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Abstract.

We define a Fréchet-Grassmann algebra with infinitely many generators
as the supernumber algebra. Using this, we define a so-called super Euclidean
space and may develop elementary analysis on it. In doing this, we clarify
the relation between Grassmann generators and odd variables. Moreover, we
construct a certain Hamilton flow on the super Euclidean space, corresponding
to the ‘classical’ orbit of the Pauli equation, for which we define the action
integral, van Vleck determinant etc. as similar as we do on the Euclidean
space.

Introduction

After the pioneering works of Martin [20, 21] in 1959, who considered a
generalization of the classical mechanics on a ring with arbitrary generators,
Berezin started independently his endeavor of a generalization of analysis in
which the Grassmann variables would play a part on equal footing with real
variables. (One may find more general idea in Manin [19] where he claimed
that there should be at least ‘three dimensions = ordinary, odd and arithmetic
dimensions’ in geometry.) There are many works by Berezin, but seemingly
he did not distinguish the Grassmann generators and the (odd) variables because
he considered his supermanifold rather sheaf theoretically. Roughly speaking,
for an (ordinary) C®-manifold X of dim X=m, he considered a ringed space
(X, A(X)) as his supermanifold of dimension A(X)=C>(X)QRQA(R™). See, his
book edited by Kirillov [2] and Leites [17].

Supersymmetric theory is now widely used by physicists, and the need of
an infinite number of generators is recognized by some of them especially when
they want to ‘quantize classical systems’. Therefore, there are many trials to
define the ‘supernumber’ based on the Grassmann algebra with infinitely many
generators. For example, Rogers [23] introduced a Banach-Grassmann algebra
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modelled on the real sequence space /' and using the standard theory of differ-
ential calculus on Banach spaces, she defined her ‘G* functions’. On the other
hand, De Witt, in p. 3 of his book [6], asserted that he could develop the
analysis even if there exists a very weak topology in his ground ring: “In the
formal limit L—oo they many continue to be regarded as vector spaces, but
we shall not give them a norm or even a topology” (L is the number of Grass-
mann generators, ‘they’ stands for A, A ., and Ay . where 4A;=a Grassmann
algebra with L generators). More precisely, he introduced a non-Hausdorff
topology in his superspace based on his Grassmann algebra. Thus, Rogers [25]
was offended by saying: “To those physicists who use supermanifolds, but do
not often lie awake at night worrying about the finer points of analysis, the
message of this paper is simple—if you need more generators for your Grass-
mann algebra, help yourself !”.

In this paper, we introduce a Fréchet algebra with degree, called a Fréchet-
Grassmann algebra over C, modelled on the sequence space w. Briefly speak-
ing, it is the set of formal power series of infinitely many indeterminate
letters which satisfies the Grassmann relations. If it is considered as the ground
ring, we call it the supernumber algebra. Moreover, our (real) supernumber
algebra is assumed to be real in the body direction and complex in the soul
direction, whose reason will be given in §4. After introducing the (real) super-
number algebra, we define the super Euclidean spaces in §1. Supersmooth
functions are defined on ‘saturated domains’ in our super Euclidean space and
the differential calculus containing Taylor’s formula, composition of functions,
implicit function theorem, etc. are proved in §2. It seems meaningfull to re-
mark here that our definition of supersmooth functions is considerably different
from others in the sense we define it from scratch by the so-called z-expansion
not introducing the Fréchet or Giteaux type differentiability. In other word,
we may consider ‘H>-functions’ whose coefficients in the z-expansion are gene-
rated by supernumber algebra-valued C*= functions. This answers partly the
‘interesting’ problem posed at the last line of Bryant [4]. In §3, we give the
definition of integrations also with the change of variables under integral sign.
Lastly, in §4, as an application of §2 and §3, we solve a Hamilton equation
on the super Euclidean space. These equations themselves are given in Berezin
& Marinov [3], Casalbuoni [5] and Man€s & Zumino [18] without considering
the existence proof of solutions nor paying attention to the number of Grass-
mann generators.

The main difference between our treatment and others is that we never
reduce the problem to the case of the finite number of Grassmann generators.
Therefore, we present the fundamentals of the so-called superanalysis from our
point of view, though this paper is a refined version of the portion of our
(unpublished) treatise in [11]. As an application, we constructed a fundamental
solution of Pauli equatious in Inoue & Maeda [10, 11], where we used the Feyn-
man’s heuristic derivation of his path integral. Concerning our references, we
never want to claim those completeness because there are too many articles
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prefixed ‘super’. In writing this paper, we have been stimulated mainly by
[18] and Vladimirov & Volovich [26, 27].

§1. The supernumber algebra and the super Euclidean space

Let us prepare a set of countably infinite distinct symbols {0,},ex satisfying
the relations

(1.1) g:06;+0;0,=0  for any 7, j=1, 2, ---.

Remark. A concrete realization of this set {g;};exy in /' is given in [23].
Berezin [1] gave another realization of it as operators in the Fock space. See,
for more algebraic treatment, Kostant & Sternberg [15].

We define a set by

(1.2) AC={":ﬁnn§Sumx"’I‘ x,ec}

where
SE:{I:'(Z.D 2.2’ Tty ik’ "')E {07 l}N; III<OO} With |II=21k
&
and

gl=glio}2 - with ¢®=1, 0=(0, 0, ---).
It forms an algebra by introducing sum and product as follows:
(1.3) x+y=§(xz+y1)0’ and xy=§‘.(xy)z<r’
with (xy);= 2 (=157 By yp.
I=J+K

Here, the indeces 7([; J, K), or more generally =(I; J,, -+, J:) are defined by
(1.4) (_1)r(1;J1-"'ka)o-J1 ceglbh=gl

when I is decomposed by I=/,+ -+ +J,. But for notational simplicity, we
will use (—1)**® without specifying the decomposition if there occurs no con-
fusion.

We call this a Grassmann algebra over C with infinite generators {g;}en.
Moreover, we may introduce the topology of A€ as follows: Elements x¢™
converges to x in A€ if and only if for any ¢>0, there exist integers L and
no, such that (i) x‘ and x belong to A§ when n>n, and (ii) |x{™—x;|<e
when n>n, Here, we put
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[A€={x=2 x 0¥ (summation is taken for I satisfying 7,=0
for k>L); x,€C}
(15) !
] = A°(R*)=the exterior algebra of forms on R’
with coefficients in C=C*".

Instead of this, we consider following sets rather formally (but later ‘proved
as rigorous’):

(1.6) (5:{;;:15;“01; x,ec},

(5(0):(5[01:0 ’

1.7 Cp={x= lg]ij,a’} and
@m={x=”§1 xlal}:(‘g(j)/(‘g(]—l),
=)

To give the concrete meaning of the above summation expressions in (1.6)
rnd (1.7), we recall the sequence spaces € and ¢ in the terminology of Kothe
[16]. That is, we define

¢:{£:(xk)=(xh X2y 7ty Xy ); xkEC
(1.8) and x,=0 except for finitely many £k},
w:{uz(uk)z(ulx Ugy =5 Up, "'); ukEC}.

For XD¢, we define also the space X* by

“=fu=(u); Slusl 24| <o for any z=(x)< X}

then, we get
¢*=w and w*=¢.
We introduce the (normal) topology in X and X* by defining the seminorms
(1.9 pu(r)z%}lukl [ x| =pu) for zt& X and ues X*.
Especially ¢ converges to ¢ in ¢ if and only if for any ¢>0, there exist
L and n, such that
{ (i) xM=x,=0 for k> L when n=n, and
(1.10)
(i) |xf™—=x.|<e for k<L when n=n,.

Analogously, u™ converges to u in @ if and only if any >0 and each &,
there exists no=mn(e, k) such that

(1.11) lufMm—u, | <e when n=n,.
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Clearly, w forms a Fréchet space because the topology above in w is equivalent
to the one defined by countable seminorms {p;(u)};esx wWhere p,(u)=|u,cs| for
I=(,)eZ and u=w. Here we used the isomorphism between N and ¥ defined

by
(1.12) I— r(1)=l+%%2kik for I=(3,)=% .

D
For each p= N, we define an element e,=(0, ---,0, 1,0, ---)=w. Using »(J) in
(1.12), we define a map

T:0" — e, for I=(7,).
Extending this linearly, we put

(1.13) T(X)Z E X1ernHEW® for x= E XIO'tEG(j).

111y 1I1sg

Then, we have
(1.14) U TEx)= 3 TEu)=0

because T(€;;) and T(G,;) are disjoint sets in w if j# £ and » is an isomor-
phism from ¥ onto N. Therefore, it is reasonable to write as in (1.6) and
more precisely.

Me

(1.15) C= (&[J‘]; that is x= EJC[]'] with Xrjn—= Z XIO'I .
=0

0 1I1=y

J

Here, xj; is called the j-th degree component of x=@G. We have just gave the
meaning of the summations in (1.6) and (1.7) by using the summation in .
(See, (2) of Remarks after Theorem 1.2 below.)

Topology. We introduce the weakest topology in € which makes the map
T continuous from € to w, that is, x=2>),e5x;67—0 in € if and only if proj,(x)
—0 for each IeX with proj;(x)=x;; it is equivalent to the metric dist(x, y)=
dist (x —y) defined by

(1.16) dist (x)= 3}~k 1Proiz(x)|

227D Tt [proj,(xy]  [oF 2y #<6.

Algebraic operations. For any x, y=€, we define
(1.17) x+y=]=zo} (x+y)j with (x+y)n=xp+yn for j=0
and

) J
(1.18) xXy= Eo(xy)m where (Xy)[j]: kzoxr,_k]y[H: 12 (Xy)IG'I .
J= = 1=y
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Here, (xy);=;-s+x(—1)T By, y,=C is well-defined because for any set
I=%, there exist only finitely many decompositions by sets J, K satisfying =
J+K. By definition, we get

C,HCTC for j<k,
(1.19) )

@—_—U;°=o(§(j) with f\;o=o(5(;)=0 5
(120) @[j]‘@[k]C@[j.q.k] and (S<j)~@<k>C(S(j+k>.

Remarks. (1) The second relation in (1.20) also holds for Clifford algebras
but the first one is specific to the Grassmann relation (1.1). (2) As {6} forms
a filter by (1.19) and (1.20), it gives a 0-neighbourhood base of the linear topo-
logy of € which is equivalent to the above one defined by (1.16). (See [16] for
the linear topology of vector spaces.)

Moreover, we get

LEMMA 1.1. The product defined by (1.18) is continuous from € xE—E.

Proof. It is simple by remarking that there exist 2'/' elements /=T satis-
fying JC I and that

(xS 2 lxsllyxl for any x, y&€. n
I=J+K

To summatize, we get

THEOREM 1.2. @ forms a Fréchet-Grassmann algebra over C, that is, an
associative, distributive and non-commutative ring with degree, which 1s endowed
with the Fréchet topology.

Proof. Clearly, we get

{ x(yz2)=(xy)z (associatwity),
x(y+z)=xy+xz  (distributivity).

Other properties have been proved. ®

Remarks. (1) Introducing the topology corresponding to (1.10), A¢ defined
in (1.2) is made to be algebraically and topologically isomorphic to ¢. (2) We
may consider that an element of x<=@ stands for the ‘state’ such that the posi-
tion labeled by ¢f is occupied by x;=C. In other word, considering {o,} as
the countable indeterminate letters, it seems reasonable to regard € as the set
of certain formal power series (same letter appears only once in each monomials)
with simple topology. Therefore, it is permitted to reorder the terms freely
under ‘summation sign’. That is, the summation 3};czx €, ¢s5 is ‘unconditionally
(though not absolutely) convergent’ (diverting the terminology of basis problem
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in Banach spaces) and so is 3;ezx;0%. In this respect, the real Banach-Grass-
mann algebra introduced by Rogers consists of the absolutely convergent
sequence

Ixll= 3 1x;]<oo for x= 3} x;0% with x;=R, and it satisfies |xy| <[ x|l y].
Iex IeT

Using (1.15), we decompose

(1.21) x=xpt+xg where xs= X x;;7 and xp=x3==x(03
157<o

and the number xjp is called the body (part) of x and the remainder xg is called
the soul (part) of x, respectively. We define the map np from € to C by =z(x)
=xp, called the body projection (or called the augmentation map in [23]).
Aside the decomposition (1.15), we have the following as a vector space.

(1.22) E=6..DC,, .
Here, we put

(1.23)  Co={xcC;x= > =x,;0'} and Cu={xcC;x= 3 x;0}.

1I|=even \Il=o0dd

Important Remark. € does not form a field because x*=0 for any x&C,q.
But, if x, ye€ satisfy xy=0 for any y=G€,;, then x=0. The decomposition
of x with respect to degree in (1.15) is unique. These properties are shared
only if the number of Grassmann generators is infinite.

@ is called the (complex) supernumber algebra over C and any element x of
€ is called (complex) supernumber. Moreover, it splits into its even and odd
parts, called (complex) even number and (complex) odd number, respectively ;

(1.24) X=Xyt Xoa= 2 Xqa0%+ X x.0%°= 3] Tyt 2 Xt -
J=o0dd

la|=even lai=o0dd J=even
We define the parity p as p(x)=0 for x=6,, and p(x)=1 for x<€,; and we
call the element x in € is homogeneous if p(x)=0 or 1.

Now, we define our supernumber algebra over R (but not over C) by
(125)  R=rg(®NC={x= T x,07; x»=R and x,=C for 1110}
Defining as same as before, we have
(1.26) R=R®Nos,  R= 3 Ny

7=0

R, and other terminologies are analogously introduced.

DEFINITION 1.3. The super Euclidean space of dimension m|n is defined by

(127) mmln:mﬂ,xmgd
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whose element is denoted by X=(X,)=(x, )™ with x=(x;, xs, =+, Xm)
eR% and §=(0,, 0., -+, 0,)=R%. The topology of R™'* is induced from the
metric defined by distn (X, Y)=dist, .(X—Y) for X, YeR™'*, where we put

( 1 Iprojz(xj)\> :1( 1 | proj;(6)]

1%1 27D 14 |proj(x,)! iez 279 1+ |proj;(65)|/°

Clearly, dist,,(X)=dist(X) for Xe®'"'=RcE. Analogously, the complex super-
space of dimension m|#n is defined by

(1.28)  distn o(X)= 3

J=1

(1.29) Cr*=CnxC7;.

We generalize the body map w3 as that from ®™'” or R™'° to R™ by npX
=apx=(Tpx1, -+, Apxn)ER™ for X=(x, )=R™'".

Remarks. (1) Defining % in (1.25), we used both R and C. The reason of
this definition is explained in §4 where we solve a certain Hamiltonian equation
stemming from the Pauli equation. (2) de Witt [6] introduces his space R
=(AE)" X (AE&)". Here, A&=lim; .AERY) and AE(RF) is isomorphic to the
exterior algebra of even forms on R’ with real coeffieicnts. A% and AF=
A&+ A8, are ‘defined’ analogously. In the above, the meaning of ‘lim...’ is
not so clear. And his topology in RJ%" is the weakest topology which makes
continuous the projection mp from RT* to R™. This does not give the Haus-
dorff topology in R7" but he claims that it is not serious in his analysis. (3)
Rogers [23] defines her space R#'™ based on the real Banach-Grassmann alge-
bra /' in order to develop her theory of superanalysis, using the known differ-
ential calculus for functions on Banach spaces. But we are not sure whether
such a strong topology is really necessary. Or rather, we claim in the follow-
ing that though generally speaking, the differential calculus on locally convex
spaces are rather troublesome, see for example, Keller [13], Yamamuro [29],
but we may carry out almost the same procedures as she done in [23] using
the ring structure directly in our Fréchet-Grassmann algebra, (4) Matsumoto
& Kakazu [22], Yagi [28] and Bryant [4], in order to refine the idea of
DeWitt, defined a Fréchet space which is the projective limit of the Banach
space modelled on the exterior algebra of forms on R’ with real coefficients,
though the grading and the ring structure of it is obscured by their construc-
tion. (5) See also the papers [26], Jadczyk & Pilch [12] and Hoyos et al. [8].

§2. Supersmooth functions and their basic properties

DEFINITION 2.1. A set U,CR™°°=R" is called a even superdomain if
7p(U)CR™ is open and connected and nz'(wp(U.)=Uc. When UCHR™!™ is re-
presented by U=U,,XR?% with a even superdomain U,CR™'°, U is called a
superdomain.
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Remark. This definition of superdomain corresponds to the ‘saturated’ do-
main which appeared in [12] and [8]. This saturated domain seems not sui-
table to construct ‘supermanifolds’ with non-trivial fermion sectors, which will
be discussed in the separate paper.

PROPOSITION 2.2. Let U,,CG™'° be a even superdomain. Assume that f s
a smooth mapping from Up=npU,,) into €, denoted simply by f<C=(Ug; Q).
That 1s, we have the expression

2.1 f(q)=J2fJ(q)a’ with f,()eC"Usp; C).

Then, we may define a mapping f of Ue, into § called the Grassmann continuation

of f by
2.2) fx)=3 —Laé'f(xs)xﬁ where 05 f(xp)=20¢fs(xp)0” .
oa!l 7

laiz

Here, we put x=(x1, -+, xm), x=xp+xs with xp=(x1,5 -, *n.8)=q1 =, u)
=q€Up, xs=(%1,8, ***» Xm,s5) And x=x§t - x5,

Proof. Denoting by xi s, the k-th degree component of x, s, we get

(xg)[kljzx(xl,s.[rll)pl'l (xl,s,[rlj)pl’l .

Here, the summation is taken for all partitions of an integer «, into a;=p; +
-« + Py, satisfying 3.7, p,.=Fk,. Using these notations, we put

~ 1 « a
2.3) Fra(x)= Iﬁk ‘a—,‘(agf)ckoj(xB)(x 18)ceg (X mlS)
kotkitotkm=k

where (agf)[koj(x_g): IJEkang(xB)UJ .

That is,
f[OIl(x):f[o](xB) s
ftl](x)=fm(x3) ,

fm(x)=f|:z](x3)+]§ (aqu)EOJ(xB)(xj,s)[2j ,
fcs](x)=fc31(x3)+]§ (CRPREETVETOR
Fra(x)=fralxp)+ é (0g; )ear(x )%, )

1l m
+ o Jg’; (agjf)[oa(xB)(xf, S)E4J+]§k (agjqkf)[()](xB)(xJ,S)[Z](xk,S)[z:, etc.
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Since frj5(x)# frai(x) (j# k) in €, we may take the sum 3%,/ (x)E6, which
is denoted by f(x). Therefore, rearranging the above ‘summation’, we get the
‘familiar’ expression as in (2.2). m

Remarks. (1) More primitively, we may represent f(x)=3xfa(x)o® where

o 1
Ju(x)= 2 (—l)r(*)_,ang(xB)xl,z{l) vt Xm, 1{@md
H=J+I{D g Fm) @
a=(ag, " anp)
but this representation obscures the form of f given in (2.2). (2) Defining H*-
functions, Rogers [25] used C>-functions with values in R defined on an open
connected set U in her topology.

QOROLLARY 2.3. If f and F be given as above, then (i) f is continuous and
(i) f(x)=0 z'n~U implies f(xp)=0 in Up. Moreover, if we define the partial
derivatives of f by
J

(2.4) a,lﬂx): %f(x—i—te(j)) o where e;,=(0,+,0,1,0,---,00€R™°,

then we get
(2.5) 9., f()=05,F(x)  for j=1, -, m.

—_—
PT’OOf. Let y]=y,,3+y,,sE§Rw. For y(j):(oy U 0’ Vi 0’ Tty O)Emmw’ as

d ~ d 1
a‘tf(x‘l‘tycj)): d_t{;z %‘_.ag‘fJ(xB+tyq),B)aJ)(xs—i-ty(j),s)"},
we get easily

d 1 ~
ST ty)| =035 050,,f (x50 )" =,00,f (x).

Putting y,=1, we have (2.5). ®

Remark. By the same argument as above, we get

d » m 1
26 S +ty)’t=o=]§y] 2 79305,/ (x5)(xs)" Where y=(y, -, yn)ER™"".

DEFINITION 2.4. (1) For a given even superdomain U,,C%™'°, mapping f
from U,, into § is called a supersmooth function if f is the Grassmann continua-
tion of a smooth mapping f from Ug=np{U,,) into €. We denote by Css(Uey; €),
the set of supersmooth function on U,,. Hereafter, for the sake of notational
simplicity, f is written simply as f unless there occurs confusion.

(2) A mapping f from a superdomain UCR™'" to € is called supersmooth,
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denoted by fe=Cgs(U; €), if it has the following form:
@.7) f(x, )= 33 falx)0°

lalsn

with a=(a,, -+, a,){0, 1}, §°=0% --- 02» and fu(x)ECss(Uew; €). In the
following, supersmooth functions are assumed to be homogeneous (i.e., fq(x)
is homogeneous for each a), unless otherwise mentioned and we denote the set
of them by Cgs(U; €).

(3) For feCss(U; €), j=1,2,--,m and s=1, 2, -+, n, we put

F(X)= 33 0.,fu(2)0%,

(2.8) {
Fon(X)= 3 (—1)H®+PUa@Df (£)P%1 ... §25-1 ... §&n
laisn

where [(a)=2)zia, and 67'=0. F,(X) are called the partial derivatives of f
with respect to X, at X=(«x, #) and are denoted by

FAX)= 50 e, 0)=0.,f(x, 6)  for j=1,2, -, m.
J

Fm+s(X)=5—i—f(x, 0)=00,f(x, 6), for s=1,2, -, n

2.9)

or simply by
(2.10) F(X)=0x f(X) for k=1, -, m+n.

Remarks. (1) We only use the derivatives defined above which are called
the left derivatives with respect to odd variables. Because, after bringing the
variable 6, to the left in each monomial, we replace it with 1. (Some people
call these as right derivatives, cf. [5] etc.) Similarly, we define the right
derivatives with respect to odd variables as follows: For feCgs(U; €), j=
1,2, ,m and s=1,2, ---, n we put

FP(X)= 3 9:,fa(0)0%,
F@u(X)= 3 (=17 @fo(x)f3 - §3:7 - G3»
lalsn

where 7(@)=X7-+:a,. F{(X) are called the (right) partial derivatives of f
with respect to X, at X=(x, ) and are denoted by

«

F&O(X)= a%f(ac, 0)=3,,f(x, 0), FL(X)=f(x, 0)3%=f<x, 0)s,,

for j=1,2, -, m and s=1,2, -, n. (2) As we use the infinite dimensional
Grassmann algebras, the expression (2.8) is unique. In fact, 2./ «(x)60*=0 on
U implies fq(x)=0 (see, p. 322 in [26]). (3) The higher derivatives are defined
analogously and we use the following notations.

02=021..-92n and 0§=051 - 3§n .
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Repeating the argument in proving Corollary 2.3, we get the following
formula for f=Css(U; €):

Il

d m 0 @9 ,
(2.11) dtf(X+tY) t= %11 ngx‘]f(?\ )+ g]lwsa—esf()x)
where X=(x, 0), Y=(y, @) €R™'" such that X+tY €U for any t<[0, 1].
To understand the meaning of supersmoothness, we consider the dependence
with respect to the ‘coordinate’ more precisely.

PROPOSITION 2.5. Let f=33;f (X))ol ECss(U; €) where U is a superdomain

z'n R™im, Let X=(X,) be represented by X,=3;X, ;67 where k=1, ---, m+n,

Xe.1€C for |I1#0 and X, ,=R. Then, f(X), considered as a function of coun-

tably many variables {X,. ;} with values in €, satisfies the following (Cauchy-
Riemann type) equations.

av f(X) for 1<k<m, |I|=cven,

aXE P f(X)_o'I
(2.12) 5
gk X, f(X)+a’ 6 f(X) 0 for m+1<k<m++n, |J|=0dd=|K|.
Here, we define
0 _d
(2.13) mf(X)—E}f(X‘HYo:.n) o
with Y(,, n— (0 gl O, ) O)Emm‘".

Proof. Replacing Y with Y. s, with 1<g=<wm and |J|=even in (2.11), we
get readily the first equation of (2.12). Here, we have used (2.5). Considering
Yw.r or Yo gy for m+1<k<m+n and |J|=odd=|K| in (2.12) and multiply-
ing ¢¥ or ¢/ from the left respectively, we have the second equality in (2.12)
readily. m

Remark. In order to obtain the converse statement of Proposition 2.5 (see
[26], [28]), it seems better to modify a general theory of differential calculus
on locally convex spaces developped in [13], [29] etc. For example, we may
introduce ‘k-times super Fréchet or Giteaux-differentiability’ as similar as pro-
posed in [22], but this will not be pursued here.

PRroPOSITION 2.6 (Taylor’s formula). Let X=(x, 8), Y=(y, o)cUCR™'"
satisfying Y+t X-Y)eU for 0=<t<1. For f&CssU; €), Taylor’s formula
holds. That is, for any positive integer p, we have

(2.14) flx, 0)— X —(x M(O—0)*3208f (3, @)=T,(X, ¥)

1al+| Ié

where
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@2.15) 7,(X,Y)
1 2
= (=900 dt 5y (11783355 [+ 15~ ), @+ 10 —o))

Proof. Use the following equality

[t S (E) ot 04100

1 1 2

= 3 = 0—0) | dt—n (1 07050 f(y+ x =), 0+ KO —0).
la(+1al=p+1 o pl!

Using the integration by parts in the left hand side, we get that of (2.14). m

To state other properties of supersmooth functions, we prepare the linear
algebra on super Euclidean space briefly.

DEFINITION 2.7. M, a rectangular array whose cells are indexed by pairs
consisting of a row number and a column number, is called a supermatrix if it
satisfies the following :

1) A (m+n)X(r+s) matrix M is decomposed blockwisely as M= [g ]C3]

where A, B, C and D are mXr, nXs, mXs and nXr matrices with elements
in %, respectively.
(2) One of the following conditions is satisfied: Either

{ p(M)=0, that is, p(A;;)=0=p(B,.) and p(C,,)=1=p(D,,) or
P(M)';l, that iS, p(AJk)=1=p(Bvu) and p(cw):O:p(Dju);

We call M is even (resp. odd) if p(M)=0 (resp. p(M)=1). Moreover, we many
decompose M as M=Mz+ Mg where

[643 Bg] when p(M)=0

B=—

[(1)73 CS] when p(M)=1

It is clear that for (m+n)X(r+s) matrix M and (r+s)X(p+¢) matrix N,
we define the product MN as (MN);,=X;M;.N;, and the parity of MN is
given by p(MN)=p(M)+p(N). Moreover, we define Mat,,,(N) as the algebra
of (m+n)X(m-+n) supermatrices.

DEFINITION 2.8, Let Mz[g g]eMatm,n(m). We define the supertrace of
M by

(2.16) str M=33(—1) 20 +0Prow® M, =ty A—(—1)?9D tr B,
k
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Here,

0 for 1=k<m,
} for p(M)=0,
for m+1<k<m-+n

1

Drow(k)=
11 for 1<k<m,

0

} for p(M)=1,
for m+1<k<m-+n

If MeMat,, ,(R) is even, then M acts on R™'* linearly. Denoting this by
Ty, we call it a super linear transformation on ®™'" and M is called the repre-
sentative matrix of T .

PROPOSITION 2.9. Let MeMaty, ,(R) be even and assume det Mp+0. Then,
for given Y =R™'",

2.17) TyX=Y
has the unique solution X<=R™'", which is denoted by X=M™"1Y.
Proof. Since Mjp has the inverse matrix M3!, (2.17) is reduced to
X+NgX=Y", Y'=Mz'Y

where Ns=M3z'Ms. Remark that NgX1€X2%,+:1Rx; for 7=0. Decomposing
by order, we get

Xen=Y (7—(NsX¢gonlsn  for j=1,2, .

As Xy=Xi3=Y"}e3, we get X;; from X,_,, for j=1 by induction. m

DEFINITION 2.10. MeMaty, (R) is called invertible or non-singular if M3
is invertible, i.e. (det Ag)(det Bg)+0 if p(M)=0 or (det Cp)(det Dp)#0 if p(M)=1.

DEFINITION 2.11. Let M be a supermatrix. When det Bp+#0, we put
(2.18) sdet M=(det(A—CB™D))det B)™*

and call it superdeterminant or Berezinian of M.

Remark. Let B=(Bj;:) be (¢ X¢)-matrix with elements in R,,. As R is a
commutative ring, we may define det B as usual:

det B= 3 sgn(0)Bi,a - Bopwop -
oEPg

Following decomposition of a even supermatrix A will be useful.
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b sl LT sl g

Z[D{Zln'l 10][64 B——D?él“C][ém A;zc]'

PROPOSITION 2.12. Let M, N be even super matrices in Mat,, (R).

(1) If M is invertible, then we have sdet M+0. Moreover, if A is nonsin-
gular, then

(sdet M)"'=(det A)"(det (B—DA™'C)).

(2) sdet (MN)=(sdet M)(sdet N).
(3) str and sdet are (even) matrix invariants. That is, 1f N is invertible,
then
str M=str (NMN™), sdet M=sdet (NMN™Y).

(4) Let M(x, 0)= [gg: z; ICS'E;C: z;] be a cven invertible supermatrix such

that each matrix elements are supersmooth in X=(x, 8). Then, we have
(2.19) 0x(sdet M(X))=(sdet M(X)) str (M Y X)0xM(X)))
=(sdet M(X)) str (0xM(X)MY(X)).

Proof. See the proofs in [2], [6], [17] or [27].
Now, return to state our elementary analysis.
For f(X)eCss(U; €) on a superdomain UCR™'", we put

(2.20) dxf(x, 0)=[0z,f(x, 0), Bo.f(x, )]=C™+"
and call it the Jacobian matrix (or differential) of f at X=(x, 6).

From Definition 2.4, we get readily

PROPOSITION 2.13. Let U be a superdomain in R™'*. For f, g&Css(U; €),
the product fg belongs to Cgs(U; €) and the differentials dxf(X) and dxg(X)
may be regarded as continuous linear mappings from R™'" into €™*+". Moreover,
they satisfy the following:

(1) For any homogeneous elements 2, p=€, we have

(2.21) dx(Af +pg)( X)=(—1)PPOPE2d » f(X)H(—1)PP D g y o( X) .
(2) (Leibnitz formula)
(2.22)  0x [f(X)g(X)]=(0x f(X))g(X)H(—1)PERPTED (X )0y g(X)).

Proof. For the product, as we get
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(f@Xxn) =(3f x)0”)(D g(x2)07) =T h(xz)0™

where hg(xp)=Dg=r+7(—1)"THELDf (x)g(xg)ECUg; C), so we have the de-
sired result. (2.21) is obvious. To get (2.22), use the formula (2.11). =

DEFINITION 2.14. Let UC®™'" and U'CR™ '™ be superdomains and let ¢
be a continuous mapping from U to U’, denoted by o(X)=(gi(X), -, @mn(X),
Omr (X)), 5 Qmran(X))ER™ '™, ¢ is called a supersmooth mapping from U
to U’ if each ¢ (X)eCss(U; €) for =1, ---, m’+n’ and oU)CU".

PROPOSITION 2.15 (Composition of supersmooth mappings). Let UCH™'™
and U'CR™'™  be superdomains and let @ : U—-U' and @' :U'—R™"™ be super-
smooth mappings. Then, the composition T=0'-@ : U—-R™"'™ gives a supersmooth
mapping and

(2.23) dx¥(X)=[dr@'(¥)]lr-0cx:[dxP(X)].

Proof. (1) First of all, we prove our assertion for the case m, m’ are
arbitrary, n=n’=0and m”"=n"=1: Let U, C®™'" and U;,CR™ ' be even super-
domains and let ¢:U.—U;, be a supersmooth mapping represented by ¢(x)=
(@u(x), , @me(x)) With @(x)ECss(Uer; €). For any f&Css(Us; €), we want
to claim that (¢*f)(x)=(f-@)x)=f(¢(x)), is well-defined and belongs to
Css(Ue; €). Putting

y=@(xp)=@s(xp)+@s(xp)=yp+ys  With @g(xp)= JZ lgoJ(xB)UJ )
1Jiz

we define, by using the supersmoothness of f and ¢,

1 « a
(2.24)  f(e(xB)re1= > - (05 )eegi (VBT )ekys -~ (I m™s)ek 3 .
e S

By the same reasoning as in the proof of Proposition 2.2, f(¢(x5))s; is well-
defined and belongs to C(Ug; €rr1), 50 f(@(xp)=2=0f(p(xp)s;=C*Up; €).
Therefore, it has the Grassmann continuation which should be denoted by
(fe@)x). On the other hand, as we get from (2.24),

(2.25) az,,B(f"SD)[kJ(xB)

00, «
= > '(3 aytf)[kol(yl?) 902 %5) B(xB) (yrt e (Ve 1
ko+1f?1-ll-al~fkkm-—k y=0(rp>
= . |%5k —‘a 1 (32‘)3wf):ko:(y3)

ko+k1+ -+
k,+k,+ +hm=k

X(Y1)eey - adyesDerp (aga, S(XB))

R C T

[k,] y=p(rpd>
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k

2 yzf(QD(xB)))[ko] (aSDI(XB))[k g

0=0 0x,,8

This is the desired result (2.23) in the case of (1).

(2) Now, we treat the case m, m’, n, n’ are arbitrary and m”=n"=1: Let
Uc®™™ and U'CR™'™ be superdomains and let ¢:U—U’ and f:U’'—G€ be
supersmooth mappings. Put ¢(x, 0)=(p(x, 0), 1=k<m’+n’ where @J(x, 6)
=30, o(x)0% and f(y, @)=, o(y)0® with b=(by, -+, ba)={0, 1}™. We de-
compose

Cofx, O)=Y,=YP+Y P for 1<7<m’

where
Y=, 5(x)=Y+Y 0 with Y%=0;755x), Y %5=0;75.5x),
{ Y =31c10150P5.a(x)0% .
Then, we consider formally

(226) ﬁ(x: 0): Zb"_‘fb(yl; tty Ym')(Ym’ﬂ)bl (Ym’+n')bnl .

Remarking that Y{®Y =0, we apply Taylor’s formula for f,(Y"4+Y®) at Y=
Y to get

@.27) FAY @Y D)= FuY O+ 50, oY O ot -

0y [ Y )Y D . VD
On the other hand, as

1
(2.28) FAY O)=3 2o (Y PNV ),
we get easily

(2.29) foleu(x, 0), -, ue(x, 00)=2 g0, (2)6°

where g «x) is a supersmooth function on U,, composed by the products of
supersmooth functions 0% f(ps(x)) and ¢, .(x). Combining these, we get

(2.30) Fx, 0)=;(2 go,c(x)ac)(zﬁ¢m'+1,dl(x)0dl)b1 (dEQmew.an,(x)a&"’)""'
¢ 1 n,
:§ﬁd(x)0d ’
where d=(d,), ¢=(c¢s), @s=(ds,r), ds=cs+b1dy, s+ +byp@n s with 1<s<n and

1<r<n’. Therefore, we get Fo(x)ECssUe; €), that is, F(x, 0)=f(p(x, 8))e
Css(U; €). To get (2.23), we differentiate (2.26) with respect to x,,
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a§01<x )

9., F(x, 0>—zzay,fb<gow<x 0)) (Poalx, O))

00, s,n")
| e

+ 5 fulpel, 0»3’"35"'1(—1>b1+-"+bs-1b
=m' +

S
Here, TTEP @mer vl %, 0) = @mesi(x, 0F1 L Qv (2, 007, el x, 0)=(gp5(x, O ,
and @oa(x, O)=(Pm +s(x, 6))5:.
Taking derivatives with respect to 6., we get the similar expression as

above and combining these, we have
8goj(x, 0) é%(x, 9)
oxp 7 00, [8f(y, ®) f(y, w)}
aQDs(x, 0) a(Ps(xy 0) ay] ’ aws ’
ox, ' 00,

[0.,F(x, 0), 9o, F(x, 0)]=

this is, (2.23) in the case of (2).
(3) For the general situation mentioned above, using the arguments in (2)
repeatedly, we get the result after tedious but straightfoward calculations. m

DEFINITION 2.16. Let UC®™'® and U’'CR™''* be superdomains and let
¢ : U—U’ be a supersmooth mapping represented by ¢(X)=(¢(X), -, @mr+a (X))
with @ (X)ECss(U; €). (1) ¢ is called a supersmooth diffeomorphism if (i) ¢ is
a homeomorphism between U and U’ and (ii) ¢ and ¢~ are supersmooth map-
pings. (2) For any f&Css(U’; €), (p*fNX)=(fpXX)=F(p(X)), called the
pull back of f, is well-defined and belongs to Cgs(U ; ©).

Remarks. (1) It is easy to see that if ¢ is a supersmooth diffeomorphism,
then @p=mpep is an (ordinary) C* diffeomorphism from Ug to Uz. (2) If we
introduce the topologies in Cgg(U’; €) and Css(U ; €) properly, ¢* gives a con-
tinuous linear mapping from Cgss(U; €) to Cgss(U; €). Moreover, if ¢:U—-U’
is a supersmooth diffeomorphism, then ¢* defines an automorphism from
CssU’; ) to Cgs(U; ©).

PRrROPOSITION 2.17 (Inverse function theorem). Let U be a superdomain in
R™" and let G(X): UCR™' " SR™'™ be a supersgwoth mapping. We assume the
super matrix [dxG(X)] is z’nvertz'blg at .z(ngeer(U). Then, there exists a
superdomain U’, a neighbourhood of Y=G(X) and a unique supersmooth mapping
F satisfying F(G(X))=X and we have

(2.31) dyF(Y)=(dxG(X) 7 x-r@» in U’.

Proof. (1) First of all, we treat the case m=1 and n=0, that is, U, U,
CcR!. Let g:U.,—U,, be a supersmooth function represented by
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y=g(xp)=gslxp)+ X gi(x)o'=yp+ys.
|J |=evenz2
Here, ga(xp)eC>Up; R) and gs(xz)eC>(Ug; C). By assumption that gx(%s)
#0, there exists a smooth function fz such fz((gs(xg))=xp near xz==%xz. We
want to construct a family of functions f,=C>Ujs; C) such that f(yp)=
Fe(yp)+fs(8), fs(¥B)=211=evenz2f 1(y )0 " satisfying f(g(xp))=xp near xp=%z.
As we should have

(2.32) xs=f3(ya+ys)+fs(ys+ys)

=folyp+ B4 PO+ I P ps
we get
(2.33) foop== B 57 POyt~ B 5 Past

We prove our statement using the induction with respect to the degree. The
degree 2 part of (2.33) is given by

(2.34) Fs(¥B)ea=—FB(¥B)Ys.r21 -

In other word, for I such that |/|=2, we may define functions f;(vg) by

fl(yB)=—fg(yB)gl(fB(yB))(z_ij(gBOCB))gI(J&B)) .

Assuming that fg are defined for degrees less than 2/, we put,

1
(2.35) fs(¥B)reirer=— 1:2211 —k 1 fge)<y3)(yg)[2i+2] E 2 ——k 1 (f§ )(YB)>[2jJ(y’fs)[2z+2-zj3.
! 21 7=0

So, we may define f(yp)=35m0f(VB)2i1=SB(y8)+Z51fs(¥B)2n ECUjp; €).
Taking the Grassmann continuation of f(yz) and remarking d.f(g(x))=1, we
get the desised result.

(2) We next consider the case m=n=1, that is, U, U'C®R'*. Let G(x, )
(gex, 8), 8oalx, 8)): U-U’ be a supersmooth mapping given by

(2.36) Gel X, 0)=Gev,o(%)+ Zev.1(x)0 , Zod(%, 0)=goa.1(%)+Zoa,o(x)0 .

For simplicity, we put

YB=8ev,0.B(XB), Y§=2111=cven=z28ev,0, 1(X5)0 7,
ge(xm, 0)=Yp+ys+560 where _
J=21T1=0aaz18en. 17(xg)a’,
and

O=23\T1=0dd2180a.1,7(% )07,

Zoa(x, O)=w+@0 where { @=p+ds

=goa.0, B(XB)+ 21 11=cvenz280d, 0, (xp)a’.
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From )7=G()Z' ) and the invertibility of dxG(X)|x-z, we get
(2.37) Zev0.8(8)=53, ZGev 0. 8(XB)Goa. 0, 8(X8)#0 .

Now, we seek a function F(Y)=F(y, ©)=f ey, ®), foa(y, 0)): U'—U repre-
sented by

felds @)=Feo o)+ Fers(D0,  Foa(y, @)=Foas(3)+ foa ol y)w
which satifies F(G(X))=X near X=(x, 0)=(%, §)=X. Here, we put
feo.o¥B)=fev.0.8(¥B)+ 2 11=evenzaf ev,0. 1(¥B)O T,
Ifw‘1<y3>=z,zl=oddg1fev,1,;<y3>of,
I fod,l(yB):Ell_l=add21f0d,l.7(y3)o'fx
foa.(y8)="Foa.0.8(¥B)+Zi11=evenzaf o0a.0. 1(¥ B)OT.
As F(G(xp, 8))=(x3p, 8), we should have the relations
(2.33) felgexB, 0), Goalx, 0))=x8,  [oa(gexB, 0), Goalx5, 0))=0.

From the first equation in (2.38) and the supersmoothness, we have
X5=fen,ol Y8+ Y5+ I0)+ fev.1(y5+ y5s+50)w+@0)

= eyt I SRR+ kA 50)

1
+ 3, S Ry 50w +a0)
L rw k 1
—fev e+ X — ev, ye)ys+ 2 ""fev l(yB)ySw
1kiz1 k! z0l !
! * ) E—1 1
+{|EIW( ev,o(y8)+fev,l(y3)w)ys y+ & goe_ffev l(yB)ySw}
Therefore
1 1
(2.38)  xp3=fen.0.800B)F fen0.s(¥B)+ 2 7Ry e)ys+ X =@ (ye)yse
gzt k! 151z04 !

and

1
(240) 0= 3 (R + (0§ I+ 2 /8 (5)y5(@5+s).
e (B— 1)! ¢!

1£120

As ghyo.8(X8)#0 by (2.37), using the standard inverse function theorem,
there exists a function f., . 5(ys) such that

(2.41) Sev,0,8(Gev. 0. B(XB)=2%3
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near xz—=Xxp. Therefore, we get from (2.39),

242)  fenos(ya)t+ 3 k,fé%’o(ys)y"s-l-(fw.1(y3)+|él%fé%h(ya)y%)m:O.

For each I satisfying |I|=1, we pick up the term of degree 1 from (2.40)
to get

(2.43) Sen1. 1(Y8)God.0.8(XB)+ [ b, 0, B(8ev,0.8(X8))Zev, 1, 1(x5)=0.

As gly.o.5(xB)Z0a.0. 8(x8)#0 by (2.37), there exists a function f...;, ;(y5) such that
the above equation is satisfied when yp=ges. o 8(x5). Equations (2.41) and (2.42)
correspond to the degree 0 and 1 part of (2.39) and (2.40), respectively.
Using these, we may solve the degree 2 part of (2.39) and then the degree
3 part of (2.40). Doing recursively, we may construct functions fe,, and fey, 1.
From the second equation of (2.38), we get

0="foa. 1(y3+ys+y'0)+fod.o(ys-l-ys+y'0)(w+t30)

1
= fod {yB)ys— «].éoﬁféfi),o(ys)y‘sw

[ll

1
] (k) (k) k=15 _—_fW k=
”’{. 2, iR+ Ry 5+ 3 18 (95 188},
That is,
1 1
(2.44) 0=foa.1.s(¥B)+ » Izlk—!fé’fz), (B)y%+ ngoﬂ §8.(yB)ykw
and
1
(2.45) 1-—”21 = l)' (f8 1(y3)+fé’é’,o(y3)w)yks“37+lklzlwfé’é’,o(ya)y%c?-

By the same arguments as above, we may construct functions f,s .(ys) and
foa.o(ys) which satisfy the desired properties.
(3) For general m, n, we do analogously as above but with more patience. ®
Moreover, we have

PROPOSITION 2.18 (Implicit ancNtion Theorem). Let @(X,Y):UXU'—-E™ '™
be a supersmooth mapping and (X, Y)esU XU’, where U and U’ are superdomains
of R™™ and R™ '™, respectively. Suppose O(X, Y) 0 and 0y9=[0,,0, 0,,,7@]
is a continuous and invertible supermatrix_at (X3, YB)en'B(U)Xﬂ:B(U) Then,
there exist a superdomain VCU satzsfyzng XBEn'B(V) and a unique supersmooth
mapping Y=f(X) on V such that Y= f(X) and O(X, f(X)N=0 in V. More-
over, we have

(2.46) 0xf(X)=—[0yD(X, Y)I'[0xD(X, Y)]ly=rcx>-

Proof. (2.46) is easily obtained by
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0=0xD(X, f(X)=0xD(X, Y)+0yP(X, Y)ox[(X)|r-scx>-

The existence proof is omitted here because the arguments in proving Proposition
2.16 work well in this situation. m

§3. Integration

Integration (even case). Now, we define the integration of a supersmooth
function u(x) on an even superdomain U.,CR™'?, which is similar to the integral
of holomorphic functions on a complex domain. (See, Rogers [24] or [27].)

DEFINITION 3.1. Let u(x) be a supersmooth function defined on a even
superdomain U, C®R'"°. Let A=2p+1s, p=pp+pssU, and let a continuous
and piecewise C'-curve c: [4p, #p]—Ue be given such that c(dp)=2, c(us)=p.
We define

3.1) Scdx u(x>=g‘; idt W)=

and call it the integral of u along the curve c.
Using the integration by parts, we get the following fundamental result

(see [6]).

PROPOSITION 3.2. Let u(t)eC=([A5, sl; €) and let u(x) be the Grassmann
continuation of u(t). Suppose that there exists a function U(t)=C>([2p, psl; €)
satisfying U'(t)=u(t) on [Ap, ps)]. Then, for any continuous and piecewise C'-
curve c: [Ap, ppl—UC R such that c(As)=2, c(pp)=pg, we have

3.2) Scdx w(x)=UQ)—~U(p).

Proof. By definition, we get
[e2at uteonew={""dt 5 Tu(eaohest esties0)
B B ¢z0 4!

L

= k! u®(cpt))est)es(t)?

=Sf§dt u(cB(t))c‘B(t)JrS:‘Zdt
S ) ~u<¢>(c3 Des)es(t)

=U(ps)=Ue)+ X gy (U2 (pp)(pe)  =U D (A5)(A5) '}

(/z+1>1
=U(m)—UQ). m

COROLLARY 3.3. Let u(x) be a supersmooth function defined on a even super-
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domain U,CR"" into €. Let ¢y, ¢, be continuous and piecewise C'-curves from
[48, us]—Ue Such that 2=ci(Ap)=c(As) and p=c(ps)=css). If ¢, is homotopic
to cs, then

(3.3) Sc dx u(x)zgc dxu(x).
Thus, if [z, pslCrs(Ue), we have

(3.4) Sf dx u(x)=g’; Zdt u().

Because of (3.4), we have

DEFINITION 3.4. (1) Let I, be a even superdomain in %™'° such that
ws(len)=I1%(a,, b;)CR™ with —co<a;<b;<co, which is called a even super-
cube. For usCss(le; €), we define

(3.5) Slwdx u(x):S:dql S:’:dqm wgy, qm):S dxputxs).

Tplley

(2) For any even superdomain U.,CR™'® such that #z(U,.) is of definite
area, we may put

6 S d =S d
3.6) Voo x u(x) 5T x5 u(x p)
for ueCgsUeo; €).

Remarks. (1) The formula (3.6) stemms easily from the well-known proce-
dures to define multiple integrals in Riemannian integration. (2) The reason
why we should use ‘contour integration’ is explained precisely in [24]. As
we treat only even superdomains here, her arguments there are simplified
considerably. But we should change the role of the ‘body’ in our treatment,

if we need to catch up all arguments of Rogers, which is noted in the remark
after Proposition 2.5.

Integration (odd and mixed case). Let v be a polynomial of odd variables
0=(6,, -, 0,)=%R7,; such that

v(ly, -, 0)= bZ v,0° with homogeneous v,0°<€ for each b.
1bIsn
Denote by P,(€) the set of all v as above.
DEFINITION 3.5. For ve P,(€), we put

@D | .d000=( , d0. - 40,00, -, 0=G@s, - 30,0X0)
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and we call it the integral of v on R°'™.
Above definition yields readily that

(38) [yoraln -+ 20,0, 0,=1.

Moreover, we have

PROPOSITION 3.6. Given v, we P,(Q), we have the following:
(1) (C-linearity) For any homogeneous i, p=€,

3.9 |, d0Go+poX@)=(—1rr@a( | dou@)+—1rren| | douw).

RO
(2) (Translational invariance) For any p=R"'", we have
(3.10) [ond000+0)={ , d0u0).
(3) (Integration by parts) For ve P,(€) such that p(v)=1 or 0, we have
(3.11) [ 1202000, 0(0)=—(= 17 0G0 2(0)0(0).

(4) (Linear change of variables) Let A=(A;;) with A;js=Re, be invertible.
Then,

3.12) [umd0vO=et (| dova-).
(5) (Interation of integrals)

@13 {4000

={ o sd0n - d0n([ 404 486y, -, B4, Bass, -, 0.

(6) (Odd change of variables) Let 6=0(w) be an odd change of variables
such that 8(0)=0 and det(00(w)/0w|4=0)#0. Then, for any ve P,(€),

(3-14) gfnmndav(a)zSmolndwv(e(w))det_l< 533)’)))
(7) For vEP,(€) and ws®R*'",

(3.15) [ 401 000:=02) - (Or—00(0)=0(@).

Remarks. (1) All above assertions are easily obtained by following the
arguments in pp. 755-757 of [27], so proofs are omitted here. (2) (3.15) allows
us to put (0 —w)=(0,—w,) - (0 ,—w,), though o(—0)=(—1)"9(8).
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Finally, we define

DEFINITION 3.7. Let U=U,XRLCR™'™ be a superdomain and let
usCss(U; €), that is, u(x, )= uq(x)0% with us(x)ECss(Uer; €). Then, we
define

[,dxdoutx, ={ dx{{,, d0uc, 0}

S dxpur(xp) with T=(1, -, 1)
7pWev)

:Smmdﬁ{ngdx u(x, 0)}.

Change of variables under integral sign.

THEOREM 3.8. Let
(3.17) x=x(y, 0), 0=00y, 0)

be a supersmooth diffeomorphism from RF'™ to RE'". Putting

0x _dx
ac1 | %o T
(3.18) M=[ ], .
pBl |, 00 p 30
T oy’ T ow ’

we assume that either det Alo,—o and det(B—DA™C)|,=0 or detBl,- and
det(A—CB 'D)| =0, are invertible for all y. Then, for any function
fECss(RE'™; €) which is integrable on RE'™, we have the change of variables
formula

dydo f(x(y, 0), 0(y, o)) sdet M)y, o).

(3.19) Sm dxd6 f(x, 0)=Sm

min

min
Y

X

For the proof, do as same as in pp. 759-760, [26] where their super
Euclidean space is modelled on A% and ®2'* and RP'" are replaced by suitable
‘singular manifolds’ in (A% .,)™ X(A%¥ .4)". Here, A% is defined as similar as
A% in (1.5).

§4. A Hamilton equation on super Euclidean space

Super Hamiltonian flows. Let a function H(x; &, ; =) on R2™'?® be given
which satisfies the following where proj;(-) is defined just before (1.16):

Assumption A.
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(A.l) H(x;§, 0; 1)ECss(R™12"; Rey).

(A.2) H(xp; &3 0;0=C(R*™; R).

(A.3) For any multi-indeces a, B, a and b satisfying |a|+ |8+ |al+1b|=2
and any /3, there exists a positive constant Cyg, 3, 4.5, independent
of I3, such that

| proj (93080505 H x5 &5, 0; 0N < Cuaopuas.
Or, we consider more specially that

Assumption AS.

(AS.1) H(x;§, 0; m)ECss(R™1"; Rep).

(AS.2) H(xp;&p 0; 0)=C=(R*™; R) and 030%H(x5; &5, 0; 0)=C=(R*™; C).

(AS.3) For any multi-indeces @, 8, a and b satisfying |a|+|8|+|al+1b|22,
there exists a positive constant Cg,g,4,5 Such that

102080504 H(x 5 €5, 05 0)| < Coa.p.ars-

Example. We take, as the simplest example, the following Schroédinger
equation with spin (called, Pauli or more precisely Pauli type equation) on R™:

h 0dlg, 1)

“4.1)
with
t=— 3 (20~ 440) +1 B Fulorr* +0@)

A AR 2 s MY -

Here, Fj,=0,,A:s—0,,A, is the field strength of an external smooth gauge
potential A=X",A;(q)dg, on R™ with Eﬁlaquj(q):O and @(g) is a smooth
potential function on R™. {r/}™, stand for the Hermitian » X#»-matrices, called
the (Euclidean) Dirac matrices, satisfying 77r*+7*y’=—20;, and ¢(q, t)=C" for
each (g, t)e R™x R with »=2' where /=[m/2]=the largest integer not exceeding
m/2. Using the procedures introduced in [11], we get the ‘full symbol’
H=H(x;§&, 0; ) of (4.1) as follows:

H(x; &, 0; m)=Hg+Hs with Hp=Hy(x;§, 0; )= é‘a Eu—A () +0(x).
Here Hs=Hg(x; &, 0; r) is given by, for m=2/,
1 2 .
Hs=§J k2=1 {(Fzmk(x)—Fz;_l2k-1(x)_21F2;2k-1(x))0;'0k

+(sz zk(x)'—F2;_1 2k-1(x)+2iF2;' zk-l(x))ﬂjﬂ'k
_Z(Fz; 2lz(x)+F2]—1 2k-1(x)_iF2;_1 2k(X)+in] Zk_l(x))é‘j:rk}
and for m=2/+1,
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1
Hs= kgl {(Franser(x)+7F126(x))000 4+ (Fyaps ) — 1 Fy 01 (x))mom s
—(Fropsr(X)—iF 1 0x(x))0 0T o 4+ (Frops1(x)+1F124(x))0 170}
1 2
+7;,§'=1 {"(Fz; 2k(x)“‘F2j+1 2k+1(x)“‘2in; 2k+1(x))0j0k

—(Fajan(x)—Fajuront1(X)+20Foj0p4 (X )77
—2(Fajar(x)+ Fojrroner(X)—tFoju100(X)+1F25054+1(x))0 71} .

This Hamiltonian satisfies Assumption AS if @(q) is real-valued and satisfies
|0:0(g)|<C, for |a|=2 and Aj(g)=2".a;:q: With a;, and 3™,a;;=0. More-
over, this Hamiltonian has the real body and the complex soul which is the
main reason why we introduced our supernumber algebra % as in §1.

Let T>>0 be fixed arbitrarily.

For t,se[—T, T], we want to construct a solution (x; &, 8; m) of the
super Hamiltonian equation given by

%x(t)=aeH(x;$, 0; ),
d

_?t_g(t)z—axH(x; §0;m),
4.2)
%0(t)=—5nH(x; §6;m),

_;Tﬂ(t)z—égH(x; §0;m).

with the initial condition at ¢=s given by
4.3) (x(s); &(s), O(s); m(sN=(y; 1, w; p)ESR™'*",

Remark. Above equations are introduced to describe a classical spinning
particle in [3] and [5] independently. See also the paper [18]. But there has
been no paper treating the existence of the solution though Assumption A
above should be weakened for physical applications.

To solve (4.2) with (4.3), we first observe the body part of (4.2). That is,
putting Hpy(xp, E5)=H(xp; &5, 0;0), we consider the following differential
equation :

J—‘?f—x s(t)=0¢sHp(x5(t), §5(1)),
(4.2B)

l —d%“és(f)-—— —0.:,Hp(x5(t), £5(1))
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with the initial condition at ¢=s given by
(4.3B) (x5(s), £8(s))=(y8, NB)ER"=T*R™,

By successive approximation, we easily obtain the following (cf. Fujiwara [7]):

PROPOSITION 4.1. Let Assumption A hold. For any T>0 and any t, s
[—T, T1], there exists a unique solution of (4.2B) with (4.2B) which s C* in
(¢, s: yp, 9B). Moreover, there exists a constant 0o(T)>0 with the following
properties: If |t—s|<d«(T), there exist positive constanis Co and Cs for
lal+18121, independent of (t, s: ys, s) such that
{lxs(t, s:yp 98)—ysl=Co(l+|ysl+I9sD]t—s],
1€8(t, 51 y8, ) —N| SCo(l+1ysl+ 1981 t—s],

45) {|3§Ba’%3(x3(f, s:ym NB)—yR)|=C|t—s],
' 193,02 ,(6alt, 52 y8, 18)—ER)| SCOplt—s],
{l(ast)(t: st Ve, 08)+0e,He(ye, 1)l SCol+1ysl+ 98] |t—s],

1(0:&8)(t, $: Y5, N8)—0.5Hp(y5, 78)| = Co(1+1yal-+198])|t—s].

4.4)

PROPOSITION 4.2. Under Assumption A, there exists a unique solution of
(4.2) with (4.3), for any T>0, and any t, s€[—T, T].

Proof. For notational simplicity, we put z=(x, §&) and ¢=(0, ). Decom-
posing
4.7) x(t)=xp(t)+xs(t), EE)=En(t)+Es(1),
we write (z, ¢)=(2(t), ¢(1)), with z(2)=(x(2), (¢)) and ¢(£)=(6(t), =(¢)). More-

over, z(t)=zg(t)+zs(t), with zp(t)=(x5(t), £x(t)) being given in Proposition 4.1.
Using this, (4.2) can be rewritten by

ws) J [zm ]_[ Xo2(®), 4 ]
. A | gy ]| Xoalelt), g0

where Xe’v(Z’ Sb):(aé‘H(z} (,b)) —'axH(Zy 4’))’ and Xad(z) ¢):(_anH(Zy ¢)’ _aﬁH(Z’ ¢))‘
By Proposition 4.1, we need to consider only the soul part (zs(f), ¢(2))=
(xs(t); §s(2), 6(t); =(2)). So, we have

@9 4 [ zs(t) JZ[ 0.X(25(t), 0) ) 0 ” z5(t) ]
N 0 0 34X oalzs®), 0) J| ¢(t)
D Ko, aza0)280P70)
* 'mWIXM,a,a<z3<t>>zg<t>¢a<t>}

1sial+)a
lai=odd
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where X, a,o(z5)=(1/a)0205X (25, 0) and Xoq, . o(25)=(1/21)0233X,a(z5, 0).
To calculate (4.9) more concretely, we decompose (zs, ¢) by

(410) 28— 2 21251 and ¢= 2 ¢[2]_1]
jz1 iz

where z(sj3, ¢re;-17 are degree [27] and [27—1] component. Then, for ¢us,
we have

@I S gusO=8,Xeulesl®), 0es®) wWith e O=(@rn, prr).

Using the degree, (4.11) can be solved easily for |t—s|<0i(T), because
04X,a(25, 0) is uniformly bounded on R*™ by Assumption A.

Now, consider (4.9) for (zz;x(?), Prej+12(2)). Then, we get the following
explicit form:

“.12) d [ 20251(2) ]_[ 0.X(25(2), 0) 0 H 2251(8) }
A g | 0 3y Xoaalzs®), 0) Il Grasunst)
+[ Proia(t, s: 2re3, =+, Zray-23, Prans 5 Prog-13) :|
Quojera(t, S Zeoa, =+ 5 Zuzgm21, Prazs 5 Prog-11)
where
(4.13)  Projit, s: 2003, o+ 5 Zreg-23, Prads 5 Prag-13)
=& it Eo(ay)! -(-X-u;e,ﬂ(au)! 2 e 2l o Y - il
XOPEGY - PTEEI1 - PIETE™  P3 $5a M1 X oo, o, a(ZB(1))
and
(4.14)  Qrejenat, St Z0o3, 05 Zrzg-21, Pran, o0, Preg-11)
:(212+1) :Ii kolay)! fy-u:!’é’;a(au)! zf'ol%l) Zf}ﬁ}g}) 257%‘?35"’ e zgh Y
XPTUETY - U5y - Pt $35™ oo Pl (5211 X 0a d. 2. (25(1)) .

Here, X)) (resp. Xj41) stands for the sum of all partitions (ku(:), mu(-))
satisfying the following :

(1) E"L;IO u(al):a’t (Z=17 Tty zm)’ 2'}1=lmp(ar):ar (7‘21, Ty 2")’

(2) 22 2uky(a)+a| =25 (resp. 27+1),

3 2=|al+|al.

If we assume that (zrasi(t), Pres-11(2), £=0, -+, j—1 are solved, then,
Proy_oi(t, s:+--) and Qrey-1x(f, st ) are the known data. So, we get (251, Praje1d)
from (4.12) by using the variation of constant. Thus, inductively we get a
unique solution (zs(?), ¢(t)) of (4.9) with the initial condition at ¢t=s given by
(z5(s), P(sN=(ys; 1, w; p). M
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Next, we investigate the smoothness of (z(f), ¢(¢)) with respect to the
initial data.

PROPOSITION 4.3. Fix T >0 arbitrarily. Under Assumption A, the solution
(z(1), (1)) of (4.2) ds ‘smooth’ wn (t,s:y; 7, w; p), that is, smooth in (t, s) for
fixed (y; 9, w; p) and supersmooth in (y; 7, w; p) for fixed (t,s). Moreover,
there exists 0,(T)>( such that the following properties hold: If |t—s|=<0«(T)
and I3, there exist C, and C independent of I such that

(4.15){ |proj(z(t, i:fzs; 78, 0; 0)—(yz, 78D <Ci(1+|ysl+19sD)lt—s],
|proj; (950502052t s: v; 1, w; p)— (¥, PN¥z; 98, 0; 0| =CL [t —s]
for k=lal+|Bl+lal+1bl=1. Analogously, we have

(4.16) |proj (9505059442, s ¥5 1, @; P)—(@, P)¥55 78, 0; )| CL [t —s] .

Proof. Remark that the first and the second estimates of (4.15) with
la|+|b|=0 are already given in Proposition 4.1. In oder to prove the smooth-
nessin (v; 3, w; p), we differentiate (4.2) formally in (y; 5, @; p), which gives
us the following differential equation:

(4.17) —ddt—Jm(t):A“)(t)J“’(t) with  J(s)=Id.
Here N .
O0yx 0yx gwx gpx
1 _ ays aﬂ& W& _)pé
19 TPO=1 5,0 9,60 8.0 5,0
d,m 8, Opm O,px
and

0,0.H  0:0:H  000:H  ,00:H
—0,0,H —0:0,H —800,H —0,0.H
—0:0,H —0:0,H —3,0,H —08.0.H
—0,00H —0:00H —0400H —0,04H

(4.19) AP()=

Remarking that the each component of A®(¢) is supersmooth and bounded
independently of I3 by (A.3) and using a similar method as in the proof of
Proposition 4.2, we get the unique solution of (4.17) for [s, #]. Thus, we have
that the solution of (4.2) is supersmooth with respect to (y; 7, @; p). Moreover,
we easily get the following estimate

(4.20) lproj (J(t, s: y55 75, 0; 0)—I)| SC |t —s 01”1t
Furthermore, for each positive integer k, putting
(4.21) ]"”-:(32,'355352(96; §,0; ﬁ))(la|+l,€|+|al+|bl=k) s

we have the following differential equation :
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4.22) %f"”(t):A‘“]‘k)(t)—{-B"" with J®(0)=0

where the each component of A*>(¢) and B’ is supersmooth and bounded.
So, we get also

(4.23) |proj,(J(t, st y5;5 08, 05 O)| S CL [t—s|ef4” -1,

It is easily seen that zqs(%, s)=52,5,’;z(t, s:3;%,0;0) and ¢a(t, s)=5:,‘,53¢v(t, s1y;y,
0;0) are supersmooth functions on %*™'° by using the uniqueness of the
solution for (4.22). Thus, putting

(4.24) 2(t)=2zq(t, s)w*p® and G)=Zdat, s)w*pe®,

we have proved Proposition 4.3, again by the uniqueness of the solution of
4.2). =

Remark. 1t follows readily from the above arguments that if H satisfies
Assumption AS, then agagagégz(t, s: ys;9a 0;0)and 8‘;655;‘,‘,5291:(75, s:¥8;708, 0;0)
are complex valued for k=]|a|+|Bl+|al+|b|=1. Therefore, in this case,
(4.15) and (4.16) hold with |[proj,(-)| by |-].

PROPOSITION 4.4. Let 6,=0,T) be fixed so as to 0=£0,<1 and C{?9,<1/2
(k=1, 2, 3) where C{™ are the constants in Proposition 4.3. Let |t—s|<0,. Then,
we have the following :

(i) For any fixed (¢, s, 1, p), the mapping

(4.25) R S(y, 0) —> (x=x(t, s: ¥ 1, @; p),
0=0@ s:y;7, 0; p)sR™"

is supersmooth. We denote the inverse mapping defined by

(4.26) R 3(x, 0)— (y=yE, s:x; 0, 1; p),
o=0t,s: x, 0,9, p)si™",

which is supersmooth in (x, 6, 9, p) for fixed t, s.
(ii) For any fixed (1, s, y, w), the mapping

(4.27) R3(y, p)—> (E=EE, s: ¥; 7, ;5 0),
r=nt, s:y; N, 0; p)ER™"

is supersmooth. The inverse mapping defined by

(4.28) RS, m)—> (=7, s: y; §, 0; ),
p=p@t, s:y;§ 0; m)ER™",

is supersmooth in (y; &, w; &) for fixed t, s.
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Proof. (i) To prove the bijectivity of the mapping (4.25), for each fixed
t,s€[—T, T] and given (x; %, @; p), we want to solve the following equations
with respect to (y, w):

x=x{t,s:y;1,0;p0),
(4.29) { 7 e

0=0@,s:y;1,0;p).

Following the arguments in Kitada & Kumano-go [14] or [7], we can solve
the body part of (4.29). Namely, we put, for given (x5, 9s),

(4.30) Ty 1p(yB)=x8+Ys—x5(t, S: VB, N5).
Then, by using (4.15) and the mean value theorem, we have

(4.31) T &y 1 p(¥B) =T &y 4 p(y8)]
1 1
=‘SO{I—0yBxB(t, s: ye+1(¥3—35), ne)tdt||ya—y8l S5 |vs—y5l

for |t—s|<d,. Thus, the mapping (4.30) is contractive and has a unique fixed
point. That is, for any given (xp, %s), there exists a unique ¥z such that
xp=x5(t, S: ¥8, 75). So, We write it as ¥z=2y5(f, s: x5, 78). Now, decomposing
x=2%xr;17 and 0=210r,,-13, We consider (4.29) at each degree. First, looking
at 0,5, we get by the supersmoothness of § with respect to its arguments.

(4.32) 0= él 00,00, 5t Y53 08, 0; 0w, 01+ é 30,0, 5: 53 78, 05 0)pr. 001
Since 5,,,0(1‘, s:yg; N5, 0;0) is invertible by (4.20) for small |¢—s], we can
solve w¢y; from (4.32). Similarly, we consider (4.29) for general j:

m
Xr2j1= ka 0y, 28, St Y8, NB)Y k. 12s3+0y, X6, St Y5, NB)Ne.1252)

+er(t, S Vo1 0t 5 Yreg-21s N2l t s Nrzg-21, @11, ***

Wrgy)-115 y Tty - ’
(4.33) l [27-115 P11 Or2; 17)
Orojrnn= rgo (émra(t’ s: Y85 98, 0; 0w, 25413

+5p,0(1, s: 98308 05000, c2j+13)FOrozenalts S Va1, -,

Viog-235 Nred " Nigg-21 W1l *°* 5 Wrey-11; P11l " » PEz;-x])

where

(4.34) Xooiot, St Ve, o+ 5 Yeag21; Neel * 5 Nroge2ds OT1d *** > Orago11s P11l " 5 PL27-11)
1 1 a,! B!

m
R |
iz al Bl oasi kolan)! - kyoy(al)! Bo(Bu)l - k(B!
_ I3 kj-1(2
ny,o[(qu) yf.][z;(—gi) ym".‘éﬂ") YV [é;—gi)
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kocﬁn ky-1(B1> | EoBm) |, k: x(ﬁm)
X N1t s Ty =2) M. p2) 25-2]

mi(ay) | mj( mica mjla
XOTHTY - o771, -+ o757 - 075,

ml(bl) mjcb1y mi(dn) | mjdn)
Xp1,t 0172917 Pn.t1y 7t Pnr2y=13

X03069202x(t, s 955 15, 0; 0),
(4.35) @tzj+u(t, S Yrad ttty Yeag-215 N2l 0t Niag—2d Or11, 5, Orzy-113 OC11r *** 5 Pr27-11)

. 1 m a,! B!
=2 al 13' L @ by (@al FolBal - (Bl

koCay)y | ky-1(21) | ko(ﬂ'm) kj-1Cam)
Xy © YTy 21 t Vmape

1,[2] © Y r2y-23
Xn{eo[(lgl) 7]721[2;(/51) nko(ﬂm) 775‘1 1(/_3_;73)
XOUHIY - O E )y o Rt - 075,
XETHS? -+ pIEE; Py -+ PRI - PRI

xagagézézo(t, s:yg; 98 0;0).

Here, Xrej1 \resp. Xrzj+13) stands for the sum of all partitions (k.(-), m(-))
satisfying the following :

(1\ ZJ—I (at)za’u 2'1’t_=10ku(,8i)=,81. (i=1; ) m)’

(2) D uka)+ 2R 202uk B+ al+1b| =27 (resp. =27+1),

3) Xdmular)=a., ZiZimu(b,)=b, (r=1, ---, n),

4) |a|+lbl+lal+|ﬂ|22
So using (4.21), we can solve (yrz;1, Wr2j+11) for general 5. Using the Proposition

2.16 (inverse function theorem), we get the supersmoothness of the mapping
(4.26). The other assertion is proved similarily. m

The mappings defined in Proposition 4.4 satisfy the following :
PROPOSITION 4.5. Let |t—s]| <0, then we have

4.36) { x(t, s: @, s:x; &, 0;7);6 0, s: %3¢ 6; 1n); m)=x,
. 0(t, s: y(t, s:x; & 0;7);8 o, s:x3 & 0;n); 7)=0,

A3 {é(t,s:x;n(t,s:x;é,ﬁ;z), 0; 0, s:x;6, 0; n)=¢,
w(t, s:x; 9, s:x;6,0;7),0; 0 s:x;§ 0; n)=n
(4.38){x(t,s:x;n(t,s:x;E,0;7:),O;p(t,s:x;E,0;n))=y(t,s:x;$,0;n:),
O, s:x; 9, s:x;8 0;7m),0; 00 s:x;8 0;n)=wt,s:x;§ 0; ),
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(4.39) {E(t,s:y(t, s:x;6,0;m);6 0, s:x; 6, 0;m);m)=n9¢, s:x;& 0;m),
. nt, sy, s:x;& 0;m); 8 w(t,s:x; & 0;m); n)=p(t, s:x;& 6;x).

(¥(1); p(t), 0(t); o(t)) is ‘smooth’ in (t,s:x;§& 0;x) with the following
estimates: There exist constants CPg and C,, independent of (t,s:x;§& 0;x)
and I3, such that for |al+|Bl+lal+1b|=1 and p, g=0 or 1 with p+¢=1

| proj;(0P03050%080%(y(t, s : x; &, 03 W)—x)X¥s; 78 0; 0)| SCPglt—s],
" I | proj (07030204050%(n(t, s: x5 &, 05 ©)—EXys; 75, 0; O ZCPplt—s],
' 1lprojz(aé’azaiaééé‘éi(wd, s:x; € 0;51)—0)Xys; 75 05 0 ZCPplt—s],
| proj, (070305040802 (p(t, s : x; &, 03 W)—x)ys; 75 0; ) =CPglt—s],

|98, st x5, E8)—x5| < Calt—s|(1+| x5l + &5,

(4.41) {
|78, s: x5, E5)—Ep| = Colt—s|(14+ x5 +1&al).

Proof. (4.36-37) and (4.38-39) follow from Proposition 4.4. We get easily
the first two inequalities of (4.40) for a=b=0 by differentiating (4.36) and using
(4.16). Then, we write

(442) yslt, 51 x5, Eo)—v5=E5) 0epVslt, 5 x5, )T

25 @upyslt, s 705, 00— D+t 510, 0).

Using the first inequality of (4.40) for a=b=0, we have
|y5(t, s: x8, §8)—x8| S Co(1+|xpl + 161t —s|+|ya(t, s:0, 0)] .
By (4.3), (4.38), we get
lys(t, s:0,0)|=]|x5E, s:0, 95, s:0,0)—0|=ZClt—s],

which proves the first inequality of (4.41). Similarly, we have the second
inequality of (4.41). To prove other inequalities in (4.40), we do as we did in
proving Proposition 4.4 but omit the details. ®

Action integral. We construct the action integral along the Hamiltonian
flow given above. First, we remark

LEMMA 4.6. Let (x; &, 0; &) be the Hamiltonian flow defined by (4.2). Then
we have

(4.43) %H(x J&, 0 m)=0.
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Proof. By using the composition rule of derivatives, we get

d 4. m0H dx,  0H dg, n ¢ OH df, GH d=,
g8 05 m= 3 ( Gt ) B G a e a)

=1 5; dt
Substituting (4.2) in the above equation, we get (4.43). =

Now, we define

(4.44) ut, s)=ut, s:y; 1, @; p)

=<7]ly>—<plw>+S:L(x(z', s), 0(z, s), &(z, ), n(t, s))dr
where
(4.45) L(x; &, 0; m)=<E|0:H(x; &, 0; m)>+<{x|0.H(x; & 0; x)>—H(x; & 0: 7).

Here, we put
m l
<’7|y>:J=21’713’w plwy= r% 0@, , etc.
x@, s)=x)=x(, s:3; 0, w; p), &t s)=EW)=E(t, s:y; 9, 0;p), el

LEMMA 4.7. Let |t—s|<0,. Then, u(t,s)=u(t,s:x;& 0;xn) is ‘smooth’
in (t,s:x; &, 0;r), and it satisfies:

0, u(t, s)=<&(t, s)|0.x(t, s)>—<=(, $)|0:0(, s)p
—H(x(t, s); §¢, ), 6@, s); (¢, ),

0sult, s)=—<E&(, s)|0sx(t, s)>—<x(t, s)|050(¢, s)»
+H(x(t, s); &, s), 0z, s); =(t, s)).

0y u(t, s)=<&@, )10, x(t, s)>—<x(t, s)19,0(, s),

9,ult, s)=y-+<E&@, $)10,x(t, s)>—<x(t, )19,0(, s)>,

doult, $)=C&(t, 9)10ux(t, )y+<nlt, $)10a0, 5)),

0,ult, $)=—0-+<EQ, $)|8,x(t, $)>+<x, $)|3,00, ).

(4.46)

(4.47)

Proof. As is readily seen the ‘smoothness” of u in (t,s:x;§&, 6; ) by
composition rule of differentiable functions, we have (4.46). To prove the first
equality of (4.47), we put

(4‘48) Wj(t’ S)Zay,-u—<5(t, S)Iaij(t, S)>+<7l'(t, s)layjﬂ(t, S)> (.7:1: T m)'

Then, Wi(t, s)=0 and W (s, s)=0 by easy computations, which gives the desired
equation. The other equations of (4.47) can be similarly obtained. m

Putting



CALCULUS ON SUPER EUCLIDEAN SPACE 107

(4.49) @(t, s:x3m, 05 p)=ult, s: ¥, s:x;79, 0;0); 0, s: 259,05 0),1;0),

we have:

PROPOSITION 4.8 (Hamilton-Jacobi equation). Let |t—s| <0y, then-
(i) &, s:x; 7, 0;p) is ‘smooth’ in (¢, s:x; & 0;x).
(i) g(s, s, x5, 0; 0)=Clx>—<p|6>.
0:9(t, s: x5, 0; )=t s:x57, 05 p),
(i ?7,¢(t, stx;m, 0; 0=yt s:x;7,0;p0),
00p(t, s:x;7,0; p)=xnt,s:x;7,0;p),
5,,¢(t, s:x;, 0;0)=—0t s:x;9,0;p).
, 0p(t, st x; 7, 05 p)+H(x; 0.0, 0;396)=0,
o { 0up(t, s: x5 7, 05 0)—H©@,9; 1, —0,8; p)=0.
(v) o, s:x; 9, 0; p) satisfies the following estimates for any IS :
| proj (93086(t, s : x5; 75, 0; ODI S Cyl+ x5l + 75| P 1a1-#
(4.50) ) for lal+|Bl=2,
1 |proj (930233356(t, s : x5 78, 0; 0)<Cy
for lal+|Bl+lal+1bl=2.
|proj(¢(t’, s’, x5; N5 0; 0)—¢(t, s: x5; N5, 0; 0))]
SCs(1+|xpl+ 19l P(1t=t' | +1s—s"]),
and for |a|+|bl 22,

(4.51

| proj (98Lp(t’, s', x5; 78, 0; 0)—0838h(, s x5; 75, 0; O

SC(It=t|+s=s"]).

(4.52)

Proof. (i)-(ii) are directly obtained by using (4.46), (4.47) and the expression
(4.48). To show the first part of (iii), we differentiate (4.49) with respect to
x. Then, using (4.35) and (4.47), we have

(4.53) .0, s: x5 79, 05 )
=0,,y0,ut, s: y(t, s:x;7m,0;0); 7, 0t s:x;7,0;p0); 0)
+axjw5(,,u(t, s:yt s:ix;m,60;0); 0t s:x;57,0;0); 0)
=E(t, $)[05,90,x(t, $)+02 wlux(t, 5)]
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+a(t, $)[02,98,6(t, $)+8.,00,0(, )]
=&,(t, s: y@, s:x57, 05 0); 0, 0E, s:x57,0;0); 0).

The other equations of (iii) can be obtained by similar computations. (iv) is a
directly consequence of (4.46), (4.47), (iii) and (4.36), (4.37). Using (4.40) and
computing straightfowardly, we get (4.50)-(4.52). =

Continuity equation. Put
0.9, s: x5, 05 0) Joyt,s:x37, 05 p)
(4.54) J(t, s: x5 7, 0; p)= sdet[ ]
d.0t, st x3m, 05 0) doalt,s:x;7, 05 p)
which is well-defined for |t—s|<8/(T), t, s&[—T, T], because of Proposition
44.
PrOPOSIITON 4.9 (Continuity equation). For [t—s|<0,(T), J(t, s:x; %, 0;p)
satisfies the following :

(4.54) J(s, s, %57, 05 0)=1
0.Jt, s x;57,0; p)
== 3}0:,{J3:,H(x; 32, 05 30}

— 3,80, 4J3,,H(x; 0.0, 05 309},
0:J(t, s: x5 7, 05 p)
:glaej{]asz(aﬂ?S; 7 “5095; o)}

(4.55)

— 2,8, 80, Hoegs 7, —3,9: o)}

Proof. (4.54) is an easy consequence of (4.18). To obtain (4.55), we use
the similar argument stated in Appendix A, [18]. Differentiating the Hamilton-
Jacobi equation with respect to % and p and using (iii) of Proposition 4.8, we
have

09t B, 02,906, Hix; 92, 05 309)

—l-wZi}léowynéwH(x; 0:9, 0; 50¢):0,
(4.56) m
atwu+ El axhwuaehH(x 5 az¢, 0 ; 50¢)

_éléOQwuéan(X; az¢, 7 ; ég¢)=0
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Define a matrix M=(Mp4)A, B=1, ---, m+n) by

Mjr M, )
(4.57) M= i, k=1, -, m,
Mjz Mz
a=u+m, v=v+m and u,v=1-,n
where
(4.58) Myy=02,91, M;z=0:0u, Mss=00,9:, Msz=0pvw,.

N Nge

Also, we denote by N=M“=[NBA]={ } Then, we get

ju VU

El My;iNgn+ EleNkw=5jk

(4.59)

uMs

thNah'l‘ 2 kaNaw——O

% th uh+ MwﬁNﬁE:51312

Differentiate the each equation of (4.56) with respect to x and 6, we get
0. M+ é‘,l (06, H.., M40, (8, H)M,,)

= 33 Bey 0, Mas+0., B, )Mz, =0,
0cMyyt 3 (92, Oz, Muy+30,02, H)My,)

>

(5 aowl\/fﬁj"‘l‘éﬁv(énwlw)MﬁJ:O’

ul}"3

(4.60) -
0: Mg+ hE___]l (0¢, HO M5 +-0 ,(0c ,, H ) Mpz)

= 33 Gu, Hp,, Maz+02,@r, H )Moz =0,

0Msa+ 35 OenHoz, Moa+30,02,H)Ma)

— 33 @ HO0, Ma+30,r, H)Mg2)=0.

GI
§1
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Substituting (4.60) into (2.19) and using (4.59), we have easily (4.55). ®

Also, by a direct computations combined with Proposition 4.2, we have

PROPOSITION 4.10. Under Assumption A, we have, for any I<ES, |t—s|<
0.T) and for p, q=0 or 1 with p+q=<1 and |a|+|B|+|al+1b| =0, there exisis
a constant Cp q.«.8.a.0 SUch that

(4.61) lproj,(af’agaga,ffégéz(](t, s:x;m, 0; 0)—1Xt, s: x5; 98, 0; 0)]
=Cr.qapanlt—sl.
Now, we put
(4.62) W, s x5, 0;0=J@ s:x;7,0;p)?

which is a super version of the van Vleck determinant for the classical
mechanics (see, [11], [18]). By using Proposition 4.9, we get easily the
following :

PROPOSITION 4.11.  For |t—s|=<0(T), wu(t,s:x;m, 0;p) satisfies the
following :

(4.63) p(s, s, x; 7, 0; p)=1.

(4.64) aty+]§q 3,0 H+ 2 8o, o, H

1 m 77,ﬂ m > 2
oyt 230500 Ht 3 9:00,00,05,Ht 3 30:80,90:,05,H)
1 no5 n m
4_?#{ El aa”énuH+1§1 El 1k¢a$karuH—'_uzvl—xaﬁ aﬂ ¢é"”aﬂ“H}:0’

where arguments of p and ¢ are (t,s:x;7,0;p) and those of H are
(x;0:0, 0; 3095) Moreover, we have, for any I€3J, any p, q=0 or 1 with
p+qg=1 and |al+|B|+a|+|b| =0, there exists a constant Cp,q, a,p.a.0 Such that

(4.65)  |proj (6761030059 pt, 52 x5 7, 05 0)=1)t, 5 %85 75, 05 0))]
écp,q,a.ﬂ.a,blt—ﬂ .

Remark. It seems not necessary to consider the van Vleck determinant if
we stay only in classical mechanics. But, if we want to ‘quantize’ such classical
mechanics, it is natural to take it into account (see, Inoue & Maeda [9] and
references therein).
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