are of the form Λ,^[>jί+1/2)]2, f=0, 1, •••,

/—I, 2, ••• and eigenvectors corresponding to them are expressed by the
formulas

m~ 0, 1, ••• , ί, where cί;m are constants, PΓ denotes the Legendre polynomials
and x=(r-cosφ'C,osθ, r sin^> cos#, r sin#)<Ξ/23.

The representation V splits into a direct sum of two summands Rl@R[_n~],
where Rl is a 1-dimensional trivial representation and Λ[w] is a 2-dimensional
representation which is defined by

[ cos(w^) — sin(ncp) 1
.

sm(nφ) cos(nφ) J

By V(λtj) we will denote an eigenspace corresponding to the eigenvalue
λtj. The space V(λtJ) is an orthogonal 2 f+l-dimensional representation of S1,
and moreover, using the above notation we get

It follows from definition that V(λt}) are invariant subspaces for operators
AI, " , Λk+l for all t and /.

We recall that ^(tt)=α(gy w)=α(exρ(V— ϊ ^O w) for some ^^[0, 2 ττ),

ι=l, ••-, k.
Now we came to the following theorem.

THEOREM 3.2. Consider an operator defined by (3). For a fixed eigenvalue
λtj assume that
a) for each m=l, ••• , ί, ΛI— Λ2— 0 /s the only solution of the equation

k \ 2 / k \ 2

Σ i7iWι, ^2, l) cos(mny>i)) +( Σ ^iWi, Λ, l) sin(mn^)) =0,
z-ί / \ t=ι /

k
b) // (Λ, ^2) is a critical zero of the polynomial ^ίUi, Λ, 1) then λι—λ2— 0.

1) (^4lf ••• , ^4Λ) 2S a regular sequence of matrices with respect to the polynomials

?ιWι, λ, 1), ••• , ?ikMi, λ, 1),

2) ί/2βre exist an open neighbourhood U of the poin PtJ—(Q, (0, 0, λt})) in
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and exactly d(Φ)—2 deg# intervals llt ••-, 7d(φ) emanating from PtJ such that

Proof. Let us define an operator G: XxR2-*Y as follows

G\U, /i, λz)'== F\U) /i, /2> Λtj)

then Z>MG(0, 0, 0)—(Δ—λ t j Ίd) is a Fredholm operator of the Fredholm index 0.
We start with the Lyapunov-Schmidt reduction with respect to the

following splittings

Let E: Y-+Y denote a projection onto a(V(λtj)) chosen in such a way that
(Id-E) maps Y onto im(£wG(0, 0, 0)).

Then equality G(u, λi, Λ2)=0 is equivalent to the system

{ / 77* /~*\f Λ 3 3 N Λ( Γ , ° L r ) ( U , ΛI, /gj —U
_

Now, applying implicit function theorem we have a map

where U is a sufficiently small neighbourhood of the origin in XxR2, which
zeroes are locally in one to one correspondence to the solutions of system (*).

Choosing appropriate basis in V(λ1}) we obtain the map

which is of the form

where f(0, ^, ^2)=0 and D^CO, λl9 λ)=0.
Both assumptions a) and b) imply that

where ^ϊ(Λ, λ)=9iWι, λ, Λ;).
The map ζ satisfies all the assumptions of Theorem 1.2. and our proof is

completed. Π
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