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1. Introduction

S. S. Chern and R. S. Hamilton in a paper of 1985 [5] studied a kind of
Dirichlet energy in terms of the torsion τ(τ=Xξg) of a 3-dimensional compact
contact manifold and a problem analogous to the Yamabe problem. They raised
the question of determining all 3-dimensional contact manifolds with τ—Q (i.e.
K-contact). In a long paper of 1989 [8] S. Tanno studied the Dirichlet energy
and gauge transformations of contact manifolds. D. E. Blair [2] obtained the

critical point condition of I(g)=\ Ric(ξ)dVg over JM(η) (the space of all the as-
J M

sociated metrics), and proved that the regularity of the characteristic vector
field ζ and the critical point condition force the metric to be K-contact. Since
Ric(ξ)—2n —1/41r|2, the study of I(g) is the same as the study of the Dirichlet
energy. In this paper we investigate the second variation and prove the follow-
ing result.

THEOREM 2. Let M2n+ί be a compact contact manifold. If g is a critical

metric of the Dirichlet energy L(g)=\ \τ\2dVg, i.e. FξLξg=2(Xςg)φ, then along
J M

any path gij(t)=g,rLSrj+tH'j+t*K'j+O(t3)'] in 3ί{η)

and L(g) has minimum at each critical metric.

The author would like to thank Professor David E. Blair for his constant
encouragement and help.

2. Contact manifolds

A C°° manifold M2n+1 is said to be a contact manifold if it carries a global
1-form η such that ηΛ(dη)nΦ0 everywhere. Given a contact form η it is well
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known that there exists a unique vector field ξ on M satisfying dη(ξ, X)=0 and
η(ξ)—l;ξ is called the characteristic vector field of the contact structure. A
Riemannian metric g is said to be an associated metric if there exists a tensor
field φ of type (1, 1) such that dη(X, Y)=g(X, φY), 0 2 = _ / + ί ? ( g ) | and η(X)=
g(X, ξ). We call (φ, ξ, η, g) a contact metric structure. Such φ and g can be
constructed by the polarization of dη and they are not unique (see [4]). All
associated metrics have the same volume element, namely dV—{l/2nn \)η/\dηn.

Let τ=Xξg be the torsion and let h=O-/2)£ςφ. We have

τXJ——2φirh
rj

where φij^gιrφ
rj, and

Ric(ξ)=2n-\h\2=2n- j\τ\*

We call the contact metric structure with τ=h—0 (or ξ is Killing) K-contact.
For general reference see [1], [7] and [9],

3. The space of all associated metrics and the Dirichlet energy

The space of all Riemannian metrics of M2n+1 with fixed volume, denoted
by Mi, is a symmetric Hubert manifold geodesies in Mi are of the form geHt

(here H is a type (1, 1) tensor field see [6]). The space of all the associated
metrics M(η) is a totally geodesic submanifold of Mi. See [4] for details about
M(η). Let g(t) be any curve in M(η) with g(β)—g. Then the structure tensors
(φ(t), ξ, η, g(t)) corresponding to g(t) satisfy the following:

Now we put

Then from the above conditions we have

tjΛ-Hr4\φs^} hence # | = 0
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where HtJ=gtrH
r

Jf etc., and the inverse of g(t) is given by ([8])

The critical point condition of the Dirichlet energy L(g)=\ \τ\2dVg is given
J M

by the following theorem, see [2], [5] and [8] for proof.

THEOREM 1. Let M2n+1 be a compact contact manifold. An associated metric
g^3ί(η) is critical with respect to the Dirichlet energy if and only if

Fξτ=2τφ.

Remarks. Chern and Hamilton studied this over the set of all the CR-
structures. Strongly pseudo-convex C/?-manifolds are contact manifolds satisfying
an integrability condition i.e. 0 = 0 ; in dimension 3 0=0 trivially (see [8]).

4. Proof of Theorem 2

THEOREM 2. Let M2n+1 be a compact contact manifold. If g is a critical
metric of the Dirichlet energy, i.e. Vξτ=2τφ, then along any path g(t) in <3ί(η)
with g(0)=g

and L(g) has minimum at each critical metric.

Proof. Let gtj(t)=gtJ+tHtJ+tiKιJ+O(t!ί) be any curve in M{η) with g(0)=g
critical. Then for the curvature tensor we have

where D}k

ι=PjHi+PtHj-F'Hj,, E)k

ι=PjKl+P'kKj-F'Kj,,. Therefore we have

RJk(t)=Rjk+j(PTFim+PrPkH>j-P'FrHjk)
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-2Hr\VίVjHrk+VsVkHrj-VsVrH)k-VjVkHrs)

-IV\E"{V'jHr.+P\HrJ-P rHih)

See [8] for some details. Let I(g)=\ Ric{ξ)dVg. For any associated metric
J M

we have Ric(ξ)=2n—(l/4)|r|2, hence I(g)=2n vol(M)—(l/4)L(g). Now we assume

-P.H"(PlHrJ+P,HTl-PTH)l)+jPtH"PjHr,

Then for I(g) we have

dt*κ' λ ' *•

Using Green's Theorem, the critical point condition and the facts that

we compute as follows

ί ξ>ζΨτ
JM

\ PξΨfjKϊdV^
J M

and hence

= -4( Kr

rdVg
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Now consider I2

JM

\ ς>ξιH"rr
J M

ψF rH./rHldVe=\/rξΨ'ξιHs

\ ξ>ξιFrH.JP H'ίdVt = \ Frξ
J M J M

Therefore

-2FιξΨrξ
ιHrsHsj+2FrξΨsζ

ιHrsHjl

but

( F£FreHrsHsjdVs=\ (-\H\*+\hH\ηdVg
J M J M

\ Pr&PsSlHr9HJtdVg = [ (-\H\2-tr(hH)2)dV
JM JM

[ Vrξ
jVrξιHSJmdVg=[ (\H\2+\hH\2)dVg

JM g JM

and hence

-\hH\*-j

Since φrth
tiFiH

r

sH'1=Q, we have
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= 5^ [-21 H\ *+2φiVξmHsj- \ I PξH\2

-tr{hH)2-\hH\AdVg

\ ' 2H-ΦVtH\ 2-tr(hHY-1AJf I 2]dVg.

Now note that

\XξHj\2=\FζH-2Hφ\2-{-\Hh-\-hH\2

= I vζH-2Hφ 12+2tr(hH)2+2 \ hH\2

therefore

We show in the next proposition that |τ(ί)lz is constant along any geodesic
g(t)=geHt with XξH)—0, hence, L(g) is constant along all such geodesies. 3i(η)
is geodesically complete [4], therefore L(g) has minimum at each critical metric.

Q.E.D.

PROPOSITION. r}(ί)=r}(0) along any geodesic g(t)=geHt with X^H]=0. In
particular, |r(ί)l2 is constant along such geodesies.

Proof. Let D$)ι=P'&Hn)\+V'k{Hn))-V\Hn)jk. If X$H)=0} we have FξH
=2Hφ and hH=-Hh, and hence

^lφkj+φKHnkj-(Hn)^^^

for any n. Thus along geHt with XζH}=0,

1 M Π ; r ^ f e ^ ^ (72-1)! ; ; r ;^ (n—l)\l\ κ 1 M Π ; r ^ f e ^ ^ (72-1)!

+ -
and therefore
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Note that φ(t)=φeHt therefore we have

along geHt with XξH*=0. Q. E. D.

Example 1. Any ϋΓ-contact manifold, since τ=0, L(g) has minimum trivially.

Example 2. The tangent sphere bundle of a compact Riemannian manifold
of constant curvature (—1), i.e. TΊM(—1) (see [3]). In this case the standard
associated metric is a critical point of L(g), but τ is not 0. In fact, non-trivial
examples must be irregular (see [2]). Theorem 2 says that L(g) has local
minimum at the standard metric. It seems that it is also a global minimum, or
in other words, one can not deform the metric to have τ=0.
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