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A UNICITY THEOREM FOR MEROMORPHIC MAPPINGS
INTO COMPACTIFIED LOCALLY SYMMETRIC SPACES

By YOSHIHIRO AIHARA

Introduction

The classical theorem of Nevanlinna states that non-constant holomorphic
mappings f, g: C—Py(C) satisfying f~%a)=g a,) with multiplicities for dis-
tinct five points a;, --- a;= Py(C) are identical ([11]). The unicity theorems of
this type for holomorphic (or meromorphic) mappings were studied by several
authors (cf., e.g., [4], [6], [6] and [14]). For instance, in [6], H. Fujimoto
studied meromorphic mappings f:C"— P,(C), using Borel’s theorem and ob-
tained many interesting results. On the other hand, S. Drouilhet [5] proved a
unicity theorem of another type for meromorphic mappings f: M—V, where M
is a smooth affine variety and V is a smooth projective variety with dimV <
dim M. He used the second main theorem for meromorphic mappings due to
Shiffman [15]. In this paper, we prove some unicity theorems for meromor-
phic mappings of a finite analytic covering space over C™ into a smooth toroidal
compactification of a locally symmetric space, by making use of a second main
theorem proved in [1].

Let 9 be a bounded symmetric domain in C™ and I"CAut(9) a neat arith-
metic group. Let 7 be a positive rational number such that the holomorphic
sectional curvature of the Bergman metric on 9@ is bounded by —7 from above.
We denote by 7'~9 a smooth toroidal compactification of I'\9 such that D=

’'N9—I'\9 is a hypersurface with only normal crossings. Let ¢: I'~9— Py(C)
be a non-constant holomorphic mapping and [H]— Py(C) the hyperplane bundle
over Py(C). Let m:X—C™ be a finite analytic covering with ramification
divisor R. Then we have the following unicity theorem for meromorphic map-

pings f: X—I'\9 in the case 1<n<m (see Theorem 2.1 in §2):

Let f, g: X—>I\9D be meromorphic mappings of maximal rank such that
f{(D)y=g(D)=FE and f=g on E. Assume that

L=K<“r\@>®wj®%z*[m*

is big and |vL@[D]!| has no base point in ['ND for v:>0. We also assume that
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lim inf NG, R)
rate T y(r, L)+T (r, L)

<7.
Then tof=¢og on X.

Moreover, in the case 1<m<n, we have a similar result (see Theorem 2.4
in §2). In §3, we consider meromorphic mappings of X into a compact Rie-
mann surface and give some unicity theorems which imply the classical unicity
theorem in the case X=C.

The author would like to express his sincere gratitude to Professors S.
Mori and J. Noguchi for their useful advices.

1. Preliminaries

(a) Line bundles. Let M be a compact complex manifold of dimension m
and let L—M be a holomorphic line bundle over M. We denote by vL the y-th
tensor power of L for a positive integer v and by L~* the dual bundle of L.
Let I'(M, L) be the space of all holomorphic sections of L—M and |L|=
P(I'(M, L)) the complete linear system of L.

DEFINITION 1.1. A line bundle L—M is said to be big if
dim I'(M, yL)=Cy™
for all sufficiently large integers v and some CeR*={reR; r>0}.

Let @,: M— Py(C) (N=dim I'(M, L)—1) be the meromorphic mapping asso-
ciated with |L|; i.e., @r=(&:---: &x) for a basis {&, -+, Ex} of I'(M, L). It
is well known that L is big if and only if dim @,,(M)=m for some positive
integer v. Therefore, if L is big, we can take a system of generators
{¢1, -+, ¢} of the function field C(M) of M such that each ¢; belongs to the
quotient field of I"(M, vL) for some veZ*.

Let Pic(M)=H'M, ©*) be the Picard group over M. An element of Pic(M)
XA is called a Q-line bundle over M. A Q-line bundle L is said to be big if
a line bundle vy LePic (M) is big for some positive integer v.

For a non-zero holomorphic section ¢ of L—M, we denote by (¢) the effec-
tive divisor of zeros of ¢. Then we have |L|={(¢); sI'(M, L)—{0}}. When
|L|#+@, we say that pM is a base point for |L| if p is contained in the
support of every D=|L|. We denoted by Bs|L| the set of all base points
for | L|.

(b) First main theorem. Let = : X—C" be a finite analytic covering : that
is, X is a normal complex space and = is a proper surjective holomorphic
mapping with finite fibre. A finite analytic covering = :X—C" is said to
be algebraic covering if X is biholomorphic to an affine variety and = is a
rational mapping. We denote by £k the sheet number of =n:X—C". Let
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z=(z,, -+, 2,) be the natural complex coordinate system in C™ and set

lelP= S az,  Br)=lesC";lzl<r),

Xr)y=nBe),  d=1@-d),

a=n*dd|z|*.

For a (1, 1)-current ¢ of order 0 on X, we set

n(r, @)=r*?"oAa" " Yxy»
and

__(rn(, @)
N(r, so)—gl bF dt,
where Xx(,, denotes the characteristic function of X(r).
Let M be a compact complex manifold. Let L—M be a holomorphic line
bundle over M with a hermitian fibre metric 4 and @ its Chern form. For a
meromorphic mapping f: X—M, we set

Tf(ry L)=N(r’ f*(!))

and call it the characteristic function of f with respect to L. We note that
T(r, L) is independent of the choice of a metric ~ up to an O(1)-term. If L
is ample, it is clear that T,(r, L)>> as r—-+oco. Even if L is big, T,(r, L)
also has this property. In fact, we can show the following proposition :

PROPOSITION 1.2. Let f:X—M be a non-constant meromorphic mapping.
Assume that L is big and f(X)&Bs|pL| for some pcZ*. Then there exists a
positive constant C such that

Clogr<T,(r, L)+0(1).
In paticular, T ((r, L)>+oco as r—+co.

Proof. Let @,,: M— Py(C) be the meromorphic mapping associated with
[vL| and W=®,,(M). Since L is big, dim W=m for some v&Z*. We may
assume that f(X)aBs|vL|. Let F=®,,-f and [H]— Py(C) the hyperplane
bundle. Then F: X— Py(C) is a non-constant meromorphic mapping and

Ty(r, L)=T r(r, LHD+0().

Let {¢, ---, ¢} be a system of generators of C(W) such that F*@; are well
defined for j=1, ---, . It is well known that

T(r, F*o)<T p(r, [HD+0Q)
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for j=1, -, [, where T(r, F*p;) denotes the characteristic function of a mero-
morphic mapping F*p,: X— P,(C) with respect to the point bundle over Py(C).
Since at least one of F*p, is non-constant, we have

Clog r<Tg(r, [H])+0O(1)
:Tf(?’, L)+O(l)

for some CeR*. This completes the proof.

The following proposition is obtained by a direct calculation and the defini-
tion of characteristic function (cf. [7]).

ProposITION 1.3. (a) Let M, and M, be compact complex manifolds with
holomorphic line bundles L,, L, respectively. Let m,: MiXMy—M, (=1, 2) be
the natural projections. Suppose f: X—M, and g: X—M, are meromorphic map-
pings. Set ¢o=(f, g): X>M,XM,. Then

(LD Ty(r, atLi\QafLa)=T(r, L)+T,(r, Ls)+0(1).

(b) Let M be a compact complex manifold and L;—M (1=1, 2) holomarphic
line bundles over M. Then, for a meromorphic mapping f: X—>M,

(1.2) Ty(r, LQL)=T(r, L)+Ts(r, L)+0(1).

Let f: X—M be a meromorphic mapping and let De|L| such that f(X)a
Supp D, where Supp D denotes the support of D. Set

Ny(r, D)=MN(r, f*D)
and
Ny(r, D)=N(r, Supp f*D).

Now, we can state the First Main Theorem for meromorphic mappings in
the following form.

THEOREM 1.4. Let L—M be a holomorphic line bundle over M and f: X—M
be a meromorphic mapping. Then

(1.3) Ny(r, D)ST ((r, L)+0(1)
for De|L| with f(X)d Supp D.
For a proof, see Stoll [16].

(¢) Inequality of second main theorem type. Let 9 be a bounded sym-
metric domain in C™ and h the Bergman metric on 9 normalized in such a
way that the Ricci tensor of h is equal to —hA. It is well known that the
holomorphic sectional curvature of 4 does not exceed —7y for some rational
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number 7 with 1/m<y<1 (see e.g. [3], p. 219).

Let "'CAut(9) be a neat arithmetic group ([2], p. 219). Since I is torsion-
free, the quotient space V=I'\9 is a smooth quasi-projective variety, called a
locally symmetric variety. We denote by V a smooth toroidal compactification
of V such that D=V —V is a hypersurface with only normal crossings. Note
that, in general, V is an only smooth Moishezon variety. We denote by K(V)
the canonical bundle over ¥V and by [D] the associated line bundle to D. Set

K, D)=KV)Q[D].

It is well known that K(V, D) is big (see e.g., [10]). We also note that the
complete linear system |vK(V)+(@w—1)[D]| has no base point in V for a suffici-
ently large integer v.

Let m: X—C™" be a finite analytic covering with the ramification divisor R.
For a meromorphic mapping f: X—V, we denote by I(f) the indeterminancy
locus of f. Define

rank f=max{(rank df(z); z& X—(S(X)UI(f)},

where S(X) is the singular locus_of X. We denote by Mer*(X, V) the set of
all meromorphic mappings f: X—V with maximal rank (i.e. rank f=min{m, n})
such that f(X)NV+@. Let A(r)and B(r) be real functions defined on [1, + o).

We write
ANZB() e,

if EC[1, +) is a Borel subset with finite measure and if A(»)<B(r) for re
[1, +)—E. We set log*s=log max{l, s} for s€R.

The following inequality of second main theorem type will play an essential
role in the next section.

THEOREM 1.5. Let f, gesMer®(X, V) and let 0<e<1 be fixed. Then
(1.4) 1T (r, KV, DN)SNy(r, D)+N(r, R)+S,(r, €)
in the case of 1<n<m, and
(L.5) Ts(r, KV, D)SN,(r, D)+N(r, R)+Sy(r, ¢)
in the case of 1<m<n, where
(1.6) Sy(r, e)=0(og* T ((r, [D)+n2n—1elog r |z .
For the proof, see [1].

Remark 1.6. The assumption for I" to be neat is used only to ensure a

good compactification I'N9 of I'N\9. Thus Theorem 1.5 also remains valid
in the case where I"C Aut(9) is a torsion-free discrete subgroup such that I'\9
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has a good compactification 7~9. In the special case of m=1, 9 is the upper
half plane H and (1.5) remains valid for arbitary Fuchsian group I of first
kind without torsion. In fact, in the case m=1, h is the Poincaré metric in H
and I'\H is a finite Riemann surface S=S—{a,}%,, where S denotes a compact
Riemann surface of genus g, and a,, -, ag are distinct d points in S with
2go—2+4d>0. Thus h defines a singular hermitian metric which is good on S
(see [10], p. 242), so S always has a good compactification S.

2. Unicity theorems for f=Mer*(X, V)

In this section, we will prove some unicity theorems for meromorphic
mappings of a finite analytic covering = : X—C" into a smooth troidal com-
pactification V of a locally symmetric variety V.

We keep the same notation as in §1, (c). Let [H]—Py(C) be the hyper-
plane bundle over Py(C) and ¢: V— Py(C) a non-constant holomorphic mapping.

Now we can state our main result in the case of 1<n<m as follows.

THEOREM 2.1. Let 1<n<m and f, geMer¥(X, V). Set
L=K({, D)@%—t*EH]"‘.

Assume that
@) fUD)=g D)+ D as a point set (say E)
(b) f=g on E—(I(f)UI(g)
(¢) the Q-line bundle L is big and |vLR[D]™*| has no base point in V for
some yeZ* with vLePic (V)
.. 2N(r, R)
@ Nmint T T, D) T
Then ¢of=¢og on X.

Remark 2.2. (i) In the case X=C", we always have E+@. In fact, since
the holomorphic sectional curvature of 4 is bounded from above by —7, V is
complete hyperbolic. Thus f is holomorphic on C*—FE and E+ @ (see [9],
p. 90).

(ii) We note that N(r, R)=0(log r) if and only if = : X—C™ is an algebraic
covering ([12], p. 274). Therefore the assumption (d) is satisfied if at least
one of f, g is transcendental and if = : X—C™ is an algebraic covering.

Proof of Theorem 2.1. Set M= Pxy(C)X Py(C). Denote by A the diagonal
of M. We define a meromorphic mapping ¢: X—M by ¢=(¢cof, ¢cog). For the
proof of Theorem 2.1, it suffices to show that the image of X by ¢ is contained
in A. Assume the contrary. Let z,: M—Py(C) i=1, 2) be the natural projec-
tions. Set

Ly==t[HIQr%[H],
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LEMMA 2.3. There exists a holomorphic section 6 of L,—M such that AC
Supp (¢) and ¢*a +0.

Proof of Lemma 2.3. Fix a homogeneous coordinate system (({o:---:lx),
(§o:--:&n)) on M. Let {a,,;0<k<ISN} be a set of complex numbers such
that at least one of them is not zero and

R(E; 5)=05k2 . aui(8e6i—Ci6e) .

<ls

Then the bihomogeneous polynomial R({; &) naturally determines a holomorphic
section ¢ of L,—M. It is clear that ACSupp(c). Assume that ¢*¢=0 for
any choice of {a.;}. Write ¢of=(fo:--:fn) and ¢og=(go:*--:gnx). Then

¢*e=0 implies
> Nakl(f»gz“fzgk)zo

0sk<ls
on X. It follows that, for all 0<k<I<N,
fe&i—f18:=0.

Then we have ¢of=¢eg. This is absurd. Thus ¢*¢+0 for some choice of

{a:}. This completes the proof.
Let s'(M, L,) be as in Lemma 2.3. Then, by (1.1) and (1.3),

2.1 Ny(r, (@N<T((r, *[HD+T,(r, *[H])+0().

On the other hand, by the assumptions (a) and (b), we have @(E)CA. It is
easy to see that

(2'2) Nf(rr D)gNgo(r) (0>) and Ng(r; D)éNq)(r) (0‘)) .
By (2.1) and (2.2), we have
(2.3 Ny(r, D)+Ny(r, D)SAT s(r, *[HD)+T (r, *[H])+O0(1).

Applying (1.4) to (2.3), we obtain

1(Ts(r, KV, D)+T,(r, KV, D))

SATy(r, *LTHD+T o(r, FLHD+N(r, R)+Ss(r, )+S,(r, ¢).
Thus we have
2.4) 7(Ts(r, L)+T,(r, L)<Ss(r, &)+S,(r, e)+2N(r, R).

By the assumption (c), luL@[D]“‘l has no base point in V for some veZ*
with yLePic (V). Let r=l'(V, yLQ[D]™Y) with f*r#0. By Theorem 1.4, we

have
Ny(r, )=Ts(r, vLQLD] )4+ 0(1)
svT(r, L)—T ;(r, [DD+0Q).
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Hence
Ti(r, [D)=vT s (r, L)+0(1).

In the same way, we also obtain
T, (r, [DD)=vT (r, L)+0(1).
On the other hand, by Proposition 1.2, there exists a constant C >0 such that

Clogr<T(r, L)+0(Q1)
and
Clog r<T, (r, L)+0().

Dividing (2.4) by T(r, L)+T ,(r, L) and letting r—+o0, we have 0<r<C’e+7’
for some non-negative constants C’ and 7’<7y. Note that C’ is independent of
¢. Letting ¢—0, we obtain a contradiction, 7<7’. This completes the proof of
Theorem 2.1.

In the case n=m, using (1.5), we can show the following unicity theorem
in the same way.

THEOREM 2.4. Let 1<m<n and f, gecMer*(X, V). Set

L=K, D)Q2*[H]*.

Assume that

(@) f(D)y=g D)+ as a point set (say E)

(b) f=g on E—(I(f)UI(g))

(c) the line bundle L—V is big

.. 2N(r, R)

@ Nmint o o, <L

Then tof=cog on X.

Note that Theorem 2.4 is obtained by S. Drouilhet in the case where X is
a smooth affine variety and target spaces are smooth projective varieties.

3. Meromorphic mappings into compact Riemann surfaces

In this section, we consider the case of m=1 and deduce some unicity
theorems for non-constant meromorphic mappings of X into a compact Riemann
surface (cf. [5]). In the case m=1, @ is the upper half plane H and " is a
finitely generated Fuchsian group of first kind which has no elliptic element.
The quotient space I'\H is a finite Riemann surface S=S—{a.}¢,, where S is
a compact Riemann surface of genus g, and a,, -+, a, are distinct d points in
S with 2g,—2+d>0. For a non-constant meromorphic mapping f: X—S, we
denote by T ;(r) the characteristic function of f with respect to the point bundle
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over S. We can identify HX%S, Z) with Z (cf. [8]). Then we have ¢,([D])
=d, so
Ts(r, [DD)=dT ¢(r)+0(1).

Set
. N R)
s R=lim fnf =705
and
Nf(ry D)

O (D)= l—lir?qurtip T, [DD)’

Then, from Theorem 1.5, we obtain the following defect relation which will
be used later.

PROPOSITION 3.1. Let f:X—S be a non-constant meromorphic mapping.
Then

3.0) 2 6,(a)52-280+u(f, R).

Remark 3.2. If there exists a non-constant meromorphic mapping f: X—S
for which (3.1) is valid in its proper sense; i.e., pu(f, R)<+co, we have

2g—2=p(f, R)<2g,—2+4d .

In the case g,=2, the existence of such a mapping is a delicate matter. It is
an interesting problem to determine the case where there exist non-constant
meromorphic mappings of X into S for which (3.1) remains valid in its proper
sense. In the case n=1, the existence of non-constant holomorphic mappings
is discussed from this view point in [13].

First we show a unicity theorem for meromorphic mappings of X into
P,(C) which yields Nevanlinna’s unicity theorem in the case X=C. We denote
by & the sheet number of n: X—C".

THEOREM 3.3. Let f, g: X—P(C) be non-constant meromorphic mappings.
Assume that f~'(a,)=g % a,) (=1, ---,2k+3) for distinct 2k+3 points a,, -+,
Qopys tn P(C). Then f=g on X.

For the proof of Theorem 3.3, we need the following lemma.
LEMMA 3.4, Let f: X— Py(C) be a non-constant meromorphic mapping. Then
(3.2) N(r, R)=2(k—1)T (r)+0(1).

In paticular,
plf, B<2k—1).

For the proof, see [12].
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Proof of Theorem 3.3. Set D= {a,}?*%* and S= P,(C)—D. Then there
exists a finitely generated Fuchsian group /" of first kind without torsion such
that S=I"\H. In Theorem 2.4, we let Py(C)=P(C) and ¢: P,(C)— Py(C) the
identity. Since [D]=(2k+3)[H] and K(P,(C))=2[H]™!, we obtain

L=K(P(C), D)Q2*[H] '=2kL—1)[H]>0.
By Lemma 3.4, we have

2N(r, R)S(2R—2){T s(r)+T ("} +0(1),
so that

- 2N(r, B) 2k—2
<
it e, D+7,6 D= 26—1 <

Note that f~(D)=g YD)+ @ by Proposition 3.1. Therefore we infer the desired
conclusion from Theorem 2.4.
The following theorem is another type extension of Nevanlinna’s theorem :

THEOREM 3.5. Let f, g: X—>Py(C) be non-constant meromorphic mappings.
Assume that
@) fYa,)=g Xa,) (i=1, ---, 5) for distinct five points a,, -+, as in Py(C)
(b) min{u(f, R), p(g, R)}<1/2.
Then f=g on X.

Proof of Theorem 3.5. Set D={a,, ---, as}. Let [ and ¢: P(C)— Py(C) be
as in the proof of Theorem 3.3. Then we have

L=K(P(C), D)R2H[H]'=[H]>0.

Hence
. 2N(r, R)
i it o e L)+ T, L)
=lim inf 2N(r, R)

T-400 Tf(r)+Tg(r)
=2 min{u(f, R), u(g, R)}<1.

The remainder of the proof is the same as in that of Theorem 3.3.

In the case X=C, we have Nevanlinna’s original unicity theorem. Note
that the number five in the case X=C is sharp. In fact, R. Nevanlinna has
given an example to show the number five is sharp:

Example. Let f(z)=e * and g(z)=e*. Put a,=0, a,=1, a,=—1 and a,=co.
Then f~Ya,)=g ¥a,) for i=1, ---, 4 but f#g.

Let us consider the case of go,=1. In [14], E.M. Schmid proved a unicity
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theorem for holomorphic mappings of an open Riemann surface into a smooth
elliptic curve T with some conditions. In the case X=C, Schmid’s unicity
theorem is stated as follows:

Let f, g: C—T be non-constant holomorphic mappings such that f~'(ay)=
g %a,) for distinct five point a,, ---, a; in T. Then f=g on C.

We will give unicity theorems for meromorphic mappings of X into S with
go=1. We can deduce the above result from these theorems. Set

ly=min{/eZ"; there exists a non-constant
holomorphic mapping ¢ : S— Py(C) of deg ¢p=I}.
THEOREM 3.6. Let S be a compact Riemann surface with genus go=1. Set

d=2{2go+1)Xk—1)+lo}+1.

Let f, g: X—S be non-constant meromorphic mappings. Assume that f~'(a,)=
g ¥a,) (=1, -, d) for distinct d points a,, ---, as in S. Then f=g on X.

Remark 3.7. By Riemann-Roch’s theorem, we give an upper bound of /,:
3.3 ly=go+1.

Hence we have
d=(2g+1D2E—1)+2.

In particular, if S is a smooth elliptic curve T, we have /,=2 and d=6k—1.

Proof of Theorem 3.6. Let D={a,, -, as} and S=S—D. Take a non-
constant meromorphic function ¢: S—P(C) with deg ¢=l,. In Theorem 2.4,
let Py(C)=P(C) and ¢=¢. Since c¢(¢*[H]) is the number of zeros of any
holomorphic section of (*[H]—S, it is easy to see that c,(¢*[H])=[,. Thus we
have

(3.4) c(L)=c(K(S, D)YR2*[H]™)
=(2g,+1)(2k—1)—-2.

On the other hand, by Riemann-Roch’s theorem, (2g,+1)[p] (p&S) is very
ample. It follows easily from Lemma 3.4 that

(3.5) N(r, R)=(2g,+1)2k—2)T s(r)+0(1)

and
N(r, R)=(2gi+1)(2k—2)T ,(n)+0(Q1).

Hence by (3.4) and (3.5),
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.. 2N(r, R) _ (Rget+D)(2k—2)

ot G DT, 0, D) @get D2h—D—2 <
Hence ¢-f=¢og by Theorem 2.4. Let B={e,, ---, ¢;} be the branch locus of
¢=¢. By Riemann-Hurwitz’ formula, it is easy to see that t<2(g,+l,—1). By
(3.5) and Proposition 3.1, we have

316,(a)S(28+1X2k—3)43.

Since
d—{(280+1)(2k—3)43} =2(go+l0)—1>t,

there exists at least one a,, say a,, which is not contained in B and @(a,)=
O,(a)<1l. Let g=f""a,)=g Y(a,. Since ¢ is a one-to-one mapping on a
neighbourhood W of f(g9), f(z2)=g(z) for all z= f*W)Ng~*(W). Thus we have
f=g on X. This completes the proof.

We can also prove a unicity theorem of another type which is proved by
S. Drouilhet [5] in the case where go=1 and X is a smooth affine algebraic
variety :

THEOREM 3.8. Let S be a compact Riemann surface with genus go=1. Set
d=2(go+1lo)—1.

Let f, g: X—S be non-constant meromorphic mappings. Ass_ume that
@) fYa,)=g Ya:) for distinct d points a,, -+, az in S

Then f=g on X.

Proof. Let D, I and ¢ be as in the proof of Theorem 3.6. Then we have
c(L)=c(K(S, D)R2*[H]™)
=2g0—2+d—2l,

:4go"'3 .
Thus
. 2N(r, R)
i It e T, D)
2 N(r, R)
“Ig, 3 mB E T,

2 .
ég—o_§ min{g(f, R), p(g, B)}<1.

Hence ¢o f=¢-g by Theorem 2.4. By the assumption (b), we have
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0,(2)=6,(a)< 5

for i=1, ---, d. The remainder of the proof is the same as in that of Theorem
3.7.

In the case g,=1, we can take d=5. The following example which is due
to E. M. Schmid [14] shows the number five is sharp in the case where S is a
smooth elliptic curve:

Example. Let A=Z-+7tZ (Im7>0) be a lattice in C such that T=/4\C and
7w : C—T the natural projection. We define transcendental holomorphic mappings
f,g&:C->T by f(z)=n(z) and by g(¢)==n(—z). Put a,==(0), a.==(1/2), a,=
n(z/2) and a,=zn(1+7)/2. Then f Y a,)=g Y a,) G=1, ---,4) but f+#g.
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