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DUAL CONVERGENCE THEOREMS FOR THE INFINITE

PRODUCTS OF RESOLVENTS IN BANACH SPACES

BY JONG SOO JUNG* AND WATARU TAKAHASHI

1. Introduction

Let E be a Banach space, AaExE an ra-accretive operator, and Jr the
resolvent of A. Given a sequence {rn}n=o of positive reals and xo^E, we de-
fine an iterative scheme by

Xn + 1 = JrnXn, 7 1 = 0 , 1 , 2 , - . . (1)

We shall consider this scheme in particular under the assumption that

Σr .-cx , . (2)
71 = 0

The convergence of (1) in Hubert spaces has been studied by Rockafellar
[17], Brezis and Lions [2], and Pazy [11]. Bruck and Reich [4] and Reich
[14] have obtained several results in uniformly convex Banach spaces. Bruck
and Passty [3] have established the convergence of weighted averages yn=

n n

Σ rtXi/ S τx in the same Banach space.
1=0 t = 0

The purpose of this paper is to study convergence theorems for iterative
scheme (1) in Banach spaces. In Section 3. we prove a dual convergence theo-
rem (Theorem 1) for (1) in a reflexive and strictly convex Banach space with
a uniformly Gateaux differentiate norm, and then apply this result to study
the problem of weak convergence. We also use Theorem 1 to show a result
in a Hubert space, which is closely related to the results of Brezis and Lions
[2], and Pazy [11]. In Section 4, we present additional results. Furthermore,
using the method of the proof of Theorem 1, we give a related result on the
asymptotic behavior of a certain nonlinear evolution equation.

2. Preliminaries

Let E be a real Banach space and let / denote the identity operator. Re-
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call that a subset AdExE with domain D(A) and range R(A) is said to be
accretive if \\xί—x2\\^\\xi—X2+r{yx—y2)\\ for all [*», yx~]^A, j = l , 2, and r > 0 .

If A is accretive, for each positive r, the resolvent Jr: R(I+rA)-^D(A) and
the Yosida approximation Ar: R(I+rA)-*R(A) are defined by Jr=z(I+rA)~ι and
Ar={I—Jr)/r, respectively. We know that Arx^AJrx for every x^R{I-\-rA)
and | |i4 rjc| |^|i4x| for every xeD(i4)Π/?(/+M), where |^4A:| =inf{||^|| : jyeAx}
see [1]. We also know that A"10=F(Jr) for each r>0, where F ( / r ) is the set
of fixed points of Jr. We say that A is ra-accretive if A is accretive and
R(I-\-rA)=E for each r > 0 . We denote the closure of a subset D of E by
c/(D) and its distance from a point # in E by d(x, D). We also define \D\ —
d(0, £>).

Recall that a Banach space E is said to be smooth provided the limit

l i m J * + ' 3 > II-11*11
ί-0 t

exists for each x and y in U={x^E: \\x\\ = l}. In this case, the norm of E is
said to be Gateaux differentiate. It is said to be uniformly Gateaux differ-
entiable if for each y^U, this limit is attained uniformly for x^U. The norm
is said to be Frechet differentiate if for each χ(=U, this limit is attained uni-
formly for y<Ξ.U. Finally, the norm is said to be uniformly Frechet differ-
entiable if the limit is attained uniformly for \_x, y"]^UxU. In this case, E
is said to be uniformly smooth. Since the dual £ * of E is uniformly convex
if and only if the norm of E is uniformly Frechet differentiate, every Banach
space with a uniformly convex dual is reflexive and has a uniformly Gateaux
differentiate norm. The reverse is false.

The duality mapping from E into the family of nonempty subsets of its
dual £ * is defined by

J(x)={x*t=E*:(x,x*)=\\x\\*=\\x*\\*}.

It is single valued if and only if E is smooth. If E is smooth, the duality
mapping / is said to be weakly sequentially continuous at 0 if {J(xn)} con-
verges to 0 in the sense of the weak-star topology of E*, as {xn\ converges
weakly to 0 in E. We also know that an operator AczExE is accretive if
and only if for each Xi^D(At) and each yt^Axx, i=l,2, there exists E
J(XI—X2) such that (jy*—y2, /)^0.

A Banach limit LIM is a bounded linear functional on l°° such that

inf ίn^LIMί n ^suρίn

and \ΛMtn=\ΛMtn+ι for all {tn} in l°°. Let {xn} be a bounded sequence in E.
Then we can define the real valued continuous convex function φ on E by

φ(z)=UM\\xn-z\\>

for each z^E. The following lemma was proved in [7, 18].
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LEMMA 1. Let E be a Banach space with a uniformly Gateaux differentiable
norm and let {xn} be a bounded sequence in E. Let LIM be a Banach limit and
u^E. Then

LIM \\xn-u\\2= inf LIM \\xn-z\\2

ZGE

if and only if

UM(z, J(xn-u))=0
for all Z(ΞE, where J is the duality mapping of E into E*.

3. Convergence theorems

We begin this section by recalling the following definition. A sequence
{tn} in Γ is said to be almost convergent if all of its Banach limits agree.
Lorentz's characterization of almost convergent sequence {tn} is that

( n \

Έιtt+k\/n exists uniformly in 6^0 [10]. We also say that a sequence
{xn} in a Banach space E is weakly almost convergent to 2GE if the weak

( n \

Σl Xι+k)/n=z uniformly in &;>0.
In [9], we proved the following result on the asymptotic behavior of in-

finite products of resolvents, which is crucial in the proof of Theorem 1.

LEMMA 2. Let E be a Banaόh space and AdExE an m-accretive. Suppose
oo

that {rn} are positive numbers with Σ ^ = ° ° . // {xn\ is defined by (1), then

for all fe^l,
n + k-l

lim \\xn — xn+ι\\/rn= lim \\xn—xn+k\\/ Σ rt

n n

Now, we establish a dual convergence theorem for infinite products of re-
solvents.

THEOREM 1. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm. Let AaExE be m-accretive and Oe

R(A). Suppose that {rn\ are positive numbers with ^]^<—°° // {xn\ is defined
t = 0

by (1), then there exists a point v in Λ-10 such that {J(xn—v)} is weakly almost
convergent to 0.

Proof. Since 0<=R(A), {xn} is bounded and d(0, R(A))=0. Then, lim Arnxn

= 0 by Lemma 2. So, for r>0, lim ||jcn—/r*πll=0. In fact, we know that
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»̂ J rXn\\ II Λ M | | ^ i 4 I

r II

Let LIM be a Banach limit and define a real valued function φ on E by

for each z^E. Then, φ is a continuous convex function and φ(z)-^ oo as \\z\\
—>oo. Since E is reflexive, φ attains its infimum over E. Let

Then it is easy to verify that K is nonempty, bounded, closed, and convex.
Furthermore K is invariant under Jr for r > 0 . In fact, since lim \\xn—JrXnW

n +oo

=0, we have, for each

φUrU)=UM\\xn-Jru\\

^UM\\xn-u\\2=φ(u).

We also observe that K contains a fixed point v of Jr. To see this, let W<Ξ.
Λ'^ and define

K'={U<=ΞK: \\u-w\\=d(w, K)}.

Then, since E is strictly convex, K' is a singleton. Let K'={v}. Then
||/rf— w\\ = WJrV—Jrw\\t£\\v—w\\, and so Jrv=v. On the other hand, since
{||#n—w||} is nonincreasing for any w eΛ'H), it converges. Then, φ(w) is in-
dependent of Banach limits. Thus we may assume that υ minimizes φ for any
Banach limit LIM. If follows from Lemma 1 that

for all Z^ΞE and any LIM. Thus {{zy J(xn—v))} is almost convergent to 0. In
other words, {J(xn—v)} is weakly almost convergent to 0.

Applying Theorem 1, we obtain the following result.

THEOREM 2. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm. Let AaExE be m-accretive and 0<BR(A).
Assume that J~ι:E*-±E is weakly sequentially continuous at 0. Let {rn\ be

CO

positive numbers with ^rt=oo. If {χn} is defined by (1), and if xn—xn+1->0
ί=0

as n->oo, then there exists a point v^A~λ0 such that {xn} converges weakly to v.

Proof. By Theorem 1, there exists a point v^A~ιQ such that {J(xn—v)\
is weakly almost convergent to 0. Since the norm of E is uniformly Gateaux
differentiate, the duality mapping is uniformly continuous on bounded subset
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of E from the strong topology of E to the weak-star topology of E*. Thus,
since {xn\ is bounded and xn—#n+r->0, {J(xn—v)—J(xn+i—v)} converges weakly
to 0. However this is a Tauberian condition for almost convergence, so
{J(xn—v)} converges weakly to 0. Since J~ι is weakly sequentially continuous
at 0, {xn\ converges weakly to v.

Remark 1. The conclusion of Theorem 2 has been known for a uni-

formly convex Banach space with a Frechet differentiable norm or with a

duality mapping that is weakly sequentially continuous at 0 (cf. [4], [14]). The

ΣI^i^t/ΣI^tΓ m uniformly convex Banach

space with a Frechet differentiable norm was shown by Bruck and Pussty [3].

{ n n Λ

Σ^t^i/Σ^r converges weakly to a
i=o 1 = 0 J

point of A~ι0.
As a consequence of Theorem 1, we also have the following.

COROLLARY 1. Let H be a Hubert space, ΛdHxH a maximal monotone
oo

operator and O^R(Λ). Suppose that {rn} are positive numbers with Σ n = ° °
ι=o

If \xn} is defined by (1), then {xn} is weakly almost convergent to a point v of
A~ι<), which is the asymptotic center of {xn}-

Proof. In a Hubert space, the duality mapping / is just the identity map-
ping. Thus, by Theorem 1, {xn\ is weakly almost convergent to a point v of
A~ι0. It is also clear that v is the asymptotic center of {xn}.

COROLLARY 2. Let H be a Hilbert space, AczHxH a maximal monotone
oo

operator and 0GR(A). Suppose that {rn} are positive numbers with ΣtΐΊ—00-
t = 0

// {xn\ is defined by the iteration (1), then {xn} converges weakly to a point of
A~ιQ if and only if {xn~Xn+ι} converges weakly to 0.

Proof. Weak l im(x n —x n + 1 )=0 is a Tauberian condition for almost con-
7l-»oo

vergence. Hence, by Corollary 1, {xn} converges weakly to a point of A~ιΰ.
The reverse is obvious.

Remark 2. In [2], Brezis and Lions showed that {xn\ converges weakly
to a point of A~x0 provided A—dψ is the subdifferential of a lower-semicon-

oo

tinuous proper convex function φ on H, or A is demipositive, or J]rt

2=oo (cf.
1 = 0

[11]). In this sense, Corollaries 1 and 2 are new results in Hilbert space.
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4. Additional results

In this section, we obtain some results using the theorems of the previous
section.

In the iteration scheme (1), let r > 0 and rn=r for all n=0, 1, ••• . Then
for each x^E, xn+i=Jrnx> By Theorem 1, we obtain the following result.

THEOREM 3. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm. Let AdExE be m-accretive and r > 0 .
// OΪΞR(A), then there exists a point v of A'^ such that {J(Jrnx—v)} is weakly
almost convergent to 0 for each x<=E.

Remark 3. Theorem 3 has been known in case of uniformly smooth Banach
spaces which involve the fixed point property for nonexpansive mappings (cf.
[5, 15]). However, our result does not require the property.

As a consequence of Theorem 2, we obtain the following result, which is
known under the assumption that £ is a uniformly convex Banach space with
a Frechet differentiable norm (cf. [6, p. 53], [16]) or with a duality mapping
that is weakly sequentially continuous at 0 (cf. [4]).

COROLLARY 3. Let E be a reflexive and strictly convex Banach space with
a uniformly Gateaux differentiable norm. Let AdExE be m-accretive, r > 0 and
O^R(A). If J~~ι\E*^E is weakly sequentially continuous at 0, then for each
x<=E, {Jrnx} converges weakly to a point of A'1^.

Finally, by the method of the proof of Theorem 1, we study the conver-
gence of the solutions of an evolution equation.

Let AdExE be accretive operator, g: [0, oo)->[0, oo) a nonincreasing

ίoo

g(r)dr=oo,
0

and consider the following initial value problem:

(3)

Several results which are related to this equation can be found in [8, 12, 13].
The following result is proved without using the fixed point property for non-
expansive mappings (cf. [8, Theorem 12]).

THEOREM 4. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm and AczExE be an accretive operator
that satisfies R(I+rA)Z)cl(D(A)) for all r > 0 . Assume that cl(D(A)) is convex,
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limg'(t)/g*(t)=0, 0e/?G4), and x^cl{D{A)). Let u: [0, oo)->J5 be a limit solu-

tion of (4). Then the strong lim u(t) exists and belongs to A"^.
t->oo

Proof. Let xn=u(tn) with ίn-»oo. Since 0<^R(A), the sequence {xn} is
bounded. Since we may assume that u is a strong solution of (4), lim \xn—JrXnW

n-»<»

^ l i m r | i 4 x n | = 0 , where Jr is the resolvent of A (cf. [13]). Let LIM be a

Banach limit and define a real valued, continuous and convex function φ on
cl(D(A)) by φ(z)=UM\\xn-z\\2.

Let K be the set of minimizers of φ over cl(D(A)) as in the proof of
Theorem 1. Then, by the argument used in the proof, K contains a fixed
point of Jr. Since VGA^O, by the proof of [8, Proposition 11], in which was
used the condition on gy lim sup (xn—x, J(xn—v))^0. On the other hand, since

n o o

v(=K, we can also show that LlM(x—v, J(xn—v))<.0. Thus LIM ||jcn—vlΓ^O,
and there exists a subsequence {xnk\ of {xn} which converges strongly to v.
If {w(sn)} converges to w, then we have (v—x, J(v—w))^0 and (w—x, J{w—v))
< 0̂. Therefore we have v—w and hence the result follows.
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