INNER RADII OF TEICHMÜLLER SPACES OF FINITELY GENERATED FUCHSIAN GROUPS

By Hiro-o Yamamoto

1. Introduction

Let Γ be a Fuchsian group keeping the lower half plane L invariant. The Teichmüller space $T(\Gamma)$ of Γ is a bounded domain of the Banach space $B(L, \Gamma)$ of bounded quadratic differentials for Γ. The inner radius $i(\Gamma)$ of $T(\Gamma)$ is the radius of the maximal ball in $B(L, \Gamma)$ centered at the origin which is included in $T(\Gamma)$. If $T(\Gamma)$ is not a single point, then by a theorem of Ahlfors-Weill [3] it holds that $i(\Gamma) \geqq 2$. In particular, if Γ is finitely generated of the first kind and if $T(\Gamma)$ is not a single point, then the strict inequality $i(\Gamma)>2$ holds (cf. [10]). Denote by $I(\Gamma) \inf i\left(W \Gamma W^{-1}\right)$, where the infimum is taken over for all quasiconformal automorphisms W of the upper half plane compatible with Γ. Recently T. Nakanishi [10] proved the following.

Theorem 1 (T. Nakanishi). Let Γ qe a finitely generated Fuchsian group of the first kind such that $T(\Gamma)$ is not a single pornt. Then $I(\Gamma)$ is equal to 2.

The purpose of this note is to prove the following generalization to Theorem 1.

Theorem 2. Let Γ be a finitely generated Fuchsian group such that $T(\Gamma)$ is not a single point. Then $I(\Gamma)$ is equal to 2.

The proof of Theorem 2 is immediate from Theorem 1 and the following.
Theorem 3. Let Γ be a finitely generated Fuchsian group of the second kind. Then $i(\Gamma)$ is equal to 2 .

A careful reading of the proof of Theorem 3 shows the readers an alternative proof of Theorem 1, though we omit it. Our proof of Theorem 3 depends on results on B-groups [1], [4] and Koebe groups [9].

The author expresses his hearty thanks to the referee and Professor H. Sekigawa for their pointing out a lot of errors in the original manuscript of this note.

[^0]
2. Preliminaries

2.1. Let $P S L(2, \boldsymbol{C})$ be the group of all conformal automorphisms of the extended complex plane $\boldsymbol{C} \cup\{\infty\}$. Denote by $\operatorname{PSL}(2, \boldsymbol{R})$ the subgroup of $\operatorname{PSL}(2, \boldsymbol{C})$ which consists of all conformal automorphisms of the upper half plane $U=\{z ; \operatorname{Im} z>0\}$. A Fuchsian group is a discrete subgroup of $\operatorname{PSL}(2, \boldsymbol{R})$. A Fuchsian group is of the first kind (resp. the second kind) if it acts discontinuously at no point (resp. some point) of the real axis.
2.2. We define a hyperbolic metric $\rho_{U}(z)|d z|$ in U as $(2 \operatorname{Im} z)^{-1}|d z|$. Let f be a holomorphic function of U onto a domain $D \subset C$ with more than two boundary points. Then the hyperbolic metric $\rho_{D}(z)|d z|$ is defined by $\rho_{D}(f(z))$. $\left|f^{\prime}(z)\right|=\rho_{U}(z)$. Assume moreover that D is a connected and simply connected domain of C. Then $(4 X(z))^{-1} \leqq \rho_{D}(z)$, where $X(z)$ is the Euclidean distance between a point z of D and the boundary of D. In particular, if $D=\{z ;|\operatorname{Im} z|$ $<\pi / 2\}$, then $1 /(2 \pi) \leqq \rho_{D}(z)$. If $D_{1} \subset D_{2}$, then by Schwarz's lemma we see that $\rho_{D_{2}}(z) \leqq \rho_{D_{1}}(z)[5 ;$ p. 45].
2.3. A holomorphic function $\phi(z)$ in the lower half plane $L=\{z ; \operatorname{Im} z<0\}$ is a bounded quadratic differential for a Fuchsian group Γ if

$$
\|\phi\|=\sup _{z \in L} \rho_{L}(z)^{-2}|\phi(z)|<\infty
$$

and

$$
\phi(\gamma(z)) \gamma^{\prime}(z)^{2}=\phi(z) \quad \text { for all } \gamma \in \Gamma \text { and all } z \in L
$$

The space $B(L, \Gamma)$ of all bounded quadratic differentials for Γ can be regarded as a Banach space with the norm \|\| defined above.
2.4. An element γ of Γ is primitive if $j^{n}=\gamma$ has no solution in Γ for $n \neq$ ± 1. The following lemma is well known but the author has never seen what is stated in this form.

Lemma 1. Let Γ be a Fuchsian group keeping the upper half plane invariant which contains a primitive parabolic element $p(z)=z+1$. Then for each $\phi \in$ $B(L, \Gamma)$ it holds that

$$
\sup _{(\operatorname{Im} z \leqq-1)} \rho_{L}(z)^{-2}|\phi(z)|=\sup _{(\operatorname{Im} z=-1)} \rho_{L}(z)^{-2}|\phi(z)|
$$

Proof. Recall that $\phi(z)$ has a Fourier expansion $\sum_{n=1}^{\infty} \exp (-2 \pi i n z)[5 ; \mathrm{p}$. 111]. Note that

$$
4 y^{2}|\phi(z)|=4 y^{2} \exp (2 \pi y)\left|\sum_{n=1}^{\infty} \exp (-2 \pi i(n-1) z)\right|
$$

where $y=\operatorname{Im} z$. Then by the principle of the maximal absolute value and $d\left(y^{2} \exp 2 \pi y\right) / d y \geqq 0$ for $y \leqq-1 / \pi$, we have the desired conclusion.
2.5. Let $Q(\Gamma)$ be the set of all conformal homeomorphisms f of L admitting quasiconformal extensions \hat{f} to the extended complex plane which are
compatible with Γ, that is, $\hat{f} \Gamma \hat{f}^{-1} \subset P S L(2, \boldsymbol{C})$. For each $f \in Q(\Gamma)$, its Schwarzian derivative $[f]=\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2$ belongs to $B(L, \Gamma)$. The Teichmüller space $T(\Gamma)$ of Γ is the image of $Q(\Gamma)$ under the mapping $f \mapsto[f]$. The inner radius $i(\Gamma)$ of $T(\Gamma)$ is $\inf _{\phi \in B(L, \Gamma)-T(\Gamma)}\|\boldsymbol{\phi}\|$. If $g_{1}, g_{2} \in P S L(2, \boldsymbol{C})$, then $\left[g_{2} \circ f \circ g_{1}\right]$ $=\left([f] \circ g_{1}\right) g_{1}{ }^{2}$ and $\left\|\left[g_{2} \circ f \circ g_{1}\right]\right\|=\|[f]\|$. In particular, if $g \in P S L(2, \boldsymbol{R})$, then $f \circ g^{-1} \in Q\left(g \Gamma g^{-1}\right)$ and $i\left(g \Gamma g^{-1}\right)=i(\Gamma)$.
2.6. A component of the region of discontinuity of a Kleinian group G is called a component of G. An invariant component of G is a component of G which is invariant under G. A Kleinian group G is a B-group if G has exactly one simply connected invariant component. An Euclidean disc (including a half plane) D is a horodisc of a primitive parabolic element g of G if $j(D)=D$ for each $j \in\langle g\rangle$, the cyclic group generated by g and $j(D) \cap D=\varnothing$ for each $j \in$ $G-\langle g\rangle$. A B-group G is regular if for each primitive parabolic element g of G there exist two mutually disjoint horodiscs of g (Abikoff [1]). A regular B-group is a Koebe group if each noninvariant component of G is an Euclidean disc. Note that our definition of a Koebe group is stronger than Maskit's original one [9].

3. Proof of theorem 3

3.1. Let Γ be a finitely generated Fuchsian group of the second kind such that L / Γ is a compact Riemann surface with finitely many points and $m \geqq 1$ discs removed. Then classical is the existence of a hyperbolically convex fundamental region ω for Γ in L satisfying the following: There exist $2 m$ sides $S_{1}, \cdots, S_{2 m}$ of ω consisting of hyperbolic half lines and primitive hyperbolic elements $\alpha_{1}, \cdots, \alpha_{m}$ of Γ such that $\alpha_{k}\left(S_{k}\right)=S_{k+m}$ and such that a component of $\boldsymbol{R} \cup\{\infty\}$ minus the fixed points of α_{k} is included in the region of discontinuity of $\Gamma, k=1, \cdots, m$.

Let E_{k} be the geodesic included in ω tangent to S_{k} and $S_{k+m}, k=2, \cdots, m$. Let $H_{n}, H_{n}{ }^{\prime}$ and $E_{1, n}$ be geodesics included in ω such that $S_{1}, H_{n}, E_{1, n}, H_{n}{ }^{\prime}$ and S_{1+m} lie in this order and such that the hyperbolically convex domain ω_{n} surrounded by all sides of ω together with $H_{n}, E_{1, n}, H_{n}{ }^{\prime}$ and E_{2}, \cdots, E_{m} is of a finite hyperbolic area. Let $\varepsilon_{k} \in P S L(2, \boldsymbol{R})\left(\right.$ resp. $\left.\varepsilon_{1, n} \in P S L(2, \boldsymbol{R})\right)$ be an elliptic transformation of order 2 keeping E_{k} (resp. $E_{1, n}$) and the middle point of E_{k} (resp. $E_{1, n}$) invariant, $k=2, \cdots, m$. Let γ_{n} be a hyperbolic transformation with $\gamma_{n}\left(H_{n}\right)=H_{n}{ }^{\prime}$ and $\gamma_{n}\left(\omega_{n}\right) \cap \omega_{n}=\varnothing$. Then Γ and γ_{n} and $\varepsilon_{1, n}, \varepsilon_{2}, \cdots, \varepsilon_{m}$ generate a finitely generated Fuchsian group Γ_{n} of the first kind with the fundamental region ω_{n}. We assume that $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ converges to a parabolic transformation. Then $\left\{E_{1, n}\right\}_{n=1}^{\infty}$ necessarily degenerates to a point.
3.2. Let $p_{1, n}, p_{2, n}, \cdots, p_{t, n}$ be a maximal list of primitive parabolic elements of Γ_{n} whose fixed points lie on the boundary of ω_{n} such that $p_{r, n} \neq$ $p_{s, n}{ }^{ \pm 1}, 1 \leqq r<s \leqq t$. Let $D_{s, n}=\xi_{s, n}(\{z ; \operatorname{Im} z<-1\})$ be the horodisc of the primitive parabolic element $p_{s, n}$, where $\xi_{s, n}$ is the element of $\operatorname{PSL}(2, \boldsymbol{R})$ such that $\xi_{s, n}{ }^{-1} \circ p_{s, n} \circ \xi_{s, n}$ is of the form $z \mapsto z+1$. The existence of such a horodisc is
immediate from Shimizu's lemma [5; p. 58]. For our later use, we prove a preliminary lemma.

Lemma 2. Let u_{n} be a point of $\omega_{n}-\bigcup_{s=1}^{t} D_{s, n}$. Then $\left\{d_{L}\left(u_{n}, \gamma_{n}\left(u_{n}\right)\right)\right\}_{n=1}^{\infty}$ is bounded, where $d_{L}\left(u_{n}, \gamma_{n}\left(u_{n}\right)\right.$ is the hyperbolic distance between u_{n} and $\gamma_{n}\left(u_{n}\right)$ measured by $\rho_{U}(z)|d z|$.

Proof. The axis A_{n} of γ_{n} divides ω_{n} into $\omega_{n}{ }^{1}$ and $\omega_{n}{ }^{2}$ whose boundary includes $E_{1, n}$. Let v_{n} be a point of the closure of $\omega_{n}-\bigcup_{s=1}^{t} D_{s, n}$ such that $d_{L}\left(v_{n}, A_{n}\right) \geqq d_{L}\left(z, A_{n}\right)$ for all $z \in \omega_{n}-\bigcup_{s=1}^{t} D_{s, n}$. Note the existence of a compact subset of L containing all $v_{n} \in \omega_{n}{ }^{1}$. Then $d_{L}\left(v_{n}, \gamma_{n}\left(v_{n}\right)\right)$ is less than a constant for all $v_{n} \in \boldsymbol{\omega}_{n}{ }^{1}$. Let τ_{n} be the element of $\operatorname{PSL}(2, \boldsymbol{R})$ such that $\tau_{n}\left(z_{n}{ }^{*}\right)=-i$ and $\tau_{n}{ }^{\prime}\left(z_{n}{ }^{*}\right)>0$, where $z_{n}{ }^{*}$ is the fixed point of $\varepsilon_{1, n}$ in ω_{n}. Then $\left\{\tau_{n} \circ \gamma_{n} \circ \tau_{n}{ }^{-1}\right\}_{n=1}^{\infty}$ converges to a parabolic transformation and a compact subset of L contains all $\tau_{n}\left(v_{n}\right)$ for all $v_{n} \in \omega_{n}{ }^{2}$. By the same reasoning as above we see that $d_{L}\left(v_{n}, \gamma_{n}\left(v_{n}\right)\right)=d_{L}\left(\tau_{n}\left(v_{n}\right), \tau_{n} \circ \gamma_{n} \circ \tau_{n}{ }^{-1}\left(\tau_{n}\left(v_{n}\right)\right)\right.$ is less than a constant for all $v_{n} \in \boldsymbol{\omega}_{n}{ }^{2}$. Note that $d_{L}\left(u_{n}, A_{n}\right) \leqq d_{L}\left(v_{n}, A_{n}\right)$. Then $d_{L}\left(u_{n}, \gamma_{n}\left(u_{n}\right)\right) \leqq d_{L}\left(v_{n}, \gamma_{n}\left(v_{n}\right)\right)$. Now our assertion is obvious.
3.3. Now we begin to make a proof of Theorem 3. Let χ_{n} be the isomorphism of Γ_{n} onto a regular B-group $\chi_{n}\left(\Gamma_{n}\right)$ on the boundary of $T\left(\Gamma_{n}\right)$ such that an element $\chi_{n}(\gamma)$ of $\chi_{n}\left(\Gamma_{n}\right)$ is parabolic if and only if γ is either parabolic or conjugate to γ_{n} in Γ_{n}. Let w_{n} be a conformal homeomorphism of L onto the invariant component of $\chi_{n}\left(\Gamma_{n}\right)$ such that $\chi_{n}(\gamma) \circ w_{n}(z)=w_{n} \circ \gamma(z)$ for all $z \in L$ and all $\gamma \in \Gamma$.

The existence of such a χ_{n} and a w_{n} is shown in Bers [4] and Abikoff [1]. Maskit [9] proved that there exist a Koebe group G_{n} and a conformal homeomorphism \jmath_{n} of the invariant component of $\chi_{n}\left(\Gamma_{n}\right)$ onto that U_{n} of G_{n} such that $j_{n} \chi_{n}\left(\Gamma_{n}\right) j_{n}^{-1}=G_{n}$ and such that $j_{n} \circ \chi_{n}\left(\gamma_{n}\right) \circ j_{n}^{-1}$ is parabolic if and only if so is $\chi_{n}(\gamma)$. Set $f_{n}=j_{n} \circ w_{n}$. Then $\zeta=f_{n}(z)$ is a conformal homeomorphism of L onto Δ_{n} and $f_{n} \circ \gamma_{n} \circ f_{n}^{-1}$ is parabolic, so that $\left[f_{n}\right]$ does not belong to $T\left(\Gamma_{n}\right)$. Since $\left\|\left[\eta \circ f_{n}\right]\right\|=\left\|\left[f_{n}\right]\right\|$ for all $\eta \in \operatorname{PSL}(2, \boldsymbol{R})$, without loss of generality we may assume that $g_{n}=f_{n} \circ \gamma_{n} \circ f_{n}^{-1}$ is of the form $\zeta \mapsto \zeta+b_{n}, b_{n}>0$, and that two noninvariant components $D_{n}{ }^{+}$and $D_{n}{ }^{-}$of G_{n} invariant under g_{n} are $\{\xi ; \operatorname{Im} \zeta>\pi / 2\}$ and $\{\zeta ; \operatorname{Im} \zeta<-\pi / 2\}$, respectively. Let z_{n} be a point of both the axis of γ_{n} and the fundamental region ω_{n} constructed in No. 3.1. Then by the same reasoning as above, we may also assume that $\operatorname{Re} f_{n}\left(z_{n}\right)=0$. From basic properties of the hyperbolic metric stated in No. 2.2 we have

$$
\begin{aligned}
& d_{L}\left(z_{n}, \gamma_{n}\left(z_{n}\right)\right)=d_{\Lambda_{n}}\left(f_{n}\left(z_{n}\right), f_{n}\left(\gamma_{n}\left(z_{n}\right)\right)\right. \\
& \quad \geqq d_{\{\zeta ; \operatorname{Im} \zeta \mid<\pi / 2)}\left(f_{n}\left(z_{n}\right), g_{n}\left(f_{n}\left(z_{n}\right)\right)\right) \geqq b_{n} / 2 \pi .
\end{aligned}
$$

Since $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ converges to a parabolic transformation, the first term in the above inequalties converges to zero. Now we have the first assertion in the
following.
Lemma 3. (i) The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of positive numbers converges to zero.
(ii) The invariant component Δ_{n} of G_{n} includes the region $\{\zeta ;|\operatorname{Im} \zeta|<$ $\left.(\pi / 2)-b_{n}\right\}$.

Proof. We have only to prove (ii). By the assumptions on χ_{n} we see that G_{n} is constructed from Fuchsian groups $H_{n}{ }^{+}=\left\{g \in G_{n} ; g\left(D_{n}{ }^{+}\right)=D_{n}{ }^{+}\right\}$and $H_{n}{ }^{-}=$ $\left\{g \in G_{n} ; g\left(D_{n}{ }^{-}\right)=D_{n}-\right\}$ with the amalgamated parabolic cyclic subgroup generated by g_{n} via Maskit's combination theorem I. For terminologies see [6], [7] and [8].

For a Möbius tronsformation h of the form $z \mapsto(a z+b) /(c z+d)$ with $c \neq 0$, that is, $h^{-1}(\infty)=-d / c \neq \infty$, we define the isometric circle $I(h)$ of h as $\left\{z ;\left|z-h^{-1}(\infty)\right|=1 /|c|\right\}$. Denote by ext $I(h)$ the unbounded component of $\boldsymbol{C}-I(h)$. The region $\omega_{n}{ }^{+}=\left\{\zeta ; 0<\operatorname{Re} \zeta<b_{n}\right\} \cap\left(\cap^{+} \operatorname{ext} I(h)\right)$ (resp. $\omega_{n}{ }^{-}=\{\zeta ; 0<$ $\left.\operatorname{Re} \zeta<b_{n}\right\} \cap\left(\cap^{-} \operatorname{ext} I(h)\right)$ is a fundamental region for $H_{n}{ }^{+}$(resp. $H_{n}{ }^{-}$), where the intersection \cap^{+}(resp. \cap^{-}) is taken over for all elements of $J_{n}{ }^{+}=\left\{h \in H_{n}{ }^{+}\right.$; $h(\infty) \neq \infty$ (resp. $J_{n}{ }^{-}=\left\{h \subseteq H_{n}{ }^{-} ; h(\infty) \neq \infty\right\}$). Maskit's combination theorem I shows that $\omega_{n}{ }^{+} \cap \omega_{n}{ }^{-}$is a fundamental region for G_{n}. Note that centers $h^{-1}(\infty)$ of the isometric circles of $h_{n} \in J_{n}{ }^{+}$(resp. $J_{n}{ }^{-}$) lie on the line $\{\zeta ; \operatorname{Im} \zeta=\pi / 2\}$ (resp. $\{\zeta ; \operatorname{Im} \zeta=-\pi / 2\}$). Since G_{n} contains the element $g_{n}(z)=z+b_{n}$ the radius of the isometric circle of each element of $J_{n}{ }^{+} \cup J_{n}{ }^{-}$is less than or equal to b_{n} by Shimizu's lemma. Therefore Δ_{n} includes the region $\left(\cup_{n=-\infty}^{\infty} g_{n}{ }^{s}\left(\omega_{n}{ }^{+} \cap \omega_{n}{ }^{-}\right)\right) \cap$ $\{\zeta ;|\operatorname{Im} \zeta|<\pi / 2\}$, which also does the region $\left\{\zeta ;|\operatorname{Im} \zeta|<(\pi / 2)-b_{n}\right\}$.

3.4. Denote by A_{n} the axis of γ_{n}.

LEMMA 4. There exists a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ of positive numbers converging to zero such that $f_{n}\left(A_{n}\right)$ is included in $\left\{\zeta ;|\operatorname{Im} \zeta|<t_{n}\right\}$.

Proof. Assume that our assertion is false. Let a_{n} be the subarc of A_{n} bounded by z_{n} and $\gamma_{n}\left(z_{n}\right)$. Let ζ_{n} be a point of $f_{n}\left(a_{n}\right)$ such that $\left|\operatorname{Im} \zeta_{n}\right|=$ $\max _{\zeta \in a_{n}}|\operatorname{Im} \zeta|$. Then without loss of generality we may assume the existence of a subsequence, again denoted by $\left\{\zeta_{n}\right\}_{n=1}^{\infty}$, of $\left\{\zeta_{n}\right\}_{n=1}^{\infty}$ such that $\left\{\operatorname{Im} \zeta_{n}\right\}_{n=1}^{\infty}$ converges to a positive number v_{0}. By means of basic properties of the hyperbolic metric stated in No. 2.2, we have

$$
\begin{aligned}
& \int_{a_{n}} \rho_{L}(z)|d z|=\int_{f_{n}\left(a_{n}\right)} \rho_{\Delta_{n}}(\zeta)|d \zeta| \\
& \quad \geqq \int_{f_{n}\left(a_{n}\right)} \rho_{\langle\zeta ;| \operatorname{Im}(\langle<\pi / 2)}(\zeta)|d \zeta| \geqq(1 / 2 \pi) \int_{f_{n}\left(a_{n}\right)}|d \zeta| .
\end{aligned}
$$

Since the first term converges to zero, so does the Euclidean length $\int_{f_{n}\left(a_{n}\right)}|d \zeta|$ of $f_{n}\left(a_{n}\right)$. Therefore for a sufficiently large n on, the $\operatorname{arc} f_{n}\left(a_{n}\right)$ is included
in $\left\{\zeta ; \operatorname{Im} \zeta>v_{0} / 2\right\}$, and so is $f_{n}\left(A_{n}\right)=\bigcup_{s=-\infty}^{\infty} g_{n}{ }^{s}\left(f_{n}\left(a_{n}\right)\right)$. The geodesic $f_{n}\left(A_{n}\right)$ in Δ_{n} divides Δ_{n} into the upper half $\Delta_{n}{ }^{+}$and the lower half $\Delta_{n}{ }^{-}$, both of which are invariant under $\left\langle g_{n}\right\rangle$. The region $\Delta_{n}{ }^{+}$is included in $\Pi_{n}{ }^{+}=\left\{\zeta ; v_{0} / 2<\operatorname{Im} \zeta\right.$ $<\pi / 2\}$ and by Lemma $2 \Delta_{n}{ }^{-}$includes $\Pi_{n}{ }^{-}=\left\{\zeta ;(-\pi / 2)+b_{n}<\operatorname{Im} \zeta<v_{0} / 2\right\}$. Let $S_{1, n}, S_{2, n}, S_{3, n}$ and $S_{4, n}$ be sets of all loops separating two boundary components of $\Delta_{n}{ }^{+} /\left\langle g_{n}\right\rangle, \Pi_{n}^{+} /\left\langle g_{n}\right\rangle, \Pi_{n}-/\left\langle g_{n}\right\rangle$ and $\Delta_{n}^{-} /\left\langle g_{n}\right\rangle$, respectively. Denote by $\lambda_{k, n}$ the extremal length of $S_{k, n}$. Then $\lambda_{1, n}{ }^{-1} \geqq \lambda_{2, n}{ }^{-1}>\lambda_{3, n}{ }^{-1} \geqq \lambda_{4, n}{ }^{-1}$ if n is large enough so that $v_{0} / 2>b_{n}[2 ; \mathrm{p} .15]$. On the other hand, the Moebius transformation r_{n} of the form $z \mapsto-\imath z$ maps $f_{n}^{-1}\left(\Delta_{n}{ }^{+}\right)=\{z ;-\pi / 2<\arg z<0\}$ onto $f_{n}^{-1}\left(\Delta_{n}^{-1}\right)=\{z ;-\pi<\arg z<-\pi / 2\}$ and it holds that $\gamma_{n} \circ r_{n}=r_{n} \circ \gamma_{n}$. Hence the conformal homeomorphism $f_{n} \circ r_{n} \circ f_{n}{ }^{-1}$ maps $\Delta_{n}{ }^{+}$onto $\Delta_{n}{ }^{-}$and $f_{n} \circ r_{n} \circ f_{n}{ }^{-1} \circ g_{n}=$ $g_{n} \circ f_{n} \circ r_{n} \circ f_{n}^{-1}$. Therefore $\Delta_{n}{ }^{+} /\left\langle g_{n}\right\rangle$ is conformal to $\Delta_{n}^{-} /\left\langle g_{n}\right\rangle$ and $\lambda_{1, n}=\lambda_{4, n}$. This contradiction yields us to conclude that our assertion is true.
3.5. Let u_{n} be a point of the closure of $\omega_{n}-\bigcup_{s=1}^{t} D_{s, n}$ with $\rho_{L}\left(u_{n}\right)^{-2}\left|\left[f_{n}\left(u_{n}\right)\right]\right|$ $=\sup _{z \in L} \rho_{L}(z)^{-2}\left|\left[f_{n}(z)\right]\right|$. The existence of such a point is immediate from Lemma 1. Without loss of generality we may assume that $d_{L}\left(u_{n}, A_{n}\right) \leqq$ $d_{L}\left(u_{n}, \gamma\left(A_{n}\right)\right)$ for all $\gamma \in \Gamma_{n}$ and that $0 \leqq \operatorname{Re} f_{n}\left(u_{n}\right)<b_{n}$. As is stated in No. 3.2, the point $z_{n} \in \omega_{n}$ lies on the axis of γ_{n}.

Now two cases can occur: (i) $\left\{d_{L}\left(u_{n}, z_{n}\right)\right\}_{n=1}^{\infty}$ is bounded. (ii) Otherwise.
We shall prove that (ii) never happens. Assume that (ii) does. Then since $\left\{d_{\Lambda_{n}}\left(f_{n}\left(u_{n}\right), f_{n}\left(z_{n}\right)\right)\right\}_{n=1}^{\infty}$ is unbounded, a subsequence, again denoted by $\left\{f_{n}\left(u_{n}\right)\right\}_{n=1}^{\infty}$, of $\left\{f_{n}\left(u_{n}\right)\right\}_{n=1}^{\infty}$ converges to a point ζ_{0}, which is either $\pi i / 2$ or $-\pi i / 2$. Let, say, ζ_{0} by $\pi i / 2$. Then each $f_{n}\left(u_{n}\right)$ is contained in $\Delta_{n}{ }^{+}$. Set $\eta_{n}(\zeta)$. $\left(\zeta-\operatorname{Re} f_{n}\left(u_{n}\right)-\pi i / 2\right) /\left|\operatorname{Im} f_{n}\left(u_{n}\right)-\pi / 2\right|$. Then η_{n} takes the point $f_{n}\left(u_{n}\right)$ and the line $\operatorname{Im} \zeta=\pi / 2$ into $-i$ and the real axis, respectively, and $\eta_{n}\left(\Delta_{n}\right) \subset L$. Note that $\eta_{n}\left(\Delta_{n}\right)$ includes the domain surrounded by $\cup \eta_{n}\left(h\left(f_{n}\left(A_{n}\right)\right)\right.$, where the union is taken over all $h \in H_{n}{ }^{+}$. The parabolic transformation $\eta_{n} \circ g_{n} \circ \eta_{n}{ }^{-1}$ is of the form $\zeta \mapsto \zeta+e_{n}, e_{n}>0$. Note that

$$
\begin{aligned}
& d_{L}\left(u_{n}, \gamma_{n}\left(u_{n}\right)\right)=d_{\eta_{n} \circ f_{n}(L)}\left(\eta_{n} \circ f_{n}\left(u_{n}\right), \eta_{n} \circ f_{n}\left(\gamma_{n}\left(u_{n}\right)\right)\right) \\
\geqq & d_{L}\left(\eta_{n} \circ f_{n}\left(u_{n}\right), \eta_{n} \circ g_{n}\left(f_{n}\left(u_{n}\right)\right)\right)=d_{L}\left(\eta_{n} \circ f_{n}\left(u_{n}\right), \eta_{n} \circ f_{n}\left(u_{n}\right)+e_{n}\right) .
\end{aligned}
$$

Since $\left\{d_{L}\left(u_{n}, \gamma_{n}\left(u_{n}\right)\right)\right\}_{n=1}^{\infty}$ is less than a constant e_{0} by Lemma 2 , so is $\left\{e_{n}\right\}_{n=1}^{\infty}$. This together with Shimizu's lemma shows that each element of $\eta_{n} J_{n}{ }^{+} \eta_{n}{ }^{-1}$ has the isometric circle whose radius is less than or equel to e_{0}. Since $K_{n}=$ $\inf _{\zeta \in \eta_{n}\left(f_{n}\left(A_{n}\right)\right)}|\operatorname{Im} \zeta| \rightarrow \infty$ by Lemma 4 and since for each $h \in J_{n}{ }^{+}$the arc $\eta_{n}\left(h\left(f_{n}\left(A_{n}\right)\right)\right) \subset \eta_{n}\left(\Delta_{n}\right)$ is included in $\left\{\zeta \in L ; \operatorname{Im} \zeta>-e_{0}{ }^{-2} / K_{n}\right\}$, the kernel of $\left\{\eta_{n}\left(\Delta_{n}\right)\right\}_{n=1}^{\infty}$ is L. Let ξ_{n} be the element of $\operatorname{PSL}(2, \boldsymbol{R})$ such that $\xi_{n}(-1)=u_{n}$ and $\left(\eta_{n} \circ f_{n} \circ \xi_{n}\right)^{\prime}(-i)>0$. Then by Carathéodory kernel theorem $\eta_{n} \circ f_{n} \circ \xi_{n}$ converges locally uniformly to a conformal homeomorphism F which maps L onto the kernel L of $\left\{\eta_{n}\left(\Delta_{n}\right)\right\}_{n=1}^{\infty}$. Obviously F is a Möbius transformation and $[F](z)=0$. Using a theorem of Weierstrass, we have

$$
\begin{aligned}
\left\|\left[f_{n}\right]\right\| & =\left\|\left[\eta_{n} \circ f_{n} \circ \xi_{n}\right]\right\| \\
& =\sup _{z \in L}\left|(2|\operatorname{Im} z|)^{2}\left[\eta_{n} \circ f_{n} \circ \xi_{n}\right](z)\right| \\
& =(2(-1))^{2}\left|\left[\eta_{n} \circ f_{n} \circ \xi_{n}\right](-i)\right| \longrightarrow 4|[F](-i)|=0 .
\end{aligned}
$$

This contradicts the fact $\left\|\left[f_{n}\right]\right\| \geqq 2$ due to Ahlfors-Weill [3], and the case (ii) never happens.
3.6. Now we shall complete the proof of Theorem 3 under the condition (i). Since $d_{\Delta_{n}}\left(f_{n}\left(u_{n}\right), f_{n}\left(A_{n}\right)\right)=d_{L}\left(u_{n}, A_{n}\right) \leqq d_{L}\left(u_{n}, z_{n}\right)$ is less than a constant for each n, Lemmas 3 and 4 show the existence of a subsequence, again denoted by $\left\{f_{n}\left(u_{n}\right)\right\}_{n=1}^{\infty}$, of $\left\{f_{n}\left(u_{n}\right)\right\}_{n=1}^{\infty}$ which converges to a point ζ_{0} with $\operatorname{Re} \zeta_{0}=0$ and $\left|\operatorname{Im} \zeta_{0}\right|<\pi / 2$. Let μ_{n} be the element of $\operatorname{PSL}(2, \boldsymbol{R})$ such that $\mu_{n}(-i)=z_{n}$ and $\left(f_{n} \circ \mu_{n}\right)^{\prime}(-i)>0$. Carathéodory kernel theorem together with Lemma 3 shows that $\left\{f_{n} \circ \mu_{n}(z)-f_{n} \circ \mu_{n}(-i)\right\}_{n=1}^{\infty}$ converges locally uniformly to $F(z)=3 \pi i / 2+\log z$ which maps L onto the kernel $\{\zeta ;|\operatorname{Im} \zeta|<\pi / 2\}$ of $\left\{f_{n} \circ \mu_{n}(L)\right\}_{n=1}^{\infty}$, where we take the branch of $\log z$ satisfying $F(-i)=0$. Let E be a compact subset of L containing all $\mu_{n}{ }^{-1}\left(u_{n}\right)$. Then we see that

$$
\begin{aligned}
\left\|\left[f_{n}\right]\right\| & =\rho_{L}\left(u_{n}\right)^{-2}\left|\left[f_{n}\right]\left(u_{n}\right)\right| \\
& =\rho_{L} \circ \mu_{n}\left(\mu_{n}^{-1}\left(u_{n}\right)\right)^{-2}\left|\left[f_{n} \circ \mu_{n}\right]\left(\mu_{n}^{-1}\left(u_{n}\right)\right)\right| \\
& =\sup _{z \in E} \rho_{L}(z)^{-2}\left|\left[f_{n}\right](z)\right| \\
& \longrightarrow \sup _{z \in E} \rho_{L}(z)^{-2}|[3 \pi i / 2+\log z]|=2 .
\end{aligned}
$$

Recall that $f_{n} \Gamma_{n} f_{n}^{-1}$ is a Koebe group. Then $T\left(\Gamma_{n}\right)$ does not contain the point $\left[f_{n}\right]$ and neither does $T(\Gamma)$. Therefore $2 \leqq i(\Gamma) \leqq\left\|\left[f_{n}\right]\right\| \rightarrow 2$. Now we obtain $i(\Gamma)=2$ and complete the proof of Theorem 3.

Added in proof. After this note was completed, Professor T. Nakanishi informed the author that T. Nakanishi and J. A. Velling know a proof of the following Theorem A which is a generalization of Theorems 1,2 and 3.

Theorem A. Let Γ be a Fuchsian group keeping L invariant. Then $i(\Gamma)$ is equal to 2 if Γ satisfies one of the following:
(I_{1}) For any positive number d, there exists a hyperbolc disc of radius d which is precisely invariant under the trivial subgroup of Γ.
(I_{2}) For any positive number d, there exists the collar of width d about the axis of a hyperbolic element of Γ.

He also informed the author that their proof of Theorem A is different from the proof of Theorem 3 and depends on properties of a family of functions constructed in Kalme [11].

References

[1] W. Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups III., Acta Math., 134 (1975), 211-234.
[2] L. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966.
[3] L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978.
[4] L. Bers, On boundaries of Teichmüller spaces and on kleinian groups I., Ann. of Math. (2), 91 (1970), 570-600.
[5] I. KRA, Automorphic forms and Kleinian groups, W. A. Benjamin, Reading, MA, 1972.
[6] B. Maskit, Construction of Kleinian groups, Proc. of the conf. on complex anal., Minneapolis, 1964, Springer-Verlag, Berlin, 1965.
[7] B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499-509.
[8] B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups II., Ann. of Math. (2), 91 (1970), 607-639.
[9] B. Maskit, On the classifications of Kleinian groups: I, Koebe groups, Acta Math., 135 (1975), 249-270.
[10] T. Nakanishi, The inner radii of finite dimensional Teichmüller spaces, Tôhoku Math. J., 41 (1989), 679-688.
[11] I. Kalme, Remarks on a paper by Lipman Bers, Ann. of Math., 91 (1970), 601606.

Department of Mathematics
The National Defense Academy
Hashirimizu Yokosuka 239
JAPAN

[^0]: Received September 13, 1990 ; revised December 21, 1990.

