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EXTENSION OF BAKERS ANALOGUE OF LITTLEWOODS

DIOPHANTINE APPROXIMATION

PROBLEM

BY TAKAO KOMATSU

1. Introduction.

The famous but still unsolved problem of Littlewood can be stated as fol-
lows: for each pair of real numbers θ and φ and each ε>0, does there exist
a positive integer n such that

n\\nθ\\ \\nφ\\<* >

Here | |α|| denotes the difference between a and the nearest integer. In 1963
Davenport and Lewis [1] obtained a negative answer for an analogous question
concerning formal power series. The following year Baker [2] gave examples
where the construction of Davenport and Lewis holds. And as a generalization
of these results, he indicated the following result:

T H E O R E M (Baker (1964)). // λu ••• , λr are distinct real numbers, none of
them 0, and u(t), ux(t), ••• , ur(t) are real polynomials with u(t)φθ, then

where R=(l/2Xrz+r).

The valuation of a formal power series relative to the real number field K
is defined by

\amtm+am-1t
m~l+ -" \κ=em (amΦθ, m is integer).

The purpose of this paper is an extension of Baker's result, proving the
following theorem:

T H E O R E M . Let n, r be positive integers. If λlf ••• , λr are distinct real num-
bers, none of them 0, and u(t), ux(t), ••• , ur(t) are real polynomials with u(t)Φθ,
then
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where R(n, r)=(l/2)n(rs+r).

2. The construction of polynomials

Let πij ( / = 1 , 2, ••• , r) be positive integers. Then clearly there exist real

polynomials P0(x), PoΌ(x), •••, Por\x) of degree at most h= Σ rrij—r, not all

identically zero, such that for / = 1 , 2, ••• , r

where (/) in P$\x) denotes the suffix. PQ(x), Pίs\x) ( ; = 1 , 2, •••, r) cannot

vanish identically.

We define further polynomials Pt(x), P\j\x) ( ; = 1 , 2, •••, r), for ι = l , 2, •••, r,

by

where the accent denotes the derivative with respect to x. Next we define

(4) ξ[i\x)=Plj\x)-exoxPi{χ) ( ι = 0 , 1, ••• , r, ; = 1, 2, ••• , r ) .

Then it follows that, for ί = 0 , 1, •••, r - 1 , ; = 1, 2, •••, r

From (2) it follows that for /=0, 1, 2, ••• , r the lowest possible powers of x in
| t

O )(x) are χmj+h-\ Therefore, for any positive integer n

(5)

Lastly, we define the determinant Δ{x) by

P0(x) Piι\x)-Pir\x)

(6)

From (3) the highest coefficient of the polynomial A(x),

is nonzero, where p, p3 (; = 1, 2, •••, r) are the highest nonzero coefficients in

PoW, PQS\X) (; = 1, 2, ••• , r), respectively. Thus J(#) is not identically zero.
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3. Proof of the Theorem

Now let u(t) be a polynomial with real coefficients, of degree k^O. And
let Uj{t) (/=1, 2, ••• , r) be any polynomials with real coefficients. Let

\Uj(t)-exJ<tnu(t)\K=e-aJ 0 = 1, 2, ••• , r).

By the definition of the valuation, we can consider that all a3 are positive
integers. And also the proof of (1) can be replaced by the proof of following
inequality:

(7) k-j±a^-R(n, r).

There are three cases in the proof.

(I) Suppose that for all integers j with l ^ ̂ r

a^L=L(n, r),

where L(n, r), equation (12) later, is a positive constant depending on only n
and r.

We use the construction of Section 2 with

for y = l , 2, •••, r, that is

(8)

if aj— L = r , m o d n ( O ^ τ ^ ?

£(O is defined by

E(t)=

where iu - , ir are some r distinct numbers chosen from 0, 1, ••• , r. Since the
equality E(0=0 contradicts the fact d(x)Φθ, we may assume that E(0 is not
identically zero.

We will compare two estimates for \E(t)\κ. First, we give the lower esti-
mate. Since for / = 1, 2, ••• , r the degrees of Pt(x), P\?\x) O'=l, 2, ••• , r) are
at most /z,

)\κ^e-nh 0 = 1 , 2 , . . . , r ) .

nnij—aj—L+n—Tj

Therefore, we get
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(9) \E(t)\κ^e'nrh.

Next for each integer j with l<Ξj<^r, by subtracting the first column multiplied
by eλJ/tn from the (/+l)-th column, we have

E(t) =

ξi\\rn)

u(t) uxφ-

Inequalities (5) and | / t ( Γ n ) | ^ ^ l give

(10) \E{t)\κ<eM,

where
e r r 1

(11) M=maxU- Σ aj+rL+ Έ τj+ ̂
I 7=i j=i Z

1 . 1

ur(t)-eλπtnu{t)

max \ — nr2— — nr— L—r, —nrh\\.

Now we define

(12) L=L(n, r)=

Then from (9) and (10), using that

-^nr2- —

ft- Σ a^-rL- Σ r,-Tnr(r-l
7 = 1 7 = 1 Δ

(II) Assuming that for all integers / with

clearly,

(Ill) Suppose that

c=l, 2,
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If we rearrange au a2, ••• , ar, it will be reduced to this case. By the defini-
tion (12)

fli, •*•, aκ^L(n, r)^L(n, /c).

Let κ^2. Since

therefore,

k- ij a^-R(n, κ)-(r-κ){L(n, r)~

When K— 1, by the following Lemma, the same result will hold.

LEMMA. Let n be a positive integer. If λ is nonzero real number, and uif),
v(t) are real polynomials with u(t)Φθ, then

(13) \u(t)\κ\υ(t)-eλ'tnu(t

4. Proof of the Lemma

Let u(t) be a polynomial with real coefficients, of degree &^0. And let

\v{t)-eλ<tnu{t)\κ=e-« .

In order to prove (13), we just need to show k — a^ — n. We use the con-
struction of polynomials with

Simply, set Pil:>=Qt, ux^=v. Consider the estimation of

Pt(Γn) Qi(

u(t) v(t)

where ι = 0 or 1. Similarly as the first part of the proof of the Theorem, we
can prove (13). Hence

\
and

where M ^ m a x { — a, k~n(m+h—i)\.
From the two estimates.

Therefore, we get the result of Lemma.
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