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A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS

INTO COMPACTIFIED LOCALLY SYMMETRIC SPACES

BY YOSHIHIRO AIHARA

Introduction

The classical theorem of Nevanlinna states that non-constant holomorphic
mappings /, g: C-»Pi(C) satisfying f~\ai)=g~\at) with multiplicities for dis-
tinct five points au ••• a^P^C) are identical ([11]). The unicity theorems of
this type for holomorphic (or meromorphic) mappings were studied by several
authors (cf., e.g., [4], [5], [6] and [14]). For instance, in [6], H. Fujimoto
studied meromorphic mappings / : Cn-*Pm(C), using BoreΓs theorem and ob-
tained many interesting results. On the other hand, S. Drouilhet [5] proved a
unicity theorem of another type for meromorphic mappings / : M—>V, where M
is a smooth affine variety and V is a smooth projective variety with dim V <£
dim M. He used the second main theorem for meromorphic mappings due to
Shiffman [15]. In this paper, we prove some unicity theorems for meromor-
phic mappings of a finite analytic covering space over Cn into a smooth toroidal
compactification of a locally symmetric space, by making use of a second main
theorem proved in [1],

Let 3) be a bounded symmetric domain in Cm and ΓcAut (3)) a neat arith-
metic group. Let y be a positive rational number such that the holomorphic
sectional curvature of the Bergman metric on 3) is bounded by — γ from above.
We denote by Γ\3) a smooth toroidal compactification of Γ\3) such that D—
Γ\3)—Γ\3) is a hypersurface with only normal crossings. Let c: Γ\3)->PN(C)
be a non-constant holomorphic mapping and \_H~]->PN{C) the hyperplane bundle
over PN(C). Let π: X-^Cn be a finite analytic covering with ramification
divisor R. Then we have the following unicity theorem for meromorphic map-
pings / : X->Γ\3) in the case l<n<m (see Theorem 2.1 in §2):

Let f, g: X-*Γ\3) be meromorphic mappings of maximal rank such that
f-\D)=g'\D)=E and f=g on E. Assume that

2_

y

is big and \vL§§\Π\~x\ has no base point in Γ\$> for v>0. We also assume that
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liminf ψ-— —7\<T'

Then c°f=c°g on X.

Moreover, in the case lf^mt^n, we have a similar result (see Theorem 2.4
in §2). In §3, we consider meromorphic mappings of X into a compact Rie-
mann surface and give some unicity theorems which imply the classical unicity
theorem in the case X—C.

The author would like to express his sincere gratitude to Professors S.
Mori and J. Noguchi for their useful advices.

1. Preliminaries

(a) Line bundles. Let M be a compact complex manifold of dimension m
and let L—>M be a holomorphic line bundle over M. We denote by vL the v-th
tensor power of L for a positive integer ι> and by L"1 the dual bundle of L.
Let Γ(M, L) be the space of all holomorphic sections of L-»M and \L\ =
P(Γ(M, L)) the complete linear system of L.

DEFINITION 1.1. A line bundle L-+M is said to be big if

for all sufficiently large integers v and some C^R+={r^R; r>0}.

Let ΦL: M-^PN(C) (N=άimΓ(M, L)—l) be the meromorphic mapping asso-
ciated with \L\; i.e., Φ L = ( £ O : •••: £*) for a basis {ξ0, •••, £N} of Γ(M, L). It
is well known that L is big if and only if dim ΦvL(M)—m for some positive
integer v. Therefore, if L is big, we can take a system of generators
{ψu •--, ψι) of the function field C(M) of M such that each φt belongs to the
quotient field of Γ(M, vL) for some v<=Z+.

Let Pic(M)=i/1(Af, &*) be the Picard group over M. An element of Pic(Aί)
®Q is called a Q-line bundle over M. A Q-line bundle L is said to be big if
a line bundle vLePic(M) is big for some positive integer v.

For a non-zero holomorphic section a of L-^M, we denote by (σ) the effec-
tive divisor of zeros of a. Then we have \L\ = {(σ); σ^Γ(Mf L)— {0}}. When
\L\Φ0, we say that £ e M is a base point for \L\ if p is contained in the
support of every D e | L | . We denoted by Bs\L\ the set of all base points
for \L\.

(b) First main theorem. Let π: X-*Cn be a finite analytic covering: that
is, I is a normal complex space and π is a proper surjective holomorphic
mapping with finite fibre. A finite analytic covering π: X->Cn is said to
be algebraic covering if X is biholomorphic to an affine variety and π is a
rational mapping. We denote by k the sheet number of π: X->C\ Let
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z=(zίt ••• > zn) be the natural complex coordinate system in Cn and set

MI2= hzvzv, B(r)={zeΞCn; \\z\\<r},

X(r)=π-\B(r)), d<=^Q-B),

a=π*ddc\\z\\2.

For a (1, l)-current φ of order 0 on X, we set

n(r, φ)=r2-2n<φAan-ί

f 7^ ( r )

and

where Xχar^ denotes the characteristic function of X(χ).
Let M be a compact complex manifold. Let L-»M be a holomorphic line

bundle over M with a hermitian fibre metric h and ω its Chern form. For a
meromorphic mapping / : X-->M, we set

Tf(r, L)=N(r, f*ω)

and call it the characteristic function of / with respect to L. We note that
T70, L) is independent of the choice of a metric /z up to an 0(l)-term. If L
is ample, it is clear that Tf(r, L)->oo as r—> + oo. Even if L is big, Tf(r, L)
also has this property. In fact, we can show the following proposition:

PROPOSITION 1.2. Let f: X-^M be a non-constant meromorphic mapping.
Assume that L is big and f(X)(tBs\μL\ for some μ^Z+. Then there exists a
positive constant C such that

C\ogr£Tf(rf L)+O(l) .

In paticular, Tf(r, L)—> + oo as r—>-foo.

Proof. Let ΦvL: M-*PN(C) be the meromorphic mapping associated with
\vL\ and W=ΦvL{M). Since L is big, dimW^m for some UCΞZ+. We may
assume that f(X)ctBs\uL\. Let F=ΦvL°f and [//]->P*(C) the hyperplane
bundle. Then F\X-*PN(C) is a non-constant meromorphic mapping and

Tf{r, L)=TF{r, [if])+O(l).

Let {y>i, ••• , ̂ } be a system of generators of C(W) such that F * ^ are well
defined for y = l , ••• , /. It is well known that
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for y = l , ... , /, where T(r, F*ψj) denotes the characteristic function of a mero-
morphic mapping F*ψj: X-tP^C) with respect to the point bundle over Pλ(C).
Since at least one of F*ψj is non-constant, we have

C\ogr£TF(r,

=τf(r,

for some C^R+. This completes the proof.

The following proposition is obtained by a direct calculation and the defini-
tion of characteristic function (cf. [7]).

PROPOSITION 1.3. (a) Let Mx and M2 be compact complex manifolds with
holomorphic line bundles Lu L2, respectively. Let πt: MiXM2->Mt ( ι = l , 2) be
the natural projections. Suppose f : X-*MX and g: X-+M2 are meromorphic map-
pings. Set φ=(f, g): X-*MX X M2. Then

(1.1) Tψ(r, πfLiΘπ*L2)=Tf(r, Lx)+Tt(r,

(b) Let M be a compact complex manifold and Li—>M {i—l, 2) holomarphic
line bundles over M. Then, for a meromorphic mapping f: X-+M,

(1.2) Tf(r, L^L2)=Tf(r} Lι)+Tf(r9 L,)+O(l).

Let / : X-^M be a meromorphic mapping and let D^\L\ such that f(X)<t
Supp D, where Supp D denotes the support of D. Set

Nf(r, D)=N(r, f*D)
and

Nf{r, D)=N(r, Supp f*D).

Now, we can state the First Main Theorem for meromorphic mappings in
the following form.

THEOREM 1.4. Let L-+M be a holomorphic line bundle over M and f : X-+M
be a meromorphic mapping. Then

(1.3) Nf(r, D)£

for D(=\L\ with /(Z)ctSupp D.

For a proof, see Stoll [16].

(c) Inequality of second main theorem type. Let 3) be a bounded sym-
metric domain in Cm and h the Bergman metric on 3) normalized in such a
way that the Ricci tensor of h is equal to — h. It is well known that the
holomorphic sectional curvature of h does not exceed — γ for some rational
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number γ with l/m^γ^l (see e.g. [3], p. 219).
Let ΓcAut(^)) be a neat arithmetic group ([2], p. 219). Since Γ is torsion-

free, the quotient space V=Γ\W is a smooth quasi-projective variety, called a
locally symmetric variety. We denote by V a smooth toroidal compactification
of V such that D=V—V is a hypersurface with only normal crossings. Note
that, in general, V is an only smooth Moishezon variety. We denote by K(V)
the canonical bundle over V and by [£)] the associated line bundle to D. Set

K(V, D)=K{V)®\_D^.

It is well known that K(V,D) is big (see e.g., [10]). We also note that the
complete linear system \vK(V)+(v—1)[D]| has no base point in V for a suffici-
ently large integer v.

Let π: X-±Cn be a finite analytic covering with the ramification divisor R.
For a meromorphic mapping / : X-+V, we denote by /(/) the indeterminancy
locus of / . Define

rank /=max{ (rank df{z) zs=X-(S(X)Ul(f))},

where S(X) is the singular locus of X. We denote by Mer*(Z, V) the set of
all meromorphic mappings / : X-*V with maximal rank (i.e. rank/=min{m, n})
such that f(X)Γ\Vφ0. Let Air) and B(r) be real functions defined on [1, +°°).
We write

if Ea[l, +°°) is a Borel subset with finite measure and if A(r)<ίB(r) for r e
[1, +00)—^. We set log+s=logmax{l, s} for seΛ.

The following inequality of second main theorem type will play an essential
role in the next section.

THEOREM 1.5. Let f, ^eMer*(Z, V) and let 0 < ε < l be fixed. Then

(1.4) γTf(r, K(V, D))^Nf{r, D)+N(r, R)+Sf(r, ε)

in the case of l ^ n < m , and

(1.5) Tf(r, K(V, D))<Nf(r, D)+N(r, R)+Sf(r, e)

in the case of lrgm^w, where

(1.6) Sf(r, ε)=O(log+T/(r, [D]))+n(2n-l)β log r |U ( e ) .

For the proof, see [1].

Remark 1.6. The assumption for Γ to be neat is used only to ensure a

good compactification Γ\£D of Γ\0. Thus Theorem 1.5 also remains valid

in the case where ΓaAut {3)) is a torsion-free discrete subgroup such that Γ\<D
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has a good compactification Γ\<D. In the special case of m=l, 3) is the upper
half plane H and (1.5) remains valid for arbitary Fuchsian group Γ of first
kind without torsion. In fact, in the case m = l , h is the Poincare metric in H
and Γ\H is a finite Riemann surface S=S—{at}t=u where S denotes a compact
Riemann surface of genus g0 and au ••• , ad are distinct d points in S with
2g0—2+d>0. Thus h defines a singular hermitian metric which is good on S
(see [10], p. 242), so S always has a good compactification S.

2. ϋnicity theorems for /eMer*(Z, V)

In this section, we will prove some unicity theorems for meromorphic
mappings of a finite analytic covering π: X-*Cn into a smooth troidal com-
pactification V of a locally symmetric variety V.

We keep the same notation as in § 1, (c). Let [//]-* P^CC) be the hyper-
plane bundle over PN(C) and c: V-+PN{C) a non-constant holomorphic mapping.

Now we can state our main result in the case of l<Ln<m as follows.

THEOREM 2.1. Let l£n<m and f, g eMer*(Z, V). Set

L=K(V, D)®

Assume that
(a) f'KD)=g'KD)Φ0 as a point set (say E)
(b) f=g on E-(I(f)VJl(g))
(c) the Q-line bundle L is big and \vLξ>§\_D~]~ι\ has no base point in V for

some V G Z + with F

/ J X ,. . r 2N(r, R)
(d) hminf v > <γ.

Then ί°f—i°g on X.

Remark 2.2. (i) In the case X=Cn, we always have Eφφ. In fact, since
the holomorphic sectional curvature of h is bounded from above by —γ, V is
complete hyperbolic. Thus / is holomorphic on Cn—E and EΦ0 (see [9],
p. 90).

(ii) We note that N(r, R)=O(\og r) if and only if π : X^Cn is an algebraic
covering ([12], p. 274). Therefore the assumption (d) is satisfied if at least
one of /, g is transcendental and if π: X-*Cn is an algebraic covering.

Proof of Theorem 2.1. Set M=PN(C)xPN(C). Denote by Δ the diagonal
of M. We define a meromorphic mapping ψ: Z—>M by <p=(c°f, c°g). For the
proof of Theorem 2.1, it suffices to show that the image of Z b y ψ is contained
in Δ. Assume the contrary. Let πt: M->PN(C) ( ί = l , 2) be the natural projec-
tions. Set
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LEMMA 2.3. There exists a holomorphic section a of Lo-^M such that Δ c
SuppO) and φ*σΦθ.

Proof of Lemma 2.3. Fix a homogeneous coordinate system ((ζ0: : C#),
(&: ••• '•$*)) on M. Let {akt 0£k<l^N] be a set of complex numbers such
that at least one of them is not zero and

« = Σ akl{ζkξι-ζιξk).
N

Then the bihomogeneous polynomial R(ζ ξ) naturally determines a holomorphic
section a of L0->M. It is clear that ΔcSupp(σ). Assume that φ*σ=Q for
any choice of {akϊ}. Write c°f=(f<>: ••• :fN) and c°g=(g0: — :##). Then
^*<τ=:0 implies

Σ akι(fkgt-fιgk)=0
k l N

on X It follows that, for all 0£

fkgl~flgk=O.

Then we have c°f=c°g. This is absurd. Thus ^*σ^0 for some choice of
{akί}. This completes the proof.

Let σ^Γ(M, Lo) be as in Lemma 2.3. Then, by (1.1) and (1.3),

(2.1) Nφ{r, (σ))£Tf(r, ^*[//])+Tf(r,

On the other hand, by the assumptions (a) and (b), we have <p(E)aA. It is
easy to see that

(2.2) Nf(r, D)^Nφ(r,(σ)) and Ns(r, D)^N

By (2.1) and (2.2), we have

(2.3) Nf(r, D)+Ng(r, D)^2(Tf(r, c*lHl)+Tβ(r,

Applying (1.4) to (2.3), we obtain

r(Tf(r, K(V, D))+Tt(r, K(V, D)))

f^2(Tf(r, c*lHl)+Te(r, ^*[i/])+iV(r, R))+Sf(r, ε)+Sg(r, ε).

Thus we have

(2.4) r(Tf(r, L)+Tg(ry L))£Sf(r, ε)+Sg(r, ε)+2Λί(r, R).

By the assumption (c), \vL®[_DYι\ has no base point in V for some
with vLePic(F). Let reΓ(F, vL^DY1) with /*r^0. By Theorem 1.4, we
have

Nf(r, (τ))^T/(r, yLΘCDl

, L)-Tf(r,
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Hence

Tf(r,

In the same way, we also obtain

Tg(r,

On the other hand, by Proposition 1.2, there exists a constant C>0 such that

C log r^T,(r, L)+O(l)
and

Dividing (2.4) by T,(r, L)+Tg(r, L) and letting r-> + oo, we have 0 < r < C ' ε + r '
for some non-negative constants C and 7"'<7\ Note that C is independent of
ε. Letting ε->0, we obtain a contradiction, 7^7'. This completes the proof of
Theorem 2.1.

In the case n^m, using (1.5), we can show the following unicity theorem
in the same way.

THEOREM 2.4. Let l^m^n and f, £ eMer*(X, V). Set

Assume that
(a) f"1(D)=g-\D)Φ0 as a point set {say E)
(b) f=g on E-(I(f)KJKg))
(c) the line bundle L-+V is big

(d) liminf--^g^—— <1.
r̂ +oo Tf(r, L)+Tg(r, L)

Then c°f=c°g on X.

Note that Theorem 2.4 is obtained by 5. Drouilhet in the case where X is
a smooth affine variety and target spaces are smooth projective varieties.

3. Meromorphic mappings into compact Riemann surfaces

In this section, we consider the case of m = l and deduce some unicity
theorems for non-constant meromorphic mappings of X into a compact Riemann
surface (cf. [5]). In the case m—\, S) is the upper half plane H and Γ is a
finitely generated Fuchsian group of first kind which has no elliptic element.
The quotient space Γ\H is a finite Riemann surface S = S — {at}f=1, where S is
a compact Riemann surface of genus g0 and au ••• , ad are distinct d points in
S with 2gQ—2-\-d>0. For a non-constant meromorphic mapping f: X-+S, we
denote by Tf(r) the characteristic function of / with respect to the point bundle
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over S. We can identify H\S, Z) with Z (cf. [8]). Then we have
— d, so

Tf(r, [Z)])=dT/(r)+O(l).
Set

and

Then, from Theorem 1.5, we obtain the following defect relation which will
be used later.

PROPOSITION 3.1. Let f: X->S be a non-constant meromorphic mapping.
Then

(3.1) ΈΘf(at)^2-2go+μ(ff R).

Remark 3.2. If there exists a non-constant meromorphic mapping / : X-+S
for which (3.1) is valid in its proper sense; i.e., μ(f, R)<-\-oof we have

In the case go^2, the existence of such a mapping is a delicate matter. It is
an interesting problem to determine the case where there exist non-constant
meromorphic mappings of X into S for which (3.1) remains valid in its proper
sense. In the case n = l, the existence of non-constant holomorphic mappings
is discussed from this view point in [13].

First we show a unicity theorem for meromorphic mappings of X into
P\(C) which yields Nevanlinna's unicity theorem in the case X—C. We denote
by k the sheet number of π: X->Cn.

THEOREM 3.3. Let f,g:X-+Pι(C) be non-constant meromorphic mappings.
Assume that f~\aι)=g-\aι) ( ί = l , ••• , 26+3) for distinct 2k+3 points au •••,
a2k+s in Pι(C). Then f=g on X.

For the proof of Theorem 3.3, we need the following lemma.

LEMMA 3.4. Let f : X-^>PX{C) be a non-constant meromorphic mapping. Then

(3.2) N(r,

In paticular,

For the proof, see [12].



A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS 401

Proof of Theorem 3.3. Set D={at}HY and S^Pί(C)-D. Then there
exists a finitely generated Fuchsian group Γ of first kind without torsion such
that S=Γ\H. In Theorem 2.4, we let PN(C)=Pί(C) and <: P1(C)->Pί(C) the
identity. Since [D]=(2fc+3)[i/] and K(Pί(C))=2lHy\ we obtain

By Lemma 3.4, we have

2JV(r, Λ)^

so that

2N(r, R)

Note that f"\D)=g~\D)Φ0 by Proposition 3.1. Therefore we infer the desired
conclusion from Theorem 2.4.

The following theorem is another type extension of Nevanlinna's theorem :

T H E O R E M 3.5. Let /, g: X^PX{C) be non-constant meromorphic mappings.
Assume that

(a) /~1(α t)
: :=<gr"1(α ι) (*'=1, ••• , 5) for distinct five points au ••• , aδ in Pι(C)

(b) min

of Theorem 3.5. Set D={α!, ••• , α5}. Let Γ and c: P^O-^P^C) be
as in the proof of Theorem 3.3. Then we have

Hence

hminf
Tf(r, L)+Tg(r, L)

2N(r, R)
T/(r)+T,(r)

min{

The remainder of the proof is the same as in that of Theorem 3.3.

In the case X—Ct we have Nevanlinna's original unicity theorem. Note
that the number five in the case X=C is sharp. In fact, R. Nevanlinna has
given an example to show the number five is sharp:

Example. Let f{z)—e~z and g(z)=ez. Put aι=Q, a2=l, α 3 ~ —1 and #4—°°.
Then f-\az)=g-\at) for ί = l , ••• , 4 but fΦg.

Let us consider the case of £ 0 ^ l . In [14], E.M. Schmid proved a unicity
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theorem for holomorphic mappings of an open Riemann surface into a smooth
elliptic curve T with some conditions. In the case X=C, Schmid's unicity
theorem is stated as follows:

Let / , g: C-*T be non-constant holomorphic mappings such that f~\at)=
g~\a%) for distinct five point au ••• , a5 in T. Then f=g on C.

We will give unicity theorems for meromorphic mappings of X into 5 with
go^l. We can deduce the above result from these theorems. Set

/ 0 = m i n { / e Z + ; there exists a non-constant

holomorphic mapping φ: S-»Pi(C) of deg^>=/}.

THEOREM 3.6. Let S be a compact Riemann surface with genus g^l. Set

Let f, g: X-+S be non-constant meromorphic mappings. Assume that / " 1 ( α t ) =
g~\at) {i~ly ••• , d) for distinct d points au ••• , ad in S. Then f—g on X.

Remark 3.7. By Riemann-Roch's theorem, we give an upper bound of /0:

(3.3) /o

Hence we have

In particular, if S is a smooth elliptic curve T, we have ίo=2 and d=6k—l.

Proof of Theorem 3.6. Let D={au ••• , ad} and S=S-D. Take a non-
constant meromorphic function φiS-^PiiC) with άegφ=ί0. In Theorem 2.4,
let PN{C)—PX(C) and t—φ. Since CiO*[#]) is the number of zeros of any
holomorphic section of £*[//]—•§, it is easy to see that c^\H~\)—U. Thus we
have

(3.4) c1(L)=c1(K(Sf

=(2sβ+Ό(2*-l)-2.

On the other hand, by Riemann-Roch's theorem, (2g o +l)[ ί ] (P^S) is very
ample. It follows easily from Lemma 3.4 that

N(r, R)£(2g0+l)(2k-2)Tf(r)+θa)(3.5)

and

Hence by (3•4) and

N(r

N(r,

(3.5),



A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS 403

R) (2g,+l)(2fe-2)
i m inf

\ J Ξ r Tf{r, L)+Tg(r, L) (2
Hence t°f—t°g by Theorem 2.4. Let B={eu •••, £*} be the branch locus of
c=φ. By Riemann-Hurwitz' formula, it is easy to see that t^2(go+lo—1). By
(3.5) and Proposition 3.1, we have

Since

there exists at least one at, say aίf which is not contained in B and θ / ( α θ =
θ / α i ) < l . Let ^e/"1(αi)= (gr"1(α1). Since p̂ is a one-to-one mapping on a
neighbourhood >F of f(q), f(z)=g(z) for all ^ G / ' W ) Π ^ ~ W ) . Thus we have
f=g on X. This completes the proof.

We can also prove a unicity theorem of another type which is proved by
S. Drouilhet [5] in the case where g0—1 and X is a smooth affine algebraic
variety:

THEOREM 3.8. Let S be a compact Riemann surface with genus g oϊ^l Set

Let / , g: X->5 be non-constant meromorphic mappings. Assume that
(a) f~\at)=g~\ai) for distinct d points au ••• , ad in 5
(c) min{/i(/, R), μ(g, Λ)}<(l/2)(4*β-3).

Then f—g on X.

Proof. Let D, Γ and c be as in the proof of Theorem 3.6. Then we have

c1(L)=c1(K(Sf

Thus

,. . - 2N(r, R)
h m i n f r (r Air (r n

2
•liminf

^ , R), μ(g,

Hence c°f=c°g by Theorem 2.4. By the assumption (b), we have
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θ()<

for i—l, ••• , d. The remainder of the proof is the same as in that of Theorem

3.7.

In the case g*—l, we can take d=5. The following example which is due

to E. M. Schmid [14] shows the number five is sharp in the case where S is a

smooth elliptic curve:

Example. Let Λ=Z+τZ (Imr>0) be a lattice in C such that T=Λ\C and

π : C-*T the natural projection. We define transcendental holomorphic mappings

f,g:C->T by f(z)=π(z) and by g(ε)=π(-z). Put α!=*(()), α8=π(l/2), as=
τr(r/2) and α 4=τr(l+r)/2. Then f'\a%)=g'Ka%) ( ί = l , - , 4) but fΦg.
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