A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS INTO COMPACTIFIED LOCALLY SYMMETRIC SPACES

By Yoshihiro Aihara

Introduction

The classical theorem of Nevanlinna states that non-constant holomorphic mappings $f, g: C \to P_1(C)$ satisfying $f^{-1}(a_i) = g^{-1}(a_i)$ with multiplicities for distinct five points $a_1, \dots a_5 \in P_1(C)$ are identical ([11]). The unicity theorems of this type for holomorphic (or meromorphic) mappings were studied by several authors (cf., e.g., [4], [5], [6] and [14]). For instance, in [6], H. Fujimoto studied meromorphic mappings $f: C^n \to P_m(C)$, using Borel's theorem and obtained many interesting results. On the other hand, S. Drouilhet [5] proved a unicity theorem of another type for meromorphic mappings $f: M \to V$, where Mis a smooth affine variety and V is a smooth projective variety with dim $V \leq$ dim M. He used the second main theorem for meromorphic mappings due to Shiffman [15]. In this paper, we prove some unicity theorems for meromorphic mappings of a finite analytic covering space over C^n into a smooth toroidal compactification of a locally symmetric space, by making use of a second main theorem proved in [1].

Let \mathscr{D} be a bounded symmetric domain in \mathbb{C}^m and $\Gamma \subset \operatorname{Aut}(\mathscr{D})$ a neat arithmetic group. Let γ be a positive rational number such that the holomorphic sectional curvature of the Bergman metric on \mathscr{D} is bounded by $-\gamma$ from above. We denote by $\overline{\Gamma \setminus \mathscr{D}}$ a smooth toroidal compactification of $\Gamma \setminus \mathscr{D}$ such that $D = \overline{\Gamma \setminus \mathscr{D}} - \Gamma \setminus \mathscr{D}$ is a hypersurface with only normal crossings. Let $\iota: \overline{\Gamma \setminus \mathscr{D}} \to P_N(\mathbb{C})$ be a non-constant holomorphic mapping and $[H] \to P_N(\mathbb{C})$ the hyperplane bundle over $P_N(\mathbb{C})$. Let $\pi: X \to \mathbb{C}^n$ be a finite analytic covering with ramification divisor \mathbb{R} . Then we have the following unicity theorem for meromorphic mappings $f: X \to \overline{\Gamma \setminus \mathscr{D}}$ in the case $1 \leq n < m$ (see Theorem 2.1 in § 2):

Let $f, g: X \to \overline{\Gamma \setminus \mathcal{D}}$ be meromorphic mappings of maximal rank such that $f^{-1}(D) = g^{-1}(D) = E$ and f = g on E. Assume that

$$L = K(\overline{\Gamma \setminus \mathcal{D}}) \otimes [D] \otimes \frac{2}{\gamma} \iota^* [H]^{-1}$$

is big and $|\nu L \otimes [D]^{-1}|$ has no base point in $\Gamma \setminus \mathcal{D}$ for $\nu \gg 0$. We also assume that

Received August 6, 1990; revised January 31, 1991.

$$\liminf_{r\to+\infty}\frac{2N(r, R)}{T_f(r, L)+T_g(r, L)} < \gamma.$$

Then $\iota \circ f = \iota \circ g$ on X.

Moreover, in the case $1 \le m \le n$, we have a similar result (see Theorem 2.4 in §2). In §3, we consider meromorphic mappings of X into a compact Riemann surface and give some unicity theorems which imply the classical unicity theorem in the case X = C.

The author would like to express his sincere gratitude to Professors S. Mori and J. Noguchi for their useful advices.

1. Preliminaries

(a) Line bundles. Let M be a compact complex manifold of dimension m and let $L \to M$ be a holomorphic line bundle over M. We denote by νL the ν -th tensor power of L for a positive integer ν and by L^{-1} the dual bundle of L. Let $\Gamma(M, L)$ be the space of all holomorphic sections of $L \to M$ and $|L| = P(\Gamma(M, L))$ the complete linear system of L.

DEFINITION 1.1. A line bundle $L \rightarrow M$ is said to be big if

 $\dim \Gamma(M, \nu L) \geq C \nu^m$

for all sufficiently large integers ν and some $C \in \mathbb{R}^+ = \{r \in \mathbb{R}; r > 0\}$.

Let $\Phi_L: M \to P_N(C)$ $(N = \dim \Gamma(M, L) - 1)$ be the meromorphic mapping associated with |L|; i.e., $\Phi_L = (\xi_0 : \cdots : \xi_N)$ for a basis $\{\xi_0, \cdots, \xi_N\}$ of $\Gamma(M, L)$. It is well known that L is big if and only if $\dim \Phi_{\nu L}(M) = m$ for some positive integer ν . Therefore, if L is big, we can take a system of generators $\{\varphi_1, \cdots, \varphi_l\}$ of the function field C(M) of M such that each φ_i belongs to the quotient field of $\Gamma(M, \nu L)$ for some $\nu \in \mathbb{Z}^+$.

Let $\operatorname{Pic}(M) = H^1(M, \mathcal{O}^*)$ be the Picard group over M. An element of $\operatorname{Pic}(M) \otimes Q$ is called a Q-line bundle over M. A Q-line bundle L is said to be big if a line bundle $\nu L \in \operatorname{Pic}(M)$ is big for some positive integer ν .

For a non-zero holomorphic section σ of $L \to M$, we denote by (σ) the effective divisor of zeros of σ . Then we have $|L| = \{(\sigma); \sigma \in \Gamma(M, L) - \{0\}\}$. When $|L| \neq \emptyset$, we say that $p \in M$ is a base point for |L| if p is contained in the support of every $D \in |L|$. We denoted by Bs|L| the set of all base points for |L|.

(b) First main theorem. Let $\pi: X \to \mathbb{C}^n$ be a finite analytic covering: that is, X is a normal complex space and π is a proper surjective holomorphic mapping with finite fibre. A finite analytic covering $\pi: X \to \mathbb{C}^n$ is said to be algebraic covering if X is biholomorphic to an affine variety and π is a rational mapping. We denote by k the sheet number of $\pi: X \to \mathbb{C}^n$. Let

 $z=(z_1, \dots, z_n)$ be the natural complex coordinate system in C^n and set

$$\|z\|^{2} = \sum_{\nu=1}^{n} z_{\nu} \bar{z}_{\nu}, \qquad B(r) = \{z \in C^{n} ; \|z\| < r\},$$
$$X(r) = \pi^{-1}(B(r)), \qquad d^{c} = \frac{\sqrt{-1}}{4\pi} (\bar{\partial} - \partial),$$
$$\alpha = \pi^{*} dd^{c} \|z\|^{2}.$$

For a (1, 1)-current φ of order 0 on X, we set

$$n(r, \varphi) = r^{2-2n} \langle \varphi \wedge \alpha^{n-1}, \chi_{X(r)} \rangle$$

and

$$N(r, \varphi) = \int_{1}^{r} \frac{n(t, \varphi)}{kt} dt$$

where $\chi_{X(r)}$ denotes the characteristic function of X(r).

Let M be a compact complex manifold. Let $L \rightarrow M$ be a holomorphic line bundle over M with a hermitian fibre metric h and ω its Chern form. For a meromorphic mapping $f: X \rightarrow M$, we set

$$T_f(r, L) = N(r, f^*\omega)$$

and call it the characteristic function of f with respect to L. We note that $T_f(r, L)$ is independent of the choice of a metric h up to an O(1)-term. If L is ample, it is clear that $T_f(r, L) \rightarrow \infty$ as $r \rightarrow +\infty$. Even if L is big, $T_f(r, L)$ also has this property. In fact, we can show the following proposition:

PROPOSITION 1.2. Let $f: X \rightarrow M$ be a non-constant meromorphic mapping. Assume that L is big and $f(X) \oplus Bs | \mu L |$ for some $\mu \in \mathbb{Z}^+$. Then there exists a positive constant C such that

$$C \log r \leq T_f(r, L) + O(1)$$
.

In paticular, $T_f(r, L) \rightarrow +\infty$ as $r \rightarrow +\infty$.

Proof. Let $\Phi_{\nu L}: M \to P_N(C)$ be the meromorphic mapping associated with $|\nu L|$ and $W = \Phi_{\nu L}(M)$. Since L is big, dim W = m for some $\nu \in \mathbb{Z}^+$. We may assume that $f(X) \oplus Bs |\nu L|$. Let $F = \Phi_{\nu L} \circ f$ and $[H] \to P_N(C)$ the hyperplane bundle. Then $F: X \to P_N(C)$ is a non-constant meromorphic mapping and

$$T_f(r, L) = T_F(r, [H]) + O(1)$$
.

Let $\{\varphi_1, \dots, \varphi_l\}$ be a system of generators of C(W) such that $F^*\varphi_j$ are well defined for $j=1, \dots, l$. It is well known that

$$T(r, F^*\varphi_j) \leq T_F(r, [H]) + O(1)$$

for $j=1, \dots, l$, where $T(r, F^*\varphi_j)$ denotes the characteristic function of a meromorphic mapping $F^*\varphi_j: X \to P_1(C)$ with respect to the point bundle over $P_1(C)$. Since at least one of $F^*\varphi_j$ is non-constant, we have

$$C \log r \leq T_F(r, [H]) + O(1)$$
$$= T_f(r, L) + O(1)$$

for some $C \in \mathbf{R}^+$. This completes the proof.

The following proposition is obtained by a direct calculation and the definition of characteristic function (cf. [7]).

PROPOSITION 1.3. (a) Let M_1 and M_2 be compact complex manifolds with holomorphic line bundles L_1 , L_2 , respectively. Let $\pi_1: M_1 \times M_2 \rightarrow M_1$ (i=1, 2) be the natural projections. Suppose $f: X \rightarrow M_1$ and $g: X \rightarrow M_2$ are meromorphic mappings. Set $\varphi = (f, g): X \rightarrow M_1 \times M_2$. Then

(1.1)
$$T_{\varphi}(r, \pi_1^* L_1 \otimes \pi_2^* L_2) = T_f(r, L_1) + T_g(r, L_2) + O(1).$$

(b) Let M be a compact complex manifold and $L_i \rightarrow M$ (i=1, 2) holomarphic line bundles over M. Then, for a meromorphic mapping $f: X \rightarrow M$,

(1.2)
$$T_{f}(r, L_{1} \otimes L_{2}) = T_{f}(r, L_{1}) + T_{f}(r, L_{2}) + O(1)$$

Let $f: X \rightarrow M$ be a meromorphic mapping and let $D \in |L|$ such that $f(X) \notin$ Supp D, where Supp D denotes the support of D. Set

$$N_f(r, D) = N(r, f^*D)$$

 \mathtt{and}

$$\overline{N}_f(r, D) = N(r, \text{Supp } f^*D)$$
.

Now, we can state the First Main Theorem for meromorphic mappings in the following form.

THEOREM 1.4. Let $L \rightarrow M$ be a holomorphic line bundle over M and $f: X \rightarrow M$ be a meromorphic mapping. Then

(1.3)
$$N_f(r, D) \leq T_f(r, L) + O(1)$$

for $D \in |L|$ with $f(X) \notin \text{Supp } D$.

For a proof, see Stoll [16].

(c) Inequality of second main theorem type. Let \mathcal{D} be a bounded symmetric domain in \mathbb{C}^m and h the Bergman metric on \mathcal{D} normalized in such a way that the Ricci tensor of h is equal to -h. It is well known that the holomorphic sectional curvature of h does not exceed $-\gamma$ for some rational

YOSHIHIRO AIHARA

number γ with $1/m \leq \gamma \leq 1$ (see e.g. [3], p. 219).

Let $\Gamma \subset \operatorname{Aut}(\mathcal{D})$ be a neat arithmetic group ([2], p. 219). Since Γ is torsionfree, the quotient space $V = \Gamma \setminus \mathcal{D}$ is a smooth quasi-projective variety, called a locally symmetric variety. We denote by \overline{V} a smooth toroidal compactification of V such that $D = \overline{V} - V$ is a hypersurface with only normal crossings. Note that, in general, \overline{V} is an only smooth Moishezon variety. We denote by $K(\overline{V})$ the canonical bundle over \overline{V} and by [D] the associated line bundle to D. Set

$$K(\overline{V}, D) = K(\overline{V}) \otimes [D]$$
.

It is well known that $K(\overline{V}, D)$ is big (see e.g., [10]). We also note that the complete linear system $|\nu K(\overline{V}) + (\nu - 1)[D]|$ has no base point in V for a sufficiently large integer ν .

Let $\pi: X \to \mathbb{C}^n$ be a finite analytic covering with the ramification divisor R. For a meromorphic mapping $f: X \to \overline{V}$, we denote by I(f) the indeterminancy locus of f. Define

$$\operatorname{rank} f = \max\{ \operatorname{(rank} df(z); z \in X - (S(X) \cup I(f)) \},\$$

where S(X) is the singular locus of X. We denote by $\operatorname{Mer}^*(X, \overline{V})$ the set of all meromorphic mappings $f: X \to \overline{V}$ with maximal rank (i.e. rank $f = \min\{m, n\}$) such that $f(X) \cap V \neq \emptyset$. Let A(r) and B(r) be real functions defined on $[1, +\infty)$. We write

$$A(r) \leq B(r) \parallel_E$$
,

if $E \subset [1, +\infty)$ is a Borel subset with finite measure and if $A(r) \leq B(r)$ for $r \in [1, +\infty) - E$. We set $\log^+ s = \log \max\{1, s\}$ for $s \in \mathbb{R}$.

The following inequality of second main theorem type will play an essential role in the next section.

THEOREM 1.5. Let f, $g \in Mer^*(X, \overline{V})$ and let $0 < \varepsilon < 1$ be fixed. Then

(1.4)
$$\gamma T_f(r, K(\overline{V}, D)) \leq \overline{N}_f(r, D) + N(r, R) + S_f(r, \varepsilon)$$

in the case of $1 \leq n < m$, and

(1.5)
$$T_f(r, K(\overline{V}, D)) \leq \overline{N}_f(r, D) + N(r, R) + S_f(r, \varepsilon)$$

in the case of $1 \leq m \leq n$, where

(1.6)
$$S_f(r, \varepsilon) = O(\log^+ T_f(r, [D])) + n(2n-1)\varepsilon \log r \parallel_{E(\varepsilon)}.$$

For the proof, see [1].

Remark 1.6. The assumption for Γ to be neat is used only to ensure a good compactification $\overline{\Gamma \setminus \mathcal{D}}$ of $\Gamma \setminus \mathcal{D}$. Thus Theorem 1.5 also remains valid in the case where $\Gamma \subset \operatorname{Aut}(\mathcal{D})$ is a torsion-free discrete subgroup such that $\Gamma \setminus \mathcal{D}$

has a good compactification $\overline{\Gamma \setminus \mathcal{D}}$. In the special case of $m=1, \mathcal{D}$ is the upper half plane H and (1.5) remains valid for arbitrary Fuchsian group Γ of first kind without torsion. In fact, in the case m=1, h is the Poincaré metric in Hand $\Gamma \setminus H$ is a finite Riemann surface $\overline{S}=S-\{a_i\}_{i=1}^d$, where \overline{S} denotes a compact Riemann surface of genus g_0 and a_1, \dots, a_d are distinct d points in \overline{S} with $2g_0-2+d>0$. Thus h defines a singular hermitian metric which is good on \overline{S} (see [10], p. 242), so S always has a good compactification \overline{S} .

2. Unicity theorems for $f \in Mer^*(X, \overline{V})$

In this section, we will prove some unicity theorems for meromorphic mappings of a finite analytic covering $\pi: X \to \mathbb{C}^n$ into a smooth troidal compactification \overline{V} of a locally symmetric variety V.

We keep the same notation as in §1, (c). Let $[H] \rightarrow P_N(C)$ be the hyperplane bundle over $P_N(C)$ and $\iota: \overline{V} \rightarrow P_N(C)$ a non-constant holomorphic mapping. Now we can state our main result in the case of $1 \le n < m$ as follows.

THEOREM 2.1. Let $1 \leq n < m$ and $f, g \in Mer^*(X, \overline{V})$. Set

$$L = K(\overline{V}, D) \otimes \frac{2}{\gamma} \iota^* [H]^{-1}.$$

Assume that

- (a) $f^{-1}(D) = g^{-1}(D) \neq \emptyset$ as a point set (say E)
- (b) f = g on $E (I(f) \cup I(g))$
- (c) the Q-line bundle L is big and $|\nu L \otimes [D]^{-1}|$ has no base point in V for some $\nu \in \mathbb{Z}^+$ with $\nu L \in \operatorname{Pic}(\overline{V})$

(d)
$$\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)} < \gamma.$$

Then $\iota \circ f = \iota \circ g$ on X.

Remark 2.2. (i) In the case $X=C^n$, we always have $E\neq\emptyset$. In fact, since the holomorphic sectional curvature of h is bounded from above by $-\gamma$, V is complete hyperbolic. Thus f is holomorphic on C^n-E and $E\neq\emptyset$ (see [9], p. 90).

(ii) We note that $N(r, R) = O(\log r)$ if and only if $\pi: X \to C^n$ is an algebraic covering ([12], p. 274). Therefore the assumption (d) is satisfied if at least one of f, g is transcendental and if $\pi: X \to C^n$ is an algebraic covering.

Proof of Theorem 2.1. Set $M = P_N(C) \times P_N(C)$. Denote by Δ the diagonal of M. We define a meromorphic mapping $\varphi: X \to M$ by $\varphi = (\iota \circ f, \iota \circ g)$. For the proof of Theorem 2.1, it suffices to show that the image of X by φ is contained in Δ . Assume the contrary. Let $\pi_i: M \to P_N(C)$ (i=1, 2) be the natural projections. Set

$$L_0 = \pi_1^*[H] \otimes \pi_2^*[H],$$

YOSHIHIRO AIHARA

LEMMA 2.3. There exists a holomorphic section σ of $L_0 \rightarrow M$ such that $\Delta \subset$ Supp (σ) and $\varphi^* \sigma \neq 0$.

Proof of Lemma 2.3. Fix a homogeneous coordinate system $((\zeta_0:\dots:\zeta_N), (\xi_0:\dots:\xi_N))$ on M. Let $\{a_{kl}; 0 \leq k < l \leq N\}$ be a set of complex numbers such that at least one of them is not zero and

$$R(\zeta;\xi) = \sum_{0 \leq k < l \leq N} a_{kl}(\zeta_k \xi_l - \zeta_l \xi_k).$$

Then the bihomogeneous polynomial $R(\zeta; \xi)$ naturally determines a holomorphic section σ of $L_0 \rightarrow M$. It is clear that $\Delta \subset \text{Supp}(\sigma)$. Assume that $\varphi^* \sigma = 0$ for any choice of $\{a_{kl}\}$. Write $\iota \circ f = (f_0 : \cdots : f_N)$ and $\iota \circ g = (g_0 : \cdots : g_N)$. Then $\varphi^* \sigma = 0$ implies

$$\sum_{\substack{\leq k < l \leq N}} a_{kl} (f_k g_l - f_l g_k) = 0$$

on X. It follows that, for all $0 \leq k < l \leq N$,

$$f_k g_l - f_l g_k = 0$$
.

Then we have $\iota \circ f = \iota \circ g$. This is absurd. Thus $\varphi^* \sigma \neq 0$ for some choice of $\{a_{kl}\}$. This completes the proof.

Let $\sigma \in \Gamma(M, L_0)$ be as in Lemma 2.3. Then, by (1.1) and (1.3),

(2.1)
$$N_{\varphi}(r, (\sigma)) \leq T_{f}(r, \iota^{*}[H]) + T_{g}(r, \iota^{*}[H]) + O(1).$$

On the other hand, by the assumptions (a) and (b), we have $\varphi(E) \subset \Delta$. It is easy to see that

(2.2)
$$\overline{N}_{f}(r, D) \leq N_{\varphi}(r, (\sigma)) \text{ and } \overline{N}_{g}(r, D) \leq N_{\varphi}(r, (\sigma)).$$

By (2.1) and (2.2), we have

(2.3)
$$\overline{N}_f(r, D) + \overline{N}_g(r, D) \leq 2(T_f(r, \iota^*[H]) + T_g(r, \iota^*[H])) + O(1).$$

Applying (1.4) to (2.3), we obtain

$$\begin{split} &\gamma(T_f(r, K(\overline{V}, D)) + T_g(r, K(\overline{V}, D))) \\ &\leq 2(T_f(r, \iota^*[H]) + T_g(r, \iota^*[H]) + N(r, R)) + S_f(r, \varepsilon) + S_g(r, \varepsilon) \,. \end{split}$$

Thus we have

(2.4)
$$\gamma(T_f(r, L) + T_g(r, L)) \leq S_f(r, \varepsilon) + S_g(r, \varepsilon) + 2N(r, R).$$

By the assumption (c), $|\nu L \otimes [D]^{-1}|$ has no base point in V for some $\nu \in \mathbb{Z}^+$ with $\nu L \in \operatorname{Pic}(\overline{V})$. Let $\tau \in \Gamma(\overline{V}, \nu L \otimes [D]^{-1})$ with $f^* \tau \neq 0$. By Theorem 1.4, we have

$$N_f(r, (\tau)) \leq T_f(r, \nu L \otimes [D]^{-1}) + O(1)$$
$$\leq \nu T_f(r, L) - T_f(r, [D]) + O(1).$$

Hence

 $T_f(r, [D]) \leq \nu T_f(r, L) + O(1)$.

In the same way, we also obtain

$$T_g(r, [D]) \leq \nu T_g(r, L) + O(1)$$
.

On the other hand, by Proposition 1.2, there exists a constant C>0 such that

$$C \log r \leq T_f(r, L) + O(1)$$

and

$$C \log r \leq T_g(r, L) + O(1)$$
.

Dividing (2.4) by $T_f(r, L) + T_g(r, L)$ and letting $r \to +\infty$, we have $0 < \gamma < C' \varepsilon + \gamma'$ for some non-negative constants C' and $\gamma' < \gamma$. Note that C' is independent of ε . Letting $\varepsilon \to 0$, we obtain a contradiction, $\gamma \leq \gamma'$. This completes the proof of Theorem 2.1.

In the case $n \ge m$, using (1.5), we can show the following unicity theorem in the same way.

THEOREM 2.4. Let $1 \leq m \leq n$ and $f, g \in Mer^*(X, \overline{V})$. Set

$$L = K(\overline{V}, D) \otimes 2\iota^*[H]^{-1}$$
.

Assume that

(a) $f^{-1}(D) = g^{-1}(D) \neq \emptyset$ as a point set (say E) (b) f = g on $E - (I(f) \cup I(g))$ (c) the line bundle $L \rightarrow \overline{V}$ is big (d) $\liminf_{r \rightarrow +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)} < 1.$

Then $\iota \circ f = \iota \circ g$ on X.

Note that Theorem 2.4 is obtained by S. Drouilhet in the case where X is a smooth affine variety and target spaces are smooth projective varieties.

3. Meromorphic mappings into compact Riemann surfaces

In this section, we consider the case of m=1 and deduce some unicity theorems for non-constant meromorphic mappings of X into a compact Riemann surface (cf. [5]). In the case m=1, \mathcal{D} is the upper half plane H and Γ is a finitely generated Fuchsian group of first kind which has no elliptic element. The quotient space $\Gamma \setminus H$ is a finite Riemann surface $S=\overline{S}-\{a_i\}_{i=1}^d$, where \overline{S} is a compact Riemann surface of genus g_0 and a_1, \dots, a_d are distinct d points in \overline{S} with $2g_0-2+d>0$. For a non-constant meromorphic mapping $f: X \to \overline{S}$, we denote by $T_f(r)$ the characteristic function of f with respect to the point bundle over \overline{S} . We can identify $H^2(\overline{S}, \mathbb{Z})$ with \mathbb{Z} (cf. [8]). Then we have $c_1([D]) = d$, so

$$T_f(r, [D]) = dT_f(r) + O(1)$$
.

Set

$$\mu(f, R) = \liminf_{r \to +\infty} \frac{N(r, R)}{T_f(r)}$$

and

$$\Theta_f(D) = 1 - \limsup_{r \to +\infty} \frac{\overline{N}_f(r, D)}{T_f(r, [D])}.$$

Then, from Theorem 1.5, we obtain the following defect relation which will be used later.

PROPOSITION 3.1. Let $f: X \rightarrow \overline{S}$ be a non-constant meromorphic mapping. Then

(3.1)
$$\sum_{i=1}^{d} \Theta_f(a_i) \leq 2 - 2g_0 + \mu(f, R).$$

Remark 3.2. If there exists a non-constant meromorphic mapping $f: X \rightarrow \overline{S}$ for which (3.1) is valid in its proper sense; i.e., $\mu(f, R) < +\infty$, we have

 $2g_0 - 2 \leq \mu(f, R) \leq 2g_0 - 2 + d$.

In the case $g_0 \ge 2$, the existence of such a mapping is a delicate matter. It is an interesting problem to determine the case where there exist non-constant meromorphic mappings of X into \overline{S} for which (3.1) remains valid in its proper sense. In the case n=1, the existence of non-constant holomorphic mappings is discussed from this view point in [13].

First we show a unicity theorem for meromorphic mappings of X into $P_i(C)$ which yields Nevanlinna's unicity theorem in the case X=C. We denote by k the sheet number of $\pi: X \to C^n$.

THEOREM 3.3. Let $f, g: X \to P_1(C)$ be non-constant meromorphic mappings. Assume that $f^{-1}(a_1) = g^{-1}(a_1)$ $(i=1, \dots, 2k+3)$ for distinct 2k+3 points a_1, \dots, a_{2k+3} in $P_1(C)$. Then f=g on X.

For the proof of Theorem 3.3, we need the following lemma.

LEMMA 3.4. Let $f: X \rightarrow P_1(C)$ be a non-constant meromorphic mapping. Then

(3.2)
$$N(r, R) \leq 2(k-1)T_f(r) + O(1).$$

In paticular,

$$\mu(f, R) \leq 2(k-1)$$
.

For the proof, see [12].

Proof of Theorem 3.3. Set $D = \{a_i\}_{i=1}^{2k+3}$ and $S = P_1(C) - D$. Then there exists a finitely generated Fuchsian group Γ of first kind without torsion such that $S = \Gamma \setminus H$. In Theorem 2.4, we let $P_N(C) = P_1(C)$ and $\iota : P_1(C) \to P_1(C)$ the identity. Since [D] = (2k+3)[H] and $K(P_1(C)) = 2[H]^{-1}$, we obtain

$$L = K(P_1(C), D) \otimes 2\iota^*[H]^{-1} = (2k-1)[H] > 0.$$

By Lemma 3.4, we have

$$2N(r, R) \leq (2k-2) \{T_f(r) + T_g(r)\} + O(1),$$

so that

$$\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)} \leq \frac{2k - 2}{2k - 1} < 1.$$

Note that $f^{-1}(D) = g^{-1}(D) \neq \emptyset$ by Proposition 3.1. Therefore we infer the desired conclusion from Theorem 2.4.

The following theorem is another type extension of Nevanlinna's theorem :

THEOREM 3.5. Let $f, g: X \rightarrow P_1(C)$ be non-constant meromorphic mappings. Assume that

(a) f⁻¹(a_i)=g⁻¹(a_i) (i=1, ..., 5) for distinct five points a₁, ..., a_b in P₁(C)
(b) min {μ(f, R), μ(g, R)}<1/2.
Then f=g on X.

Proof of Theorem 3.5. Set $D = \{a_1, \dots, a_5\}$. Let Γ and $\iota: P_1(C) \to P_1(C)$ be as in the proof of Theorem 3.3. Then we have

$$L = K(P_1(C), D) \otimes 2\iota^*[H]^{-1} = [H] > 0.$$

Hence

$$\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)}$$
$$=\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r) + T_g(r)}$$
$$\leq 2 \min \{\mu(f, R), \mu(g, R)\} < 1.$$

The remainder of the proof is the same as in that of Theorem 3.3.

In the case X=C, we have Nevanlinna's original unicity theorem. Note that the number five in the case X=C is sharp. In fact, R. Nevanlinna has given an example to show the number five is sharp:

Example. Let $f(z)=e^{-z}$ and $g(z)=e^{z}$. Put $a_{1}=0$, $a_{2}=1$, $a_{3}=-1$ and $a_{4}=\infty$. Then $f^{-1}(a_{1})=g^{-1}(a_{1})$ for $i=1, \dots, 4$ but $f \neq g$.

Let us consider the case of $g_0 \ge 1$. In [14], E.M. Schmid proved a unicity

theorem for holomorphic mappings of an open Riemann surface into a smooth elliptic curve T with some conditions. In the case X=C, Schmid's unicity theorem is stated as follows:

Let $f, g: C \to T$ be non-constant holomorphic mappings such that $f^{-1}(a_i) = g^{-1}(a_i)$ for distinct five point a_1, \dots, a_5 in T. Then f=g on C.

We will give unicity theorems for meromorphic mappings of X into \overline{S} with $g_0 \ge 1$. We can deduce the above result from these theorems. Set

 $l_0 = \min \{l \in \mathbb{Z}^+; \text{ there exists a non-constant} \}$

holomorphic mapping $\varphi: \overline{S} \to P_1(C)$ of deg $\varphi = l$.

THEOREM 3.6. Let \overline{S} be a compact Riemann surface with genus $g_0 \ge 1$. Set

 $d = 2\{(2g_0+1)(k-1)+l_0\}+1$.

Let $f, g: X \to \overline{S}$ be non-constant meromorphic mappings. Assume that $f^{-1}(a_i) = g^{-1}(a_i)$ $(i=1, \dots, d)$ for distinct d points a_1, \dots, a_d in \overline{S} . Then f=g on X.

Remark 3.7. By Riemann-Roch's theorem, we give an upper bound of l_0 :

$$l_0 \leq g_0 + 1.$$

Hence we have

$$d \leq (2g_0+1)(2k-1)+2$$
.

In particular, if \overline{S} is a smooth elliptic curve T, we have $l_0=2$ and d=6k-1.

Proof of Theorem 3.6. Let $D = \{a_1, \dots, a_d\}$ and $S = \overline{S} - D$. Take a nonconstant meromorphic function $\varphi: \overline{S} \to P_1(C)$ with deg $\varphi = l_0$. In Theorem 2.4, let $P_N(C) = P_1(C)$ and $\iota = \varphi$. Since $c_1(\iota^*[H])$ is the number of zeros of any holomorphic section of $\iota^*[H] \to \overline{S}$, it is easy to see that $c_1(\iota^*[H]) = l_0$. Thus we have

(3.4) $c_{1}(L) = c_{1}(K(\bar{S}, D) \otimes 2\iota^{*}[H]^{-1})$ $= 2g_{0} - 2 + d - 2l_{0}$ $= (2g_{0} + 1)(2k - 1) - 2.$

On the other hand, by Riemann-Roch's theorem, $(2g_0+1)[p]$ $(p\in\overline{S})$ is very ample. It follows easily from Lemma 3.4 that

(3.5)
$$N(r, R) \leq (2g_0 + 1)(2k - 2)T_f(r) + O(1)$$

and

$$N(r, R) \leq (2g_0+1)(2k-2)T_{g}(r)+O(1)$$
.

Hence by (3.4) and (3.5),

$$\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)} = \frac{(2g_0 + 1)(2k - 2)}{(2g_0 + 1)(2k - 1) - 2} < 1.$$

Hence $\iota \circ f = \iota \circ g$ by Theorem 2.4. Let $B = \{e_1, \dots, e_t\}$ be the branch locus of $\iota = \varphi$. By Riemann-Hurwitz' formula, it is easy to see that $t \leq 2(g_0 + l_0 - 1)$. By (3.5) and Proposition 3.1, we have

$$\sum_{i=1}^{d} \Theta_{f}(a_{i}) \leq (2g_{0}+1)(2k-3)+3.$$

Since

$$d - \{(2g_0+1)(2k-3)+3\} = 2(g_0+l_0)-1 > t,$$

there exists at least one a_i , say a_1 , which is not contained in B and $\Theta_f(a_1) = \Theta_g(a_1) < 1$. Let $q \in f^{-1}(a_1) = g^{-1}(a_1)$. Since φ is a one-to-one mapping on a neighbourhood W of f(q), f(z) = g(z) for all $z \in f^{-1}(W) \cap g^{-1}(W)$. Thus we have f = g on X. This completes the proof.

We can also prove a unicity theorem of another type which is proved by S. Drouilhet [5] in the case where $g_0=1$ and X is a smooth affine algebraic variety:

THEOREM 3.8. Let \overline{S} be a compact Riemann surface with genus $g_0 \ge 1$. Set

$$d = 2(g_0 + l_0) - 1$$
.

Let $f, g: X \to \overline{S}$ be non-constant meromorphic mappings. Assume that (a) $f^{-1}(a_i) = g^{-1}(a_i)$ for distinct d points a_1, \dots, a_d in \overline{S} (c) $\min \{\mu(f, R), \mu(g, R)\} < (1/2)(4g_0-3)$. Then f = g on X.

Proof. Let D, Γ and ι be as in the proof of Theorem 3.6. Then we have

$$c_1(L) = c_1(K(\bar{S}, D) \otimes 2\iota^*[H]^{-1})$$

= $2g_0 - 2 + d - 2l_0$
= $4g_0 - 3$.

Thus

$$\liminf_{r \to +\infty} \frac{2N(r, R)}{T_f(r, L) + T_g(r, L)}$$
$$= \frac{2}{4g_0 - 3} \liminf_{r \to +\infty} \frac{N(r, R)}{T_f(r) + T_g(r)}$$
$$\leq \frac{2}{4g_0 - 3} \min \left\{ \mu(f, R), \, \mu(g, R) \right\} < 1$$

Hence $\iota \circ f = \iota \circ g$ by Theorem 2.4. By the assumption (b), we have

$$\Theta_f(a_i) = \Theta_g(a_i) < \frac{1}{2}$$

for $i=1, \dots, d$. The remainder of the proof is the same as in that of Theorem 3.7.

In the case $g_0=1$, we can take d=5. The following example which is due to E.M. Schmid [14] shows the number five is sharp in the case where \overline{S} is a smooth elliptic curve:

Example. Let $A = \mathbf{Z} + \tau \mathbf{Z}$ (Im $\tau > 0$) be a lattice in C such that $T = A \setminus C$ and $\pi: C \to T$ the natural projection. We define transcendental holomorphic mappings $f, g: C \to T$ by $f(z) = \pi(z)$ and by $g(\varepsilon) = \pi(-z)$. Put $a_1 = \pi(0)$, $a_2 = \pi(1/2)$, $a_3 = \pi(\tau/2)$ and $a_4 = \pi(1+\tau)/2$. Then $f^{-1}(a_4) = g^{-1}(a_4)$ ($i=1, \dots, 4$) but $f \neq g$.

References

- [1] Y. AIHARA AND J. NOGUCHI, Value distribution of meromorphic mappings into compactified locally symmetric spaces, to appear in Kodai Math. J.
- [2] A. ASH, D. MUMFORD, M. RAPOPORT AND Y. TAI, Smooth Compactification of Locally Symmetric Varieties, Math. Science Press, Brookline, 1975.
- [3] K. AZUKAWA, Curvature operator of the Bergman metric on a homogeneous bounded domain, Tohoku Math. J. 37 (1985), 197-223.
- [4] H. CARTAN, Sur les zéros des combinasions linéair de p fonctions holomorphes donnés, Mathematica 7 (1933), 5-31.
- [5] S. DROUILHET, A unicity theorem for meromorphic mappings between algebraic varieties, Trans. Amer. Math. Soc. 265 (1981), 249-258.
- [6] H. FUJIMOTO, Remarks to the uniquness problem for meromorphic maps into P^N(C), I-IV, Nagoya Math. J. 71 (1978), 13-24, 25-41; ibid. 75 (1979), 71-85; ibid. 83 (1981), 153-181.
- [7] P.A. GRIFFITHS AND J. KING, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta. Math. 130 (1973), 145-220.
- [8] R. GUNNING, Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, 1966.
- [9] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [10] D. MUMFORD, Hirzeburch's proportiality theorem in the non-compact case, Invent. Math. 42 (1977), 239-172.
- [11] R. NEVANLINNA, Le théorèm de Picard-Borel et la théorie des fonctions méromorphe, Gauthier-Villars, Paris, 1929.
- [12] J. NOGUCHI, Meromorphic mappings of a covering space over C^m into a projective variety and defect relations, Hiroshima Math. J. 6 (1976), 256-280.
- [13] J. Noguchi, Holomorphic mappings into a closed Riemann surfaces, ibid. 6 (1976), 281-191.
- [14] E. M. SCHMID, Some theorems on value distribution of meromorphic functions, Math. Z. 120 (1971), 61-92.
- [15] B. SHIFFMAN, Nevanlinna defect relation for singular divisors, Invent. Math. 31

(1975), 155-182.

[16] W. STOLL, Value Distribution on Parabolic Spaces, Lect. Notes in Math., Vol. 600, Springer-Verlag, Berlin-Heidelberg-New York.

> Toshiba Corp. R. and D. Center 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan