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THE SECOND VARIATION OF THE DIRICHLET
ENERGY ON CONTACT MANIFOLDS

By SHANGRONG DENG

1. Introduction

S.S. Chern and R.S. Hamilton in a paper of 1985 [5] studied a kind of
Dirichlet energy in terms of the torsion z(r=..g) of a 3-dimensional compact
contact manifold and a problem analogous to the Yamabe problem. They raised
the question of determining all 3-dimensional contact manifolds with =0 (i.e.
K-contact). In a long paper of 1989 [8] S. Tanno studied the Dirichlet energy
and gauge transformations of contact manifolds. D.E. Blair [2] obtained the

critical point condition of I(g)=SMRz‘c(§)dV ¢ over “M(n) (the space of all the as-

sociated metrics), and proved that the regularity of the characteristic vector
field & and the critical point condition force the metric to be K-contact. Since
Ric(§)=2n—1/4|7|? the study of I(g) is the same as the study of the Dirichlet
energy. In this paper we investigate the second variation and prove the follow-
ing result.

THEOREM 2. Let M?*"*' be a compact contact manifold. If g is a critical

metric of the Dirichlet energy L(g):Serldeg, ie. VeLl,g=2(L:2)p, then along

any path g.(t)=g..[07+tH+*K5+0@*)] in H(n)
&L . .
‘J:T(O)ZZSM | LeHE|2dV 20,

and L(g) has minimum at each critical metric.

The author would like to thank Professor David E. Blair for his constant
encouragement and help.

2. Contact manifolds

A C* manifold M***! is said to be a contact manifold if it carries a global
1-form 7 such that pA(d%)"#0 everywhere. Given a contact form 7 it is well
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known that there exists a unique vector field & on M satisfying dy(é, X)=0 and
n(§)=1; & is called the characteristic vector field of the contact structure. A
Riemannian metric g is said to be an associated metric if there exists a tensor
field ¢ of type (1, 1) such that dp(X, Y)=g(X, ¢Y), ¢*=—I1+9R¢ and p(X)=
2(X, §). We call (¢, & 7, g) a contact metric structure. Such ¢ and g can be
constructed by the polarization of dy and they are not unique (see [4]). All
associated metrics have the same volume element, namely dV=(1/2"n )y Adn".
Let r=_¢g be the torsion and let h=(1/2).L.¢. We have

Tz;:-2¢irh;

hi@5+orh7=0

Vz’?J=¢ii—¢irh;
where ¢;,=g.,¢;, and

Rz’c(&):Zn——IhP:Zn——éll—lrlz.

We call the contact metric structure with t=h=0 (or & is Killing) K-contact.
For general reference see [1], [7] and [9].

3. The space of all associated metrics and the Dirichlet energy

The space of all Riemannian metrics of M?"*' with fixed volume, denoted
by M, is a symmetric Hilbert manifold; geodesics in H,; are of the form ge¥’
(here H is a type (1, 1) tensor field; see [6]). The space of all the associated
metrics H(n) is a totally geodesic submanifold of <M;. See [4] for details about
M(p). Let g(t) be any curve in H(n) with g(0)=g. Then the structure tensors
(@@, & 1, g@t)) corresponding to g(t) satisfy the following :

glr(t)sr:ﬂt
zgtr(t)¢;(t):2¢wzyz77]_7]771
P)P5(H)=—05+&"7,.
Now we put
gu(t):gtr[5;+tH;+t2K;+O(t3)]
)=+t Si+HETi4-O(t).
Then from the above conditions we have
H,,&" =K, §"=Si§"=T¥"=0
H,;+H,$595=0,  hence Hi=0
Si=¢LH7, SiS;=H:H}
Ti=¢:K;
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K+ K- ofigi=H. H
2Kt=H"H,,
where H,,=g..H’, etc., and the inverse of g(t) is given by ([8])
gY(t)y=g" —tHY4+t*(HIH™ —KV)4+-0(t%).
The critical point condition of the Dirichlet energy L(g)=SM|r|’dV ¢ is given

by the following theorem, see [2], [5] and [8] for proof.

THEOREM 1. Let M?**! be a compact contact manifold. An associated metric
2= M(n) is critical with respect to the Dirichlet energy if and only if

Ver=27¢.

Remarks. Chern and Hamilton studied this over the set of all the CR-
structures. Strongly pseudo-convex CR-manifolds are contact manifolds satisfying
an integrability condition i.e. Q=0; in dimension 3 Q=0 trivially (see [8]).

4. Proof of Theorem 2

THEOREM 2. Let M*®**' be a compact contact manifold. If g is a critical
metric of the Dirichlet energy, i.e. Ver=2td, then along any path g(t) in (%)
with g0)=g

d?L

g (0)=2SMI.L'€H;'|2dVggO,

and L(g) has minimum at each critical metric.

Proof. Let g,;)=g,;+tH,;+12K,;4+0(@*) be any curve in H(n) with g(0)=g
critical. Then for the curvature tensor we have

t
Rijkh(t)=R1,jkh+'g(VtDjkh—VjDikh)
t2
+ 5[Vi(Ejkh—Hijkr)—Vj(Eueh_Hthkr)

1
+ ?(DtthjkT_D]thikT)]‘l‘O(ts)
where D;'=V;Hi{+V Hi—VH;;, E;.*=V,Ki+VKi—V'K;,. Therefore we have

Rjk(t)‘:Rjk+%(VerHz'I'VrVkH;_VTV'rij)

2
+ QU T KtV VK= 7 Ky =T 7 1)
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—2H"(V W Hy AV V H,;—VV  Hy—V 7 H,y)
=2V ,H*"V;H v +V y H,;—V . H;4)
+V,H"V H,—2V . HWV H;+2V . HW " H;, ]+ O(*).

See [8] for some details. Let I(g):SMRic(E)dVg. For any associated metric
we have Ric(§)=2n—(1/4)|r|% hence I(g)=2n vol(M)—(1/4)L(g). Now we assume

11=SMsfgl(V,V,K;+V,V,K;——V,VTK,,—VleK:)dVg
1=\, @6~ ok V7 Ha =V 7 Hy=T 0 He)
P H, 4+ Ho—V  Hy)+ %V,H”V]H”

+V,Hx,-l7'H‘§—V,H,,~V“H7]dVg.

Then for I(g) we have
et
dt?

Using Green’s Theorem, the critical point condition and the facts that

O)=5L+1,.

HiHihi=V HiHhi$i=0
Vr&iViés:_grs_*_srés_{_h;hJs
ViérViss:g”-—Erfs—-Zh”—f-/’l;h”

we compute as follows

| ger.ruciav ={ @rrre+rere.av,
|, eer.rKuav =2| 7.e7eKuav,

SMgfglV,VjK:dVg=0
and hence

1=2 @7 LT T 8T 76K, dV,
= —4SM Krdv,

—_— 2
- ZSMlHI av,.
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Now consider I,

Therefore

but

and hence
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| germ 7 Iy, = 75 @ AV 87 1,

+VlserélH”Hsj—EJElVTHTSVLHSJ:IdVg

SJEIHT’VerHﬂdVR:SM EZVTSjVsElH”Hﬂ—E’EIV,H”VSHﬂ]dVg
nglHrsVleH,stg:——SM \VeH|*dV,
S’E‘V,H,;V’H'EdVg:SMV,E’VTE’HU-H‘EdVg

5’5’V,HsjVsH7dVg=SM V.eVieH, HidV,.

[2:SM [_ZVLV"EJSLHTsHsi—ZVrEJEZVzHTsHsJ
—2V.&V E H * Hyy+ 20 .6V & H"*H,y
+VrEjV"élH]st—-VTGJVSGIHst?

1
-7 |75Hl2]dVg

eV & H HydV ;=0

M

V,EfVTS‘H”HsjdVg=SM(—|H|2+Ihle)dVg

M

VrSjV’E'Hstdeg’—'SM(IH|2+|hH|2)dVg

M

S
)
[, 7-e7enrtuav,=( (— H—trhHaV,
)
S

PP HHIAY =\, (I HI* =tk H )V

M

12=SM [2<¢;+¢r,~h“>75H:H§—tr<hH)2

1
—hH|*~ 5 inHV]dVg.

Since ¢,:;h*V.H;H$=0, we have
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&1

dt2 (O)=11+12

=, [ -2im 2 st 5 e
—tr(hH) —| hle]dVg

=§M[- % \2H— @V H|*—tr(hH) | hHIZ]dVg .
Now note that
| LeHY 2= |V H—2Hg |*+ | Hh-+hH|?
— |peH—2H$ |*+2tr(hHY +2| hH|®
therefore
L 0= L =2 | ceiiav 20,

We show in the next proposition that |[z(f)|* is constant along any geodesic

gt)=ge"* with L Hi=0, hence, L(g) is constant along all such geodesics. H(7)

is geodesically complete [4], therefore L(g) has minimum at each critical metric.
Q.E.D.

PROPOSITION. t%(t)=1%0) along any geodesic g(t)=ge?* with L :Hi=0. In
particular, |z(t)|® is constant along such geodesics.

Proof. Let D=V (H" 4V (H";—Vi(H™);s. If L£cHi=0, we have V.H
=2H¢ and hH=—Hh, and hence

DpHE* = (™Yo (H i HCH ™ —(H i — G Lhi(H ™)
—2(H":;

for any n. Thus along ge#' with L:H!=0,

V(z)szzy_sl_'_iD, zék_,__ti(_l_D(Z)z E_HiD, zek)_l_
J J 2 Jjk 2\2 jk rZjk

"7l 1 1
g g DI Gy CDHIDE™ i (D™
1 1\ e Dn=br 1 —_1\n-1 n-1\t r] k
T CUMHDDE e (LD g

and therefore

1 1 ¢
— YOt G TO= @i Tt e~ GUH
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Note that ¢(t)=ge”*; therefore we have

7i(t)=73%0)

along ge”' with £ Hi=0. Q.E.D.

Example 1. Any K-contact manifold, since r=0, .L(g) has minimum trivially.

Example 2. The tangent sphere bundle of a compact Riemannian manifold
of constant curvature (—1), i.e. T,M(—1) (see [3]). In this case the standard
associated metric is a critical point of L(g), but z is not 0. In fact, non-trivial
examples must be irregular (see [2]). Theorem 2 says that L(g) has local
minimum at the standard metric. It seems that it is also a global minimum, or
in other words, one can not deform the metric to have r=0.
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