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Abstract.

We define a Frechet-Grassmann algebra with infinitely many generators
as the supernumber algebra. Using this, we define a so-called super Euclidean
space and may develop elementary analysis on it. In doing this, we clarify
the relation between Grassmann generators and odd variables. Moreover, we
construct a certain Hamilton flow on the super Euclidean space, corresponding
to the 'classical' orbit of the Pauli equation, for which we define the action
integral, van Vleck determinant etc. as similar as we do on the Euclidean
space.

Introduction

After the pioneering works of Martin [20, 21] in 1959, who considered a
generalization of the classical mechanics on a ring with arbitrary generators,
Berezin started independently his endeavor of a generalization of analysis in
which the Grassmann variables would play a part on equal footing with real
variables. (One may find more general idea in Manin [19] where he claimed
that there should be at least 'three dimensions = ordinary, odd and arithmetic
dimensions' in geometry.) There are many works by Berezin, but seemingly
he did not distinguish the Grassmann generators and the (odd) variables because
he considered his super manifold rather sheaf theoretically. Roughly speaking,
for an (ordinary) C°°-manifold X of dim X—m, he considered a ringed space
(X, JL{X)) as his supermanifold of dimension <A(X)=C°°(X)®A(Rn). See, his
book edited by Kirillov [2] and Leites [17].

Supersymmetric theory is now widely used by physicists, and the need of
an infinite number of generators is recognized by some of them especially when
they want to 'quantize classical systems'. Therefore, there are many trials to
define the 'supernumber' based on the Grassmann algebra with infinitely many
generators. For example, Rogers [23] introduced a Banach-Grassmann algebra
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modelled on the real sequence space I1 and using the standard theory of differ-
ential calculus on Banach spaces, she defined her 'G°° functions'. On the other
hand, De Witt, in p. 3 of his book [6], asserted that he could develop the
analysis even if there exists a very weak topology in his ground ring: "In the
formal limit L->oo they many continue to be regarded as vector spaces, but
we shall not give them a norm or even a topology" (L is the number of Grass-
mann generators, 'they' stands for ΛL, ΛLtevanά ΛL>od where ΛL—a Grassmann
algebra with L generators). More precisely, he introduced a non-Hausdorff
topology in his superspace based on his Grassmann algebra. Thus, Rogers [25]
was offended by saying: "To those physicists who use supermanifolds, but do
not often lie awake at night worrying about the finer points of analysis, the
message of this paper is simple—if you need more generators for your Grass-
mann algebra, help yourself !".

In this paper, we introduce a Frechet algebra with degree, called a Frechet-
Grassmann algebra over C, modelled on the sequence space ω. Briefly speak-
ing, it is the set of formal power series of infinitely many indeterminate
letters which satisfies the Grassmann relations. If it is considered as the ground
ring, we call it the supernumber algebra. Moreover, our (real) supernumber
algebra is assumed to be real in the body direction and complex in the soul
direction, whose reason will be given in § 4. After introducing the (real) super-
number algebra, we define the super Euclidean spaces in § 1. Supersmooth
functions are defined on 'saturated domains' in our super Euclidean space and
the differential calculus containing Taylor's formula, composition of functions,
implicit function theorem, etc. are proved in §2. It seems meaningfull to re-
mark here that our definition of supersmooth functions is considerably different
from others in the sense we define it from scratch by the so-called ^-expansion
not introducing the Frechet or Gateaux type differentiability. In other word,
we may consider Ή^-functions' whose coefficients in the ^-expansion are gene-
rated by supernumber algebra-valued C°° functions. This answers partly the
'interesting' problem posed at the last line of Bryant [4]. In §3, we give the
definition of integrations also with the change of variables under integral sign.
Lastly, in §4, as an application of §2 and §3, we solve a Hamilton equation
on the super Euclidean space. These equations themselves are given in Berezin
& Marinov [3], Casalbuoni [5] and Manes & Zumino [18] without considering
the existence proof of solutions nor paying attention to the number of Grass-
mann generators.

The main difference between our treatment and others is that we never
reduce the problem to the case of the finite number of Grassmann generators.
Therefore, we present the fundamentals of the so-called superanalysis from our
point of view, though this paper is a refined version of the portion of our
(unpublished) treatise in [11]. As an application, we constructed a fundamental
solution of Pauli equations in Inoue & Maeda [10, 11], where we used the Feyn-
man's heuristic derivation of his path integral. Concerning our references, we
never want to claim those completeness because there are too many articles
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prefixed 'super'. In writing this paper, we have been stimulated mainly by
[18] and Vladimirov & Volovich [26, 27].

1. The supernumber algebra and the super Euclidean space

Let us prepare a set of countably infinite distinct symbols {σj}jGN satisfying
the relations

(1.1) CiCj+σjσt=0 for any i, 7 = 1, 2, •••.

Remark, A concrete realization of this set {σj}j(=N in I1 is given in [23].
Berezin [1] gave another realization of it as operators in the Fock space. See,
for more algebraic treatment, Kostant & Sternberg [15].

We define a set by

(1.2) Λc=\x = Σ I / X/EC}
I finite sum J

where
£={/=(/i,i«, - , ι*, )e {0,1}"; |/|<oo} with | / | = Σ ί *

k

and

σi=zσ\ισψ ... with σ~°=l, 6=(0, 0, •••).
It forms an algebra by introducing sum and product as follows:

(1.3) x+y^ΊKxi+y^σ1 and χy=Σ(χy)Iσ
I

I I

with {xy)j= Σ {-l)ra J κ'xjyκ.
I=J+K

Here, the indeces τ(I; J, K), or more generally τ(I; Ju •••,/*) are defined by

(1.4) (-l)rci;/i. .J*)^i ... σJk-_=σi

when / is decomposed by I—Ji+ ••• + / * . But for notational simplicity, we
will use (—l)τ0<0 without specifying the decomposition if there occurs no con-
fusion.

We call this a Grassmann algebra over C with infinite generators {σj}jGN.
Moreover, we may introduce the topology of Λc as follows: Elements %cn)

converges to x in Λc if and only if for any ε>0, there exist integers L and
no such that (i) %C7° and x belong to ΛC

L when n>n0 and (ii) | x i n ) — x 7 | < e
when n>nQ. Here, we put
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c

L—{x=γιxIσ
I (summation is taken for / satisfying ik=0

for k>L);

9iΛc(RL)—the exterior algebra of forms on RL

with coefficients in C^

75

(1.5)

Instead of this, we consider following sets rather formally (but later 'proved
as rigorous'):

(1.6) (5=

(1.7)

)—^co:—C,

Σ
/I

and

= Σ
1/1 = 7

To give the concrete meaning of the above summation expressions in (1.6)
rnd (1.7), we recall the sequence spaces (ξ and φ in the terminology of Kδthe
[16]. That is, we define

(1.8) - and xk=0 except for finitely many k],

={u=(uk)=(uu u2, •" , uk, •••); uk(ΞC}.

For XZDφy we define also the space X* by

X* = \u--=(uk);^\uk\\xk\<co for any j=(

then, we get

φx—o) and ωx=φ.

We introduce the (normal) topology in X and X* by defining the seminorms

(1.9) ί« ( r )-=Σ|M*IU* |=ί ι (u) for IELX and

Especially £ ( 7 l ) converges to £ in 0 if and only if for any ε > 0 , there exist
L and n0 such that

(1.10)
( i ) x(

k

n:> = Xk— 0 for &

(ii) | * £ n ) — * * | < e for

when n^nOf and

L when

Analogously, u c n ) converges to u in ω if and only if any ε>0 and each k,
there exists no=wo(ε, ^) such that

(1.11) | n ) — uk\<ε when n^nQ.
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Clearly, ω forms a Frechet space because the topology above in ω is equivalent
to the one defined by countable seminorms {pi(u)}1&% where pi(u)=\uru)\ f° r

I=(ik)e:% and ueω. Here we used the isomorphism between N and % defined
by

(1.12) /-+r(/)=l+-i-Z!2*i* for I=(ik)ξ=%.

For each p^N, we define an element ep—(0, ••• , 0, 1, 0, * )^ω. Using r(I) in
(1.12), we define a map

T .σ1—*>erC/) for /=(/*) .

Extending this linearly, we put

(1.13) T(x)= Σ Xjtrcn^o) for x= Σ */tfί(Ξ&Q) .

Then, we have

(1.14) OΓ(6y))=ΣT(y=fii
.7=0 j=0

because T(6[i7]) and T(6 [ Λ :) are disjoint sets in ω if ^ ^ and r is an isomor-
phism from % onto Λf. Therefore, it is reasonable to write as in (1.6) and
more precisely.

(1.15) ® = Σ ® ϋ ] ; that is i = Σ % with xul-- Σ X/<77 .
.7=0 ; = o ι / ι = j

Here, x D ] is called the j-th degree component of x s g . We have just gave the
meaning of the summations in (1.6) and (1.7) by using the summation in ω.
(See, (2) of Remarks after Theorem 1.2 below.)

Topology. We introduce the weakest topology in (ξ which makes the map
T continuous from (£ to α>, that is, x^Σ/es^/tf7—>0 in (S if and only if proj/(%)
->0 for each / G Ϊ with pro]I(x)=xJ it is equivalent to the metric dist(x, y)=
άist(x-y) defined by

(1.16) ^ W ^ ^ ! ^ ) , for any ^(

Algebraic operations. For any x, j e S , we define

(1.17) χ+y=ίb(χ+yhi with (x+>) C Λ =Xϋ3+3» ω for
; = o

and

(1.18) xy= Σ (Λ:^)W: where (x3')w:= Σ ^Γ - ^ ^ C ^ 1 ^ Σ
.7 = 0 fe = 0 | / | =
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Here, (xy)I = Σi=j+κ(—l)r<iI''J'κ^xjyκ^C is well-defined because for any set
/ G Ϊ , there exist only finitely many decompositions by sets /, K satisfying / =
J+K. By definition, we get

ί 6c»cSc*> for j<Lk ,
(1.19)

I 6=U"=o®α) with ΠJLo®o)=0,

(1.20) Sϋrgc^cew+Λ] and (SovGα)C

Remarks. (1) The second relation in (1.20) also holds for Clifford algebras
but the first one is specific to the Grassmann relation (1.1). (2) As {(£O)} forms
a filter by (1.19) and (1.20), it gives a 0-neighbourhood base of the linear topo-
logy of (£ which is equivalent to the above one defined by (1.16). (See [16] for
the linear topology of vector spaces.)

Moreover, we get

LEMMA 1.1. The product defined by (1.18) is continuous from (Sχ(S—>6.

Proof. It is simple by remarking that there exist 21 7 1 elements JΪΞ% satis-
fying Jdl and that

\{xy)Λ^ Σ \xA\yκ\ for any x, yeΞg. •

To summatize, we get

THEOREM 1.2. (S forms a Frechet-Grassmann algebra over C, that is, an
associative, distributive and non-commutative ring with degree, which is endowed
with the Frechet topology.

Proof. Clearly, we get

x(yz)=(xy)z (associativity),

x(y]Jrz)—x y• + xz (distributivity).

Other properties have been proved. •

Remarks. (1) Introducing the topology corresponding to (1.10), Λc defined
in (1.2) is made to be algebraically and topologically isomorphic to φ. (2) We
may consider that an element of I E S stands for the 'state' such that the posi-
tion labeled by σ1 is occupied by I 7 G C . In other word, considering {στ} as
the countable indeterminate letters, it seems reasonable to regard (S as the set
of certain formal power series (same letter appears only once in each monomials)
with simple topology. Therefore, it is permitted to reorder the terms freely
under 'summation sign'. That is, the summation Σ/e£*/er<:/) is 'unconditionally
(though not absolutely) convergent' (diverting the terminology of basis problem
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in Banach spaces) and so is Σ/esXjtf7. In this respect, the real Banach-Grass-
mann algebra introduced by Rogers consists of the absolutely convergent
sequence

I I * | | = Σ I * J I < ° ° for x^^xjo1 with xj<=R, and it satisfies \\x y | | ^ I

Using (1.15), we decompose

(1.21) X — XBΛ-XS where xs= Σ xzn and XB=X'O:=ZXIOI

and the number xB is called the body {part) of x and the remainder xs is called
the soul {part) of x, respectively. We define the map πB from β to C by πB{x)
— xB, called the body projection (or called the augmentation map in [23]).
Aside the decomposition (1.15), we have the following as a vector space.

(1.22) 6=(Eer0go<i

Here, we put

(1.23) g e ΰ = : { χ G g ; x = Σ xiv1} and 6 0 ί = ( x G ( S ; i = Σ
\I\=eυen \I\=odd

Important Remark. (£ does not form a field because x2=0 for any
But, if x, j e δ satisfy xy=Q for any :yego d, then x=0. The decomposition
of x with respect to degree in (1.15) is unique. These properties are shared
only if the number of Grassmann generators is infinite.

(£ is called the {complex) supernumber algebra over C and any element x of
(£ is called {complex) supernumber. Moreover, it splits into its even and odd
parts, called {complex) even number and {complex) odd number, respectively;

(1.24) x=χeυ+χod= Σ χaσa+ Σ xaσ
a^ Σ χUΔ+ Σ

\a\ = even \a\=odd j=even j=odd

We define the parity p as p{x)~0 for x<=(Seυ and p(x)=l for i G 6 0 ί and we
call the element x in (£ is homogeneous if />(;c)=0 or 1.

Now, we define our supernumber algebra over i2 (but not over C) by

(1.25) m=πB-
1{R)r\&=\x=ΈxiσI; XB£ΞR and XJΪΞC for

Defining as same as before, we have

(1.26) m=Vϊeυ®Vϊod , SR= Σ SRϋD.
.7=0

Sflo > and other terminologies are analogously introduced.

DEFINITION 1.3. The super Euclidean space of dimension m\n is defined by

(1.27) mm]n=mTvX^d
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whose element is denoted by X=(Xκ)=(x, #)(Ξ3flm|n with x—(xί} x2, ••• , xm)
e9t£ and 0=(0i, 08, ••• , ί j e f i . The topology of mm | 7 1 is induced from the
metric defined by distm,n(X, y)=dist T O l n (^—*0 for X, F e S l m | n , where we put

(1.28) d i s t m l n ( * ) - Σ ^ Σ ^

Clearly, d is t m (Z)=dist(Z) for l E ^ ' ^ S f i c δ . Analogously, the complex super-
space of dimension m\n is defined by

We generalize the body map πB as that from mmιn or mml° to Rm by
= πBx=(πBxu -" , πBxm)<ΞRm for X=(x, θ)^mmιn.

Remarks. (1) Defining 3ft in (1.25), we used both R and C The reason of
this definition is explained in § 4 where we solve a certain Hamiltonian equation
stemming from the Pauli equation. (2) de Witt [6] introduces his space Rfw1

=(Λ*)mX(Λ* d)\ Here, Λ?υ--=limL^ΛURL) and A%(RL) is isomorphic to the
exterior algebra of even forms on RL with real coefficients. Λζd and ΛR—
ΛfΌ+Λζd are 'defined' analogously. In the above, the meaning of Ίimz^J is
not so clear. And his topology in R%n is the weakest topology which makes
continuous the projection πB from R^ to Rm. This does not give the Haus-
dorff topology in Rfw1 but he claims that it is not serious in his analysis. (3)
Rogers [23] defines her space RR |7 i based on the real Banach-Grassmann alge-
bra I1 in order to develop her theory of superanalysis, using the known differ-
ential calculus for functions on Banach spaces. But we are not sure whether
such a strong topology is really necessary. Or rather, we claim in the follow-
ing that though generally speaking, the differential calculus on locally convex
spaces are rather troublesome, see for example, Keller [13], Yamamuro [29],
but we may carry out almost the same procedures as she done in [23] using
the ring structure directly in our Frechet-Grassmann algebra, (4) Matsumoto
& Kakazu [22], Yagi [28] and Bryant [4], in order to refine the idea of
DeWitt, defined a Frechet space which is the projective limit of the Banach
space modelled on the exterior algebra of forms on RL with real coefficients,
though the grading and the ring structure of it is obscured by their construc-
tion. (5) See also the papers [26], Jadczyk & Pilch [12] and Hoyos et al. [8].

§2. Supersmooth functions and their basic properties

DEFINITION 2.1. A set Uev(ZVlmι0=Vϊ%, is called a even superdomain if
πB(U)c:Rm is open and connected and πB\πB(U'eΌ))=Uev When ί/c$Rm|n is re-
presented by U=Uevx$l2d with a even superdomain £/eυc$Rm|°, U is called a
superdomain.
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Remark. This definition of superdomain corresponds to the 'saturated' do-
main which appeared in [12] and [8]. This saturated domain seems not sui-
table to construct 'supermanifolds' with non-trivial fermion sectors, which will
be discussed in the separate paper.

PROPOSITION 2.2. Let Ueυa&mι° be a even superdomain. Assume that f is
a smooth mapping from UB=πB(Uev) into (S, denoted simply by /eC°°(£/5; (£).
That is, we have the expression

(2.1) f(Q)=Σfj(q)σJ with fj(q)£ΞC°°(UB; C).
j

Then, we may define a mapping f of Uev into (£ called the Grassmann continuation
of f by

(2.2) f{x)=^~d«J(xB)x% where d«qf(xB)=ψ%fj(xB)σJ.

Here, we put x—{xu ••• , xm), X—XB+XS with XB~(XI,B, ••• , Xm,B)—{qι, '" > <7™)

Proof. Denoting by x^s.ik^, the &i-th degree component of xlιS, we get

Here, the summation is taken for all partitions of an integer aλ into α F ί u

••• +Pi,ι satisfying Σϊ=irιpi,ι=k1. Using these notations, we put

(2.3)

where (d%f)ίkol(xB)= Σ da

qfj{xB)σJ

That is,

4 ] U B ) + Σ3 (3ς

i J i ψ l j q J ^ j . h ^ . ^ i , etc.
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Since fuiM^fikiM (jΦk) in (£, we may take the sum Σ ^ O / D Ί M ^ ^ which
is denoted by f(x). Therefore, rearranging the above 'summation', we get the
•familiar' expression as in (2.2). •

whereRemarks. (1) More primitively, we may represent fW^

but this representation obscures the form of / given in (2.2). (2) Defining H°°-
functions, Rogers [25] used C°°-functions with values in R defined on an open
connected set U in her topology.

COROLLARY 2.3. // / and f be given as above, then (i) / is continuous and
(ii) f(χ)—Q in U implies f(xB)~0 in UB. Moreover, if we define the partial
derivatives of f by

(2.4) dxj

then we get

(2.5)

d_ %

~~dt

3*,/(*)=

where eu>=(0, •••, 0 , 1 , 0 , •••, 0 ) 6 3 1

for y = l , ••• , m .

j

m |0

Proof. Let y,=y,.B+y,.a^ft«>. For yy>=(0, - , 0, y,, 0, - , 0 ) G r 1 0 , as

= j t \ ^ ^ ^

we get easily

d «

Putting yj=l, we have (2.5).

(2.6)

Remark. By the same argument as above, we get

m ld
- * where p f

DEFINITION 2.4. (1) For a given even superdomain ί/eυc3ftm|0, mapping /
from UeΌ into β; is called a supersmooth function if / is the Grassmann continua-
tion of a smooth mapping / from UB=πB(UeΌ) into (£. We denote by CSs(Uev\ K),
the set of supersmooth function on Uev. Hereafter, for the sake of notational
simplicity, / is written simply as / unless there occurs confusion.

(2) A mapping / from a superdomain f/c^ m | 7 ϊ to (£ is called supersmooth,
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denoted by f^Css(U; (£), if it has the following form:

(2.7) f(χ, θ)= Σ

with a=(al9 •••, β a)e{0, l } n , da=θa^--θ^ and fΛ{x)^C8s{UΛV)^). In the
following, supersmooth functions are assumed to be homogeneous (i.e., fa(x)
is homogeneous for each a), unless otherwise mentioned and we denote the set
of them by CSS(U; g).

(3) For ftΞCssiU; g), y = l , 2, ••• , m and s = l , 2, ••• , n, we put

ί / ) = Σ dXjfa(x)θa,
(2.8) ^ l α | s n

where /(α)=ΣJ-ίβ; and ^71=0. /^(Z) are called the partial derivatives of /
with respect to Xκ at X=(x, ϋ) and are denoted by

= / - / ( * , θ)=dx.f(x, θ) for y=l, 2, -. , m.

(2.9) ^

Fm+s(X)=-^-f(x, θ)=dθsf(x, θ), for s=l , 2, - , n

or simply by

(2.10) Fκ(X)=dχκf(X) for Λ:=1, ••• , m + n .

Remarks. (1) We only use the derivatives defined above which are called
the left derivatives with respect to odd variables. Because, after bringing the
variable θk to the left in each monomial, we replace it with 1. (Some people
call these as right derivatives, cf. [5] etc.) Similarly, we define the right
derivatives with respect to odd variables as follows: For f^Css(U;Qί), j —
1, 2, ••• , m and s = l , 2, •••, n we put

)=^ndx.fa{x)θa ,

{ F<ϊ> m (*)= Έn(-l)rCaVa(x)θa

1

1 - θϊ*-1... ίS»

where r(α)=ΣJU+iβj. ^ i n ( ^ ) are called the (right) partial derivatives of /
with respect to Xκ at X—(x, θ) and are denoted by

F<rKX)=jr-f(x, θ)=dXjf{x, θ), F£UX)=f{x> θ)~^=f(xf θ)des,J oxj 3 oσs

for y = l , 2, ••• , m and s = l , 2, ••• , n. (2) As we use the infinite dimensional
Grassmann algebras, the expression (2.8) is unique. In fact, Σ α / α ( * ) # α Ξ 0 on
U implies fa(x)=0 (see, p. 322 in [26]). (3) The higher derivatives are defined
analogously and we use the following notations.
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Repeating the argument in proving Corollary 2.3, we get the following
formula for

(2.11)

where X=(x, θ), Y=(y, ( i ) ) e r 1 7 1 such that X-\-tY<=U for any fe[0, 1].
To understand the meaning of supersmoothness, we consider the dependence

with respect to the 'coordinate' more precisely.

PROPOSITION 2.5. Let / = Σ 7 / I ( X ) σ I ^ C S s ( U g) where U is a superdomain
in m m l \ Let X=(XK) be represented by Xκ=JjIXKtIσ

1 where Λ = 1 , ••• , m+n,
XKtI<=C for \I\Φθ and XKt0^R. Then, f{X), considered as a function of coun-
tably many variables {Xκ,i} with values in (£, satisfies the following (Cauchy-
Riemann type) equations.

(2.12)

Here, we define

(2.13)

for l<fc<m, \I\=even,

=0 for m-\-l<tc<m-\-n, \J\—odd—\K\.

with YCκ.n=(Q, - , 0 , σ 7 , 0 , ••• , 0)emm | 7 Z.

Proof. Replacing Y with Yiκ,j^ with l<κ<m and | / | = e v e n in (2.11), we
get readily the first equation of (2.12). Here, we have used (2.5). Considering
YCK.J) or FGC.JO for m+l</c£m+n and \J\=oάά=\K\ in (2.12) and multiply-
ing σκ or σJ from the left respectively, we have the second equality in (2.12)
readily. •

Remark. In order to obtain the converse statement of Proposition 2.5 (see
[26], [28]), it seems better to modify a general theory of differential calculus
on locally convex spaces developped in [13], [29] etc. For example, we may
introduce 'k-times super Frechet or Gateaux-differentiability' as similar as pro-
posed in [22], but this will not be pursued here.

PROPOSITION 2.6 (Taylor's formula). Let X=(x, θ), Y=(y, ω)G/7c9lm | 7 1

satisfying Y-\-t{X-Y)^U for O ^ ί ^ l . For f^Css{U)&), Taylor's formula
holds. That is, for any positive integer p, we have

where

fix, θ)- Σ — τ(x-yΠΘ-ω)ada

xd§f(y, ω)=τp(X, Y)
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(2.15) τp(X,Y)

= . Σ i{x-y)\θ-ω

Proof. Use the following equality

S i

= Σ (x-ynθ-ωAdt^r
| α | + | α ι = p + l JO p \

Using the integration by parts in the left hand side, we get that of (2.14). •
To state other properties of supersmooth functions, we prepare the linear

algebra on super Euclidean space briefly.

DEFINITION 2.7. M, a rectangular array whose cells are indexed by pairs
consisting of a row number and a column number, is called a supermatrix if it
satisfies the following:

[ A C~I

where A, B, C and D are mXr, nXs, mXs and nXr matrices with elements
in 91, respectively.

(2) One of the following conditions is satisfied: Either

/>(M)=0, that is, p(AJk)=0=p(BΌtt) and p(CUJ)=l=p(DJU) or

= l , that is, p(AJk)=l=p(Bvu) and p(CUJ)=0=p(DJU),

We call M is even (resp. odd) if ρ(M)=0 (resp. />(M)=1). Moreover, we many
decompose M as M=MB+MS where

MB= . c

[ J] when ί (Af)=l

It is clear that for (m+n)X(r+s) matrix M and (r+s)X(p+q) matrix N,
we define the product MN as (MN)ij=^ΣkMikNkj and the parity of MN is
given by p(MN)=p(M)+p(N). Moreover, we define Matm,n(5R) as the algebra
of (m+n)x(m+w) supermatrices.

[ A Ci
eMatmm(SΊ). We define the supertrace of

M by

(2.16) strM=Σi(
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Here,

(0 for l<k<m, }
\ for p(M)=0,

1 for +l<k^ J

1 for l<k^m, )
\ for p(M)=l,

θ for l k J

If A/eMatmiw(Sft) is even, then M acts on $ m | 7 i linearly. Denoting this by
TM, we call it a super linear transformation onSflm|n and Miscalled the repre-
sentative matrix of TM.

PROPOSITION 2.9. Let MeMatm,n(m) be even and assume d e t M ^ O . Then,
for given F e m m | r i ,

(2.17) TMX=Y

has the unique solution X^ϊfim]n, which is denoted by X~M~ιY.

Proof. Since MB has the inverse matrix MB1, (2.17) is reduced to

X+N8X=Yf, Y'=M-BΎ

where NS—MYMS. Remark that NsXui^'Σΐ^j+i'^ίki for /Ϊ^O. Decomposing
by order, we get

»hi for / = 1 , 2, - .

As Xw-—Xm=^YίQ2, we get XU2 from Z o_i) for y ^ l by induction.

DEFINITION 2.10. MeMatTOm(30 is called invertible or non-singular if MB

is invertible, i. e. (det ΛB)(άet BB)Φθ if p(M)=0 or (det C5)(det D Λ )^0 if p(M)=l.

DEFINITION 2.11. Let M be a supermatrix. When det i^ 5 ^0, we put

(2.18) sJβί M=(det(^-C5- 1 D))(det B)'1

and call it superdeterminant or Berezinian of M.

Remark. Let B—{Bjk) be (#XgO-matrix with elements in 9tev. As Sfteϋ is a
commutative ring, we may define det B as usual:

Following decomposition of a even supermatrix M will be useful.
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ΓΛ Cl Γ/w CB'ιΆVA-CB-ιD 0]Γ Im 0]
ID B\ LO In JL 0 BllB-'D In\

Γ /m OΊΓΛ 0 ΊΓ/ W A-'CΛ

IDA'1 jJLo β-ZM^cJLo /n J'

PROPOSITION 2.12. Lei Λf, N be even super matrices in MatTOm(3ft).

(1) // M is invertible, then we have sdet MφO. Moreover, if A is nonszn-
gular, then

(sdet M)- χ-(det A)'\άet {B-DA^C)).

(2) sdet (MN)^(sdet M)(sdet N).
(3) str and sdet are (even) matrix invariants. That is, if N is invertible,

then
str M=str (NMN'1), sdet M=sdet (NMN'1).

(4) Let M(x, #)= ' ' \ be a even invertible supermatrix such

that each matrix elements are supersmooth in X—(x, Θ). Then, we have

(2.19) dx(sdet M(X))=(sdet M(X)) str (M~l(X)(dxM(X)))

=(sdet M(X)) str {{dχM{X))M'\X)).

Proof. See the proofs in [2], [6], [17] or [27].
Now, return to state our elementary analysis.
For f(X)(=CSs(U 6) on a superdomain Uc$ϊm]n, we put

(2.20) dxf(x, θ)=ldxjf(x, θ), dθrf(x, 0)lϊΞ(Zm+n

and call it the Jacobian matrix (or differential) of / at X=(x, θ).
From Definition 2.4, we get readily

PROPOSITION 2.13. Let U be a superdomain in 3am l\ For f, g^Css(U S),
the product fg belongs to CSS(U K) and the differentials dχf(X) and dχg(X)
may be regarded as continuous linear mappings from $Hm|7i into (£ m + n . Moreover,
they satisfy the following:

(1) For any homogeneous elements λ, μ e S , we have

(2.21)

(2) (Leibnitz formula)

(2.22) dxJif(X)g(XK=(J

Proof. For the product, as we get
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=Σ hH{xB)σ»

where /i f f (x β )=Σ/ί=/ + j(-l) r ( F ; / > J ) //(^)^UB)eC o o (ί/ β ;C), so we have the de-
sired result. (2.21) is obvious. To get (2.22), use the formula (2.11). •

DEFINITION 2.14. Let £/c3ftm|n and U'cW1^71' be superdomains and let φ
be a continuous mapping from U to [/', denoted by φ{X)~{φι{X)i •••, φm.(X)y

φm'+i(X), •••, φm>+n>(X))(Ξΐfϊ7ϊl'ιn'. φ is called a supersmooth mapping from U
to U' if each φκ(X)^C8s(fJ; <£) for * = 1 , ••• , ra' + rc' and <p(U)(zU'.

PROPOSITION 2.15 (Composition of supersmooth mappings). Let Uadϊm[n

and [/'car 1 ' 1"' fee superdomains and let Φ:U->U' and Φr: U'-+ίfϊm"ιn" be super-
smooth mappings. Then, the composition Ψ=Φ'°Φ : U-^W1^71" gives a supersmooth
mapping and

(2.23) dxΨ{X)^ldγΦ\Y)-\\γ=φ,χ,ίdxΦ{X)-].

Proof. (1) First of all, we prove our assertion for the case m, m1 are
arbitrary, n = n'=0 and m * = n * = l : Let ί / e i ) c r i 0 and U'wClίfίmn0 be even super-
domains and let ψ: Ueυ-*U'eΌ be a supersmooth mapping represented by φ(x)=
(<Pi(x),'~,<pm'(x)) with φj(x)<ΞCss(Uev; ®). For any f^Css(U'βΌ; <£), we want
to claim that (φ*fXx)—(f°φXx):=:f(φ(x))f is well-defined and belongs to
Css(UeΌ; 6). Putting

with <ps(xB)= Σ <PJ(XB)<TJ ,

we define, by using the supersmoothness of / and φ,

(2.24) fWxB))Lki= Σ Λ"((

By the same reasoning as in the proof of Proposition 2.2, f(φ(xB))ίki is well-
defined and belongs to C"(UB;®ίkl), so / ( ^ 5 ) ) = Σ ? = o / ( ^ β ) ) c f e ] e C M ( ί / β ; g ) .
Therefore, it has the Grassmann continuation which should be denoted by
(f°φ)(x). On the other hand, as we get from (2.24),

(2.25) dXj>B{

= Σ ^ (
<b' J L f c ' fc '



88 ATSUSHI INOUE AND YOSHIAKI MAEDA

This is the desired result (2.23) in the case of (1).
(2) Now, we treat the case ra, w!', n, nr are arbitrary and mft—nff—\: Let

Uammιn and Ufczmm'ιn' be superdomains and let φ:U-+U' and /:£/'-><£ be
supersmooth mappings. Put φ(x, θ)=(φκ(x, θ)), l^vsr^m' + w' where φκ(x, θ)
=Έaψκ.a(x)θa and f(y,ω)=Σbfb(y)ωb w i th b=(blf •••, ft»0e{0, I}71'. We de-
compose

<PJ(X, θ)=Yj-=Yp+Y^ for

where

Y?>=φj.tix)=YS%+YSV8 with Y$>=φjχάx)9 YΆ=φj.τ,s(x),

Then, we consider formally

(2.26) F(x, θ)

Remarking that Y™Y?>=0, we apply Taylor's formula for Λ(FC O )+FC 1 )) at Y=
F c 0 ) to get

(2.27) /»(r« >+y«')=/»(r<")+ Σ d,J
J l J

On the other hand, as

( 2 2 8 ) --• - α -

we get easily

(2.29) fb(ψi(x, θ), ••• , φm

where gb.c(x) is a supersmooth function on Uev composed by the products of
supersmooth functions d%f(φB(x)) and φκ,a(x). Combining these, we get

(2.30) F(x, ff)=Σ(Σ^c(χ)X
be & i

where d=(ds)y c~{cs)f as=(as,r), ί ,=Cι+Mi,H +&n'5n^. with l ^ s ^ n and
l ^ r ^ n ' . Therefore, we get Fd(x)^Css(UeΌ; 6), that is, F(x, θ)=f(φ(x, θ))e.
Css(U; ®). To get (2.23), we differentiate (2.26) with respect to **,
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%Σ

m'+n' f)(n (x βλ Cs.n'")

s=m'+l OXk 1 = 1

Here, ΠίW1' >«•+,(*, θ)b'=φm,+1(x, θp - 1 - φm>+n>(x, θ)b"', <pev(x, θ)=(φj(x)θ))pi
and φOd(x> θ)=(φm>+,(x, Θ))ΪLL

Taking derivatives with respect to ΘΎ> we get the similar expression as
above and combining these, we have

ldXkF(x,θ),dθrF(χ> 0)] =

, θ) dψjjxy θ)

dxk ''"' dθr

dφs(x, θ) dφs(x, θ)
dxk ' " ' ' dθr •

rdfjy, ω) df{y,ω)Λ
L dy0

 y dωs _Γ

this is, (2.23) in the case of (2).
(3) For the general situation mentioned above, using the arguments in (2)

repeatedly, we get the result after tedious but straightfoward calculations. •

DEFINITION 2.16. Let ί / c r l n and £/'cmm'17*' be superdomains and let
φ: U->U' be a supersmooth mapping represented by φ{X)—{ψι{X)i ••• , φm'+n'(X))
with φκ(X)<=CSs(U (£). (1) φ is called a supersmooth diffeomorphism if (i) φ is
a homeomorphism between U and U' and (ii) φ and φ'1 are supersmooth map-
pings. (2) For any f^Css(Uf; 6), (φ*fXX)=(foφXX)=f(φ(X)), called the
pull back of / , is well-defined and belongs to CSs(U ©).

Remarks. (1) It is easy to see that if φ is a supersmooth diffeomorphism,
then ψB'=-'^Boψ is an (ordinary) C°° diffeomorphism from UB to U'B. (2) If we
introduce the topologies in Css(Uf; S) and CSS(U; ®) properly, p* gives a con-
tinuous linear mapping from CSs(U; (£) to CSS(U; δ) . Moreover, if φ:U~>Uf

is a supersmooth diffeomorphism, then y>* defines an automorphism from
^ ^ ( t / ' g) to ^^(£7; 6).

PROPOSITION 2.17 (Inverse function theorem). Let U be a super domain in
3lm171 and let G(X): ί/cm m | n ->m m | 7 1 te α supersmooth mapping. We assume the
super matrix [.dχG(X)2 is invertible at X—XB^KB(U)- Then, there exists a
super domain U', a neighbourhood of Y=G(X) and a unique supersmooth mapping
F satisfying F{G{X))—X and we have

(2.31) drF<y)=(dzG{X))'11 z-Fcn in W .

Proof. (1) First of all, we treat the case m—\ and n=0, that is, UeV) U'e
C3fl110. Let g: Uev->U'eΌ be a supersmooth function represented by
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y=g(χβ):=gB(χB)+ Σ gj(χB)<?J^yB+ys.
IJ \-even^2

Here, gB(xB)^C°°(UB; R) and gj(xB)^Cco(UB; C). By assumption that gB(xB)
ΦO, there exists a smooth function fB such fdigB{xB))—XB near xB—xB% We
want to construct a family of functions fi^C°°(UB;C) such that f(yB)—
fB(yB)+fs(yβ)f fsiyB^Σin^eυen^fΛyB)^1 satisfying f(g(xB))=xB near Λ : ^ ^ .
As we should have

(2.32) χs

+ Σ χr/ί )(^)> 5*+ Σ j-J
kzi k ! no I!

we get

(2.33) fs(yB)=- ^ίjγf(Bk\yB)ys

k- Σijγ

We prove our statement using the induction with respect to the degree. The
degree 2 part of (2.33) is given by

(2.34) fs(yB)m = -fB(yB)ys,i2i.

In other word, for I such that | / | = 2 , we may define functions fi(yB) by

Assuming that fs are defined for degrees less than 2/, we put,

(2.35) fs(yB\u+2,=- Σ -^γf(Bk\yBXyks)m+2,- Σ Σ £τ(f»\yB))ι*dy%)ιu+*-m.
* s i K I k^ίi ,7=0 /2 !

So, we may define f(ys)=Έ?=of(yB)ί2n=fB(yB)+Έr=ifs(yBhji^C00(UB; (5).
Taking the Grassmann continuation of / ( ^ B ) and remarking 3 ^ / ( ^ ( J C ) ) = 1 , we
get the desised result.

(2) We next consider the case m—n—l, that is, U, ί/'csa111. Let G(x, θ)
(gev(x> θ)y goa(Xy θ)): U-+U' be a supersmooth mapping given by

(2.36) gelx, θ)=-gev,o(x)-\~gev,i(x)O , god(x, 0)-=

For simplicity, we put

geυ(χB, 0)=yB+ys+yθ where
y~Σl\T\=odd^igev,l,τ(XBW y

and

god(xβ> θ)—ω-\-ωθ where
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From Ϋ--=G(X) and the invertibility of dΣG(X)\x==χf we get

(2.37) gev.O.βiXB^yB, g'eυ,0,B(XB)god, 0,B(XB)^0 .

Now, we seek a function F(Y)=F(y, ω)=(feυ(y, <o), fod(y, ω)): C/'—>£/ repre-
sented by

fev(y> <»)=fev.o(y) + feυ.i(y)<0> fod(y> <θ)=fod,i(y) + fo

which satifies F(G{X))=X near X=(x, θ)=(x, ff)=X. Here, we put

f ev,i{y B)—ΈI\T \

f od,ι(y BY—Ίl\7

. f od,o(yB) — f od,0, β(yBΪ + ΊΪJI I \=even>2f od.o, ΛyB)^1 -

As F(G(xB, θ))~(xB, θ)t we should have the relations

(2.38) fev(gev(XB, θ), god(XB, Θ))=XB, fod(gev(xB, 0), god(xB, θ))=θ.

From the first equation in (2.38) and the supersmoothness, we have

=fev,o(yB)+ Σ

+ Σ.

Σ 7 Γ ^ ϊ

Therefore

(2.38) x

and

(2.40) 0 - Σ
1*12

Σ γJΪ

^

1*1200 !

As ^eυ, 0.5(^5)^0 by (2.37), using the standard inverse function theorem,
there exists a function fev.o.βiyB) such that

(2.41) fev, 0, β(gev, 0, B{XB))~XB
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near χB—χB. Therefore, we get from (2.39),

(2.42) fev,o,s(yB)+ Σ ^/$o(3>iM+(/ e . . i (3>£)+ Σ -^
\k\Zl k\ \ 1*121 k\

Σ
1*121

For each / satisfying | / | = 1 , we pick up the term of degree 1 from (2.40)
to get

(2.43) feυΛ.ΛyB)god,0,B(XB) + f'ev.0.B(geυ.0.B(XB))gev,l,ΛxB) = 0.

As g'eΌ.o.BixBΪgod.o.BixBΪ'έO by (2.37), there exists a function fev.uAys) such that
the above equation is satisfied when yB=gev.o.B(xB)- Equations (2.41) and (2.42)
correspond to the degree 0 and 1 part of (2.39) and (2.40), respectively.

Using these, we may solve the degree 2 part of (2.39) and then the degree
3 part of (2.40). Doing recursively, we may construct functions feΌt0 and feΌιl.

From the second equation of (2.38), we get

= Σ j-MSMy's- Σ γ-.

Σ
*

{ Σ TrτXf?UyB)+fίUyB)ω)y%y+ Σ ^τ
l | * |2 l (« — 1) ! 1*121 k 1

That is,

(2.44) 0=foa,i,s(yB)+ Σ -lΓf?li(yB)yi+ Σ V ^ o

and

(2.45) 1- Σ ,, 1

n ι ( / a ^ ^ / a o t ^ l Φ I - 1 ^ Σ -lΓf
(okUyB)yk

sω.
1*121 (« — 1)! 1*121 /?!

By the same arguments as above, we may construct functions /<><*. 1(3*5) and
fod.oiyβ) which satisfy the desired properties.

(3) For general m, n, we do analogously as above but with more patience. •
Moreover, we have

PROPOSITION 2.18 (Implicit Function Theorem). Let Φ(X, Y) :UxU'-+&m']n'
be a supersmooth mapping and (X, Ϋ)^UxU', where U and Ur are superdomains
of mm | r e and mm'ιn\ respectively. Suppose Φ(X,Y)=0 and dγΦ=[_dyiφ,d(ΰrΦ']
is a continuous and invertible supermatrix at (Xs, Yβ)^πβ(U)XπB(ϋr/). Then,
there exist a super domain VczU satisfying XB^KB(V) and a unique supersmooth
mapping Y=f(X) on V such that Ϋ=f(X) and Φ{X, f(X))=0 in V. More-
over, we have

(2.46) dxf{X)=-[βγΦ{X, Y)TιίdxΦ(X, Y)

Proof. (2.46) is easily obtained by
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, f(X))=(dzΦ(X,

The existence proof is omitted here because the arguments in proving Proposition
2.16 work well in this situation, n

§ 3. Integration

Integration (even case). Now, we define the integration of a supersmooth
function u(x) on an even superdomain £/ e υc2lm | 0, which is similar to the integral
of holomorphic functions on a complex domain. (See, Rogers [24] or [27].)

DEFINITION 3.1. Let u{x) be a supersmooth function defined on a even
superdomain Uevc:ΐίίuo. Let λ=λB+λs, μ^μB+μs^Ueυ and let a continuous
and piecewise C*-curve c: [λB> μB]-*UeΌ be given such that c(λB)=λ, c{μB)—μ.
We define

(3.1) [ ( ) [
Jc JλB

and call it the integral of u along the curve c.
Using the integration by parts, we get the following fundamental result

(see [6]).

PROPOSITION 3.2. Let u(t)&C°°([λB, μsl; ®) and let u(x) be the Grassmann
continuation of u(t). Suppose that there exists a function U(t)<=C°°([λB, μB~]\ ©)
satisfying U'(t)=u(t) on [λB, μB~]. Then, for any continuous and piecewise C1-
curve c: [λB, μβ]^Uevd$ϊuo such that c(λB)=λ, c(μB)=μ, we have

(3.2) \dxuW=U(λ)-U{μ).

Proof. By definition, we get

a dtu(c(t))ό(t)= I d t Έ

λB

= \μBdt u(cB(t))cB(t)+[μBdt Σ -iru
JλB UB *δi k\

S μB 1

, dt Σ -77Uw(cB(t))cs(t)'cs(t)

=U(μB)-U(λB)+ ΣΣ

=U{μ)-U{λ). m

COROLLARY 3.3. Let u(x) be a supersmooth function defined on a even super-
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domain Uev(Z^i1{0 into ©. Let clf cz be continuous and piecewise ^-curves from
1%B> μB~]-*Uev such that λ—d{λB)—C2{λB) and μ—Cι{μB)—c2{μB). If cιis homotopic
to c2, then

(3.3) \ dxu(x)=\ dxu(x).

Thus, if [λBy μB~\CiπB{Ue^), we have

(3.4) \μdxu(x)=\μBdtu(t).
J ^ J λ B

Because of (3.4), we have

DEFINITION 3.4. (1) Let Ieυ be a even superdomain in 2im | 0 such that
7Γs(Λϋ)=ΠJ^i(αj, bj)(ZRm with —co<α J < ^ <co, which is called a even super-
cube. For u^Cssihv', ®), we define

5 Γb1 Γbm Γ

dxu(x)=\dq1 " \ dqmu(qu ••• , Q™)—\ dxBu{xB).
(2) For any even superdomain £/eι;c:2tw|0 such that πB(Uev) is of definite

area, we may put

(3.6) [ dxu(x)=\ dxBu(xB)

for u^CSs(UeΌ; (5).

Remarks. (1) The formula (3.6) stemms easily from the well-known proce-
dures to define multiple integrals in Riemannian integration. (2) The reason
why we should use 'contour integration' is explained precisely in [24]. As
we treat only even superdomains here, her arguments there are simplified
considerably. But we should change the role of the 'body' in our treatment,
if we need to catch up all arguments of Rogers, which is noted in the remark
after Proposition 2.5.

Integration (odd and mixed case). Let v be a polynomial of odd variables
6=(θu ••• , θn^WZd such that

v(θι, '•-, 0W)= Σ vbθ
b with homogeneous vbθ

b<^& for each b.

Denote by Pn(®) the set of all v as above.

DEFINITION 3.5. For veP n (S), we put

(3.7)
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and we call it the integral of v on ίh0]n.
Above definition yields readily that

(3.8)

Moreover, we have

PROPOSITION 3.6. Given v, U ; G P W ( S ) , we have the following:
(1) (^-linearity) For any homogeneous λ,

(2) (Translational invariance) For any />eSfl0i71, we have

(3.10) \ dθv{θ+p)=\ dθv(θ).

(3) {Integration by parts) For v^Pn((ί) such that p(v)=l or 0, we have

(3.11)

(4) (Linear change of variables) Let A—(Ajk) with Ajk££dieO be invertible.
Then,

(3.12) f dθv(θ)=(άetA)-1[ dωv(A ω).

(5) (Interation of integrals)

= \ Λ, dθn " dθk+i(\ n]dθk ••• dθιv(θu -" , θk, θk+i, "-, θn)) -

(6) (Odd change of variables) Let θ = θ(ω) be an odd change of variables
such that 0(O)=O and άet(dθ(ω)/dω\ω=o)Φθ. Then, for any v£ΞPn(&),

(3.14) ( dθv(θ)=[ ^ψ^

(7) For v^Pn(^) and

(3.15) ( dθ(θ1-ω1) " (θn-<»n)v(θ)=v(ω).

Remarks. (1) All above assertions are easily obtained by following the
arguments in pp. 755-757 of [27], so proofs are omitted here. (2) (3.15) allows
us to put δ(θ-ω)=(θ1-ω1) -" (θn-ωn)f though δ ( - 0 ) = ( - l ) n δ ( 0 ) .
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Finally, we define

DEFINITION 3.7. Let U—ί/eϋX%c9im|n be a superdomain and let
u<=Css(U; (£), that is, u(x, θ)=Σ>ua(x)θa with ua{x)^C8S{Uev

m

9 <£). Then, we
define

= 1 dxBu~(xB) with ϊ = ( l , ••• , 1)

d*w(;C, 0)}.

Change of variables under integral sign.

THEOREM 3.8. Let

(3.17) x = x(y,ω), θ = θ(y,ω)

be a super smooth diffeomorphism from $ϊψ]n to ΪKψn. Putting

A C
(3.18) M=

' D B

dy dω

dy dω

we assume that either det^4|ω=o and άet(B—DA~1C)\ω=0 or de t5 | ω = o and
άet(A—CB 1D)\ωss0, are invertible for all y. Then, for any function
f^Css(^iχιn; S) which is integrable on W n , we have the change of variables
formula

(3.19) ( m{ndxdθf(x, θ)=\ m{ndydωf(x(y, ω\ θ(y, ω)XsάetMXy, ω).

For the proof, do as same as in pp. 759-760, [26] where their super
Euclidean space is modelled on Λ% and 3ftJ|n and ΐfiγιn are replaced by suitable
'singular manifolds' in (Λ%tev)

mx(ΛξιOd)
n. Here, Λf is defined as similar as

Λ°L in (1.5).

§4. A Hamilton equation on super Euclidean space

Super Hamiltonian flows. Let a function H(x ξ, θ π) on ${2m]2n be given
which satisfies the following where projj( ) is defined just before (1.16):

Assumption A.
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(A.I) H(x;ξ, Θ
(A.2) H(xB;ξB,
(A.3) For any multi-indeces a, β, a and b satisfying | α | + |j8| + | α | + | δ | ^ 2

and any / e 3 , there exists a positive constant C«> i 5,α > 6, independent

of / e 3 , such that

; ξB, 0; 0)

Or, we consider more specially that

Assumption AS.
(AS.l) H(x ;ξ,θ; π)(ΞCSsW2m{2n » « ) .

(AS.2) i/(x ΰ ξBi 0 0)eC°°(i? 2 m R) and da

βd
b

πH(xB ;ξB,Q; 0 ) e C°°(^2m C).

(AS.3) For any multi-indeces α, /3, a and ^satisfying | α | + lj9| + | α | + | ^ | ^ 2 ,

there exists a positive constant Ca,β,a,b such that

l a s a ^ ί i ϊ ί * ! , ; ^ 0; 0)\£Ca,β,a,b.

Example. We take, as the simplest example, the following Schrodinger
equation with spin (called, Pauli or more precisely Pauli type equation) on Rm:

(4.D ψ
with

( ^ ) t - ^ - Σ FJk(q)rrk+Φ(g).
Lt J k l

Here, Fjk=dqjΛk—dqkΛj is the field strength of an external smooth gauge
potential A=Σ>Γ=iAj(q)dqj on Rm with Σ^idqJA/<g)=0 and Φ(q) is a smooth
potential function on Rm. \TJ}JLi stand for the Hermitian rXr-matrices, called
the (Euclidean) Dirac matrices, satisfying y3γk+ykyJ——2δjk and ψ{q, t)(ΞCr for
each (g, t)^RmxR with r=2ι where /=[m/2]=the largest integer not exceeding
m/2. Using the procedures introduced in [11], we get the 'full symbol'
H^H(x;ξ, θ; π) of (4.1) as follows:

TO

H(x ;ξ,θ; π)=HB+Hs with HB=HB(x ;ξ,θ; π)= Σ (f/.-

Here Hs—Hs{x ;ξ,θ;π) is given by, for m=2l,

H8=i- Σ

and for m=2/+l,
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Hs=

+4 Σ {-(
Z .7, k=ι

This Hamiltonian satisfies Assumption AS if Φ(g) is real-valued and satisfies
\d$Φ(g)\£Ca for | α | ^ 2 and Λ/(?)=Σ^iα, *?* with α,* and Σ ^ i α ^ = 0 . More-

over, this Hamiltonian has the real body and the complex soul which is the
main reason why we introduced our supernumber algebra 91 as in § 1.

Let T > 0 be fixed arbitrarily.
For t, s e [ — 7 \ T ] , we want to construct a solution (x ξ, θ π) of the

super Hamiltonian equation given by

—x(t)=dξH(x;ξfθ;π),

(4.2)

d
dt

_d_
dt

_d_
dt

-π(t)=-hH(x;ξfθ;π).

with the initial condition at t=s given by

(4.3) (x(s); ξ(s), θ(s); π(s))=(y η, ω; / ) ) e r ι 2 \

Remark. Above equations are introduced to describe a classical spinning
particle in [3] and [5] independently. See also the paper [18]. But there has
been no paper treating the existence of the solution though Assumption A
above should be weakened for physical applications.

To solve (4.2) with (4.3), we first observe the body part of (4.2). That is,
putting HB{xBy $B)=H(XB; $B> 0; 0), we consider the following differential
equation:

(4.2B)

-~xB(t)=dξBHB(xB(t\ξB(t))>
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with the initial condition at t=s given by

(4.3B) (χB(s), ξB(s))=(yB, ηB)^R2m = T*Rm.

By successive approximation, we easily obtain the following (cf. Fujiwara [7]):

PROPOSITION 4.1. Let Assumption A hold. For any T>0 and any t, SG
[— T, T], there exists a unique solution of (4.2B) with (4.2B) which is C°° in
(t, s: yB, Ύ]B). Moreover, there exists a constant δo(T)>O with the following
properties: If \t—s|<δo(T), there exist positive constants Co and C^β for

| ^ l , independent of (t, s: yB, ηB) such that

(4.4)

(4.6)

(\xB(t,s:yB, ηB)-y
i
[\ξάt,s: yB, ηB)-yB\£

:yB, ηB)-ξB)\ <

\(dsxBXt,s: yB,ηB)+dξBHB(yB,

\(dsξBXt,s: yBt ηB)-dXBHB(yB,

\ηB\)\t-s\ ,

PROPOSITION 4.2. Under Assumption A, there exists a unique solution of
(4.2) with (4.3), for any T>0, and any t, s(Ξ[-T, T].

Proof. For notational simplicity, we put z=(x, ξ) and ψ=(θ, π). Decom-
posing

(4.7) χ(t)

we write (z, ψ)=(z(t), φ{t)\ with z(t)=(x(t), ξ(t)) and φ(t)=(θ(t), π(t)). More-
over, z(t)=zB(t)+zs(t), with zB{t)—{xB{t)} ξB(t)) being given in Proposition 4.1.
Using this, (4.2) can be rewritten by

d Γ *(t)

Xod{z{t)fφ{t))

d
d t φ{t)

where Xev(z, φ)={d$H(z, φ)} -dxH(z, φ)), and Xod(z,φ)=(-dΛH(z,φ), -deH(z, φ)).
By Proposition 4.1, we need to consider only the soul part (zs(t), φ(t))=

3, we have

A ^ s t O , 0) 0

0 dφXod{zB{t), 0)

2^ lαl + lαl
lαl =even

2 J ^od,ί
lSlαl + lαl

lαl=ocici

φ{t)
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where Xev,a,a(zB)=(l/a\)d^Xev(zB, 0) and Xod,a,a(zB)=a/a\)d?d^Xod(zB) 0).
To calculate (4.9) more concretely, we decompose (zs, φ) by

(4.10) zs= Σ zziji and ψ= Σ φί2j.n

where zί2jl, φuj-n are degree [2/] and [2/—1] component. Then, for φίllf

we have

(4.11) -^-φιii(t)=δφXOd(zάt), O)φLll(t) with φLιl(O)=(fi>zii, Pzn).

Using the degree, (4.11) can be solved easily for \t—s\<δo(T), because
dψXod(zB, 0) is uniformly bounded on R2m by Assumption A.

Now, consider (4.9) for (zί2jl(t), φz2j+n(t)). Then, we get the following
explicit form:

„ , W O 1 \ SzXev(zB(t\0) 0 ] [ zί2Ω(t)
(4.1Z)

where

dt L ̂ WnOO J L 0 dφXoid(zB{t), 0) JL ψi2j+u(t) \

Pί2jl{t, S I Zl2-\, '" , 2'[2;-2:> ^Cl]? '" t φί2j-ll)

(4.13) Pιtji(t, s : zm, ••• , zί2j_21,

TT 5^- 5r^0CαD . . . ^ - K ^

. W « J ! U « ) I I l ] c 2'"2

and

(4.14)

7 / \ι
Kj-l\OLu)\

(m
, [2]

Here, Σ(2^) (resp. ΣC2^+D) stands for the sum of all partitions (ku(-), mμ( ))
satisfying the following:

(1) Σί=ofe«(«t)=αt ( ί = l , ••• , 2m), ΣjUm,c(α r )=α r ( r = l , ••• , 2n),
(2) ΣϊϊiΣ&1o2«ft1,(αt)+|fl|=2y (resp. 2/+1),
(3) 2 ^ | α | + | α | .
If we assume that (zί2ki(t), φz2k-u(t)), k= 0, ••• , /—1 are solved, then,

Pc2j-2i(t, s : •••) and Qι2j-.a(t, s : •••) are the known data. So, we get (zί2Ji, φz2j+n)

from (4.12) by using the variation of constant. Thus, inductively we get a
unique solution (zs(t), φ(t)) of (4.9) with the initial condition at t=s given by
(zs(s), φ(s))=(ys η, ω p). •
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Next, we investigate the smoothness of (z(t), ψ(t)) with respect to the
initial data.

PROPOSITION 4.3. Fix T > 0 arbitrarily. Under Assumption A, the solution
(z(t), φ{t)) of (4.2) is 'smooth' in (t, s : y; η, ω; p), that is, smooth in (ί, s) for
fixed (y η, ω; p) and supersmooth in (y η, ω; p) for fixed (t, s). Moreover,
there exists δ i (T)>0 such that the following properties hold: If \t—s|^δi(T)
and /GΞ3, there exist C1 and Ci 0 ) independent of I such that

B, 0; 0 ) ) | ^
(4.15)

for k=\a

(4.16)

, s: yB; ηB, 0; 0)-(yB, )?s)

ί, s : y; η, ω; p)-(y, η))(yB;

\b\*tl. Analogously, we have

ξ , s: y; η,ω; p)-{ω, p))(yB; ηB, 0; 0 ) ) | ^

Proof. Remark that the first and the second estimates of (4.15) with
I a I + \b\ =0 are already given in Proposition 4.1. In oder to prove the smooth-
ness in (y; η, ω; p), we differentiate (4.2) formally in (y η, ω; p), which gives
us the following differential equation:

(4.17)

Here

(4.18)

and

(4.19)

dt
with

d
y
x d

v
x d

ω
x d

p
x

dyξ d
η
ξ S

ω
ξ S

p
ξ

d
y
θ dηθ d

ω
θ dpθ

d
y
π d

v
π d

ω
π d

p
π

-dx3xH - ξ

-dxdπH -dξdπH -
-dxdθH -

πddξ

-dπdxH

Remarking that the each component of Aσ\t) is supersmooth and bounded
independently of / e 3 by (A.3) and using a similar method as in the proof of
Proposition 4.2, we get the unique solution of (4.17) for [s, t~\. Thus, we have
that the solution of (4.2) is supersmooth with respect to (y η, ω; p). Moreover,
we easily get the following estimate

(4.20) \prohUcl\t, s: yB; ηB> 0; 0)-I)\^

Furthermore, for each positive integer k, putting

(4.21) J^=(d«dfd%d%χ ,ξ, θ; *)

we have the following differential equation:
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(4.22) -~-/ c * ) ( ί )=A c *V c * ) (0+S c * ) with /c*>(0)=0

where the each component of Ack\t) and JBCΛ) is supersmooth and bounded.
So, we get also

(4.23) |pro j 7 (/ ( *U s: yB; VB, 0; 0))\£CP\t-s\ecίn«-" .

It is easily seen that zab(t, s)=d%dbz(t, s : y η, 0; 0) and ^α f t(ί, s)=d%db

pψ(t, s: y; η,
O O) are supersmooth functions on $E27rι|° by using the uniqueness of the
solution for (4.22). Thus, putting

(4.24) *(O=Σ*αδ(f, s)ωapb and ψ{t)=^φab{ty s)ωap\

we have proved Proposition 4.3, again by the uniqueness of the solution of
(4.2). •

Remark. It follows readily from the above arguments that if H satisfies
A s s u m p t i o n A S , t h e n d a

y d ξ h d b

P z ( t , s : y B ; ηB> 0 ; 0 ) a n d da

yd%hdb

Pψ(t, s : y B ; -ηB, O O)
a r e c o m p l e x v a l u e d f o r k = \ a \ + \β\ + \a\ + \b\^l. T h e r e f o r e , i n t h i s c a s e ,
(4 .15) a n d (4 .16) h o l d w i t h | p r o j 7 ( )l b y | - | .

PROPOSITION 4.4. Let δ1=δ1(T) be fixed so as to 0^<5i<l and
(k=l, 2, 3) where C(

k°> are the constants in Proposition 4.3. Let \ t-s \ <δ 1 # Then,
we have the following:

(i) For any fixed {t, s, η, p), the mapping

(4.25) ϊfϊmιnΞB(y, ω) *—> (x^x{ty s:y;η,ω;p),

β = β(ί, s:y;yjfω; p))^^min

is supersmooth. We denote the inverse mapping defined by

(4.26) r I B 9 U , θ) H—> (y=y(t, s:x;θ,η;p),

ω=ω(t, s: x, θ, η,

which is supersmooth in (x, θy η, p) for fixed t, s.
(ii) For any fixed (t, s, y, ω), the mapping

(4.27) mm]n^(7]} ρ)>—>(ξ=ξ(t,s:y; η,ω; p)f

π=π(t, s: y; η,ω; ρ))^mm{n

is supersmooth. The inverse mapping defined by

(4.28) m w | w 3(f, π)i—>{η=η{t, s: y;ξ,ω; π),

is supersmooth in (y ξ, ω; π) for fixed t, s.
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Proof, (i) To prove the bijectivity of the mapping (4.25), for each fixed
t, s(=l—T, T ] and given (x η, Θ p), we want to solve the following equations
with respect to (y,ω):

(4.29)
x = x(t, s: y;η,ω; p),

θ = θ(t, s: y η, ω; p).

Following the arguments in Kitada & Kumano-go [14] or [7], we can solve
the body part of (4.29). Namely, we put, for given (xB, ηB),

(4.30) Tl?B,VB,(yB)=xB+yB-xB(t, s : yBy ηB).

Then, by using (4.15) and the mean value theorem, we have

(4.31) I T{fB, VB,(yB)-TifB, VB,(y'B) I

I~dyBxB(tf s: yB+τ(yB-yB)t VB)}dτ\\yB-yB\^j\yB-yf

B\

for \t—s\^δχ. Thus, the mapping (4.30) is contractive and has a unique fixed
point. That is, for any given (xB, ηB), there exists a unique yB such that
XB~Xβ{ty s : yB, ηB). So, we write it as yB—yB(t, s : xB, ηB). Now, decomposing
x=Έxί2ji and θ=Σθzij-n> we consider (4.29) at each degree. First, looking
at ^ci:, we get by the supersmoothness of θ with respect to its arguments.

(4.32) θίί2= , s: yB; ηs, 0 ; ft s: yB; ηB,0;0)pr.zii.

Since dωθ(t, s: yB ηB, 0 0) is invertible by (4.20) for small \t—s\, we can
solve ωciπ from (4.32). Similarly, we consider (4.29) for general / :

(4.33)

=z Σ (dykxB(t, s : yBf

M]= Σ Φωrθ(t, s: yB; ηB,0;
r = 0

+df,rθ(t, s: yB; VB, 0;0)p

B(t, s : yB, 7]B)ηk,Z2ji)

f ^C2j-2^ (OZι2, '" ,

-Il\ Pίll> '" > Pί2j-ll) >

t, s :

where

(4.34) t, s :

= Σ
1

Π

]-\-<,'> pin,

a\ βl Ά Uau)\ - *,_,(«.)! klβu)\
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Vy)fco(j9i) . . . ̂ kj-iaβiϊ . . . y.feocβm) . . . -kj-icβmϊ

Y Λ ) m i ( α i ) . . . Λ » m ^ ' ( ί l l ) . . . Λ i m i ( α 7 i ) . . Λ » m i < α » >
X G J l . C l ] 1 ίWl,[2 j- l] * G>n.[i;] Λ *•' G>n, [2,7-1]

X d a

y d $ k d b

P x ( t , s : y B ; r ] B , O O),

( 4 . 3 5 ) β [ 2 ; + i ] ( ^ s : 3 > [ 2 ] > •••, ^ [ 2 ^ - 2 : ; > 7 c 2 : , •••, i}i2j-

y, J L TT **!

TT
α! j8I i-i *β(αB)! - * , . ! ( « , ) ! *0(j8»)!

w vsfcoCiSi) v^^j-iC^O vsfeoc^m) V)kj-.i(.βm')
X i 7 i . e e : " 7 I . C 2 J - « D •• ) ? w , [ 2 ] •••^m,c2;-2]

, s: yB; ηBy 0 ; 0).

Here, ΣtM Iresp. Σc2j+i:) stands for the sum of all partitions (ku( ), mμ{-))
satisfying the following:

OΛ Σi-o*«(αi)=αt, Σi-1o*«(j8i)=i8< ( i=l , - , m),
(2) Σt^iΣfcIo2M*«(αO+ΣftiΣi-ιo2M*.(i8O+|fl| + |6 |=2y(resp. = 2 / + D ,
(3) ΣJ-\m i t l(flr)=αr, Ίl3

μ~Amμ{br) =br ( r = l , - , n),
(4) iαi + ifti + lfll + 1^1^2.

So using (4.21), we can solve (3taj3> ωc2j+i:) for general /. Using the Proposition
2.16 (inverse function theorem), we get the supersmoothness of the mapping
(4.26). The other assertion is proved similarily. •

The mappings defined in Proposition 4.4 satisfy the following:

PROPOSITION 4.5. Let \t—s\<δx then we have

x(t, s : y(t, s : x ξ, θ;π);ξ, ω(t, s : x ξ, θ π) π)=x,
(4.36) ,

θ(t, s : y{ty s : x ξ, θ π) ξ, ω(t, s : x ξ, θ π) π)=θ ,

ξ(t, s : x η(f, s : x ξ, θ π\ θ p(t} s : x ξ, θ π))=ξ,
(4.37) \

π(t, six; η{t, s : x ξ, θ π), θ p(t, s : x ξ, 0 j θ ) = π .

Λ(ί, s : Λ η(t, s: x ξ, θ π), θ; ρ(t, s : x ξ, θ; π))=y(t, s : x ξ, θ π),

θ(t, six; η(t, s i x ξ, θ π), θ p(t, si x ξ, θ; π))=ω(t, s: x ξ, θ π),
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ί ξ(t, s : y(t, s : x ξ, θ π) ξ, ω(t, s : x ξ, θ π) π)=η(t, s : x ξ, θ π),
(4.39)

[ π(t, s: y(t, s : x ξ, θ π); ξ, ω(t, s : x ξ, θ; π); π ) = ρ ( t , s: x ξ, θ π ) .

( y ( t ) ; η(t)> ω(t); p(t)) is 'smooth* in ( ί , s : x ξ, θ π) with the following
estimates: There exist constants C^β and C2, independent of (t, s: x ξ, θ; π)
and I(Ξ% such that for \a\ + \β\ + | a I + \b\ ̂ 1 and p , q = 0 or 1 with

, s :x;ξ,θ;π)-xXyB; ηB, 0;0))\ύC™β\t-s\ ,

iphtfflSφthW, s : x; ξ, θ π)-ξ)(yB; ηB, 0; Q))\<C£β\t-s\ ,
(4.40)

\proh(dfdϊd«xdldgdb

π(ω(t, s : x ξ, θ π)-θ)(yB; ηB, 0; O))\^C^β\t-s\ ,

, s: χ; ξ, θ;π)-π)(yB; ηB} 0; 0))\<C£β\t-s

\ydt, s:xB,ξB)-xB\^C2\t-s
(4.41) ,

l ( f)-fBl^C a | ί-s 1(1+1

/. (4.36-37) and (4.38-39) follow from Proposition 4.4. We get easily
the first two inequalities of (4.40) for a=b=0 by differentiating (4.36) and using
(4.16). Then, we write

(4.42) yB(t, s : χB, ξB)—xB=ξB^dςByB(f, s : xB> τξB)dτ

t, s : τxBy 0)-I)dτ+yB(t, s : 0, 0).

Using the first inequality of (4.40) for a=b=Q, we have

By (4.3), (4.38), we get

\ydt, s : 0, 0 ) | - \xB(t, s : 0, ηB(t, s : 0, 0 ) ) - 0 | ^ C β | f - s | ,

which proves the first inequality of (4.41). Similarly, we have the second
inequality of (4.41). To prove other inequalities in (4.40), we do as we did in
proving Proposition 4.4 but omit the details. •

Action integral. We construct the action integral along the Hamiltonian
flow given above. First, we remark

LEMMA 4.6. Let (x ζ, θ π) be the Hamiltonian flow defined by (4.2). Then
we have

(4.43) -^-flϊx f, * ; * ) = ( ) .
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Proof. By using the composition rule of derivatives, we get

Substituting (4.2) in the above equation, we get (4.43). •

Now, we define

(4.44) u(t, s)=u(t, s: y; η,ω) p)

=<η\y>-<ρ\ω>+\*L(x(τ, s), θ(τ, s), ξ(τ, s), π(τ, s))dτ

where

(4.45) L ( x ; ξ , θ ; π)=<ξ\d^H(x ; ξ , θ ; π ) } + < π \ 3 π H ( x ; ξ , θ ; π ) > - H ( x ; ξ , θ : π ) .

Here, we put
m I

<y}\y>—^yjyj, <p\ω} - Σ prωr, etc.

x(t, s)=x(t)=x(t, s:y;η,ω;ρ), ξ(t, s)=f(ί)=f(ί, s : y; η, ω; p), etc.

LEMMA 4.7. Let \t-s\<δx. Then, u(t, s)=u(t, s : x; ξ, θ π) is 'smooth'
in (t, s : x ζ, θ π), and it satisfies:

(4.46)

(dtu(t, s)=<ξ(t, s)\dtx(t, s)>-<ar(f, s)\dtθ(f, s)>

-H(x(t, s); ξ(t, s), θ(t, s); π{t, s)),

dsu(t, s)=—<f(ί, s)|3βA:(ί, s)>—<π(ί, s)\dsθ(t, s)>

+#(*(* , s);£(f,s), β(ί, s);ττ(ί, s)).

'dyiι(t, s)=<£(ί, s)|92/x(ί, s)>—<ττ(ί, s)|3y5(ί, s)>,

(4.47)

/. As is readily seen the 'smoothness' of u in (t, s: x ξ, θ; π) by
composition rule of differentiate functions, we have (4.46). To prove the first
equality of (4.47), we put

(/=1, ..., m).(4.48) Wj(t, s)=dyju-<ξ{t, s)\dyjx(t, s)>+<π(t, s)\dVJθ(t, s

Then, Wj(t, s)=0 and W/s, s)=0 by easy computations, which gives the desired
equation. The other equations of (4.47) can be similarly obtained. •

Putting
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(4.49) φ(t, s: x; η, θ; ρ)=u(t, s: y(t, s: x; η, θ; ρ)',ω{t, s: x η, θ p), η p),

we have:

( i )

(ii)

(in)

(iv)

(v)

(4.50)

P R O P O S I T I O N 4.8 ( H a m i l t o n - J a c o b i e q u a t i o n ) . Let \t—s\<δίf then-

φ(t, s : x η, θ p) is 'smooth' in (t, s : x ξ, θ π).

φ(s}sf x;r),θ;p)=<7)\x>-<p\θ>.

dxφ(t, s : x η, θ ρ)=ξ(t, s : x η, θ p),

dvφ(t, s : x η, θ ρ)=y(t, s : x η, θ p),

dθφ(t, s: x η, θ; ρ)=π(t, s: x ηy θ p),

\dpφ{t, s: x; η, θ; p)=-ω(t, s: x η, θ p).

dtφ(f, s : x η, θ p)+H(x dxφ, θ dθφ)=O,

dsφ(t, s : x η, θ p)-H(dvφ η, -dpφ p)=0.

φ(t, s: x η, θ p) satisfies the following estimates for any

f- xB; ηB> 0; 0 ) ) | ^ C 3 ( H - U β | + l^β |) 2 " | α : | " 1

for \a\ + \β

Kί, s : xB; rjB, 0; 0 ) ) | ^ C 3

for

.. ,.,4 . , , 3) ηB, 0; O)-φ(t, s: xB; ηB, 0;
(4.51)

and for \ a

(4.52)

Proof. (i)-(ii) are directly obtained by using (4.46), (4.47) and the expression
(4.48). To show the first part of (iii), we differentiate (4.49) with respect to
x. Then, using (4.35) and (4.47), we have

(4.53) dXJφ(t,s:x;η, θ p)

=dXjydyu(t, s: y(t, s : x η, θ p); η, ω(t, s: x η, θ; p); p)

+dXjωdωu(t, s : y(t, s : x η, θ p) η, ω(t, s : x η, θ p); p)

=ξ(f, s)[dXjydyx(t, s)+dXjωdωx(t, s)]

', s ' , x * ; ? * , 0 ; O)-dgd$(t, s:xB;ηB}0;
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+π(t, s)[βX]ydyθ(ty s)+dXjωdωθ(t, s)]

=ξj(t, s : y(t, s : x η, θ p) η, ω(t, s : x η, θ p) p).

The other equations of (iii) can be obtained by similar computations, (iv) is a
directly consequence of (4.46), (4.47), (iii) and (4.36), (4.37). Using (4.40) and
computing straightfowardly, we get (4.50)-(4.52). •

Continuity equation. Put

(4.54) J(t,s:x;η, 0;,o)=sdet

l

\dxy{t, s : x η, θ p) dθy(t, s : x η, θ

ldxω(t, s : x η, θ p) dθω{t, s : x η, θ p).

which is well-defined for | ί - s | ^ ( T ) , t, SΪΞ[-T, T], because of Proposition
4.4.

PROPOSIITON 4.9 (Continuity equation). For | t—s\ ύδ^T), J(t, s : x η, θ p)
satisfies the following:

(4.54) /(s, s, x; η, θ) ρ)=l

dj(t, s : x η, θ p)

(4.55)
dj(t, s : x η, θ p)

Έ

ix dxφ, θ dβφ)}

τH{x dxφ, θ dθφ)},

ηφ; η, -dpφ; p)}

Proof. (4.54) is an easy consequence of (4.18). To obtain (4.55), we use
the similar argument stated in Appendix A, [18]. Differentiating the Hamilton-
Jacobi equation with respect to η and p and using (iii) of Proposition 4.8, we
have

(4.56)

Σ dXhdχhyfiξhH(x d*Φ> 0 dθφ)

+ Σ 9<? yjJ) H(x dxφf θ dθφ)—O,

W=l

m .,

u+ Σ dXhωudίhH(x Zxφ, θ dθφ)

- Σ dejoXaH{x dxφ, θ 3,0)=O.
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Define a matrix M=(MBA)(A, 5 = 1 , •••, m+n) by

ΰ=u-{-m, v=v-\-m and u, v=l , n

109

(4.57) j,k=l, ',m,

where

(4.58) Mjk-=dXjyk> Mjΰ~—dXjωu

Also, we denote by N-— M'1=INBA] =
Nϋk

. Then, we get

(4.59)

Σ MhjNkh-t- Σ J

Σ MhkNnh+ Σ
Λ l l

Σ

Differentiate the each equation of (4.56) with respect to x and ̂ , we get

m

Σ

m

BtMv+ Σ
h=l

(4.60)

dtMka+ Σ

- Σ
i
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Substituting (4.60) into (2.19) and using (4.59), we have easily (4.55). •

Also, by a direct computations combined with Proposition 4.2, we have

P R O P O S I T I O N 4 . 1 0 . Under Assumption A , we have, for a n y IΪΞ% \t—s\<
δx{T)andfor p , q = 0 or 1 with p+q^l and \a\ + \β\ + 1 a | + \b\ ̂ 0 , there exists
a constant C P ) g , « ) i 3 > a , 6 such that

(4.61) \pro'h(dfdida

xdξdfdb

p(J(tf s : x ; η , θ ; p ) - W , s : x B ; η B > 0 ;

^ ^ p.q.a, β,a,b\t S\ .

Now, we put

(4.62) μ(t, s:x;η,θ; p)=J(t, s:x;η,θ;

which is a super version of the van Vleck determinant for the classical
mechanics (see, [11], [18]). By using Proposition 4.9, we get easily the
following:

PROPOSITION 4.11. For \ t—s \ ̂ dx{T), μ(t, s : x η, θ p) satisfies the
following:

(4.63) μϋs9 s, x η, θ;p)=l.

Til 71

(4.64) dtμ+ΣdXjμdijH+ Σ
j=\ J J U = l

+jμ{ Σ dxj3hH+%m dxβXkφd;kd$jH+ Σ Σ dx

Σ deJ,uH+-Σ Έ,deudXkφdξkluH+ Σ
U—l U = l β = l 11, V= 1

where arguments of μ and φ are (t, s : x η, θ p) and those of H are
(x dxφ, θ dθφ). Moreover, we have, for any 7 e 3 , any p, q—0 or 1 with

^l and | α | + |j8| + | α | + |&|^0, there exists a constant Cp,q,atβ,a,b suchthat

(4.65) Iproj/OrSjSsSlS^^i, s:x;η,θ; p)-l)(tf s:xB; ηB, 0;

Remark. It seems not necessary to consider the van Vleck determinant if
we stay only in classical mechanics. But, if we want to 'quantize' such classical
mechanics, it is natural to take it into account (see, Inoue & Maeda [9] and
references therein).
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