PERIODIC EXTENSIONS OF TWO-DIMENSIONAL BROWNIAN MOTION ON THE HALF PLANE, II

By Minoru Motoo

This paper is a continuation of the one with the same title [2]. Notation follow the previous paper. Theorems, propositions and formula in [2] are cited by their numbers without special mention.

Main results of this paper are summarized as follows:
(1) For any $B=\{\sigma, \mu, k, p\}$ in \mathcal{L}, there exists a B-process \boldsymbol{P} with $B_{p}=B$, which satisfies conditions [M] and [V]. (See theorem [19.16]. Uniqueness of B-process for given B has already been proved in theorem [7.7] in the previous paper [2].)
(2) $A B$-process has continuous path functions in \bar{D} if and only if σ and μ are positive for any open set. (See theorem [14.9] and theorem [19.16].)
(3) A process P in \mathscr{P} has continuous path functions and is of Feller type in \bar{D} if and only if P is a B-process, such that σ and μ are positive for any open set and σ has no discrete mass. (See theorem [15.10] and theorem [19.16].)

IV. Characterization of the class \mathscr{P}_{c}.

§ 12. Certain recurrence relations.

Throughout this section, we shall fix a process P in \mathscr{P}, on which we shall assume no additional condition.

Let $\sigma_{a}(w)$ be the hitting time of ∂a, and for any positive a and b with $a \neq b$, we define $\rho_{n}=\rho_{n}(a, b, w)$ and $\tau_{n}=\tau_{n}(a, b, w)$ by

$$
\begin{align*}
& \rho_{0}=\sigma_{a}, \tag{12.1}\\
& \tau_{n}=\rho_{n}+\sigma_{b}\left(\theta_{\rho_{n}} w\right), \\
& \rho_{n+1}=\tau_{n}+\sigma_{a}\left(\theta_{\tau_{n}} w\right), \quad n=0,1,2, \cdots .
\end{align*}
$$

Since one-dimensional reflecting Brownian motion is recurrent, by [1.5] and [1.6] and continuity of the process in D^{*} we can easily see:
[12.1] ρ_{n} and $\tau_{n}(n=0,1,2, \cdots)$ are finite except on a set of P_{z}-measure

[^0]zero for any z in D, and $\lim _{n \rightarrow \infty} \rho_{n}=\lim _{n \rightarrow \infty} \tau_{n}=\infty$ holds.
Set, for $t \geqq 0$ and $h>0$,
\[

$$
\begin{equation*}
L_{a}^{h}(t, w)=\frac{1}{2 h} \int_{0}^{t} I_{[a-h, a+h]}(y(s, w)) d s \tag{12.2}
\end{equation*}
$$

\]

where $z(t, w)=(x(t, w), y(t, w))$ for $z(t, w) \in D$ and I_{A} is the indicator of a set A. Noting [1.6], the following results are well known in theory of Brownian local time [1].
[12.2] For any z in D,
(1) $L_{a}(t, w)=\lim _{h \rightarrow 0} L_{a}^{h}(t, w)$ exists a.s. P_{z},
(2) $E_{z}\left(L_{a}(t, w)\right)=\lim _{h \rightarrow \infty} E_{z}\left(L_{a}^{h}(t, w)\right)$.
(3) $L_{a}(t, w)$ is continuous and increasing in t and satisfies

$$
\begin{equation*}
L_{a}(t+s, w)=L_{a}(t, w)+L_{a}\left(s, \theta_{t} w\right) \tag{12.3}
\end{equation*}
$$

for any s and t a.s. P_{z}.
(4) $L_{a}(t, w)$ increases only on t with $z(t, w) \in \partial_{a}$, that is,

$$
\begin{equation*}
L_{a}(t, w)=\int_{0}^{t} I_{\partial_{a}}(z(s, w)) d L_{a}(s, w) \quad \text { a.s. } P_{z} . \tag{5}
\end{equation*}
$$

$$
\begin{array}{ll}
E_{z}\left(L_{a}^{h}(t, w)\right), & E_{z}\left(L_{a}(t, w)\right) \leqq C_{1} \sqrt{ } \overline{ } \\
E_{z}\left(L_{a}^{h}(t, w)^{2}\right), & E_{z}\left(L_{a}(t, w)^{2}\right) \leqq C_{2} t \tag{12.5}
\end{array}
$$

where C_{1} and C_{2} are absolute constants.
[12.3] Let a and b are any positive numbers and z be a point in D.
(1) If $y \leqq a<b$ or $y \geqq a>b$,

$$
E_{z}\left(L_{a}\left(\sigma_{b}\right)\right)=2|b-a| .
$$

(2) In general, it holds that

$$
E_{z}\left(L_{a}\left(\sigma_{b}\right)\right) \leqq 2|b-a|
$$

n.nd

$$
E_{z}\left(L_{a}\left(\sigma_{b}\right)^{2}\right) \leqq 8(b-a)^{2} .
$$

[12.4] Let ϕ be a bounded continuous function defined on $D^{[a-c, a+c]}$ with $0<c<a$, and λ be a positive number. Then

$$
\lim _{h \rightarrow 0} E_{\imath}\left(\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{\phi}(z(t)) d L_{a}^{h}\right)=E_{z}\left(\int_{0}^{\infty} e^{-\lambda t} \boldsymbol{\phi}(z(t)) d L_{a}\right) .
$$

Proof.

1° Let ε be any positive number. By (12.3) and (12.4) we can choose T such that

$$
E_{z}\left(\int_{T}^{\infty} e^{-\lambda t}|\phi(z(t))| d L_{a}^{h}\right), \quad E_{z}\left(\int_{T}^{\infty} e^{-\lambda t}|\phi(z(t))| d L_{a}\right)<\varepsilon .
$$

2° Choose positive ε_{1} such that $\left(\varepsilon_{1} C_{1}+8\|\phi\| \sqrt{\varepsilon_{1} C_{2}}\right) \sqrt{T}<\varepsilon / 2$, where C_{1} and C_{2} are constants appearing in (12.4) and (12.5). The function ϕ can be extended to a function $\tilde{\phi}$ which is continuous in D with $\|\phi\|=\|\tilde{\phi}\|$, and there exists a positive integer N such that, for

$$
\mathfrak{u}=\mathfrak{u}\left(T, N, \varepsilon_{1}\right)=\left\{w: \sup _{s, t \leq T,|s-t| \leqslant 1 / N}|\tilde{\phi}(z(s))-\tilde{\phi}(z(t))|<\varepsilon_{1}\right\},
$$

$P_{z}\left(\mathfrak{H}^{c}\right)<\varepsilon_{1}$ and $(\lambda / N)\|\phi\| C_{1} \sqrt{T}<\varepsilon / 2$ hold. Set

$$
\begin{aligned}
& t_{k}=\frac{k T}{N} \quad(k=0,1,2, \cdots, N) \quad \text { and } \\
& I_{N}^{h}=E_{z}\left\{\sum_{k=0}^{N-1} e^{-\lambda t}{ }_{k} \tilde{\phi}\left(z\left(t_{k}\right)\right)\left(L_{a}^{h}\left(t_{k+1}\right)-L_{a}^{h}\left(t_{k}\right)\right)\right\}, \\
& I_{N}=E_{z}\left\{\sum_{k=0}^{N-1} e_{-} t_{k} \tilde{\phi}\left(z\left(t_{k}\right)\left(L_{a}\left(t_{k+1}\right)-L_{a}\left(t_{k}\right)\right)\right\} .\right.
\end{aligned}
$$

Then by (12.4) and (12.5)

$$
\begin{aligned}
& \mid E_{z}\left(\int_{0}^{T} e^{-\lambda t} \phi\left(z(t) d L_{a}^{h}\right)-I_{N}^{h} \mid\right. \\
& \leqq\left(1-e^{-\lambda T / N}\right)\|\phi\| E_{z}\left(L_{a}^{h}(t)\right) \\
& \quad+E_{z}\left(\sum_{k=0}^{N-1} e^{-\lambda t_{k}} \int_{t_{l}}^{t_{k+1}}\left|\tilde{\phi}(z(t))-\tilde{\phi}\left(z\left(t_{k}\right)\right)\right| d L_{a}^{h}\right) \\
& \leqq \frac{\lambda T}{N}\|\phi\| E_{z}\left(L_{a}^{h}(T)\right)+\varepsilon_{1} E_{z}\left(I_{\mathfrak{u}} L_{a}^{h}(T)\right)+2\|\tilde{\phi}\| E_{z}\left(I_{\mathfrak{u}} L_{a}^{h}(T) ;\right. \\
& \leqq\left(\frac{\lambda T}{N}\|\phi\|+\varepsilon_{1}\right) E_{z}\left(L_{a}^{h}(T)\right)+2\|\phi\| P_{z}\left(\mathfrak{u}^{c}\right)^{1 / 2} E_{z}\left(L_{a}^{h}(T)^{2}\right)^{1 / 2} \\
& \leqq\left(\frac{\lambda T}{N}\|\phi\|+\varepsilon_{1}\right) C_{1} \sqrt{T}+4 \sqrt{2}\|\phi\| \sqrt{\varepsilon_{1} C_{2} T}<\varepsilon .
\end{aligned}
$$

Similarly, by (12.4) and (12.5),

$$
\left|E_{z}\left(\int_{0}^{T} e^{-\lambda t} \phi(z(t)) d L_{a}\right)-I_{N}\right|<\varepsilon
$$

3° On the other hand, by (12.3) and Markov property of the process, for fixed N and T we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} I_{N}^{h} & =\lim _{h \rightarrow 0} E_{z}\left\{\sum_{k=0}^{N-1} e^{-\lambda t_{k}} \tilde{\phi}\left(z\left(t_{k}\right)\right) E_{z\left(t_{k}\right)}\left(L_{a}^{h}\left(\frac{T}{N}\right)\right)\right\} \\
& =E_{z}\left\{\sum_{k=0}^{N-1} e^{-\lambda t_{k}} \tilde{\phi}\left(z\left(t_{k}\right)\right) E_{z\left(t_{k}\right)}\left(L_{a}\left(\frac{T}{N}\right)\right)\right\} \\
& =I_{N} .
\end{aligned}
$$

By $1^{\circ}, 2^{\circ}$ and 3° proof of [12.4] is completed.
[12.5] Let a and δ be any positive numbers, then
(1) $\lim _{b \rightarrow a} \sup _{x} P_{(x, a)}\left(\sigma_{b} \geqq \sigma\right)=0$,
(2) $\lim _{b \rightarrow a} \sup _{x} P_{(x, a)}\left(\sup _{s \leq \sigma_{b}}|z(s)-z(0)|>\delta, \sigma_{b}<\sigma\right)=0$,
(3) $\lim _{b \rightarrow a} \sup _{x} P_{(x, a)}\left(\sigma_{b} \geqq \delta\right)=0$.

Proof. Noting $P_{(x, a)}\left(\sigma_{b} \geqq \delta\right) \leqq P_{(x, a)}\left(\sigma_{b} \geqq \sigma\right)+P_{(x, a)}\left(\sigma>\sigma_{b} \geqq \delta\right)$, [12.5] is obvious by (p. 4) in [1.1]
[12.6] For ϕ in $C_{p}(R)$ and $a>0$

$$
\begin{equation*}
\lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L_{a}\right)=\int_{0}^{2 \pi} \phi(x) m_{P}(x, a) d x, \tag{12.6}
\end{equation*}
$$

where $E_{\tilde{m}}(\cdot)=\int_{\tilde{D}} E_{z}(\cdot) m_{P}(z) d z$ and $\tilde{D}=\{z=(x, y) \in D: 0<x<2 \pi\}$.
Proof. Set $\tilde{\phi}(z)=\phi(x)$ for $z=(x, y)$ in D, then by [8.20]

$$
\begin{aligned}
\lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) d L_{a}^{h}\right) & =\frac{\lambda}{2 h} \int_{\tilde{D}} G_{\lambda}\left(I_{[a-h, a+h]} \tilde{\phi}\right)(z) m_{P}(z) d z \\
& =\frac{1}{2 h} \int_{a-h}^{a+h} d y \int_{0}^{2 \pi} \phi(x) m_{P}(x, y) d x \\
& \longrightarrow \int_{0}^{2 \pi} \phi(x) m_{P}(x, a) d x \quad(h \rightarrow 0) .
\end{aligned}
$$

On the other hand, since

$$
\begin{aligned}
\left|E_{z}\left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) d L_{a}^{h}\right)\right| & \leqq\|\phi\| E_{y}^{R, 1}\left(\int_{0}^{\infty} e^{-\lambda t} d L_{a}^{h}\right) \\
& =\|\phi\| e^{-\sqrt{2 \lambda(y-c)}} E_{c}^{R, 1}\left(\int_{0}^{\infty} e^{-\lambda t} d L_{a}^{h}\right)
\end{aligned}
$$

for $a+h<c$ and $y \geqq c$, we have by [12.4], (4) in [12.2] and the dominated convergence theorem we have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) d L_{a}^{h}\right) \\
&=\lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) d L_{a}\right) \\
&=\lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L_{a}\right)
\end{aligned}
$$

[12.7] For any positive a and b with $0<|b-a| \leqq 1, \rho_{n}$ and τ_{n} are defined as in (12.1). Then, for any positive λ, it holds that

$$
\begin{equation*}
E_{2}\left(\sum_{n=0}^{\infty} e^{-\lambda \rho_{n}}\right) \leqq \frac{E_{z}\left(e^{-\lambda \sigma_{a}}\right)}{1-e^{-\sqrt{2 \lambda 1} \mid-a}} . \tag{12.7}
\end{equation*}
$$

Especially,

$$
\begin{equation*}
|b-a| E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \rho_{n}}\right) \leqq K(\lambda) \operatorname{Min}\left\{e^{-\sqrt{2 \lambda}(y-a)}, 1\right\} \tag{12.8}
\end{equation*}
$$

where $K(\lambda)$ is a constant independent of a, b and z.
Proof. If $b<a$, then we have by [1.5] and [1.6]

$$
\begin{aligned}
E_{z}\left(e^{-\lambda \rho_{n+1}}\right) & \leqq E_{z}\left(e^{-\lambda \tau_{n}}\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left(e^{-\lambda \sigma_{b}}\right)\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}} E_{a, 1}^{R, 1}\left(e^{-\lambda \sigma_{b}}\right)\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}}\right) e^{-\sqrt{2 \lambda}(a-b)}
\end{aligned}
$$

Similarly, if $b>a$, then

$$
\begin{aligned}
E_{z}\left(e^{\left.-\rho_{n+1}\right)}\right. & \leqq E_{z}\left(e^{-\lambda \rho_{n}-\lambda\left(\rho_{n+1}-\tau_{m}\right)}\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}} E_{z\left(\tau_{n}\right)}\left(e^{-\lambda \sigma_{a}}\right)\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}} E_{b}^{R, 1}\left(e^{-\lambda \sigma_{a}}\right)\right) \\
& =E_{z}\left(e^{-\lambda \rho_{n}}\right) e^{-\sqrt{2 \lambda}(b-a)}
\end{aligned}
$$

Therefore, in both cases we have by induction

$$
\begin{equation*}
E_{z}\left(e^{-\lambda \rho_{n+1}}\right) \leqq E_{z}\left(e^{-\lambda \sigma_{a}}\right) e^{-n \sqrt{2 \lambda} \mid b-a_{1}} \quad(n=0,1,2, \cdots) \tag{12.9}
\end{equation*}
$$

and (12.7) is obvious. Since

$$
E_{z}\left(e^{-\lambda \sigma_{a}}\right)=E_{y, 1}^{R, 1}\left(e^{-\lambda \sigma_{a}}\right)=e^{-\sqrt{2 \lambda}(y-a)} \quad \text { if } y \geqq a,
$$

setting $K(\lambda)=\sup _{0<y \leqslant 1} \frac{y}{1-e^{-\sqrt{2 \lambda y}}}$, we have (12.8).
[12.8] Theorem. For any positive a and b with $a \neq b$, let $\rho_{n}=\rho_{n}(a, b, w)$ and $\tau_{n}=\tau_{n}(a, b, w)(n=0,1,2, \cdots)$ be defined as in (12.1), $\xi_{n}=\xi_{n}(w)$ and $\eta_{n}=\eta_{n}(w)$ ($n=0,1,2, \cdots$) be measurable functions on (W, B) with $\rho_{n} \leqq \xi_{n}, \eta_{n} \leqq \tau_{n}$ and λ be any fixed positive number.
(1) If ϕ is a bounded uniformly continuous function on R, then we have

$$
\lim _{b \rightarrow a} 2|b-a| E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \xi_{n}} \phi\left(x\left(\eta_{n}\right)\right)\right)=E_{z}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L_{a}\right) .
$$

(2) If ϕ is in $C_{p}(R)$, then we have

$$
\lim _{b \rightarrow a} 2|b-a| E_{\tilde{m}}\left(\sum_{n=0}^{\infty} e^{-\lambda \xi_{n}} \phi\left(x\left(\eta_{n}\right)\right)\right)=\frac{1}{\lambda} \int_{0}^{2 \pi} \phi(x) m_{P}(x, a) d x .
$$

we set $\phi(x(t))=0$ if $z(t)=\partial$ and $E_{\tilde{m}}(\cdot)$ is defined in [12.6].
Proof. If (1) holds, then (2) follows from by (12.8), the dominated convergence theorem and [12.6]. Now we shall prove (1).
1° Set $\varepsilon=|b-a|$ and define

$$
d(\delta)=\sup _{|\xi-x|<\delta}|\phi(\xi)-\phi(x)|
$$

for any positive δ,

$$
e(t)=e(t, w)=\sup _{0 \leq s \leq t}|\phi(x(s))-\phi(x(t))|
$$

and

$$
p_{1}(\varepsilon)=\sup _{x} E_{(x, a)}\left\{e\left(\sigma_{b}(w), w\right)\right\}
$$

Then

$$
\begin{aligned}
p_{1}(\varepsilon) \leqq d(\delta) & +2\|\phi\| \sup _{x} P_{(x, a)}\left(\sup _{0 \leq s \leq \sigma_{b}}|x(s)-x(0)|>\delta, \sigma_{b}<\sigma\right) \\
& +2\|\boldsymbol{\phi}\| \sup _{x} P_{(x, a)}\left(\sigma_{b} \geqq \sigma\right) .
\end{aligned}
$$

Therefore by [12.5] $\varlimsup_{\varepsilon \rightarrow 0} p_{1}(\varepsilon) \leqq d(\boldsymbol{\delta})$.
Since ϕ is uniformly continuous, $\lim _{\delta \rightarrow 0} d(\delta)=0$. We have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} p_{1}(\varepsilon)=0 . \tag{12.10}
\end{equation*}
$$

Set $p_{2}(\varepsilon)=\sup _{\lambda} E_{(x, a)}\left(1-e^{-\lambda \sigma_{b}}\right)$. Then

$$
p_{2}(\varepsilon) \leqq \lambda \delta+\sup _{x} P_{(x, a)}\left(\sigma_{b}>\boldsymbol{\delta}\right)
$$

for any positive δ. Therefore by [12.5]

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} p_{2}(\varepsilon)=0 . \tag{12.11}
\end{equation*}
$$

2°

$$
J_{1}(\varepsilon)=2 \varepsilon\left\{E_{2}\left(\Sigma e^{-\lambda \xi_{n}} \phi\left(x\left(\eta_{n}\right)\right)\right)-E_{2}\left(\Sigma e^{-\lambda \rho_{n}} \phi\left(x\left(\rho_{n}\right)\right)\right)\right\} \longrightarrow 0 \quad(\varepsilon \rightarrow 0)
$$

Proof of 2°.

$$
\left|J_{1}(\varepsilon)\right| \leqq I_{1}(\varepsilon)+I_{2}(\varepsilon),
$$

where

$$
I_{1}(\varepsilon)=2 \varepsilon\|\boldsymbol{\phi}\| E_{z}\left(\Sigma\left(e^{-\lambda \rho_{n}}-e^{-\lambda \tau_{n}}\right)\right)
$$

and

$$
I_{2}(\varepsilon)=2 \varepsilon E_{2}\left(\sum e^{-\lambda \rho_{n}} \sup _{\rho_{n} \leq s \leq r_{n}}\left|\phi(x(s))-\phi\left(x\left(\rho_{n}\right)\right)\right|\right)
$$

Then by [1.5] and (12.8)

$$
\begin{aligned}
I_{1}(\varepsilon) & =2 \varepsilon\|\phi\| E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left(1-e^{-\lambda \sigma_{b}}\right)\right\} \\
& \leqq 2\|\phi\| K(\lambda) p_{2}(\varepsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}(\varepsilon) & =2 E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left(e\left(\sigma_{b}\right)\right)\right\} \\
& \leqq 2 K(\lambda) p_{1}(\varepsilon),
\end{aligned}
$$

where $K(\lambda)$ is defined as in (12.8). Therefore by (12.10) and (12.11)

$$
\left|J_{1}(\varepsilon)\right|=I_{1}(\varepsilon)+I_{2}(\varepsilon) \longrightarrow 0 \quad(\varepsilon \rightarrow 0)
$$

3°

$$
J_{2}(\varepsilon)=2 \varepsilon E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} \phi\left(x\left(\rho_{n}\right)\right)\right\}-E_{z}\left\{\Sigma \phi\left(x\left(\rho_{n}\right)\right) \int_{\rho_{n}}^{\tau_{n}} e^{-\lambda t} d L_{a}\right\} \longrightarrow 0 \quad(\varepsilon \rightarrow 0)
$$

Proof of 3°. By (2) in [12.3]

$$
\begin{aligned}
2 \varepsilon E_{z}\left\{\sum e^{-\lambda \rho_{n}} \phi\left(x\left(\rho_{n}\right)\right)\right\} & =E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} \phi\left(x\left(\rho_{n}\right)\right) L_{a}\left(\sigma_{b}\right)\right\} \\
& =E_{z}\left\{e^{-\lambda \rho_{n}} \phi\left(x\left(\rho_{n}\right)\right) \int_{\rho_{n}}^{\tau_{n}} d L_{a}\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|J_{2}(\varepsilon)\right| & \leqq E_{z}\left\{\Sigma e^{-\lambda \rho_{n}}\left|\phi\left(z\left(\rho_{n}\right)\right)\right| \int_{\rho_{n}}^{\tau_{n}}\left(1-e^{-\lambda t}\right) d L_{a}\right\} \\
& \leqq\|\boldsymbol{\phi}\| E_{z}\left[\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left\{\left(1-e^{-\lambda \sigma_{b}}\right) L_{a}\left(\sigma_{b}\right)\right\}\right] \\
& \leqq\|\phi\| E_{z}\left[\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left(1-e^{-\lambda \sigma_{b}}\right)^{1 / 2} E_{z\left(\rho_{n}\right)}\left(L_{a}\left(\sigma_{b}\right)^{2}\right)^{1 / 2}\right] \\
& \leqq\|\boldsymbol{\phi}\| E_{z}\left(\Sigma e^{-\lambda \rho_{n}}\right) p_{2}(\varepsilon)^{1 / 2} \sqrt{8 \varepsilon^{2}} \\
& \leqq\|\boldsymbol{\phi}\| K(\lambda) \sqrt{8} p_{2}(\varepsilon)^{1 / 2} .
\end{aligned}
$$

Therefore by (12.11)

$$
\lim _{\varepsilon \rightarrow 0} J_{2}(\varepsilon)=0
$$

4°

$$
J_{3}(\varepsilon)=E_{z}\left\{\Sigma \phi\left(x\left(\rho_{n}\right)\right) \int_{\rho_{n}}^{\tau_{n}} e^{-\lambda t} d L_{a}\right\}-E_{z}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L_{a}\right) \longrightarrow 0 \quad(\varepsilon \rightarrow 0)
$$

Proof of 4°. Since $L_{a}\left(\rho_{0}\right)=0$ and $L_{a}\left(\tau_{n}\right)=L_{a}\left(\rho_{n+1}\right)$ by (4) in [12.2],

$$
\begin{aligned}
J_{3}(\varepsilon) & =E_{z}\left\{\Sigma \int_{\rho_{n}}^{\tau_{n}} e^{-\lambda t}\left(\phi\left(x\left(\rho_{n}\right)\right)-\phi(x(t))\right) d L_{a}\right\} \cdot \\
\left|J_{3}(\varepsilon)\right| & \leqq E_{z}\left(\Sigma e^{-\lambda \rho_{n}}\right) \sup _{x} E_{(x, a)}\left(e\left(\sigma_{b}\right) L_{a}\left(\sigma_{b}\right)\right) \\
& \leqq E_{z}\left(\Sigma e^{-\lambda \rho_{n}}\right) \sup _{x} E_{(x, a)}\left(e\left(\sigma_{b}\right)^{2}\right)^{1 / 2} E_{(x, a)}\left(L_{a}\left(\sigma_{b}\right)^{2}\right)^{1 / 2} \\
& \leqq 4 K(\lambda)\|\phi\|^{1 / 2} p_{1}(\varepsilon)^{1 / 2} .
\end{aligned}
$$

Therefore, by (12.10), 4° is proved. From $2^{\circ}, 3^{\circ}$ and 4° we can see that (1) holds.

In the remainder of the section, we shall investigate properties of the last hitting time.
[12.9] Definition. Let a and b be any positive numbers with $a \neq b$. If $z(0, w) \in \partial_{a}$, set

$$
\hat{\rho}=\hat{\rho}(a, b, w)=\inf \left\{t: t \leqq \sigma_{b} \text { and } z_{s} \notin \partial_{a} \text { for any } s \in\left(t, \sigma_{b}\right)\right\}
$$

For general w, set

$$
\hat{\rho}=\hat{\rho}(a, b, w)=\sigma_{a}+\hat{\rho}\left(\theta_{\sigma_{a}} w\right) .
$$

This is the last hitting time of ∂_{a} before reaching ∂_{b}.
For c with $c \in(a, b)$, set

$$
\begin{equation*}
\hat{\rho}_{c}=\hat{\rho}_{c}(a, b, w)=\hat{\rho}+\sigma_{c}\left(\theta_{\hat{\rho}} w\right) . \tag{12.12}
\end{equation*}
$$

The sequence

$$
\bar{\rho}_{n}=\rho_{n}(a, c, w) \quad \text { and } \quad \bar{\tau}_{n}=\tau_{n}(a, c, w) \quad(n=0,1,2, \cdots)
$$

are as given in (12.1). Then we can easily see:
[12.10]
(1) $\hat{\rho}_{c} \downarrow \hat{\rho}$ as $c \rightarrow a$.
(2) If $\bar{\rho}_{n}<\sigma_{a}+\sigma_{b}\left(\theta_{\sigma_{a}} w\right) \leqq \bar{\rho}_{n+1}$, then $\hat{\rho}_{c}=\bar{\tau}_{n}$.
(3) Especially, $\hat{\rho}$ and $\hat{\rho}_{c}$ are B-measurable.
[12.11] $\hat{\rho}$ and $\hat{\rho}_{c}$ are finite except on a set of P_{z}-measure zero for any positive z in D.

Proof. By [1.6], $\tau=\sigma_{a}+\sigma_{b}\left(\theta_{\sigma_{a}} w\right)<\infty$ a.s. P_{z}. On the other hand $\hat{\rho}, \hat{\rho}<\tau$.
[12.12] Proposition. Let f and g be in $B_{b}(R)$. For positive a and b with $a \neq b$, set $\hat{\rho}=\hat{\rho}(a, b, w)$ and $\tau=\sigma_{a}+\sigma_{b}\left(\theta_{\sigma_{a}} w\right)$. Then for any positive λ it holds that

$$
\begin{align*}
& E_{z}\left\{e^{-\lambda \rho} f(x(\hat{\rho})) g(x(\tau))\right\} \tag{12.13}\\
& \quad=|b-a| E_{z}\left\{e^{-\lambda \rho} f(x(\hat{\rho})) Q^{|b-a|} g(x(\hat{\rho}))\right\}
\end{align*}
$$

where $Q^{|b-a|} g(x)=\int q^{|b-a|}(\xi-x) g(\xi) d \xi$ is defined in $\S 0.8^{\circ}$.
Proof. It is sufficieient to prove (12.13) for f and g in $C_{K}(R)$. For any c with $c \in(a, b), \hat{\rho}_{c}$ is defined as in (12.12). Set $\bar{\rho}_{n}=\rho_{n}(a, c, w)$ and $\bar{\tau}_{n}=\tau_{n}(a, c, w)$. Then

$$
\begin{aligned}
& g(x(\tau)) I_{\left(\bar{\rho}_{n}<\tau<n_{+1}\right)}=g(x(\tau)) I_{\left(\bar{\tau}_{n}<\tau<\bar{\rho}_{n+1}\right)} \\
& \left.\left.=g\left(x\left(\sigma_{b}\left(\theta_{\bar{\tau}_{n}} w\right), \theta_{\bar{\tau}_{n}} w\right)\right) I_{\left(\bar{\tau}_{n}\langle\tau)\right.} I_{\left(\sigma_{b}\left(\theta_{\bar{\tau}_{n}} w\right)<\sigma_{a}\left(\theta_{\bar{\tau}}^{n}\right.\right.} w\right)\right)
\end{aligned}
$$

Therefore, noting (2) in [12.10] and [1.5], we have

$$
\begin{aligned}
& E_{z}\left(e^{-\lambda \rho_{c}} f\left(x\left(\hat{\rho}_{c}\right)\right) g(x(\tau))\right) \\
& =E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \bar{\tau}_{n}} f\left(x\left(\bar{\tau}_{n}\right)\right) g(x(\tau)) I_{\left(\bar{\rho}_{n}<\tau<\bar{\rho}_{n+1}\right)}\right) \\
& =E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \bar{\tau}_{n}} f\left(x\left(\bar{\tau}_{n}\right)\right) I_{\left(\bar{\tau}_{n}<\tau\right)} E_{z\left(\bar{\tau}_{n}\right)}\right)\left(g\left(x\left(\sigma_{b}\right)\right) I_{\left(\sigma_{b}<\sigma_{a} \mid\right.}\right) \\
& =E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \bar{\tau}_{n}} f\left(x\left(\bar{\tau}_{n}\right)\right) I_{\left(\bar{\tau}_{n}<\tau\right)}{ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\bar{\tau}_{n}\right)\right)\right\} .
\end{aligned}
$$

In the same way we get

$$
\begin{aligned}
& E_{z}\left\{e^{-\lambda \rho_{c}} f\left(x\left(\hat{\rho}_{c}\right)\right){ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\hat{\rho}_{c}\right)\right)\right\} \\
& =E_{z}\left\{e^{\left.\left.-\lambda \rho_{c}\right)\right)}{ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\hat{\rho}_{c}\right)\right) 1(x(\tau))\right\} \\
& =E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \bar{\sigma}_{n}} f\left(x\left(\bar{\tau}_{n}\right)\right){ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\bar{\tau}_{n}\right)\right) I_{\left(\bar{\tau}_{n}<\tau\right)}{ }_{a}^{b} \Pi_{c}^{b} 1\left(x\left(\bar{\tau}_{n}\right)\right)\right\} \\
& =\frac{c-a}{b-a} E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \bar{\sigma}_{n}} f\left(x\left(\bar{\tau}_{n}\right)\right){ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\bar{\tau}_{n}\right)\right) I_{\left\{\bar{\tau}_{n}<\tau\right.}\right\} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& E_{z}\left(e^{-\lambda \hat{\rho}_{c}} f\left(x\left(\hat{\rho}_{c}\right)\right) g(x(\tau))\right) \tag{12.14}\\
& =|b-a| E_{z}\left(e^{-\lambda \hat{\rho}_{c}} f\left(x\left(\hat{\rho}_{c}\right)\right) \frac{{ }_{b}^{b} \Pi_{c}^{b} g\left(x\left(\hat{\rho}_{c}\right)\right)}{|c-a|}\right)
\end{align*}
$$

If $c \rightarrow a$, then $\hat{\rho}_{c} \rightarrow \hat{\rho}$ by (1) in [12.10]. Therefore $f\left(x\left(\hat{\rho}_{c}\right)\right) \rightarrow f(x(\hat{\rho}))$ and $\frac{{ }_{a}^{b} \Pi_{c}^{b} g\left(x\left(\hat{\rho}_{c}\right)\right)}{|c-a|} \rightarrow Q^{b-a} g(x(\hat{\rho}))$ boundedly as $c \rightarrow a$, since we have assumed that f and g are in $C_{K}(R)$. By the bounded convergence theorem, (12.13) is obtained from (12.14).

For positive a and b with $a \neq b$, set $\hat{\rho}=\hat{\rho}(a, b, w), \rho_{n}=\rho_{n}(a, b, w)$ and $\tau_{n}=$ $\tau_{n}(a, b, w)$. We define $\hat{\rho}_{n}=\hat{\rho}_{n}(a, b, w)$ by

$$
\begin{equation*}
\hat{\rho}_{n}=\rho_{n}+\hat{\rho}\left(\theta_{\rho_{n}} w\right) \quad(n=0,1,2, \cdots) \tag{12.15}
\end{equation*}
$$

For any c in (a, b), set $\bar{\rho}_{k}=\rho_{k}(a, c, w)$ and $\bar{\tau}_{k}=\tau_{k}(a, c, w)$. We also define

$$
\begin{equation*}
\hat{\rho}_{n, c}=\hat{\rho}_{n}+\sigma_{c}\left(\theta_{\hat{\rho}_{n}} w\right) \tag{12.16}
\end{equation*}
$$

Then as a generalization of [12.10], we have:
[12.13]
(1) $\hat{\rho}_{n, c} \downarrow \hat{\rho}_{n}$ as $c \rightarrow a$.
(2) $\bar{\rho}_{k}<\tau_{n}<\bar{\rho}_{k+1}$ for some n if and only if $\bar{\rho}_{k}+\sigma_{b}\left(\theta_{\bar{\rho}_{k}} w\right)<\bar{\rho}_{k+1}$. In this case, it holds that $\rho_{n} \leqq \bar{\rho}_{k}, \rho_{n+1}=\bar{\rho}_{k+1}, \hat{\rho}_{n, c}=\bar{\tau}_{k}$ and $\tau_{n}=\bar{\rho}_{k}+\sigma_{b}\left(\theta_{\bar{\rho}_{k}} w\right)=$ $\bar{\tau}_{k}+\sigma_{b}\left(\theta_{\bar{\tau}_{k}} w\right)$.
[12.14] Proposition. For any positive a and b with $a \neq b$, let $\hat{\rho}_{n}=\hat{\rho}_{n}(a, b, w)$ and $\tau_{n}=\tau_{n}(a, b, w)$ be defined by (12.15) and by (12.1), respectively. Then for, any positive λ, it holds that:
(1) for ϕ, ϕ in $B_{b}(R)$ and z in D

$$
\begin{align*}
& 2 E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}} n \phi\left(x\left(\hat{\rho}_{n}\right)\right) \psi\left(x\left(\tau_{n}\right)\right)\right\} \tag{12.17}\\
& =E_{z}\left\{\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) Q^{|b-a|} \psi(x(t)) d L_{a}\right\}
\end{align*}
$$

and
(2) for ϕ and ψ in $B_{p}(R)$

$$
\begin{align*}
& 2 E_{\tilde{m}}\left\{\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\rho_{n}\right)\right) \psi\left(x\left(\tau_{n}\right)\right)\right\} \tag{12.18}\\
& =\frac{1}{\lambda} \int_{0}^{2 \pi} \phi(x) Q^{|b-a|} \psi(x) m_{P}(x, a) d x .
\end{align*}
$$

Proof.
1° The both sides of (12.17) and those of (12.18) consist of integrations
(and sumation) of ϕ and ϕ by positive measures and they are finite if $\phi=\psi=1$. Therefore, we may assume that ϕ and ϕ are in $C_{K}(R)$ in (12.17) and in $C_{p}(R)$ in (12.18), respectively.
2° If (12.17) holds for ϕ and ψ in $C_{p}(R)$, then, integrating the both sides of (12.7) by $m_{P}(z) d z$ over \tilde{D}, we immediately obtain (12.18) by [12.6].
3° Since by [1.5] and [12.12]

$$
\begin{aligned}
& E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\hat{\rho}_{n}\right)\right) \phi\left(x\left(\tau_{n}\right)\right)\right\} \\
& =E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{p}\right)}\left(e^{-\lambda \rho} \phi(x(\hat{\rho})) \phi(x(\tau))\right\}\right. \\
& =|b-a| E_{z}\left\{\Sigma e^{-\lambda \rho_{n}} E_{z\left(\rho_{n}\right)}\left(e^{-\lambda \hat{\rho}} \phi(x(\hat{\rho})) Q^{|b-a|} \psi(x(\hat{\rho}))\right)\right\} \\
& =|b-a| E_{z}\left\{\Sigma e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\hat{\rho}_{n}\right)\right) Q^{|b-a|} \phi\left(x\left(\hat{\rho}_{n}\right)\right)\right\} .
\end{aligned}
$$

If follows from $1^{\circ}, 2^{\circ}$ and 3°, that, in order to prove (12.17), it is sufficient to show

$$
\begin{align*}
& 2|b-a| E_{z}\left\{\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\hat{\rho}_{n}\right)\right)\right\} \tag{12.19}\\
& =E_{z}\left\{\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L^{a}\right\}
\end{align*}
$$

for ϕ which is bounded and uniformly continuous.
4° For any c in (a, b), let $\rho_{n}=\rho_{n}(a, b, w), \bar{\rho}_{k}=\rho_{k}(a, c, w)$ and $\bar{\tau}_{k}=$ $\tau_{k}(a, c, w)$ be defined by (12.1) and $\hat{\rho}_{n, c}$ be defined by (12.16). Then by (2) in [12.13]

$$
\begin{aligned}
\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n, c}} \boldsymbol{\phi}\left(x\left(\hat{\rho}_{n, c}\right)\right) & =\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi\left(x\left(\bar{\tau}_{k}\right)\right) I_{\left(\bar{\rho}_{k}+\sigma_{b}\left(\theta_{\bar{\rho}_{k}} w\right)<\bar{\rho}_{k+1}\right)} \\
& =\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi\left(x\left(\bar{\tau}_{k}\right)\right) I_{\left(\bar{\tau}_{k}+\sigma_{k}\left(\bar{\tau}_{k} w\right)<\bar{\rho}_{k+1}\right)} .
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
& E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \rho_{n, c}} \boldsymbol{\phi}\left(x\left(\hat{\rho}_{n, c}\right)\right)\right) \tag{12.20}\\
& =E_{z}\left\{\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi\left(x\left(\bar{\tau}_{k}\right)\right) P_{z\left(\bar{\tau}_{k}\right)}\left(\sigma_{b}<\sigma_{a}\right)\right\} \\
& =E_{z}\left(\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi\left(x\left(\bar{\tau}_{k}\right)\right)\right) \frac{c-a}{b-a} .
\end{align*}
$$

By theorem [12.8], the right side of (12.20) converges to

$$
\frac{1}{2|b-a|} E_{2}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) d L_{a}\right) \quad \text { as } c \rightarrow a .
$$

The left side of (12.20) converges to

$$
E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\hat{\rho}_{n}\right)\right)\right) \quad \text { as } c \rightarrow a,
$$

since $e^{-\lambda \hat{\rho}_{n, c}} \boldsymbol{\phi}\left(x\left(\hat{\rho}_{n, c}\right)\right) \rightarrow e^{-\lambda \hat{\rho}_{n}} \phi\left(x\left(\hat{\rho}_{n}\right)\right)$ by (1) in [12.13], $\left|e^{-\lambda \hat{\rho}_{n, c}} \boldsymbol{\phi}\left(x\left(\hat{\rho}_{n, c}\right)\right)\right| \leqq$ $e^{-\lambda \rho_{n}}\|\phi\|$ and $E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \rho_{n}}\right)<\infty$ by [12.7]. Therefore (12.20) is proved.
§13. A sufficient condition for a process belonging to \mathscr{P}_{c}.
For ρ in $M(R)$, we shall write

$$
\begin{equation*}
\rho \in M_{i}(R) \tag{13.1}
\end{equation*}
$$

if and only if $\rho(U)>0$ for any open set U in R. Set

$$
\begin{equation*}
\delta(\rho, \varepsilon)=\inf _{x} \rho((x-\varepsilon, x+\varepsilon)) . \tag{13.2}
\end{equation*}
$$

[13.1] Remark. In [11.9], we have seen that, if ρ is in $M_{p, N}(R)$, then ρ is in $M_{i}(R)$ if and only if $\delta(\rho, \varepsilon)>0$ for any positive ε.
[13.2] For ρ in $M_{p, N}(R)$, set $v(z)=\int \pi^{y}(\xi-x) \rho(d \xi)$. Then $\delta(v(x, y) d x, \varepsilon)$ $\geqq \delta(\rho, \varepsilon)$ holds for any positive ε.

Proof.

$$
\begin{aligned}
\int_{x-\varepsilon}^{x+\varepsilon} v(t, y) d t & =\frac{1}{\pi} \int_{x-\varepsilon}^{x+\varepsilon} d t \int^{y} \frac{y \rho(d \xi)}{y^{2}+\left(\xi-t^{2}\right)} \\
& =\frac{1}{\pi} \int^{\frac{y d \eta}{y^{2}+\eta^{2}} \int_{x-\eta-\varepsilon}^{x-\eta+\varepsilon} \rho(d \xi)} \\
& \geqq \delta(\rho, \varepsilon) .
\end{aligned}
$$

In this section, we shall fix a process P in \mathscr{P} which satisfies [M] and [V], and $B_{P}=\left\{\sigma_{P}, \mu_{P}, k_{P}, p_{P}\right\}, s_{P}, m_{P}, u_{P}, U_{P}$ etc. are as defined in chapter III. As a corollary to [13.2], we immediately have:
[13.3]

$$
u_{P}(x+\varepsilon, y)-u_{P}(x-\varepsilon, y)=\delta\left(s_{P}(x, y) d x, \varepsilon\right) \geqq \delta\left(\sigma_{P}, \varepsilon\right) .
$$

[13.4] For any a, b, α and β with $0<b<a, 0<\beta$ and $0<\alpha \leqq \pi$,

$$
\begin{equation*}
H_{b}^{a}\left(x, U_{2(\alpha+\beta)}(x)^{c}\right) \leqq \frac{8 a p_{P}(a)}{\delta\left(\mu_{P}, \alpha\right) \delta\left(\sigma_{P}, \beta\right)^{2}}, \tag{13.3}
\end{equation*}
$$

where $p_{P}(a)=B_{P}\left(u_{P}(\cdot, a), u_{P}(\cdot, a)\right)$ and $U_{\delta}(x)=\{\xi:|\xi-x| \leqq \delta\}$ in R.

Proof. By (8.7) in [8.5], for any $b<a$

$$
B_{P}(x, d \xi)=\left(P^{a-b}+Q^{a-b} H_{b}^{a}\right)(x, d \xi) .
$$

Noting $\phi(x)=\int Q^{a-b} H_{b}^{a}(x, d \xi)\left(u_{P}(\xi, a)-u_{P}(x, a)\right)$ is in C_{P}, we have by [13.3],

$$
\begin{aligned}
2 p_{P}(a) & \geqq \int_{x}^{x+2 a} m_{P}(t, a) d t \int_{x}^{\infty} Q^{a-b}(t, d \eta) \int_{x+2 \alpha+2 \beta}^{\infty} H_{b}^{a}(\eta, d \xi)\left(u_{P}(\xi, a)-u_{P}(t, a)\right)^{2} \\
& \geqq \int_{x}^{x+2 \alpha} m_{P}(t, a) d t \int_{x}^{\infty} Q^{a-b}(t, d \eta) H_{b}^{a}(\eta,[x+2 \alpha+2 \beta, \infty)) \delta\left(\sigma_{P}, \beta\right)^{2} .
\end{aligned}
$$

We have $H_{b}^{a}(\eta,[x+2 \alpha+2 \beta, \infty)) \geqq H_{b}^{a}(x,[x+2 \alpha+2 \beta, \infty))$ if $x \leqq \eta$ by [M] (See also [9.2]), and for $x \leqq t$

$$
\int_{x}^{\infty} Q^{a-b}(t, d \eta) \geqq \int_{x}^{\infty} q^{a-b}(\eta) d \eta=\frac{1}{2(a-b)} .
$$

Using [13.2]

$$
2 p_{P}(a) \geqq \frac{\delta\left(\mu_{P}, \alpha\right) \delta\left(\sigma_{P}, \beta\right)^{2}}{2 a} H_{b}^{a}(x,[x+2 \alpha+2 \beta, \infty)) .
$$

In a similar way, we can show that

$$
2 p_{P}(a) \geqq \frac{\delta\left(\mu_{P}, \alpha\right) \delta\left(\sigma_{P}, \beta\right)^{2}}{2 a} H_{b}^{a}(x,(-\infty, x-2 \alpha-2 \beta]) .
$$

Therefore (13.3) is proved.
By (3) in [10.15] $p_{P}(a)$ decreases as a decreases. Hence as a corollary to [13.4], the following holds.
[13.5] For positive a and ε, set

$$
C_{1}(a, \varepsilon)=\sup _{x, b ; b<a} H_{b}^{a}\left(x, U_{\varepsilon}(x)^{c}\right) .
$$

If σ_{P} and μ_{P} are in $M_{i}(R)$, then $\lim _{a \rightarrow 0} C_{1}(a, \varepsilon)=0$.
In the following, $\sigma_{a}(a>0)$ denotes the hitting time of ∂_{a}. For $b>0, \xi \in R$ and $\varepsilon>0$, set

$$
\begin{equation*}
D(\xi, b, \varepsilon)=\{z=(x, y) ; y \geqq b \text { and }|x-\xi| \geqq 4 \varepsilon\} \tag{13.4}
\end{equation*}
$$

and let $\tau(\xi)=\tau(\xi, b, \varepsilon, w)$ be the hitting time of $D(\xi, b, \varepsilon)$.
[13.6] For positive a and ε, set

$$
C_{2}(a, \varepsilon)=\sup _{b ; b<a} \int_{0}^{2 \pi} m(x, 2 a) d x \int Q^{a}(x, d \xi) P_{(\xi, a)}\left(\tau(\xi, b, \varepsilon) \leqq \sigma_{2 a}\right) .
$$

If P satisfies [L] and σ_{P} and μ_{P} are in $M_{i}(R)$, then

$$
\lim _{a \rightarrow 0} C_{2}(a, \varepsilon)=0
$$

Proof. Set $\tau=\tau(\xi, b, \varepsilon)$ and $\sigma=\sigma_{2 a}$. Take a_{0} so small that $C_{1}(2 a, 2 \varepsilon)<1 / 2$ for $a \leqq a_{0}$. Since $|x(\sigma)-\xi| \geqq 2 \varepsilon$ if both $\tau \leqq \sigma$ and $|x(\sigma)-x(\tau)|<2 \varepsilon$ hold, by [1.5]

$$
\begin{aligned}
P_{(\xi, a)}(\tau \leqq \sigma) \leqq & P_{(\xi, a)}(\tau \leqq \sigma,|x(\sigma)-x(\tau)| \geqq 2 \varepsilon) \\
& +P_{(\xi, a)}(\tau \leqq \sigma,|x(\sigma)-x(\tau)|<2 \varepsilon) \\
& \leqq E_{(\xi, a)}\left\{\tau \leqq \sigma, H_{y(\tau)}^{2 a}\left(x(\tau), U_{2 \varepsilon}(x(\tau))^{c}\right)\right\} \\
& +P_{(\xi, a)}(|x(\sigma)-\xi| \geqq 2 \varepsilon) \\
& \leqq C_{1}(2 a, 2 \varepsilon) P_{(\xi, a)}(\tau \leqq \sigma)+H_{a}^{2 a}\left(\xi, U_{2 \varepsilon}(\xi)^{c}\right)
\end{aligned}
$$

Therefore, for $a \leqq a_{0}$

$$
P_{(\xi, a)}(\tau \leqq \sigma) \leqq 2 H_{a}^{2 a}\left(\xi, U_{2 \varepsilon}(\xi)^{c}\right) .
$$

Now

$$
\begin{aligned}
& \int_{0}^{2 \pi} m(x, 2 a) d x \int Q^{a}(x, d \xi) P_{(\xi, a)}(\tau \leqq \sigma) \\
& \leqq 2 \int_{0}^{2 \pi} m(x, 2 a) d x \int Q^{a}(x, d \xi) \int_{|\eta-\xi| z 2 \varepsilon} H_{a}^{2 a}(\xi, d \eta) \\
& \leqq 2\left(I_{1}(a)+I_{2}(a)\right)
\end{aligned}
$$

where

$$
I_{1}(a)=\int_{0}^{2 \pi} m(x, 2 a) d x \int_{|\xi-x| z \varepsilon} Q^{a}(x, d \xi)
$$

and

$$
\begin{gathered}
I_{2}(a)=\int_{0}^{2 \pi} m(x, 2 a) d x \int Q^{a}(x, d \xi) \int_{|\eta-x| z \varepsilon} H^{a}(\xi, d \eta) . \\
I_{1}(a)=2 \pi \int_{|\xi| 2 \varepsilon} q^{a}(\xi) d \xi=\frac{4 \pi}{a}\left(1-\tanh \frac{\pi \varepsilon}{2 a}\right)
\end{gathered}
$$

and $\lim I_{1}(a)=0$. Moreover, by (8.7) in [8.5] $B_{P}^{2 a}(x, d \eta) \geqq Q^{a} H_{a}^{2 a}(x, d \eta)$ and

$$
\begin{aligned}
I_{2}(a) & \leqq \int_{0}^{2 \pi} m(x, 2 a) \int_{|\xi-x| z \varepsilon} B_{P}^{2 a}(x, d \eta) \\
& \leqq \inf _{|\eta-x| \varepsilon \varepsilon} \frac{1}{\left.\left(u_{P}(\xi, 2 a)-u \mid x, 2 a\right)\right)^{2}} B_{P}^{a}(u ; \varepsilon) \\
& \leqq \frac{1}{\delta\left(\sigma_{P}, \varepsilon / 2\right)^{2}} B_{P}^{a}(u ; \varepsilon)
\end{aligned}
$$

where $B_{P}^{a}(u ; \varepsilon)$ is given in [11.4] and the condition [L] implies that $\lim _{a \rightarrow 0} B_{P}^{a}(u ; \varepsilon)$ $=0$. Thus [13.6] is proved.

For positive a, let $\rho_{n}=\rho_{n}(2 a, a, w)$ and $\tau_{n}=\tau_{n}(2 a, a, w)$ be defined as in (12.1) $(n=0,1,2, \cdots)$. For any b with $0<b<a$ and any positive ε, let $\tilde{\tau}(\xi)=$ $\tau(\xi, b, \varepsilon, w)$ be defined as in (13.4). Set

$$
\begin{equation*}
\left.\tilde{\tau}_{n}=\tau_{n}+\tilde{\tau}\left(x\left(\tau_{n}\right), \theta_{\tau_{n}} w\right)\right) \quad(n=0,1,2, \cdots) \tag{13.5}
\end{equation*}
$$

and for positive T
(13.6) $\mathfrak{H}(a, b, \varepsilon, T)=\left\{w\right.$: there exist τ_{n} with $\tau_{n} \leqq T$ and s in $\left[\tau_{n}, \rho_{n+1}\right]$
such that both $y_{s} \geqq b$ and $\left|x(s)-x\left(\tau_{n}\right)\right| \geqq 4 \varepsilon$ hold $\}$

$$
=\left\{w: \text { there exists } n \text { such that } \tau_{n} \leqq T \text { and } \tilde{\tau}_{n} \leqq \rho_{n+1} \text { hold. }\right\} .
$$

[13.7] Set

$$
C_{3}(a, \varepsilon)=\sup _{T, b ; b<a} \frac{1}{T} P_{\tilde{m}}(\mathfrak{l}(a, b, \varepsilon, T))
$$

where $P_{\tilde{m}}(\cdot)=\int_{\tilde{D}} P_{z}(\cdot) m_{P}(z) d z$ and $\tilde{D}=\{z \in D ; 0 \leqq x<2 \pi\}$. If P satisfies $[L]$ and σ_{P} and μ_{P} are in $M_{i}(R)$, then

$$
\lim _{a \rightarrow 0} C_{3}(a, \varepsilon)=0
$$

Proof. For positive λ

$$
\begin{aligned}
P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)) & \leqq \sum_{n=0}^{\infty} P_{\tilde{m}}\left(\tilde{\tau}_{n} \leqq \rho_{n+1}, \tau_{n} \leqq T\right) \\
& \leqq e^{\lambda T} E_{\tilde{m}}\left(\Sigma e^{-\lambda \tau_{n}} I_{i \tilde{\tau}_{n}}<\rho_{p+1}\right) \\
& \left.=e^{\lambda T} E_{\tilde{m}}\left\{\Sigma e^{-\lambda \tau_{n}} P_{z\left(\tau_{n}\right)}\right)\left(\tilde{\tau}(x(0))<\sigma_{2 a}\right)\right\} .
\end{aligned}
$$

Let $\hat{\rho}=\hat{\rho}(2 a, a, w)$ be the last exist time to $\partial_{2 a}$ before reaching ∂_{a} defined in [12.9]. Set $\hat{\rho}_{n}=\rho_{n}+\hat{\rho}\left(\theta_{\rho_{n}} w\right)$ and $\phi(x)=P_{(x, a)}\left(\tilde{\tau}(x)<\sigma_{2 a}\right)$. Since $\hat{\rho}_{n}<\tau_{n}$ and ϕ is in $B_{p}(R)$ by (p.5), we have, by (12.18) in [12.14],

$$
\begin{aligned}
& P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)) \leqq e^{\lambda T} E_{\tilde{m}}\left(\Sigma e^{-\lambda \hat{\rho}} n \phi\left(x\left(\tau_{n}\right)\right)\right) \\
& =\frac{e^{\lambda T}}{2 \lambda} \int_{0}^{2 \pi} Q^{a} \phi(x) m_{P}(x, 2 a) d x \\
& =\frac{e^{\lambda T}}{2 \lambda} \int_{0}^{2 \pi} m_{P}(x, 2 a) d x \int Q^{a}(x, d \xi) P_{(\xi, a)}\left(\tilde{\tau}(\xi)<\sigma_{2 a}\right) \\
& \leqq \frac{e^{\lambda T}}{2 \lambda} C_{2}(a, \varepsilon),
\end{aligned}
$$

where $C_{2}(a, \varepsilon)$ is defined as in [13.6]. Put $\lambda=1 / T$. Then

$$
\frac{1}{T} P_{\tilde{m}}(\mathfrak{l}(a, b, \varepsilon, T)) \leqq \frac{e}{2} C_{2}(a, \varepsilon) .
$$

[13.7] is a consequence of [13.6].
[13.8] Proposition. If P satisfies [M], [V] and [L], and μ_{P} and σ_{P} are iu $M_{i}(R)$, then P is in \mathscr{P}_{c}.

Proof. 1° By [13.7], we can choose a positive sequence $\left\{a_{n}\right\}$ such that $a_{n+1}<a_{n}, \Sigma a_{n}<\infty$ and $\Sigma C_{3}\left(a_{n}, 1 / 2^{n}\right)<\infty$. Then, for fixed T

$$
\sum_{n=0}^{\infty} P_{\tilde{m}}\left(\mathfrak{l}\left(a_{n}, a_{n+1}, \frac{1}{2^{n}}, T\right)\right) \leq \sum_{n=0}^{\infty} T C_{3}\left(a_{n}, \frac{1}{2^{n}}\right)<\infty .
$$

Set $\mathfrak{H}(T)=\varlimsup_{n \rightarrow \infty} \mathfrak{H}\left(a_{n}, a_{n+1}, 1 / 2^{n}, T\right)$. Then, by Borel-Cantelli's theorem for σ finite measure $P_{\tilde{m}}$, we have $P_{\tilde{m}}(\mathfrak{l}(T))=0$. Set

$$
\mathfrak{l}=\bigcup_{N=1}^{\infty} \mathfrak{l}(N), \quad \mathfrak{l}(T) \uparrow \mathfrak{l}(T \uparrow \infty), \quad \text { and } \quad P_{\tilde{m}}(\mathfrak{l})=0
$$

2° If $z(0, w) \in D^{〔 a, \infty)}$ and $0<b<a$, then $w \in \mathfrak{U}(N)$ implies $\theta_{\sigma_{b}} w \in \mathfrak{U}(N)$. For, $\sigma_{b}<\sigma_{2 a_{n}}=\rho_{0}\left(2 a_{n}, a_{n}\right)$ if $2 a_{n}<b$. Conversely, if $\theta_{\sigma_{b}} w \in \mathfrak{U}(N)$ and $M>\sigma_{b}(w)$, then $w \in \mathfrak{U}(N+M)$. Therefore, $w \in \mathfrak{l}$ if and only if $\theta_{\sigma_{b}} w \in \mathfrak{l}$ for w with $z(0, w)$ $\in D^{(b, \infty)} . \quad P_{z}(\mathfrak{l})$ is harmonic and therefore continuous in D. Noting that $P_{z}(\mathfrak{l})$ is in $C_{p}(D)$, by 1° we have $P_{z}(\mathfrak{l})=0$ for any z in D.
3° Set $\rho_{k}(n)=\rho_{k}\left(2 a_{n}, a_{n}, w\right), \tau_{k}(n)=\tau_{k}\left(2 a_{n}, a_{n}, w\right)$ and $W_{n}=\{w: z(0, w) \in$ $\left.D^{\left(2 a_{n}, \infty\right)}\right\} \quad(k=0,1,2, \cdots, n=1,2, \cdots)$. Define

$$
\begin{aligned}
\tilde{z}_{n}(t, w)= & \frac{\left(\rho_{k+1}(n)-t\right) z\left(\tau_{k}(n)\right)+\left(t-\tau_{k}(n)\right) z\left(\rho_{k+1}(n)\right)}{\rho_{k+1}(n)-\tau_{k}(n)} \\
& \quad \text { if } t \in\left(\tau_{k}(n), \rho_{k+1}(n)\right) \quad(k=0,1,2, \cdots) \\
& =z(t, w) \quad \text { if otherwise. }
\end{aligned}
$$

Then, for $w \in W_{n}, \tilde{z}_{n}(t, w)$ is a continuous mapping of t in $[0, \infty)$ into $D^{\left[a_{n}, \infty\right)}$.
4° Let n_{0} and N be any fixed positive integers. For any fixed w in $W_{n_{0}} \cap \mathfrak{U}(N)^{c}$, we shall show that $\tilde{z}_{n}(t, w)$ converges uniformly in $t \in[0, N]$ by the topology of \bar{D}.

Proof of 4_{1}°. For a fixed $w \in W_{n_{0}} \cap \mathfrak{u}(N)^{c}$, there exists a positive integer $n_{1}=n_{1}(w) \geqq n_{0}$ such that $w \notin \mathfrak{U}\left(a_{n}, a_{n+1}, 1 / 2^{n}, N\right)$ for $n \geqq n_{1}$.

Take any $n \geqq n_{1}$.
(i) If $t \notin \bigcup_{k}\left(\tau_{k}(n), \rho_{k+1}(n)\right)$, then $z(t, w) \in D^{\left[a_{n}, \infty\right)}$ and $t \notin \bigcup_{i}\left(\tau_{l}(n+1)\right.$, $\left.\rho_{l+1}(n+1)\right)$. Therefore

$$
\tilde{z}_{n}(t)=z(t)=\tilde{z}_{n+1}(t) .
$$

(ii) If $t \leqq N, t \in\left(\tau_{k}(n), \rho_{k+1}(n)\right)$ for some k and $z(t) \in D^{\left.〔 a_{n+1}, \infty\right)}$, then $\mid x(t)-$ $x\left(\tau_{k}(n)\right) \mid<4 / 2^{n}$, since $w \notin \mathfrak{U}\left(a_{n}, a_{n+1}, 1 / 2^{n}, N\right)$. Especially

$$
\left\lvert\, x\left(\rho_{k+1}(n)-x\left(\tau_{k}(n)\right) \left\lvert\, \leqq \frac{4}{2^{n}} \quad\right. \text { and } \quad\left|\tilde{x}_{n}(t)-x\left(\tau_{k}(n)\right)\right|>\frac{4}{2^{n}} .\right.\right.
$$

(iii) If $t \leqq N, t \in\left(\tau_{k}(n), \rho_{k+1}(n)\right)$ for some k and $t \notin \bigcup_{\iota}\left(\tau_{l}(n+1), \rho_{l+1}(n+1)\right)$, then $\tilde{z}_{n+1}(t)=z(t) \in D^{\left[a_{n+1}, \infty\right)}$. Therefore by (ii) $\left|\tilde{x}_{n+1}(t)-\tilde{x}_{n}(t)\right|<8 / 2^{n}$.
(iv) If $t \leqq N$ and $t \in\left(\tau_{k}(n), \rho_{k+1}(n)\right) \cap\left(\tau_{l}(n+1), \rho_{l+1}(n+1)\right)$ for some k and l, then $z \in\left(\tau_{l}(n+1)\right)$ and $z\left(\rho_{l+1}(n+1)\right)$ are in $D^{\left[a_{n+1}, \infty\right)}$. Therefore, by (ii) we also have

$$
\left|\tilde{x}_{n+1}(t)-\tilde{x}_{n}(t)\right|<\frac{8}{2^{n}}
$$

(v) If $t \leqq N$ and $t \in\left(\tau_{k}(n), \rho_{k+1}(n)\right)$ for some k, then $\tilde{z}_{n}(t)$ and $\tilde{z}_{n+1}(t)$ are in $D^{2 a_{n}}$ and $\left|\tilde{y}_{n+1}(t)-\tilde{y}_{n}(t)\right| \leqq 2 a_{n}$. In this case, by (iii) and (iv) we have seen $\left|\tilde{x}_{n+1}(t)-\tilde{x}_{n}(t)\right| \leqq 8 / 2^{n}$, and therefore $\left|\tilde{z}_{n+1}(t)-\tilde{z}_{n}(t)\right| \leqq 8 / 2^{n}+4 a_{n}$.

Since $\Sigma\left(8 / 2^{n}+4 a_{n}\right)<\infty, 4^{\circ}$ is proved by (i) and (v).
5° Set $W_{\infty}=\cup W_{n}=\{w ; z(0, w) \in D\}$ and $W_{0}=W_{\infty} \cap \mathfrak{H}^{c}$. Noting 2° and [1.2], we have $P_{z}\left(W_{0}\right)=1$ for any z in D. Let $w \in W_{0}$ be given. Then, for any positive integer N, there exists n such that $w \in W_{n} \cap \mathfrak{U}(N)^{c}$. Therefore $\tilde{z}_{n}(t, w)$ converges uniformly in $t \in[0, N]$ for any N. Set $\tilde{z}(t, w)=\lim \tilde{z}_{n}(t, w)$. Then $\tilde{z}(t, w)$ is a continuous function of $t \in[0, \infty)$ into \bar{D}. Define a mapping ψ from W_{0} into \bar{W} by

$$
z(t, \phi(w))=\tilde{z}(t, w) \quad(0 \leqq t<\infty) .
$$

Measurability of the mapping ψ is obvious by definition. Therefore, by proposition [1.11], we can see that P is in \mathscr{P}_{c}. Proposition [13.8] is proved.

§ 14. Necessity of the conditions given in § 13 .

In the following, we shall use the identical notation $\sigma_{a}(a \geqq 0)$ for the hitting time of ∂_{a} for paths in W and in \bar{W}. Here $\sigma_{o}(w)$ for w in W denotes the hitting time of ∂. For $0 \leqq a, b$ and $a \neq b$,

$$
\begin{aligned}
& \rho_{n}(a, b)=\rho_{n}(a, b, w) \text { or } \quad \rho_{n}(a, b, \bar{w}) \\
& \tau_{n}(a, b)=\tau_{n}(a, b, w) \text { or } \quad \tau_{n}(a, b, \bar{w})
\end{aligned}
$$

are definen as in (12.1), and

$$
\hat{\rho}(a, b)=\hat{\rho}(a, b, w) \quad \text { or } \quad \hat{\rho}(a, b, \bar{w})
$$

as in [12.9] also far paths in W or \bar{W}.
Note that $\sigma_{a}=\rho_{0}(a, b)$ and

$$
\tau(a, b)=\tau_{0}(a, b)=\sigma_{a}+\sigma_{b} \cdot \theta_{\sigma_{a}}
$$

Then if holds that

$$
\left\{\begin{array}{l}
\sigma_{a}(\bar{w})=\sigma_{a}(\iota \bar{w}), \quad \rho_{n}(a, b, \bar{w})=\rho_{n}(a, b, \iota \bar{w}), \tag{14.1}\\
\tau_{n}(a, b, \bar{w})=\tau_{n}(a, b, \iota \bar{w}) \quad \text { and } \quad \hat{\rho}(a, b, \bar{w})=\hat{\rho}(a, b, \iota \bar{w})
\end{array}\right.
$$

where c is the injection defined by (1.6).
[14.1] Let P be in \mathscr{P} and \bar{P} be in $\overline{\mathscr{P}}$.
(1) Set

$$
W_{r}=\{w \in W ; z(r, w) \equiv D \text { for any rational } r\}
$$

and

$$
\bar{W}_{r}=\{w \in \bar{W} ; z(r, \bar{w}) \in D \text { for any rational } r\} .
$$

Then $P_{z}\left(W_{r}\right)=1$ and $\bar{P}_{z}\left(\bar{W}_{r}\right)=1$ for any z in D.
(2) Let γ be any random time and $\sigma_{b}^{*}(b>0)$ be the hitting time to $D^{[b, \infty)}$. Set $\gamma_{b}=\gamma+\sigma_{b}^{*} \circ \theta_{\gamma}$. Then $\gamma_{b} \downarrow \gamma$ as $b \downarrow 0$ a.s. P_{z} (or a.s. \bar{P}_{z}) for any z in D.
(3) It holds that $\sigma_{0} \leqq \hat{\rho}(0, b)<\tau(0, b)$ for $b>0$, and

$$
\tau(0, b) \downarrow \sigma_{0} \quad \text { as } b \downarrow 0 \text { a.s. } P_{z}\left(\text { or a.s. } \bar{P}_{z}\right)
$$

for any z in D.
(4) Fix $b>0$. If $\tau(0, b)<\infty$, then there exists $a_{1}=a_{1}(b, w)$ or $a_{1}(b, \bar{w})$ such that $\hat{\rho}(0, b)<\hat{\rho}(a, b)$ for $a \leqq a_{1}$, and

$$
\begin{equation*}
\lim _{a \rightarrow 0} \hat{\rho}(a, b)=\hat{\rho}(0, b) . \tag{14.2}
\end{equation*}
$$

Proof. (1) is a consequence of (p.2) in [1.1] (or (ㄷ.2) in [1.8]). (2) and (3) follow from (1). If $\hat{\rho}\left(a_{n}, b\right)<\hat{\rho}(0, b)$ holds for some sequence $\left\{a_{n}\right\}$ with $a_{n} \downarrow 0$, then $\sigma_{a_{p}} \leqq \hat{\rho}\left(a_{n}, b\right)<\tau\left(a_{n}, b\right) \leqq \sigma_{0}$ and $\sigma_{a_{n}} \uparrow \sigma_{0}$, which contradict the continuity of $z(t)$. The first part of (4) is proved. For a with $0<a<\min \left\{a_{1}, b\right\}, \sigma_{0} \leqq$ $\hat{\rho}(0, b)<\hat{\rho}(a, b)<\tau(0, b)$ and $\hat{\rho}(a, b)$ decreases as a decreases. Therefore $z\left(\lim _{a \rightarrow 0} \hat{\rho}(a, b)\right)=\lim _{a \rightarrow 0} z(\hat{\rho}(a, b))=\partial$ (or $\in \partial_{0}$), which implies that (14.2) holds.

In the remainder of this section, we shall fix a process P in \mathscr{P} which satisfies $[V]$ and $[M]$.
[14.2] Assume $\sigma_{P}\left(\left(c_{1}, c_{2}\right)\right)=0$ for some c_{1} and c_{2} with $c_{1}<c_{2}$, and $\phi=H^{a} f$ for f in $B_{b}(R)$. Then the boundary function of ϕ on ∂_{0} is constant on $\left(c_{1}, c_{2}\right)$, that is, for $\zeta=(\xi, 0)$ with ξ in $\left(c_{1}, c_{2}\right)$

$$
\begin{equation*}
\lim _{z \rightarrow \zeta} \phi(z)=k . \tag{14.3}
\end{equation*}
$$

Proof. Let \bar{J} be a closed interval contained in $\left(c_{1}, c_{2}\right)$. Then $s_{P}(z)=$ $\int \pi^{y}(\xi-x) \sigma_{P}(d \xi) \rightarrow 0$ as $z \rightarrow(\xi, 0)$ uniformly in $\xi \in \bar{J}$. Therefore, by (3) in [9.9], $\phi_{x}(z) \rightarrow 0$ as $z \rightarrow(\xi, 0)$ uniformly in $\xi \in J$, and (14.3) is easily proved.
[14.3] Proposition. If P in \mathscr{P}_{c} satisfies [$\left.M\right]$ and $[V]$, then σ_{P} is in $M_{i}(R)$.
Proof. Since P is in $\mathscr{P}_{c}, P=\iota \bar{P}$ for some \bar{P} in $\overline{\mathscr{Q}}$. Assuming $\sigma\left(\left(c_{1}, c_{2}\right)\right)=0$ for some c_{1} and c_{2} with $c_{1}<c_{2}$, we shall show a contradiction.
1° Let J be a fixed non-empty open interval with $\bar{J} \subset\left(c_{1}, c_{2}\right)$. For any positive a, set $\phi_{a}(z)=H^{a} I_{J}(z)$, where I_{J} is the indicator of J. Then by [14.2] $\phi_{a}(z) \rightarrow k_{a}=k_{a}(J)$ as $z \rightarrow(\xi, 0)$ for ξ in (c_{1}, c_{2}). Since $0 \leqq k_{a} \leqq 1$, we can choose a sequence $\left\{a_{n}\right\}$ such that $a_{n} \rightarrow 0$ and $k_{a_{n}} \rightarrow k$ as $n \rightarrow \infty$. Set $\phi_{n}=\phi_{a_{n}}, k_{n}=k_{a_{n}}$ and $\tau_{n}=\tau\left(0, a_{n}\right)$.
2° Let K be another non-empty open interval with $\bar{K} \subset\left(c_{1}, c_{2}\right)$. Then by [1.5], for any m and n with $m<n$, and $z(t)=(x(t), y(t))$,

$$
\begin{align*}
\bar{P}_{z}\left(x\left(\tau_{n}\right) \in K, x\left(\tau_{m}\right) \in J\right) & =P_{z}\left(x\left(\tau_{n}\right) \in K, x\left(\tau_{m}\right) \in J\right) \tag{14.4}\\
& =E_{z}\left(\phi_{m}\left(z\left(\tau_{n}\right)\right) I_{\left(x\left(\tau_{n}\right) \in K\right)}\right) \\
& =\bar{E}_{z}\left(\phi_{m}\left(z\left(\tau_{n}\right)\right) I_{\left(x\left(\tau_{n}\right) \in K\right)}\right)
\end{align*}
$$

Set $K=J$ in (14.4). Since $\tau_{n} \downarrow \sigma_{0}$ as $n \rightarrow \infty$ by (3) in [14.1], we have, for path's in \bar{W},

$$
\left\{x\left(\sigma_{0}\right) \in J\right\} \subset \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\{x\left(\tau_{n}\right) \in J, x\left(\tau_{m}\right) \subseteq J\right\}
$$

and

$$
k_{m} I_{\left(x\left(\sigma_{0}\right) \in \bar{J}\right)} \geqq \varlimsup_{n \rightarrow \infty} \phi_{m}\left(z\left(\tau_{n}\right)\right) I_{\left(x\left(\tau_{n}\right) \in J\right)}
$$

Therefore

$$
\begin{aligned}
\bar{P}_{z}\left(x\left(\sigma_{0}\right) \in J\right) & \leqq \lim _{m \rightarrow \infty} \frac{\lim _{n \rightarrow \infty}}{{ }_{n}}\left\{\begin{array}{l}
\\
\\
\\
\end{array} \varliminf_{m \rightarrow \infty}\left(z\left(\tau_{n}\right)\right) I_{\left(x\left(\tau_{n}\right) \in J\right)}\right\} \\
& =k \bar{P}_{z}\left(x\left(\sigma_{0}\right) \in \bar{J}\right) .
\end{aligned}
$$

By (p.4) in [1.8]

$$
\bar{P}_{z}\left(z\left(\sigma_{0}\right) \in J\right)=P_{z}^{B, 2}\left(z\left(\sigma_{0}\right) \in J\right)>0
$$

and

$$
\bar{P}_{z}\left(z\left(\sigma_{0}\right) \in \bar{J}\right)=P_{z}^{B, 2}\left(z\left(\sigma_{0}\right) \in \bar{J}\right)=P_{z}^{B, 2}\left(z\left(\sigma_{0}\right) \in J\right) .
$$

Hence we have $k=1$.
3° Take a non-empty K with $\bar{J} \cap \bar{K}=\varnothing$. Then, for paths in \bar{W}

$$
\phi=\left\{x\left(\boldsymbol{\sigma}_{0}\right) \in \bar{J} \cap \bar{K}\right\} \supset \varlimsup_{m \rightarrow \infty} \varlimsup_{n \rightarrow \infty}\left\{x\left(\tau_{n}\right) \in K, x\left(\tau_{m}\right) \in J\right\}
$$

and

$$
k_{m} I_{\left(x\left(\sigma_{0}\right) \in K\right)} \leqq \lim _{n \rightarrow \infty} \phi_{m}\left(z\left(\tau_{n}\right)\right) I_{\left(x\left(\tau_{n}\right) \in K\right)} .
$$

By (14.4), we have

$$
0 \geqq k \bar{P}_{z}\left(x\left(\sigma_{0}\right) \in K\right) .
$$

Since $\bar{P}_{z}\left(x\left(\sigma_{0}\right) \in K\right)=P_{z}^{B, 2}\left(x\left(\sigma_{0}\right) \in K\right)>0$, we have $k=0$, which is a contradiction.
[14.4] Proposition. If P in \mathscr{P}_{c} satisfies [V], then μ_{P} is in $M_{i}(R)$.
Proof. Let $P=\iota \bar{P}$ for \bar{P} in $\overline{\mathscr{P}}$. Assume μ_{P} is not in $M_{i}(R)$. Then there exist c_{1} and c_{2} with $0<c_{1}<c_{2}<2 \pi$ such that $\mu_{P}\left(\left(c_{1}, c_{2}\right)\right)=0$. We shall show a contradiction. Take a non-empty open interval J with $\bar{J} \subset\left(c_{1}, c_{2}\right)$. Set $\tilde{J}=$ $\bigcup_{n=-\infty}^{\infty}(J+2 n \pi)$ and for $0<a<b$

$$
F(a, b, T)=\bar{P}_{\tilde{m}}\left(\sigma_{a} \leqq T, x(\tau(a, b)) \in J\right) .
$$

Then by [12.14] for a fixed positive λ

$$
\begin{aligned}
F(a, b, T) & \leqq e^{\lambda T} E_{\tilde{m}}\left\{\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n}(a, b)} I_{\tilde{J}}\left(x\left(\tau_{n}(a, b)\right)\right)\right\} \\
& =\frac{e^{\lambda T}}{2 \lambda} \int_{0}^{2 \pi} m_{P}(x, a) Q^{b-a} I_{\tilde{J}}(x) d x .
\end{aligned}
$$

Since $\sigma_{a} \uparrow \sigma_{0}, Q^{b-a} I_{\tilde{J}}(x) \rightarrow Q^{b} I_{\tilde{J}}(x)$ uniformly in x and $m_{P}(x, a) d x \rightarrow \mu_{P}(d x)$ weakly as $a \rightarrow 0$. By

$$
\tau(a, b)=\tau(0, b) \quad \text { if } a<b \text { and } \hat{\rho}(0, b)<\hat{\rho}(a, b),
$$

and by (4) in [14.1], we have

$$
\begin{aligned}
F(b, T) & =\bar{P}_{\tilde{m}}\left(\sigma_{0} \leqq T, x(\tau(0, b)) \Subset J\right) \\
& \leqq \lim _{a \rightarrow 0} F(a, b, T) \\
& =\frac{e^{\lambda T}}{2 \lambda} \int_{0}^{2 \pi} Q^{b} I_{J}(x) \mu_{P}(d x) \\
& \leqq \frac{\pi e^{\lambda T}}{\lambda} Q^{b}\left(0, U_{\varepsilon}(0)^{c}\right),
\end{aligned}
$$

where $\varepsilon=\inf \left\{|x-\xi|: x \in \tilde{J}, \xi \in(0,2 \pi)-\left(c_{1}, c_{2}\right\}\right)$. Therefore, by (2) in [14.1],

$$
\bar{P}_{\tilde{m}}\left(\sigma_{0} \leqq T, x\left(\sigma_{0}\right) \in J\right) \leqq \varliminf_{b \rightarrow 0} F(b, T)=0
$$

On the other hand, for $T>0$

$$
\bar{P}_{\tilde{m}}\left(\sigma_{0} \leqq T, x\left(\sigma_{0}\right) \in J\right)=P_{\tilde{m}}^{B, 2}\left(\sigma_{0} \leqq T, x\left(\sigma_{0}\right) \in J\right)>0,
$$

which is a contradiction.
[14.5] Let f be in $B_{b}(R)$ and a be a positive number. Then for a fixed
positive ε

$$
\lim _{b \uparrow a} \int_{1 \xi-x \mid z \varepsilon} \frac{H_{b}^{a}(x, d \xi) f(\xi)}{a-b}=\int_{|\xi-x| z \varepsilon} B_{P}^{a}(x, d \xi) f(\xi)
$$

where the left side converges boundedly in x.
Proof. By ($\overline{\mathrm{h}} .3$) in [2.2] and (8.7) in [8.5], we can easily see for a fixed c with $0<c<b<a$

$$
\begin{aligned}
& \frac{1}{a-b} \int_{|\xi-x| z \varepsilon} H_{b}^{a}(x, d \xi) f(\xi) \\
& =\frac{1}{a-b}\left\{\int_{1 \xi-x \mid z \varepsilon}{ }^{a-c} \pi^{a-b}(\xi) f(x+\xi) d \xi\right. \\
& \quad+\int_{|\xi-x| z \varepsilon}{ }^{a-c} \pi^{b-c}(\eta) d \eta \int H_{c}^{a}(\eta, d \xi) f(\xi)
\end{aligned}
$$

is bounded in b and x for $b \in[a+c / 2, a)$, and converges to $\int_{|\xi-x| z \varepsilon} B_{P}^{a}(x, d \xi) f(\xi)$ as $b \uparrow a$.

For any positive ε, set

$$
\begin{align*}
& \gamma_{\varepsilon}(w)=\inf \{t:|x(t)-x(0)|>\varepsilon \text { and } z(t) \in D\} \tag{14.5}\\
& \quad \text { for } w \text { in } W \text { with } z(0, w) \in D, \quad \text { and } \\
& \gamma_{\varepsilon}(\bar{w})=\inf \{t:|x(t)-x(0)|>\varepsilon\} \tag{14.6}
\end{align*}
$$

for \bar{w} in \bar{W}. Then, by (1) in [14.1] it is easily seen that for any z in D

$$
\begin{equation*}
\gamma_{\varepsilon}(\bar{w})=\gamma_{\varepsilon}(c \bar{w}) \quad \text { a. s. } \bar{P}_{z} . \tag{14.7}
\end{equation*}
$$

[14.6] Let P in \mathscr{P}_{c} satisfy [V] and [M]. Set $\gamma=\gamma_{\alpha+\sigma \varepsilon}$ for positive α and ε with $0<\varepsilon \leqq \pi$. Then, there exists a positive constant $a_{0}=a_{0}(\varepsilon, P)$ such that

$$
\begin{equation*}
\int_{0}^{2 \pi} m(x, a) \varlimsup_{y \uparrow a} \frac{P_{z}\left(\gamma<\sigma_{a}\right)}{a-y} d x \leqq \frac{2 p_{P}(a)}{\delta\left(\sigma_{P}, \alpha\right)^{2}} \tag{14.8}
\end{equation*}
$$

for any $a \leqq a_{0}$.
Proof. By proposition [14.3] and [14.4], we have seen that σ_{P} and μ_{P} are in $M_{i}(R)$ and therefore $\delta\left(\sigma_{P}, \varepsilon\right), \delta\left(\mu_{P}, \varepsilon\right)$ and $\delta\left(\sigma_{P}, \alpha\right)$ are positive. Set

$$
a_{0}=\operatorname{Min}\left\{\frac{\delta\left(\sigma_{P}, \varepsilon\right)^{2} \delta\left(\mu_{P}, \varepsilon\right)}{16 p_{P}(1)}, 1\right\}
$$

and for $0<b<a \quad \gamma_{b}=\gamma+\sigma_{b}^{*} \circ \theta_{\gamma}$, where σ_{b}^{*} is the hitting time of $D^{[b, \infty)}$. Then

$$
P_{z}\left(\gamma_{b}<\sigma_{a}\right) \leqq J_{1}+J_{2}+J_{3}
$$

where

$$
\begin{aligned}
& J_{1}=P_{z}\left(\gamma_{b}<\sigma_{a^{\prime}},\left|x\left(\sigma_{a}\right)-x\right|<\alpha,\left|x\left(\gamma_{b}\right)-x\right| \geqq \alpha+4 \varepsilon\right), \\
& J_{2}=P_{z}\left(\gamma_{b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\right|<\alpha,\left|x\left(\gamma_{b}\right)-x\right|<\alpha+4 \varepsilon\right), \\
& J_{3}=P_{z}\left(\gamma_{b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\right| \geqq \alpha\right) .
\end{aligned}
$$

Since $p_{P}(a) \leqq p_{P}(1)$ if $a \leqq a_{0} \leqq 1$ by (2) in [10.15], for $a \leqq a_{0}$ by [1.5] and [13.4]

$$
\begin{aligned}
J_{1} & \leqq P_{z}\left(\gamma_{b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\left(\gamma_{b}\right)\right| \geqq 4 \varepsilon\right) \\
& =E_{z}\left(H_{y\left(\gamma_{b}\right)}^{a}\left(x\left(\gamma_{b}\right), U_{4 \varepsilon}\left(x\left(\gamma_{b}\right)\right)^{c}\right) I_{\left(\gamma_{b}<\sigma_{a}\right)}\right) \\
& \leqq \frac{8 a p_{P}(a)}{\delta\left(\sigma_{P}, \varepsilon\right)^{2} \delta\left(\mu_{P}, \varepsilon\right)} P_{z}\left(\gamma_{b}<\sigma_{a}\right) \leqq \frac{1}{2} P_{z}\left(\gamma_{b}<\sigma_{a}\right),
\end{aligned}
$$

and

$$
J_{3} \leqq P_{z}\left(\left|x\left(\sigma_{a}\right)-x\right| \geqq \alpha\right)=H^{a}\left(z, U_{a}(x)^{c}\right)
$$

Therefore,

$$
P_{z}\left(\gamma_{b}<\sigma_{a}\right) \leqq 2 J_{2}+2 H^{a}\left(z, U_{a}(x)^{c}\right) .
$$

Since $\gamma_{b} \downarrow \gamma$ as $b \downarrow 0$ by (2) in [14.1] and

$$
\begin{gathered}
|x(\gamma, \bar{w})-x(0, \bar{w})|=\alpha+5 \varepsilon \quad \text { if } \gamma(\bar{w})<\infty \text { for } \bar{w} \text { in } \bar{W}, \\
J_{2} \leqq \bar{P}_{z}\left(\left|x\left(\gamma_{b}\right)-x\right|<\alpha+4 \varepsilon, \gamma_{b}<\infty\right)
\end{gathered}
$$

and

$$
\varlimsup_{b \downarrow 0} J_{2} \leqq \bar{P}_{z}(|x(\gamma)-x| \leqq \alpha+4 \varepsilon, \gamma<\infty)=0,
$$

where $P=c \bar{P}$ for \bar{P} in $\overline{\mathcal{P}}$. Therefore we have for $a \leqq a_{0}$

$$
P_{z}\left(\gamma<\sigma_{a}\right)=\lim _{b \rightarrow 0} P_{z}\left(\gamma_{b}<\sigma_{a}\right) \leqq 2 H^{a}\left(z, U_{a}(x)^{c}\right) .
$$

and by [14.5]

$$
\begin{aligned}
\int_{0}^{2 \pi} m_{P}(x, a) \varlimsup_{y \uparrow a} \frac{P_{z}\left(\gamma<\sigma_{a}\right)}{a-y} d x & \leqq 2 \int_{0}^{2 \pi} m_{P}(x, a) \lim _{y \uparrow a} \frac{H^{a}\left(z, U_{a}(x)^{c}\right)}{a-y} d x \\
& \leqq 2 \int_{0}^{2 \pi} m_{P}(x, a) B_{P}^{a}\left(x, U_{a}(x)^{c}\right) d x
\end{aligned}
$$

Since $\left|u_{P}(\xi, a)-u_{P}(x, a)\right| \geqq \delta\left(\sigma_{P}, \alpha\right)$ if $|\xi-x| \geqq \alpha$ by [13.3], we have for $a \leqq a_{0}$

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) \varlimsup_{y \uparrow a} \frac{P_{z}\left(\gamma<\sigma_{a}\right)}{a-y} d x \\
& \leqq \frac{2}{\delta\left(\sigma_{P}, \alpha\right)^{2}} \int_{0}^{2 \pi} m_{P}(x, a) \int B_{P}^{a}(x, a)\left(u_{P}(\xi, a)-u_{P}(x, a)\right)^{2} \\
& =\frac{2 p_{P}(a)}{\delta\left(\sigma_{P}, \alpha\right)^{2}}
\end{aligned}
$$

which completes the proof.
[14.7] Let P in \mathscr{P}_{c} satisfy [V] and [M]. Then for any positive α and ε with $0<\varepsilon \leqq \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi} m_{P}(x, a) B_{P}^{a}\left(x, U_{3 \alpha+8 \varepsilon}(x)^{c}\right) d x \leqq \frac{16 a 力_{P}(a)^{2}}{\delta\left(\mu_{P}, \varepsilon\right) \delta\left(\sigma_{P}, \alpha\right)^{4}} \tag{14.9}
\end{equation*}
$$

for $a \leqq a_{0}$, where a_{0} is the constant given in [14.6] and $U_{\epsilon}(x)=\{\xi \in R ;|\xi-x|<\delta\}$.
Proof. Let $P=\iota \bar{P}$ for \bar{P} in \mathscr{P}. Set $\gamma=\gamma_{\alpha+5 \varepsilon}$ and $\gamma_{b}=\gamma+\sigma_{b}^{*}{ }^{\circ} \theta_{\gamma}$ where $\gamma_{\alpha+5 \varepsilon}$ is defined by (14.5) and σ_{b} is the hitting time to $D^{[b, \infty)}(b>0)$. Since $\mid x(\gamma, \bar{w})-$ $x(0, \bar{w}) \mid=\alpha+5 \varepsilon$ if $\gamma(\bar{w})<\infty$ for \bar{w} in \bar{W}, by [13.4]

$$
\begin{aligned}
H^{a}\left(z, U_{3 \alpha+8 \varepsilon}(x)^{c}\right. & =\bar{P}_{z}\left(\left|x\left(\sigma_{a}\right)-x\right| \geqq 3 \alpha+8 \varepsilon\right) \\
& \leqq \bar{P}_{z}\left(\gamma<\sigma_{a}\left|x\left(\sigma_{a}\right)-x(\gamma)\right| \geqq 2 \alpha+3 \varepsilon\right) \\
& \leqq \varliminf_{b \rightarrow 0} \bar{P}_{z}\left(\gamma_{b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\left(\gamma_{b}\right)\right| \geqq 2(\alpha+\varepsilon)\right) \\
& =\frac{\lim _{b \rightarrow 0}}{} \bar{E}_{z}\left\{H_{y\left(\gamma_{b}\right)}^{a}\left(x\left(\gamma_{b}\right), U_{2(\alpha+\varepsilon)}\left(x\left(\gamma_{b}\right)\right)^{c}\right) I_{\left(\gamma_{b}<\sigma_{a}\right)}\right\} \\
& \leqq \frac{8 a p_{P}(a)}{\delta\left(\mu_{P}, \varepsilon\right) \delta\left(\sigma_{P}, \alpha\right)^{2}} \lim _{b \rightarrow 0} \bar{P}_{z}\left(\gamma_{b}<\sigma_{a}\right) \\
& =\frac{8 a p_{P}(a)}{\delta\left(\mu_{P}, \varepsilon\right) \delta\left(\sigma_{P}, \alpha\right)^{2}} \bar{P}_{z}\left(\gamma<\sigma_{a}\right) .
\end{aligned}
$$

Therefore, by [14.5] and [14.6], for $a \leqq a_{0}$

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) B_{P}^{a}\left(x, U_{3 \alpha+8 \varepsilon}(x)^{c} d x\right. \\
& =\int_{0}^{2 \pi} m_{P}(x, a) \lim _{y \uparrow a} \frac{H^{a}\left(z, U_{3 \alpha+8 \varepsilon}(x)^{c}\right)}{a-y} d x \\
& \leqq \frac{16 a p_{P}(a)^{2}}{\delta\left(\mu_{P}, \varepsilon\right) \delta\left(\sigma_{P}, \alpha\right)^{4}},
\end{aligned}
$$

which completes the proof.
[14.8] Proposition. Let P in \mathscr{Q}_{c} satisfy [V] and [$\left.M\right]$, then P satisfies $\left[L^{*}\right]$ and therefore [L].

Proof. By [11.10] it is sufficient to prove [L*]. Take $\varepsilon=\pi$ and $\alpha=N \pi$ in (14.9). Then $\delta\left(\mu_{P}, \pi\right)=2 \pi$ and $\delta\left(\sigma_{P}, N \pi\right)=2 N \pi$ and

$$
\int_{0}^{2 \pi} m_{P}(x, a) B_{P}^{a}\left(x, U_{(8+3 N) \pi}(x)^{c}\right) d x \leqq \frac{a p_{P}(a)^{2}}{2 N^{4} \pi^{5}}
$$

for $a \leqq a_{0}$ with positive a_{0}. Therefore

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) d x \int_{|\xi-x| z 11 \pi} B_{P}^{a}(x, d \xi) \quad(\xi-x)^{2} \\
& \leqq \frac{a p_{P}(a)^{2}}{2 \pi^{5}} \sum_{N=1}^{\infty} \frac{(11 \pi+8 N \pi)^{2}}{N^{4}}
\end{aligned}
$$

Take $\alpha=\varepsilon$ and $\delta=\varepsilon$ in (14.9), for $a \leqq a_{0}(\varepsilon)$

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) d x \int_{11 \pi>|\xi-x| z 11 \varepsilon} B_{P}^{a}(x, d \xi)(\xi-x)^{2} \\
& \leqq \frac{16(11 \pi)^{2} a p_{P}(a)^{2}}{\delta\left(\mu_{P}, \varepsilon\right) \delta\left(\sigma_{P}, \varepsilon\right)^{4}} .
\end{aligned}
$$

Therefore, for a fixed positive ε and $a \leqq a_{0}(\varepsilon)$

$$
B_{P}^{a}(11 \varepsilon)=\int_{0}^{2 \pi} m_{P}(x, a) d x \int_{|\xi-x| \Sigma 11 \varepsilon} B_{P}^{a}(x, d \xi)(\xi-x)^{2} \leqq K a p_{P}(a)^{2} .
$$

Since $p_{P}(a)$ decreases as a decreases by (3) in [10.15], we have

$$
\lim _{a \rightarrow 0} B_{P}^{a}(11 \varepsilon)=0
$$

[14.8] is proved, for ε is arbitrary.
From propositions [13.8], [14.3], [14.4] and [14.8], we have the following theorem.
[14.9] Theorem. Let P in \mathscr{P} satisfy [V] and [M]. Then P is in \mathscr{P}_{c} if and only if P satisfies [L] and μ_{P} and σ_{P} are in $M_{i}(R)$.

Combining theorem [14.9] with theorem [11.7], we also have:
[14.10] Corollary. Let P in \mathscr{P}_{c} satisfy [V] and [M], then P is B_{P}-process with μ_{P} and σ_{P} in $M_{i}(R)$.
§ 15. Processes which satisfy the condition [H.C].
[15.1] Let P in \mathscr{P} satisfy [V] and [M]. Set

$$
\begin{aligned}
& M(a, b)=\sup _{x} \int H_{b}^{a}(x, d \xi)(\xi-x)^{2}, \\
& m(a, b)=\inf _{x} \int H_{b}^{a}(x, d \xi)(\xi-x)^{2}
\end{aligned}
$$

for $0<b<a$. Then

$$
M(a, b) \leqq 2 m(a, b)+24 \pi^{2} .
$$

Proof. For fixed a and b with $0<b<a$, set

$$
\begin{aligned}
& M^{+}(x)=\int_{\xi \geq x} H_{b}^{a}(x, d \xi)(\xi-x)^{2} \quad \text { and } \\
& M^{-}(x)=\int_{\xi \leq x} H_{\partial}^{a}(x, d \xi)(\xi-x)^{2}
\end{aligned}
$$

Then $M(a, b)=\sup _{x}\left\{M^{+}(x)+M^{-}(x)\right\}$ and $m(a, b)=\inf _{x}\left\{M^{+}(x)+M^{-}(x)\right\}$.
By [M], $\phi(t)=\int_{\xi \geq x} H_{b}^{a}(t, d \xi)(\xi-x)^{2}$ is nondecreasing in t. For $x<y<x+2 \pi$,

$$
\begin{aligned}
M^{+}(x) & =\int_{\xi \geq y} H_{b}^{a}(x, d \xi)(\xi-x)^{2}+\int_{y>\xi \geq x} H_{b}^{a}(\xi-x)(\xi-x)^{2} \\
& \leqq 2 \int_{\xi \geq y} H_{b}^{a}(x, d \xi)(\xi-y)^{2}+2 \int_{\xi \geq Y} H_{b}^{a}(x, d \xi)(y-x)^{2}+(2 \pi)^{2} \\
& \leqq 2 M^{+}(y)+12 \pi^{2} .
\end{aligned}
$$

By (p.5) in [1.1], $M^{+}(x)$ is periodic with period 2π. Therefore

$$
M^{+}(x) \cong 2 M^{+}(y)+12 \pi^{2}
$$

for any x and y. Similarly we have for any x and y

$$
M^{-}(x) \leqq 2 M^{-}(y)+12 \pi^{2}
$$

We have

$$
\sup _{x}\left(M^{+}(x)+M^{-}(x)\right) \leqq 2 \inf _{x}\left(M^{+}(x)+M^{-}(x)\right)+24 \pi^{2}
$$

[15.2] Let P in \mathscr{P} satisfy [V] and [M] and c be a fixed positive number. Then for any a and b with $0<b<a \leqq c, M(a, b) \leqq K$, where $K=K(c)$ is a constant independent of a and b.

Proof. By § $0,8^{\circ}$, we can see for $0<s<r$

$$
\int^{r} \pi^{s}(x) x^{2} d x \leqq C r^{2}
$$

where $C=\frac{1}{2 \pi^{3}} \int \frac{u^{2}}{\cosh u-1} d u$ is an absolute constant. For $b \in\left(\frac{c}{2}, c\right)$, by $(\bar{h}, 3)$ in [2.2]

$$
\begin{aligned}
M(c, b) \leqq & \sup _{x} \int_{c / 2}^{c} \Pi_{b}^{c}(x, d \xi)(\xi-x)^{2} \\
& +2 \int_{c / 2}^{c} \Pi_{b}^{c / 2}(x, d \eta) H_{c / 2}^{c}(\eta, d \xi)\left\{(\xi-\eta)^{2}+(\eta-x)^{2}\right\} \\
\leqq & C\left(\frac{c}{2}\right)^{2}+2 M\left(c, \frac{c}{2}\right)+2 C\left(\frac{c}{2}\right)^{2}=C_{1} .
\end{aligned}
$$

For $b \in(0, c / 2)$, again by ($\bar{h} .3$)

$$
\begin{aligned}
2 M\left(c, \frac{c}{2}\right) & \geqq 2 \int_{b}^{c} \Pi_{c / 2}^{b}(x, d \eta) H_{b}^{c}(\eta, d \xi)(\xi-x)^{2} \\
& \geqq \int_{b}^{c} \Pi_{c / 2}^{b}(x, d \eta) H_{b}^{c}(\eta, d \xi)\left\{(\xi-\eta)^{2}-2(\eta-x)^{2}\right\} \\
& \geqq \frac{1}{2} m(c, b)-2 C(c-b)^{2} .
\end{aligned}
$$

Therefore by [15.1]

$$
\begin{aligned}
M(c, b) & \leqq 2 m(c, b)+24 \pi^{2} \\
& \leqq 8 M\left(c, \frac{c}{2}\right)+8 C c^{2}+24 \pi^{2}=C_{2} .
\end{aligned}
$$

For $0<b<a<c$, by ($\bar{h} .2$) in [2.2]

$$
\begin{aligned}
2 M(c, b) & \geqq 2 \int H_{b}^{a}(x, d \eta) H_{a}^{c}(\eta, d \xi)(\xi-x)^{2} \\
& \geqq \int H_{b}^{a}(x, d \eta) H_{a}^{c}(\eta, d \xi)\left\{(\eta-x)^{2}-2(\xi-\eta)^{2}\right\} \\
& \geqq m(a, b)-2 M(c, a)
\end{aligned}
$$

By [15.1]

$$
\begin{aligned}
M(a, b) & \leqq 4(M(c, b)+M(c, a))+24 \pi^{2} \\
& \leqq 8 \operatorname{Max}\left\{C_{1}, C_{2}\right\}+24 \pi^{2}=K,
\end{aligned}
$$

whicn completes the proof.
[15.3] Proposition. Let P in \mathscr{P} satisfy [V] and [M]. Then P satisfies $[H . C]$ if and only if σ_{P} has no discrete mass.

Proof. Since $\frac{d}{d x} u_{P}(z)=s_{P}(z)=\frac{1}{\pi} \int \frac{y}{(\xi-x)^{2}+y^{2}} \sigma_{P}(d \xi), u_{P}$ has a continuous boundary function on ∂_{0} in \bar{D} if and only if σ_{P} has no discrete mass. Assume that P satisfies [H.C]. For $a>0$, set

$$
f_{N}(x)= \begin{cases}u_{P}(N, a) & \text { if } x \geqq N, \\ u_{P}(x, a) & \text { if }|x|<N, \\ u_{P}(-N, a) & \text { if } x \leqq-N\end{cases}
$$

and $\phi_{N}(z)=H^{a} f_{N}(z)$ for z in $D^{a}(N=1,2, \cdots)$. By the assumption, $\phi_{N}(z)$ can be extended to a continuous function in $D^{[0, a]}=\bar{D}^{a}$. On the other hand, $\left|u_{P}(x, a)-u_{P}(\xi, a) \leqq C+|x-\xi|\right.$. Therefore, for z in $D_{r}^{a}=\{0<y<a,|x| \leqq r\}$ and $N>r$

$$
\begin{aligned}
\left|u_{P}(z)-\phi_{N}(z)\right| & \leqq \int_{|\xi| \geq N} H_{y}^{a}(x, d \xi)\left|u_{P}(\xi, a)-f_{N}(\xi)\right| d \xi \\
& \leqq \frac{C+2 N}{(N-r)^{2}} \int H_{y}^{a}(x, d \xi)(\xi-x)^{2} \leqq \frac{C+2 N}{(N-r)^{2}} K
\end{aligned}
$$

by [15.2]. The function $u_{P}(z)$ can be approximated by $\phi_{N}(z)$ uniformly in D_{r}^{a}. Since r is arbitrary, u_{P} can be extended to a continuous function on \bar{D}^{a}. Conversely, assume that σ_{P} has no discrete mass. Let f be any function in $C_{K}(R)$ and a be any positive number. Set $\phi(z)=H^{a} f(z)$ for z in D^{a}. Then, by (3) in [9.9], for a fixed $b<a$ and z in D^{b}

$$
\begin{equation*}
\left|\phi_{x}(z)\right| \leqq K s_{P}(z) . \tag{15.1}
\end{equation*}
$$

Therefore, $\phi(z)$ has a continuous boundary function $\phi_{0}(x)=\phi_{0}(0)+\int_{0}^{x} g(t) \sigma_{P}(d t)$ on ∂_{0} with $\|g\| \leqq K$. Thus (1) in the condition [H.C] in [3.3] is proved. Note that by (2) in [9.8], the constant K appearing in (15.1) can be taken so as

$$
K=\sup _{x} \frac{\left|\phi_{x}(x, b)\right|}{s_{P}(x, b)} \leqq C\|\phi\|=C\|f\|,
$$

where $C=C(P, a, b)$ is a constant independent of ϕ. Let $f_{N}(N=1,2, \cdots)$ be in $C_{K}(R)$ with $f_{N} \uparrow 1$ as $N \rightarrow \infty$, and set $\phi_{N}=H^{a} f_{N}$. We may assume that ϕ_{N} is continuous in $\bar{D}^{b}=D^{[0, b]}$. Then, by the above remark, the boundary functions of ϕ_{N} 's $(N=1,2, \cdots)$ on ∂_{0} and on ∂_{b} are equicontinuous. They are also equicontinuous in \bar{D}^{b}. Since $\phi_{N}(z) \uparrow 1$ for z in D^{b}, we have $\phi_{N}(x, 0) \uparrow 1(N \rightarrow \infty)$. Hence (2) in the condition [H.C] is proved.

Let P be in \mathscr{F}_{c} and $P=\iota \bar{P}$ for \bar{P} in $\widetilde{\mathscr{P}}$, and P satisfy the condition [H.C]. For f in $C_{b}(R)$, set $\phi=H^{a} f(a>0)$. Then by [H.C] and [3.5] we may assume that ϕ is in $C_{b}\left(\bar{D}^{a}\right)$. Set $A(\beta)=\left\{z \in \bar{D}^{a} ; \phi>\beta\right\}$ for any real β and

$$
\left\{\begin{array}{l}
\rho_{\beta}(w)=\inf \{t: z(t) \in A(\beta) \cap D\} \quad \text { for } w \in W, \tag{15.2}\\
\rho_{\beta}(\bar{w})=\inf \{t: z(t) \in A(\beta)\} \quad \text { for } w \in \bar{W} .
\end{array}\right.
$$

Then, by (1) in [14.1], for any z in D

$$
\rho_{\beta}(\bar{w})=\rho_{\beta}(\iota \bar{w}) \quad \text { a. s. } \bar{P}_{z} .
$$

For any open set U in R, define \mathfrak{u} in B by

$$
\begin{equation*}
\mathfrak{U}=\left\{w: \lim _{a \rightarrow 0} x\left(\boldsymbol{\sigma}_{a}\right) \in U \text { and } x(0) \in D\right\} \tag{15.3}
\end{equation*}
$$

where σ_{a} is the hitting time of $\partial_{a}(a \geqq 0)$. Then \mathfrak{l} is in $B_{\sigma_{0}}$ and

$$
\iota^{-1} \mathfrak{l}=\left\{\bar{w}: x\left(\sigma_{0}\right) \subseteq U \text { and } x(0) \in D\right\} .
$$

[15.4] Under the above assumptions and notations, set $\tau_{a}=\sigma_{0}+\sigma_{a}{ }^{\circ} \theta_{\sigma_{0}}$. If there exists an open set U such that $\phi(x, 0)<\alpha$ for any x in U, then, for any $\beta>\alpha$ and z in D,

$$
\bar{P}_{z}\left\{x\left(\sigma_{0}\right) \in U, \phi(z(s)) \leqq \beta \text { for any } s \in\left(\sigma_{0}, \tau_{a}\right)\right\}>0 .
$$

Proof. Set $\rho=\sigma_{0}+\rho_{\beta}{ }^{\circ} \theta_{\sigma_{0}}$, where ρ_{β} is defined in (15.2). Assuming

$$
\begin{aligned}
& \bar{P}_{z}\left\{x\left(\sigma_{0}\right) \in U, \phi(z(s)) \leqq \beta \quad \text { for any } s \in\left(\sigma_{0}, \tau_{a}\right)\right\} \\
& =\bar{P}_{z}\left(x\left(\sigma_{0}\right) \in U \rho \geqq \tau_{a}\right)=0,
\end{aligned}
$$

we shall show a contradiction. For $b<a$ set

$$
\rho_{b}=\rho+\sigma_{b^{\circ}} \theta_{p}
$$

and

$$
\tau_{b}=\sigma_{0}+\sigma_{b^{\circ}} \theta_{\sigma_{0}}
$$

where σ_{b} is the hitting time of $D^{[b, \infty)}$. By (2), (3) in [14.1] $\rho_{b} \downarrow \rho$ and $\tau_{0} \downarrow \sigma_{0}$ as $b \downarrow 0$.
1° Using [1.5], we have

$$
\begin{aligned}
& \bar{E}_{z}\left(f\left(x\left(\tau_{a}\right)\right) I_{\left(z\left(\sigma_{0}\right) \in U\right)}\right) \\
& =\bar{E}_{z}\left(f\left(x\left(\tau_{a}\right)\right) I_{\left(z\left(\sigma_{0}\right) \in U, \rho<\tau_{a}\right)}\right) \\
& =\lim _{b \rightarrow 0} \bar{E}_{z}\left(f\left(x\left(\tau_{a}\right)\right) I_{\left(\rho_{b}<\tau_{a}, x\left(\sigma_{0}\right) \in U_{1}\right)}\right) \\
& \left.=\lim _{b \rightarrow 0} E_{z} E_{z\left(\rho_{b}\right)}\left(f\left(x\left(\tau_{a}\right)\right)\right) I_{\left.\left(\rho_{b}<\tau_{a}\right) \cap u_{u}\right)}\right) \\
& =\lim _{b \rightarrow 0} \bar{E}_{z}\left(\phi\left(z\left(\rho_{c}\right)\right) I_{\left(\rho_{b}<\tau_{a}, x\left(\sigma_{0}\right) \in U_{u}\right)}\right) \\
& =\bar{E}_{z}\left(\phi(z(\rho)) I_{\left.z z\left(\sigma_{0}\right) \in U, \rho<\tau_{a}\right)}\right) \\
& \geqq \beta P_{z}\left(z\left(\sigma_{0}\right) \in U\right) .
\end{aligned}
$$

2° Similarly, we obtain

$$
\begin{aligned}
& \bar{E}_{z}\left(f\left(x\left(\tau_{a}\right)\right) I_{\left(z\left(\sigma_{0}\right) \in U_{1}\right)}\right) \\
& =E_{z}\left(f\left(x\left(\tau_{a}\right)\right) I_{\mathfrak{u}}\right) \\
& =\lim _{b \rightarrow 0} E_{z}\left(\phi\left(z\left(\tau_{b}\right)\right) I_{\mathfrak{u}}\right) \\
& =\lim _{b \rightarrow 0} \bar{E}_{z}\left(\phi\left(z\left(\tau_{b}\right)\right) I_{\left(z\left(\sigma_{0}\right) \in U\right)}\right) \\
& =\bar{E}_{z}\left(\phi\left(z\left(\sigma_{0}\right)\right) I_{\left(z\left(\sigma_{0}\right) \in U_{1}\right)}\right) \\
& \leqq \alpha \bar{P}_{z}\left(z\left(\sigma_{0}\right) \in U\right) .
\end{aligned}
$$

Since $\bar{P}_{z}\left(z\left(\sigma_{0}\right) \in U\right)=P_{z}^{B, 2}\left(z\left(\sigma_{0}\right) \in U\right)>0$, by 1° and 2° we have a contradiction.
[15.5] Remark. Replacing ϕ by $-\phi$ in [15.4], we also obtain: If there exists an open set U such that $\phi(x, 0)>\alpha$ for any x in U, then, for any $\beta<\alpha$ and z in D,

$$
\bar{P}_{z}\left\{z\left(\sigma_{0}\right) \in U, \phi(z(s)) \geqq \beta \text { for any } s \in\left(\sigma_{0}, \tau_{a}\right)\right\}>0
$$

[15.6] Proposition. Let P in \mathscr{P}_{c} satisfy [H.C], then P satisfies [M].
Proof. Let f in $C_{b}(R)$ be any nondecreasing function and set $\phi=H^{a} f$ $(a>0)$. We may assume that ϕ is in $C_{b}\left(\bar{D}^{a}\right)$ by [H.C]. Assume that there exist x_{1} and x_{2} in R such that $\phi\left(x_{1}, 0\right)>\phi\left(x_{2}, 0\right)$ and $x_{1}<x_{2}$. Then there exist open intervals J_{1} and J_{2} with $J_{i} \in x_{2}(i=1,2)$ and $J_{1} \cap J_{2}=\varnothing$ and α and β with $\alpha<\beta$ such that $\phi(x, 0)>\beta$ for x in J_{1} and $\phi(x, 0)<\alpha$ for x in J_{2}. Take $\bar{\alpha}$ and $\bar{\beta}$ such that $\alpha<\bar{\alpha}<\bar{\beta}<\beta$. Then by [15.4] and [15.5]

$$
A_{1}=\left\{\bar{w}: z\left(\sigma_{0}\right) \in J_{1}, \phi(z(s)) \geqq \bar{\beta} \text { for any } s \in\left(\sigma_{0}, \tau_{a}\right)\right\}
$$

and

$$
A_{2}=\left\{\bar{w}: z\left(\sigma_{0}\right) \in J_{2}, \phi(z(s)) \leqq \bar{\alpha} \text { for any } s \in\left(\boldsymbol{\sigma}_{0}, \tau_{a}\right)\right\}
$$

have positive probabilities $\left(\bar{P}_{z}, z \in D\right)$. Especially they are non-empty sets. Take \bar{w}_{1} from A_{1} and \bar{w}_{2} from A_{2}. Then curves

$$
C_{1}=\left\{z\left(s, \bar{w}_{1}\right): \sigma_{0}\left(\bar{w}_{1}\right) \leqq s \leqq \tau_{a}\left(\bar{w}_{1}\right)\right\}
$$

and

$$
C_{2}=\left\{z\left(s, \bar{w}_{2}\right): \sigma_{0}\left(\bar{w}_{2}\right) \leqq s \leqq \tau_{a}\left(\bar{w}_{2}\right)\right\}
$$

in \bar{D}^{a} both start from ∂_{0} and end on ∂_{a} and they can not intersect. On the other hand, by construction of J_{1} and J_{2},

$$
x\left(\sigma_{0}\left(\bar{w}_{1}\right), \bar{w}_{1}\right)<x\left(\sigma_{0}\left(\bar{w}_{2}\right), \bar{w}_{2}\right) \text { and } \quad x\left(\tau_{a}\left(\bar{w}_{1}\right), \bar{w}_{1}\right)>x\left(\tau_{a}\left(\bar{w}_{2}\right), \bar{w}_{2}\right),
$$

since

$$
f\left(x\left(\tau_{a}\left(\bar{w}_{1}\right), \bar{w}_{1}\right)\right) \geqq \bar{\beta}>\bar{\alpha} \geqq f\left(x\left(\tau_{a}\left(\bar{w}_{2}\right), \bar{w}_{2}\right)\right) .
$$

This is impossible. Therefore $\phi(x, 0)$ is nondecreasing. Then

$$
\phi(z)={ }_{0}^{a} \Pi_{y}^{a} f(x)+{ }_{0}^{a} \Pi_{y}^{0} \phi(\cdot, 0)(x)
$$

is also nondecreasing, which completes the proof.
[15.7] Let P in \mathscr{P} satisfy the condition [M]. Then for any fixed positive a

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \sup _{z \in D^{a}} H^{a}\left(z, U_{a}(x)^{c}\right)=0 \tag{15.3}
\end{equation*}
$$

where $U_{a}(x)=\{\xi \in R:|\xi-x|<\alpha\}$ and $z=(x, y)$.
Proof. Set $H(z, \alpha)=H^{a}(z,[\alpha, \infty))$, then $H(z, \alpha)$ is increasing in x by [M] and $H(\cdot, \alpha)$ is bounded harmonic in D^{a} with $0 \leqq H(z, \alpha) \leqq 1$. Therefore $H(\cdot, \alpha)$ has a monotone bounded boundary function $H_{0}(x, \alpha)=H((x, 0), \alpha)$ such that

$$
\begin{equation*}
H((x, y), \alpha)={ }_{0}^{a} \Pi_{y}^{a}(x,[\alpha, \infty))+\int_{0}^{a} \Pi_{y}^{0}(x, d \xi) H_{0}\left(\xi{ }^{\prime} \alpha\right) \tag{15.5}
\end{equation*}
$$

We may assume that $H_{0}(x, \alpha)$ is right continuous in x. Since $H(z, \alpha)(0 \leqq y<a)$ is increasing in x, decreasing in α and $H(z+2 \pi, \alpha+2 \pi)=H(z, \alpha)$, we have

$$
\begin{equation*}
H((0, y), \alpha+2 \pi) \leqq H((x, y), x+\alpha) \leqq H((0, y), \alpha-2 \pi) \tag{15.6}
\end{equation*}
$$

Also, by (15.5), $\lim _{a \rightarrow \infty} H_{0}(0, \alpha)=0$ holds, for $\lim _{a \rightarrow \infty} H(z, \alpha)=0$ holds for $z \in D^{a}$. By (15.5) and (15.6)

$$
\begin{aligned}
H((0, y), \alpha) & \leqq{ }_{0}^{a} \Pi_{y}^{0}(0,[\alpha, \infty))+{ }_{0}^{a} \Pi_{y}^{0}\left(0,\left[\frac{\alpha}{2}, \infty\right)\right)+H_{0}\left(\frac{\alpha}{2}, \alpha\right) \\
& \leqq 2 \int_{\alpha / 2}^{\infty} \frac{d \xi}{\cosh (\pi \xi / a)-1}+H_{0}\left(0, \frac{\alpha}{2}-2 \pi\right)=k(\alpha)
\end{aligned}
$$

and $\lim _{\alpha \rightarrow \infty} k(\alpha)=0$. Therefore, by using (15.6) again, we have

$$
\begin{aligned}
0 \leqq \lim _{\alpha \rightarrow \infty} \sup _{z \in D^{a}} H(z, \alpha) & \leqq \lim _{\alpha \rightarrow \infty} \sup _{0<y<a} H((0, y), \alpha-2 \pi) \\
& \leqq \lim _{\alpha \rightarrow \infty} k(\alpha-2 \pi)=0 .
\end{aligned}
$$

In a similar way we can show

$$
\lim _{\alpha \rightarrow \infty} \sup _{z \in D^{a}} H^{a}(z,(-\infty,-\alpha))=0
$$

[15.8] Let P in \mathscr{P}_{c} satisfy the condition [H.C]. Set

$$
\gamma_{\alpha}(\bar{w})=\inf \{t:|x(t)-x(0)| \geqq \alpha\} .
$$

Then $\lim _{\alpha \rightarrow \infty} \sup _{z \in D^{a}} \bar{P}_{z}\left(\gamma_{\alpha}<\sigma_{a}\right)=0$.
Proof. Set $\gamma_{\alpha, b}=\gamma_{\alpha}+\sigma_{b}^{*} \circ \theta_{\gamma_{\alpha}}$ where σ_{b}^{*} is the hitting time of $D^{[b, \infty)}(b<a)$.

$$
\bar{P}_{z}\left(\gamma_{\alpha}<\sigma_{a}\right) \leqq \bar{P}_{z}\left(\left|x\left(\sigma_{a}\right)-x\right| \geqq \frac{\alpha}{3}\right)+\bar{P}_{z}\left(\gamma_{\alpha}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\right|<\frac{\alpha}{3}\right) .
$$

Since $\left|x\left(\gamma_{\alpha}\right)-x(0)\right|=\alpha$ if $\gamma_{\alpha}<\infty$ in \bar{W}, noting $\gamma_{\alpha, 0} \downarrow \gamma_{\alpha}$ as $b \downarrow 0$, we have by [1.5]

$$
\begin{aligned}
& \bar{P}_{z}\left(\gamma_{\alpha}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\right|<\frac{\alpha}{3}\right) \\
& \leqq \varliminf_{b \rightarrow 0} \bar{P}_{z}\left(\gamma_{\alpha, b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\right|<\frac{\alpha}{3},\left|x\left(\gamma_{\alpha, b}\right)-x\right|>\frac{2}{3} \alpha\right) \\
& \leqq \lim _{b \rightarrow 0} \bar{P}_{z}\left(\gamma_{\alpha, b}<\sigma_{a},\left|x\left(\sigma_{a}\right)-x\left(\gamma_{\alpha, b}\right)\right| \geqq \frac{\alpha}{3}\right) \\
& =\lim _{b \rightarrow 0} \bar{E}_{z}\left\{I_{\left(\gamma_{\alpha, b}<\sigma_{a}\right)} P_{z\left(\gamma_{\alpha, b}\right)}\left(\left|x\left(\sigma_{a}\right)-x(0)\right| \geqq \frac{\alpha}{3}\right)\right\} \\
& \leqq \sup _{z \in D^{a}} H^{a}\left(z, U_{\alpha / 3}(x)^{c}\right) .
\end{aligned}
$$

Therefore

$$
\bar{P}_{z}\left(\gamma_{\alpha}<\sigma_{a}\right) \leqq 2 \sup _{z \in D^{a}} H^{a}\left(z, U_{\alpha / 3}(x)^{c}\right) .
$$

[15.8] follows from [15.7], for P satisfies condition [M].
[15.9] Proposition. Let P in \mathscr{P}_{c} satisfy [H.C]. Then P satisfies [V_{r}] $(r=1,2, \cdots)$.

Proof. Define γ_{α} and $\gamma_{\alpha, b}$ as in [15.8]. By [15.8] we can take α so large that $\sup _{z \in D^{a}} P_{z}\left(\gamma_{\alpha}<\sigma_{a}\right)<1 / 2$. Then, by [1.5],

$$
\begin{aligned}
& \bar{P}_{z}\left(\gamma_{2(n+1) \alpha}<\sigma_{a}\right) \\
& \leqq \lim _{b \rightarrow 0} \bar{P}_{z}\left\{\gamma_{2 n \alpha, b}<\gamma_{2(n+1) \alpha}<\sigma_{a},\left|x\left(\gamma_{2 n \alpha, b}\right)-x\right|<(2 n+1) \alpha\right\} \\
& \leqq \lim _{b \rightarrow 0} \bar{P}_{z}\left\{\gamma_{2 n \alpha, b}<\gamma_{2 n \alpha, b}+\gamma_{\alpha} \circ \theta_{\gamma_{2 n \alpha, b}}<\sigma_{a}\right\} \\
& =\lim _{b \rightarrow 0} E_{z}\left\{I_{\left(\gamma_{2 n \alpha}, b<\sigma_{a}\right)} P_{z\left(\gamma_{2 n \alpha, b}\right)}\left(\gamma_{a}<\sigma_{a}\right)\right\} \\
& \leqq \lim _{b \rightarrow 0} \frac{1}{2} \bar{P}_{z}\left(\gamma_{2 n \alpha, b}<\sigma_{a}\right) \\
& =\frac{1}{2} \bar{P}_{z}\left(\gamma_{2 n \alpha}<\sigma_{a}\right) .
\end{aligned}
$$

By induction we have

$$
\sup _{z \in D^{a}} \bar{P}_{z}\left(\gamma_{2 n \alpha}<\sigma_{a}\right)<\frac{1}{2^{n}} .
$$

Since

$$
P_{z}\left(\left|x\left(\sigma_{a}\right)-x\right|>2 n \alpha\right) \leqq \bar{P}_{z}\left(\gamma_{2 n \alpha}<\sigma_{a}\right),
$$

we have

$$
\sup _{z \in D^{a}} \int H^{a}(z, d \xi)(\xi-x)^{2 r} \leqq \sum_{n=0}^{\infty}\{2(n+1) \alpha\}^{2 r} \frac{1}{2^{n}}<\infty .
$$

Combining [15.3], [15.6] and [15.9] with theorem [14.9], we have proved the following theorem.
[15.10] Theorem. Let P be in \mathscr{P}. Then, P is in \mathscr{Q}_{c} and satisfies [H.C] if and only if P satisfies $[M],[V]$ and $[L], \mu_{P}$ and σ_{P} are in $M_{i}(R)$ and σ_{P} has no discrete mass. In this case, P is a $B_{P-\text {-process. }}$

By theorem [3.12] and [4.10], we also have:
[15.11] Proposition. If P in \mathscr{Q} is a Feller process on \bar{D} with continuous path functions in the sense that P is in \mathscr{P}_{c} and satisfies [C], then P is B_{P}-process for which μ_{P} and σ_{P} are in $M_{i}(R)$ and σ_{P} has no discrete mass.

V Construction of B-processes.

$\S 16$. Construction of processes $\boldsymbol{P}_{\alpha, \beta}$

We begin by giving several notations and lemmas. Set

$$
\begin{aligned}
& C_{r}=\left\{f \in C(R): \sup _{x} \frac{|f(x)|}{1+|x|^{r}}<\infty\right\}, \\
& C_{r}^{*}=\left\{f \in C_{r}: \lim _{|x| \rightarrow \infty} \frac{f(x)}{1+|x|^{r}}=0\right\}
\end{aligned}
$$

and set $\left\|f_{r}\right\|=\sup _{x} \frac{|f(x)|}{1+|x|^{r}}(r=0,1,2, \cdots)$. Then C_{r} and C_{r}^{*} are Banach spaces with $\left\|\|_{r}\right.$-norm.
[16.1] $C_{r}^{*} \subset C_{r} \subset C_{r+1}^{*}$,

$$
\begin{aligned}
& C_{K}(R) \text { is dense in } C_{r}^{*}, \\
& \quad C_{0}=C_{0}(R) \text { and }\left\|\left\|_{0}=\frac{1}{2}\right\|\right\| .
\end{aligned}
$$

By an operator A on C_{r} (or C_{r}^{*}), we shall mean a linear operator A from C_{r} into C_{r} (or from C_{r}^{*} into C_{r}^{*}). Set

$$
\|A\|_{r}=\sup _{f \neq 0} \frac{\|A f\|_{r}}{\|f\|_{r}} \text { and }\|A\|=\|A\|_{0}
$$

We shall say :
A is monotone if $A f$ is nondecreasing for any nondecreasing f.
A is positive if $A f$ is nonnegative for any nonnegative f.
A is periodic (with period 2π) if $A f_{2 \pi}(x+2 \pi)=f(x)$, where $f_{2 \pi}(x)=f(x-2 \pi)$.
[16.2] Let $Q(x, d \xi)$ be a positive kernel on $R \times \mathscr{B}(R)$ with $\|Q\|=\sup _{x} Q(x, R)$ $<\infty$. If $\sup _{x} \int Q(x, d \xi)|\xi-x|^{r}=k<\infty$ for $r \geqq 1$, then $Q f(x)=\int Q(x, d \xi) f(\xi)$ is well-defined for f in C_{r} and $\|Q f\|_{r} \leqq 2^{r-1}(\|Q\|+k)\|f\|_{r}$ holds. Moreover Q is an operator on C_{0}^{*}.

Proof. If f is in C_{r}

$$
\begin{aligned}
& \frac{|Q f(x)|}{1+|x|^{r}} \leqq\|f\|_{r} \int Q(x, d \xi) \frac{1+|\xi|^{r}}{1+|x|^{r}} \\
& \leqq 2^{r-1}\|f\|_{r} \int Q(x, d \xi)^{1+|x|^{r}+|\xi-x|^{r}} \\
& 1+x^{r} \\
& \leqq 2^{r-1}(\|Q\|+k)\|f\|_{r}
\end{aligned}
$$

If f is in C_{0}^{*}, then

$$
\begin{aligned}
|Q f(x)| & \leqq\|f\| \int_{|\xi-x| \gtrless N} Q(x, d \xi)+\sup _{|\xi-x|<N}|f(\xi)|\|Q\| \\
& \leqq \frac{k}{N^{r}}\|f\| \int Q(x, d \xi)|\xi-x|^{r}+\sup _{|\xi-x|<N}|f(\xi)|\|Q\|
\end{aligned}
$$

and $\varlimsup_{|x| \rightarrow \infty}|Q f(x)| \leqq \frac{k}{N^{r}}\|f\| \int Q(x, d \xi)|\xi-x|^{r}$. Since $r \geqq 1$ and N is arbitrary, $Q f$ is in C_{0}^{*}.
[16.3] For $r \geqq 0$, let A be an operator on C_{r} with $\|A\|_{r}<\infty$. If $A f \geqq 0$ for any nonnegative f in $C_{K}(R)$, then there exists a unique positive kernel $Q(x, d \xi)$ on $R \times \mathfrak{B}(R)$ for which

$$
\begin{equation*}
A f(x)=\int Q(x, d \xi) f(\xi) \tag{16.1}
\end{equation*}
$$

for f in C_{r}^{*}. If, moreover, A is periodic, then Q is periodic (that is, $Q(x+2 \pi, d \xi+2 \pi)=Q(x, d \xi))$,

$$
\left|\sup _{x} \int Q(x, d \xi)\right| \xi-\left.x\right|^{r}<2^{r-1} \pi^{r}\left(1+\pi^{r}\right)\|A\|_{r}
$$

and A is an operator on C_{0}^{*}.

Proof. It is obvious that there exists a unique positive kernel $Q(x, d \xi)$ with $\|Q\|=\sup _{x} Q(x, R)<\infty$ for which (16.1) holds for f in C_{0}^{*}. Set $\phi_{N}(x)=$ $\frac{N\left(1+|x|^{r}\right)}{N+|x|^{r+1}}$. Then ϕ_{N} is in C_{0}^{*} and

$$
\begin{align*}
\int Q(x, d \xi)\left(1+|\xi|^{r}\right) & =\lim _{N \rightarrow \infty} \int Q(x, d \xi) \phi_{N}(\xi) \tag{16.2}\\
& \leqq \lim _{N \rightarrow \infty} A \phi_{N}(x) \\
& \leqq\left(1+|x|^{r}\right)\|A\|_{r}<\infty .
\end{align*}
$$

Therefore, approximating any function in C_{r}^{*} by functions in C_{0}^{*} in $\left\|\|_{r}\right.$-norm, we can see that (16.1) holds for any f in C_{r}^{*}. If A is periodic, then Q is obviously periodic and by (16.2)

$$
\begin{aligned}
\sup _{x} \int Q(x, d \xi)|\xi-x|^{r} & =\sup _{|x| \xi \pi} \int Q(x, d \xi)|\xi-x|^{r} \\
& \leqq 2^{r-1} \sup _{|x| 5 \pi} \int Q(x, d \xi)\left(|\xi|^{r}+\pi^{r}\right) \\
& \leqq 2^{r-1} \pi^{r}\left(1+\pi^{r}\right)\|A\|_{r}
\end{aligned}
$$

By [16.2] A is an operator on C_{0}^{*}.
[16.4] Let Q and S be positive kernels on $R \times \mathfrak{B}(R)$ with $\|Q\|=\sup _{x} Q(x, R)$ $<\infty$ and $\|S\|=\sup _{x} S(x, R)<\infty$. If

$$
\sup _{x} \int Q(x, d \xi)|\xi-x|^{r}=k_{Q}<\infty \quad \text { and } \sup _{x} \int S(x, d \xi)|\xi-x|^{r}=k_{S}<\infty
$$

for some $r \geqq 1$, then

$$
\begin{equation*}
\int Q S(x, d \xi)|\xi-x|^{r} \leqq 2^{r-1}\left(k_{Q}\|S\|+k_{S}\|Q\|\right) \tag{16.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int Q^{n}(x, d \xi)|\xi-x|^{r} \leqq n^{r} k_{Q}\|Q\|^{n-1} \tag{16.4}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\int Q S(x, d \xi)|\xi-x|^{r} & \leqq 2^{r-1} \int Q(x, d \eta) S(\eta, d \xi)\left(|\eta-x|^{r}+|\xi-\eta|^{r}\right) \\
& \leqq 2^{r-1}\left(k_{Q}\|S\|+k_{s}\|Q\|\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int Q^{n}(x, d \xi)|\xi-x|^{r} \\
& \leqq n^{r-1} \int Q\left(x, d \xi_{1}\right) Q\left(\xi_{1}, d \xi_{2}\right) \cdots Q\left(\xi_{n-1}, d \xi_{n}\right)\left(\sum_{k=1}^{n}\left|\xi_{k}-\xi_{k-1}\right|^{r}\right) \\
& \leqq n^{r-1} \cdot n k_{Q}\|Q\|^{n-1} \quad\left(\xi_{0}=x\right) .
\end{aligned}
$$

For f in $C(R)$, set

$$
\begin{equation*}
\|f\|_{U_{p}(x)}=\sup _{\xi \in U_{p}(x)}|f(\xi)|, \tag{16.5}
\end{equation*}
$$

where $U_{P}(x)=\{\xi \in R:|\xi-x|<p\}$.
[16,5] Let A and B be bounded operators on C_{0}. For given $x \in R$ and $\varepsilon>0$, assume that

$$
\|A f\|_{U_{p}(x)} \leqq \gamma_{A}\|f\|_{U_{p+\varepsilon}(x)}+\delta_{A}\|f\|
$$

and

$$
\|B f\|_{U_{p}(x)} \leqq \gamma_{B}\|f\|_{U_{p+8}(x)}+\delta_{B}\|f\|
$$

for any $p>0$ and f in C_{0}. Then,

$$
\begin{equation*}
\|A B f\|_{U_{p}(x)} \leqq \gamma\|f\|_{U_{p+2_{\varepsilon}}(x)}+\delta\|f\|, \tag{16.6}
\end{equation*}
$$

where $\gamma=\gamma_{A} \gamma_{B}$ and $\delta=\gamma_{A} \delta_{B}+\delta_{A}\|B\|$, and

$$
\begin{equation*}
\left\|A^{n} f\right\|_{U_{p}(x)} \leqq \gamma_{n}\|f\|_{p_{p+n}\left(n_{\varepsilon}\right)}+\delta_{n}\|f\|, \tag{16.7}
\end{equation*}
$$

where $\gamma_{n}=\gamma_{A}^{n}$ and

$$
\delta_{n}=\left(\gamma_{A}^{n-1}+\gamma_{A}^{n-2}\|A\|+\cdots+\gamma_{A}\|A\|^{n-2}+\|A\|^{n-1}\right) \delta_{A} .
$$

Proof. Since

$$
\begin{aligned}
\|A B f\|_{U_{p}(x)} & \leqq \gamma_{A}\|B f\|_{U_{p+\varepsilon}(x)}+\delta_{A}\|B f\| \\
& \leqq \gamma_{A}\left(\gamma_{B}\|f\|_{U_{p+2 \varepsilon(x)}}+\delta_{B}\|f\|\right)+\delta_{A}\|B\|\|f\| \\
& \leqq \gamma_{A} \gamma_{B}\|f\|_{U_{p+\varepsilon^{2}}(x)}+\left(\gamma_{A} \delta_{B}+\delta_{A}\|B\|\right)\|f\|
\end{aligned}
$$

(16.6) is proved. (16.7) is obtained by induction.
[16.6] Let f be in $C^{2}(R)$. Then for any $K \neq 0$

$$
\left|f^{\prime}(x)\right| \leqq \frac{2}{|K|} \sup _{\xi \in[x, x+K]}|f(\xi)|+\frac{|K|}{2} \sup _{\xi \in[x, x+K]}\left|f^{\prime \prime}(\xi)\right|,
$$

where $[x, x+K]$ is replaced by $[x+K, x]$ if $K<0$.
Proof. Since $f(x+K)=f(x)+K f^{\prime}(x)+(1 / 2) K^{2} f^{\prime \prime}(\xi)$ for some $\xi \in[x, x+K]$,
[16.6] is obvious.
In the following, C_{k} 's $(k=1,2, \cdots)$ stand for absolute positive constants and $C_{k}(x)$'s for positive functions which depend only on x. Set for $a>0$

$$
\begin{equation*}
\tilde{g}^{a}(x)=\int_{0}^{\infty} e^{-t / a} \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t} d t=\sqrt{a / 2} e^{-\sqrt{2 / a|x|}} \tag{16.8}
\end{equation*}
$$

By $\S 0,8^{\circ}$ and (16.8), we can easily obtain:
[16.7]
(1) $\int{ }^{a} \pi^{b}(x)|x|^{r} d x \leqq C_{1}(r) a^{r} \quad(0<b<a, 0 \leqq r)$,
(2) $\int q^{a}(x)|x|^{r} d x \leqq C_{1}(r) a^{r-1} \quad(0<a, 0 \leqq r)$,
(3) $\int p^{a}(x)|x|^{*} d x \leqq C_{1}(r) a^{r-1} \quad(0<a, 2 \leqq r)$,
(4) $\int \tilde{g}^{a}(x)|x|^{r} d x \leqq C_{1}(r) a^{(r / 2)+1} \quad(0<a, 0 \leqq r)$,

For positive ε
(5) $\int_{1 x \mid z \varepsilon}{ }^{a} \pi^{b}(x) d x \leqq C_{2}(\varepsilon, a) \quad(0<b<a)$,
(6) $\int_{|x| \geq \varepsilon} q^{a}(x) d x \leqq C_{2}(\varepsilon, a) \quad(0<a)$,
(7) $\int_{|x| z \varepsilon} p^{a}(x) x^{2} d x \leqq C_{2}(\varepsilon, a) \quad(0<a)$,
(8) $\int_{|x| z \varepsilon} \tilde{g}^{a}(x) d x \leqq C_{2}(\varepsilon, a) \quad(0<a)$,
where $\lim _{a \rightarrow 0} \frac{C_{2}(\varepsilon, a)}{a^{s}}=0$ for any $s>0$.
For positive a and $x \in R$ set

$$
\begin{equation*}
\tilde{G}^{a} f(x)=\int \tilde{g}^{a}(\xi-x) f(\xi) d \xi=E_{x}^{B, 1}\left(\int_{0}^{\infty} e^{-t / a} f(x(t)) d t\right), \tag{16.9}
\end{equation*}
$$

where $\left(P_{x}^{B, 1}, x(t)\right)$ is the one-dimensional Brownian motion starting at $x . P^{a} f$ and $Q^{a} f$ are defined as in (8.3) and (8.4).
[16.8] For f in C_{r}
(1) $\left\|{ }_{0}^{a} \Pi_{b}^{a} f\right\|_{r},\left\|a{ }_{0}^{a} \Pi_{b}^{a} f\right\|_{r} \leqq C_{3}(r)\left(1+a^{r}\right)\|f\|_{r} \quad(0<b<a, 0 \leqq r)$,
(2) $\left\|Q^{a} f\right\|_{r} \leqq C_{s}(r) \frac{1}{a}\left(1+a^{r}\right)\|f\|_{r} \quad(0<a, 0 \leqq r)$,
(3) $\left\|P^{a} f\right\|_{r} \leqq C_{3}(r) a\left(1+a^{r}\right)\left\|f^{\prime \prime}\right\|_{r} \quad\left(0<a, 0 \leqq r, f^{\prime \prime} \in C_{r}\right)$,
(4) $\left\|\tilde{G}^{a} f\right\|_{r} \leqq C_{3}(r) a\left(1+a^{r / 2}\right)\|f\|_{r} \quad(0<a, 0 \leqq r)$.

For f in C_{0} and positive p and ε
(5) $\left\|\frac{a}{0} \Pi_{b}^{i} f\right\|_{U_{p}(x)},\| \|_{0}^{a} \Pi_{b}^{a} f\left\|_{U_{p}(x)} \leqq C_{4}\right\| f\left\|_{U_{p+\varepsilon}(x)}+C_{b}(\varepsilon, a)\right\| f \| \quad(0<b<a)$,
(6) $\left\|Q^{a} f\right\|_{U_{p}(x)} \leqq \frac{1}{a}\left(C_{4}\|f\|_{U_{p+\varepsilon}(x)}+C_{5}(\varepsilon, a)\|f\|\right) \quad(a>0)$,
(7) $\left\|P^{a} f\right\|_{U_{p}(x)} \leqq a\left(C_{4}\left\|f^{\prime \prime}\right\|_{U_{p+\varepsilon}(x)}+C_{5}(\varepsilon, a)\left\|f^{\prime \prime}\right\|\right) \quad\left(a>0, f^{\prime \prime} \in C_{0}\right)$,
(8) $\left\|\tilde{G}^{a} f\right\|_{U_{p}(x)} \leqq a\left(C_{4}\|f\|_{U_{p+6}(x)}+C_{6}(\varepsilon, a)\|f\|\right) \quad(a>0)$,
where $\lim _{a \rightarrow 0} \frac{C_{5}(\varepsilon, a)}{a^{s}}=0$ for any $s>0$.
Proof. We shall prove (3) and (7). The rest are easy to prove. By (3) in [16.7], we have

$$
\begin{aligned}
\left|P^{a} f(x)\right| & =\left|\int_{[x]}^{*} P^{a}(x, d \xi)\left(f(\xi)-f(x)-(\xi-x) f^{\prime}(x)\right)\right| \\
& \leqq \int P^{a}(x, d \xi) \sup _{y \in(x, \xi)}\left|f^{\prime \prime}(y)\right| \frac{(x-\xi)^{2}}{2} \\
& \left.\leqq C^{\prime}(r)\left\|f^{\prime \prime}\right\|_{r} \int P^{a}(x, d \xi) \frac{(\xi-x)^{2}}{2}\left\{1+|x|^{r}+\mid \xi-x\right\}^{r}\right\} \\
& \leqq C^{\prime}(r)\left\{C_{2}(2) a\left(1+|x|^{r}\right)+C_{2}(r+2) a^{r+1}\right\}\left\|f^{\prime \prime}\right\|_{r}
\end{aligned}
$$

Similarly by (3) and (7) in [16.7]

$$
\begin{aligned}
\left\|P^{a} f\right\|_{U_{p}(x)} & \leqq\left\|f^{\prime \prime}\right\|_{U_{p+\varepsilon}(x)} \int P^{a}(x, d \xi) \frac{(x-\xi)^{2}}{2}+\left\|f^{\prime \prime}\right\| \int_{|x| z \varepsilon} p^{a}(x) \frac{x^{2}}{2} d x \\
& \leqq a\left(C_{1}(2)\left\|f^{\prime \prime}\right\|_{U_{p+\varepsilon}(x)}+\frac{1}{a} C_{2}(\varepsilon, a)\left\|f^{\prime \prime}\right\|\right) .
\end{aligned}
$$

[16.9]
(1) For f in C_{r} and $0<b<a$

$$
\begin{equation*}
Q^{a} f=Q^{b a} \Pi_{b}^{a} f \tag{16.10}
\end{equation*}
$$

(2) For f in $C^{2}(R)$ with $f^{\prime \prime} \in C_{r}$ and $0<b<a$

$$
\begin{equation*}
P^{a} f=P^{b} f+Q^{b a} \Pi_{b}^{i} f+\left(\frac{1}{a}-\frac{1}{b}\right) f . \tag{16.11}
\end{equation*}
$$

Proof. By [16.1] and (2) and (3) in [16.8], it is sufficient to prove (16.10) for f in $C_{K}(R)$ and (16.11) for f in $C_{K}^{2}(R)$. (16.10) is a consequence of the relation

$$
{ }_{0}^{a} \Pi_{c}^{a}={ }_{0}^{b} \Pi_{c}^{b}{ }_{0}^{a} \Pi_{b}^{a} \quad \text { for } 0<c<b<a .
$$

For f in $C_{K}^{2}(R)$ and $0<c<b<a$

$$
\begin{aligned}
& \int{ }_{0}^{a} \Pi_{c}^{0}(x, d \xi)(f(\xi)-f(x)) \\
& ={ }_{0}^{a} \Pi_{c}^{0} f(x)-\frac{a-c}{a} f(x) \\
& ={ }_{0}^{b} \Pi_{c}^{0} f(x)+{ }_{0}^{b} \Pi_{c}^{b}{ }_{0}^{a} \Pi_{b}^{0} f(x)-\frac{a-c}{a} f(x) \\
& =\int_{0}^{b} \Pi_{c}^{0}(x, d \xi)(f(\xi)-f(x))+{ }_{{ }^{b}}^{b} \Pi_{c}^{b}{ }_{0}^{a} \Pi_{b}^{0} f(x)+\left(\frac{c}{a}-\frac{c}{b}\right) f(x) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P^{a} f(x) & =\lim _{c \rightarrow 0} \frac{1}{c} \int_{0}^{a} \Pi_{c}^{0}(x, d \xi)(f(\xi)-f(x)) \\
& =P^{b} f(x)+Q_{0}^{b a} \Pi_{b}^{0} f(x)+\left(\frac{1}{a}-\frac{1}{b}\right) f(x)
\end{aligned}
$$

In the following assume that functions $\alpha(x)$ and $\beta(x)$ in $C_{p}^{2}(R)$ with $\alpha(x)>0$ are given and fixed. Set $\alpha^{*}=\sup _{x} \alpha(x)$ and $\alpha_{*}(x)=\inf _{x} \alpha(x)$. Then α_{*} is positive. Hereafter K,'s $(j=1,2, \cdots)$ stand for positive constants which depend only on α^{*}, α_{*} and $\|\beta\|$, and $K_{j}(x)$'s $(j=1,2, \cdots)$ for positive functions of x which depend only on α^{*}, α_{*} and $\|\beta\|$. Define for $a>0$

$$
\begin{equation*}
G^{a} f(x)=E_{x}^{B, 1}\left[\int_{0}^{\infty} \exp \left\{-\int_{0}^{t} \frac{d s}{a \alpha(x(s))}\right\} \frac{f(x(t))}{\alpha(x(t))} d t\right] \tag{16.12}
\end{equation*}
$$

Then by Kac's theorem we immediately have:
[16.10] For f in C_{0} and positive $a, G^{a} f$ is in $C^{2}(R) \cap C_{0}$ and it holds that

$$
\begin{equation*}
\left(\frac{1}{a}-\alpha \frac{d^{2}}{d x^{2}}\right) G^{a} f=f \tag{16.13}
\end{equation*}
$$

[16.11] For any $r \geqq 0$ and f in $C_{r}, G^{a} f$ is in $C^{2}(R) \cap C_{0}$ and for $0<a \leqq 1$
(1) $\left\|G^{a} f\right\|_{r} \leqq a K_{1}(r)\|f\|_{r}$,
(2) $\left\|\left(G^{a} f\right)^{\prime}\right\|_{r} \leqq \sqrt{ } \bar{a} K_{1}(r)\|f\|_{r}$,
(3) $\left\|\left(G^{a} f\right)^{\prime \prime}\right\|_{r} \leqq K_{1}(r)\|f\|_{r}$.

For any f in C_{0}, any $p>0, \varepsilon>0$ and $0<a \leqq 1$,
(4) $\left\|G^{a} f\right\|_{U_{p}(x)} \leqq a K_{2}\|f\|_{U_{p+\varepsilon}(x)}+K_{3}(\varepsilon, a)\|f\|$,
(5) $\left\|\left(G^{a} f\right)^{\prime}\right\|_{U_{p}(x)} \leqq \sqrt{ } \bar{a} K_{4}(\varepsilon)\|f\|_{U_{p+\varepsilon}(x)}+K_{3}(\varepsilon, a)\|f\|$,
(6) $\left\|\left(G^{a} f\right)^{\prime \prime}\right\|_{U_{p}(x)} \leqq K_{2}\|f\|_{U_{p+\varepsilon}(x)}+K_{3}(\varepsilon, a)\|f\|$,
where $\lim _{a \rightarrow 0} \frac{K_{3}(\varepsilon, a)}{a^{s}}=0$ for any $s>0$.
Proof. Since

$$
\begin{equation*}
\left|G^{a} f(x)\right| \leqq G^{a}|f|(x) \leqq \frac{1}{\alpha_{*}} \tilde{G}^{\alpha a_{*}}|f|(x), \tag{16.14}
\end{equation*}
$$

$G^{a} f$ is well-defined for f in C_{r} and (1) holds for $0<a \leqq 1$ by (4) in [16.8]. If f is in C_{0}, then by (16.13)

$$
\begin{equation*}
\left|\left(G^{a} f\right)^{\prime \prime}(x)\right| \leqq \frac{1}{\alpha_{*}}\left(\frac{1}{a}\left|G^{a} f(x)\right|+|f(x)|\right) \tag{16.15}
\end{equation*}
$$

and (3) is an immediate consequence of (1). Taking $K=\sqrt{a}$ in [16.6], we get

$$
\begin{equation*}
\left|\left(G^{a} f\right)^{\prime}(x)\right| \leqq \frac{2}{\sqrt{a}} \sup _{\xi \in[x, x+\sqrt{a}]}\left|G^{a} f(\xi)\right|+\frac{\sqrt{a}}{2} \sup _{\xi \in[x, x+\sqrt{a}]}\left|\left(G^{a} f\right)^{\prime \prime}(\xi)\right| . \tag{16.16}
\end{equation*}
$$

Hence (2) follows to (1) and (3). For f in C_{r}, take a sequence $\left\{f_{n}\right\}$ in C_{0} such that $f_{n} \rightarrow f$ in C_{r+1}. Replacing r by $r+1$ in the above argument, we can see that $G^{a} f_{n} \rightarrow G^{a} f$ in C_{r+1} and $\left\{\left(G^{a} f_{n}\right)^{\prime}\right\}$ and $\left\{\left(G^{a} f_{n}\right)^{\prime \prime}\right\}$ converge in C_{r+1}. Therefore $G^{a} f$ is in $C^{2}(R)$ and (16.15) and (16.16) hold for f in C_{r}. (2) and (3) can be easily proved for f in C_{r}. (4) is a consequence of (16.14) and (8) in [16.8]. (6) is proved by (4) and (16.15). For f in C_{0} and $a \leqq(\varepsilon / 2)^{2}$ we have by (16.16),

$$
\left\|\left(G^{a} f\right)^{\prime}\right\|_{U_{p}(x)} \leqq \frac{2}{\sqrt{a}}\left\|G^{a} f\right\|_{U_{p+\varepsilon / 2(x)}}+\frac{\sqrt{a}}{2}\left\|\left(G^{a} f\right)^{\prime \prime}\right\|_{U_{p+\varepsilon / 2}}
$$

Therefore (5) is obtained from (4) and (6).
[16.12] Remark. In a way similar to the proof of [16.11], we can show (16.13) also holds for f in C_{r}.
[16.13] Set $F^{a}=P^{a}+\beta(x)(d / d x)$. Then for $0<a \leqq 1, r \geqq 0$ and f in C_{r}
(1) $\left\|F^{a} G^{a} f\right\|_{r} \leqq \sqrt{a} K_{5}(r)\|f\|_{r}$.

For $0<a \leqq 1, p>0, \varepsilon>0$ and f in C_{0}
(2) $\left\|F^{a} G^{a} f\right\|_{U_{p}(x)} \leqq \sqrt{a} K_{6}(\varepsilon)\|f\|_{U_{p+\varepsilon}(x)}+K_{7}(\varepsilon, a)\|f\|$.

Proof. (1) is a consequence of (3) in [16.3] and (2) and (3) in [16.11].

Applying [16.5], we have, by (7) in [16.8] and (6) in [16.11],

$$
\begin{aligned}
\left\|P^{a} G^{a} f\right\|_{U_{p}(x)} \leqq & a C_{4} K_{2}\|f\|_{U_{p+\varepsilon}(x)} \\
& +\left(a C_{4} K_{3}\left(\frac{\varepsilon}{2}, a\right)+a^{2} C_{5}\left(\frac{\varepsilon}{2}, a\right) K_{1}(0)\right)\|f\| .
\end{aligned}
$$

Combining this with (5) in [16.11] we can prove (2).
[16.14] For any $r \geqq 0$, there exists $K_{8}(r)$ such that for $0<a \leqq K_{8}(r)$

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|F^{a} G^{a}\right\|_{r}^{n}<\infty . \tag{16.17}
\end{equation*}
$$

Set $L^{a} f=\sum_{n=0}^{\infty}\left(F^{a} G^{a}\right)^{n} f$ for f in C_{r} and $0<a \leqq K_{8}(r)$. Then
(1) $\left\|L^{a} f\right\|_{r} \leqq K_{9}(r)\|f\|_{r}$,
(2) $\left\|G^{a} L^{a} f\right\|_{r} \leqq a K_{9}(r)\|f\|_{r}$,
(3) $\left\|G^{a} L^{a} f\right\|_{U_{p}(x)} \leqq a K_{10}(\varepsilon)\left(\|f\|_{U_{p+\varepsilon}(x)}+a^{3 / 2}\|f\|\right)$.
(4) $G^{a} L^{a} f$ is in $C^{2}(R) \cap C_{r}$ and satisfies

$$
\begin{equation*}
\left(\alpha(x) \frac{d^{2}}{d x^{2}}+\beta(x) \frac{d}{d x}+P^{a}-\frac{1}{a}\right) G^{a} L^{a} f=-f . \tag{16.18}
\end{equation*}
$$

Proof. Take $K_{8}(r)=\operatorname{Min}\left(1,1 / 2 K_{5}(r)^{2}\right) . \quad$ By (1) in [16.13], (16.17) and (1) are obvious. (2) is a consequence of (1) and (1) in [16.11]. By [16.5], [16.11] and [16.13], for f in C_{0}

$$
\begin{aligned}
& \left\|G^{a} L^{a} f\right\|_{U_{p}(x)} \leqq \sum_{n=0}^{2}\left\|G^{a}\left(F^{a} G^{a}\right)^{n} f\right\|_{U_{p}(x)}+\left\|G^{a}\left(F^{a} G^{a}\right)^{3} L^{a} f\right\| \\
& \leqq a K_{2}\|f\|_{U_{p+\varepsilon}(x)}+a^{3 / 2} K_{2} K_{6}(\varepsilon)\|f\|_{U_{p+2 \varepsilon}(x)} \\
& \quad+a^{2} K_{2} K_{6}(\varepsilon)^{2}\|f\|_{U_{p^{+}+3 \varepsilon}(x)}+\left(K^{\prime}(\varepsilon, a)+a^{5 / 2} K_{1}(0) K_{5}(0)^{3} K_{9}(0)\right)\|f\|,
\end{aligned}
$$

where $\lim _{a \rightarrow 0}\left(K^{\prime}(\varepsilon, a) / a^{s}\right)=0$ for any $s>0$. Thus (3) is proved. Since $L^{a} f$ is in $C_{r}, G^{a} L^{a} f$ is in $C^{2}(R)$ and by remark [16.12]

$$
\begin{aligned}
\left(\frac{1}{2}-\alpha \frac{d^{2}}{d x^{2}}\right) G^{a} L^{a} f=L^{a} f & =f+F^{a} G^{a} L^{a} f \\
& =f+P^{a}\left(G^{a} L^{a} f\right)+\beta \frac{d}{d x}\left(G^{a} L^{a} f\right)
\end{aligned}
$$

(16.18) is proved.

By construction it is easily seen:
[16.15] $G^{a} L^{a}$ is periodic as an operator on $C_{r}\left(r \geqq 0, a \leqq K_{8}(r)\right)$.
[16.16] For any positive a there exists a positive kernel $H_{0}^{a}(x, d \xi)$ on $R \times \mathfrak{B}(R)$ with the following properties:
(1) H_{0}^{a} is a periodic probability kernel.
(2) H_{0}^{a} is monotone.
(3) $\sup _{x} \int H_{0}^{a}(x, d \xi)|\xi-x|^{r}<\infty \quad(r=1,2, \cdots)$.
(4) H_{0}^{a} maps C_{r} into $C_{r}(r=0,1,2, \cdots)$ and C_{0}^{*} into C_{0}^{*}.
(5) For f in $C_{r}, \phi=H_{0}^{a} f$ is in $C^{2}(R)$ and satisfies

$$
\begin{equation*}
\alpha(x) \phi^{\prime \prime}(x)+\beta(x) \phi^{\prime}(x)+P^{a} \phi(x)+Q^{a} f(x)-\frac{1}{a} \phi(x)=0 . \tag{16.19}
\end{equation*}
$$

(6) For any positive ε

$$
\int_{|\xi-x| z \varepsilon} H_{0}^{a}(x, d \xi) \leqq a^{3 / 2} K_{11}(\varepsilon) .
$$

Moreover,
(7) A kernel $H_{0}^{a}(x, d \xi)$ is uuiquely determined by the properties that H_{0}^{a} maps C_{0}^{*} into $C_{0}^{*} \cap C^{2}(R)$ and $\phi=H_{0}^{a} f$ satisfies (16.19).

Proof. 1° Uniqueness Suppose that there exist two kernels $H_{0 \imath}^{a}(i=1,2)$ satisfying conditions in (7). For f in C_{0}^{*}, set $\psi=H_{01}^{a} f-H_{02}^{a} f$. Then ψ is in $C_{0}^{*} \cap C^{2}(R)$ and satisfies

$$
\begin{equation*}
\alpha \psi^{\prime \prime}+\beta \psi^{\prime}+P^{a} \psi-\frac{1}{a} \psi=0 . \tag{16.20}
\end{equation*}
$$

Therefore, ψ can not take positive maximum nor negative minimum, and hence $\phi=0$. (7) is proved.
2° For any given $r(r=0,1,2, \cdots)$ take $K^{\prime}(r)=\operatorname{Min}_{s \leq r+1} K_{8}(s)$, where $K_{8}(s)$ is given in [16.14]. For $a \leqq K^{\prime}(r)$ set $\tilde{H} f=G^{a} L^{a} Q^{a} f$. Then, by (2) in [16.8] and (2) in [16.14], $\|\tilde{H} f\|_{s} \leqq K^{\prime \prime}(r)\|f\|_{s}$ for f in $C_{s}(s=0,1,2, \cdots, r+1)$. Moreover, by (4) in [16.14] $\tilde{H} f$ is in $C^{2}(R)$ and satisfies (16.19) for f in C_{r+1} and by [16.15] \tilde{H} is periodic as an operator on C_{r+1}. If f is in $\bigcup_{N=1}^{\infty} C_{p, N}(R) \subset C_{0}$ and nonnegative, then $\phi=\tilde{H} f$ is in $\bigcup_{N=1}^{\infty} C_{p, N}$ and satisfies

$$
\alpha \phi^{\prime \prime}+\beta \phi^{\prime}+P^{a} \phi-\frac{1}{a} \phi=-Q^{a} f \leqq 0 .
$$

Therefore ϕ can not take negative minimum and $\tilde{H} f \geqq 0$. Since any function in $C_{K}(R)$ can be approximated by functions in $\bigcup_{N=1}^{\infty} C_{p, N}$ in C_{r+1}^{*}-topology ($r \geqq 0$),
we have $\tilde{H} f \geqq 0$ if f is in $C_{K}(R)$. Now, applying [16.3] to \tilde{H} (where r is replaced by $r+1$), we see that there exists a positive periodic kernel $\tilde{H}_{0}^{a}(x, d \xi)$ such that

$$
\begin{gather*}
\tilde{H} f(x)=\tilde{H}_{0}^{a} f(x) \quad \text { for } f \in C_{r} \subset C_{r+1}^{*}, \\
\sup _{x} \int \tilde{H}_{0}^{a}(x, d \xi)|\xi-x|^{r}<K^{(3)}(r) \tag{16.21}
\end{gather*}
$$

and $\tilde{H}_{0}^{a}=\tilde{H}$ maps C_{0}^{*} into C_{0}^{*} by [16.2]. The function $\phi=\tilde{H}_{0}^{a} 1-1$ is a solution of (16.20) and in $C_{p}(R)$. Therefore by maximum principle $\tilde{H}_{0}^{a} 1=1$, or \tilde{H}_{0}^{a} is a probability kernel. Now for $K^{\prime}(0) \geqq K^{\prime}(1) \geqq \cdots \geqq K^{\prime}(r) \geqq \cdots>0$ we have contructed kernels $\tilde{H}_{0}^{a}(x, d \xi)\left(0<a \leqq K^{\prime}(r)\right)$ which satisfy (1), (3), (4) and (5) for fixed r. By (7) they are independent of r if defined.
3° Using [16.5], we have, by (2) and (6) in [16.8] and (3) in [16.14],

$$
\begin{aligned}
& \left\|\tilde{H}_{0}^{a} f\right\|_{U_{p}(x)}=\left\|G^{a} L^{a} Q^{a} f\right\|_{U_{p}(x)} \\
& \quad \leqq K_{10}\left(\varepsilon^{\prime}\right)\left\{C_{4}\|f\|_{U_{p+2 \varepsilon^{\prime}}(x)}+\left(C_{5}\left(\varepsilon^{\prime}, a\right)+2 a^{3 / 2} C_{3}(0)\right)\|f\|\right\}
\end{aligned}
$$

for any f in C_{0}. Take $p=\varepsilon^{\prime}, \varepsilon=4 \varepsilon^{\prime}$ and f in C_{0} with

$$
f= \begin{cases}0 & \text { in } U_{3 \varepsilon^{\prime}}(x) \\ 1 & \text { in } U_{\varepsilon}(x)^{c} .\end{cases}
$$

Then

$$
\left.\int_{|\xi-x| z \varepsilon} \tilde{H}_{0}^{a}(x, d \xi) \leqq K^{(4)}(\varepsilon) a^{3 / 2}\left(a \leqq K^{\prime}(0)\right)\right) .
$$

Thus (6) is proved.
4° We shall prove (2) for small a. Let f be in $C_{b}^{1}(R)$ and nondecreasing. For a fixed a with $0<a \leqq K^{\prime}(1)$, set $\phi=\tilde{H}_{0}^{a} f$. We shall show that $\lim _{|x| \rightarrow \infty} \phi^{\prime}(x)=0$. There exists $\mu=\lim _{x \rightarrow \infty} f(x)$ and

$$
|\phi(x)-\mu| \leqq \int_{|\xi-x| \leqq K} \tilde{H}_{0}^{a}(x, d \xi)|f(\xi)-\mu|+2\|f\| \int_{|\xi-x|>K} \tilde{H}_{0}^{a}(x, d \xi) .
$$

Therefore, for any positive K

$$
\varlimsup_{x \rightarrow \infty}|\phi(x)-\mu| \leqq 2\|f\| \frac{1}{K} \int \tilde{H}_{0}^{a}(x, d \xi)|\xi-x|,
$$

and $\lim _{x \rightarrow \infty} \phi(x)=\mu$. Similarly we have $\lim _{x \rightarrow-\infty} \phi(x)=\lim _{x \rightarrow-\infty} f(x)$. Noting (3) in [16.11], we have

$$
\left\|\phi^{\prime \prime}\right\|=\left\|\left(G^{a} L^{a} Q^{b} f\right)^{\prime \prime}\right\| \leqq K_{1}(0)\left\|L^{a}\right\|\left\|Q^{a}\right\|\|f\|<\infty
$$

and $\left|\phi^{\prime}(x)-1 / \varepsilon(\phi(x+\varepsilon)-\phi(x))\right| \leqq \varepsilon\left\|\phi^{\prime \prime}\right\|$. Therefore, $\varlimsup_{|x| \rightarrow \infty}\left|\phi^{\prime}(x)\right| \leqq \varepsilon\left\|\phi^{\prime \prime}\right\|$ for any positive ε, and $\lim _{|x| \rightarrow \infty} \phi^{\prime}(x)=0$. Since by (16.19).

$$
\phi^{\prime \prime}=\frac{1}{\alpha}\left(\frac{1}{a} \phi-\beta \phi^{\prime}-P^{a} \phi--Q^{a} f\right),
$$

ϕ is in $C^{3}(R)$. Differentiating (16.19), we also have

$$
\alpha \phi^{\prime \prime \prime}+\left(\beta+\alpha^{\prime}\right) \phi^{\prime \prime}+\left(\beta^{\prime}-\frac{1}{a}\right) \phi^{\prime}+P^{a} \phi^{\prime}=-Q^{a} f^{\prime} \leqq 0
$$

Take $a \leqq \operatorname{Min}\left\{K^{\prime}(1),\left(1 /\left(1+\left\|\beta^{\prime}\right\|\right)\right\}\right.$, then ϕ^{\prime} can not take negative minimum.. Since we have seen that ϕ^{\prime} is in $C_{0}^{*}, \phi^{\prime} \geqq 0$ or ϕ is nondecreasing, (2) is proved for

$$
0<a \leqq \tilde{K}=\operatorname{Min}\left\{K^{\prime}(1), \frac{1}{1+\left\|\beta^{\prime}\right\|}\right\} .
$$

5° Let a be any positive number. For a fixed $r(r=1,2, \cdots)$ take b so small as $b<\operatorname{Min}\left\{a, \tilde{K}, K^{\prime}(r)\right\}$, and set

$$
H_{0}^{a}=\sum_{n=0}^{\infty}\left(\tilde{H}_{0}^{b}{ }_{0}^{a} \Pi_{b}^{0}\right)^{n} \tilde{H}_{0}^{b}{ }_{0}^{a} \Pi_{b}^{a}
$$

Since $\tilde{H}_{a}^{b}{ }_{0}^{a} \Pi_{b}^{0}(x, R)=(a-b / a)<1$ and $\tilde{H}_{0}^{b}{ }_{0}^{a} \Pi_{b}^{a}(x, R)=b / a, H_{0}^{a}$ is well-defined as a periodic probability kernel. Using [16.4], we have by (1) in [16.7] and (16.21)

$$
\sup _{x} \int H_{0}^{a}(x, d \xi)|\xi-x|^{r}<\infty .
$$

Noting [16.2], we see that \tilde{H}_{0}^{a} satisfies (1), (3) and (4). (2) is obvious, since $\tilde{H}_{0}^{b},{ }_{0}^{a} \Pi_{b}^{0}$ and ${ }_{0}^{a} \Pi_{b}^{a}$ are monotone. Set $\phi=H_{0}^{a} f$ for f in C_{r}. Then $\phi=$ $\tilde{H}_{0}^{b}\left({ }_{0}^{a} \Pi_{b}^{0} \phi+{ }_{0}^{a} \Pi_{b}^{a} f\right)$. Since we have already seen that \tilde{H}_{0}^{b} satisfies (16.19), ϕ satisfies

$$
\alpha \phi^{\prime \prime}+\beta \phi^{\prime}+P^{b} \phi+Q^{b}\left({ }_{0}^{a} \prod_{b}^{0} \phi+{ }_{0}^{a} \Pi_{b}^{a} f\right)-\frac{1}{b} \phi=0
$$

and by [16.9] ϕ itself satisfies (16.19). Hence (5) is proved. By uniqueness, we see that H_{0}^{a} is independent of b and $H_{0}^{a}=\tilde{H}_{0}^{a}$ if the right side is defined. (6) is trivial, since it holds for $a \leqq K^{\prime}(0)$ by 3° and $H_{0}^{a}(x, R)=1$ for any a.
[16.17] Remark. By (16.21) it holds that for $0<a \leqq K_{12}(r)$

$$
\sup _{x} \int H_{0}^{a}(x, d \xi)|\xi-x|^{r} \leqq K_{13}(r),
$$

where the right side is independent of a.
By the explicit form of ${ }^{r} \pi^{s}(x)$ in $\S 0.8^{\circ}$ and the definitions of P^{r} and Q^{r} in (8.3) and (8.4), we can easily show :
[16.18] Let f be in C_{r} and g be in $C_{r} \cap C^{2}(R)$. Set $u(z)={ }_{0}^{a} \Pi_{y}^{a} f(x)+{ }_{0}^{a} \Pi_{y}^{0} g(x)$ for z in D^{a}. Then u is well-defined and harmonic in D^{a} and $u, u_{x}, u_{x x}$ and
u_{y} are in $C\left(D^{[0, a)}\right)$. Moreover, $u(x, 0)=g(x), u_{x}(x, 0)=g^{\prime}(x), u_{x x}(x, 0)=g^{\prime \prime}(x)$ and

$$
u_{y}(x, 0)=P^{a} g-\frac{1}{a} g+Q^{a} f .
$$

[16.19] Theorem. Let α and β in $C_{p}^{2}(R)$ with $\alpha>0$ be given, and H_{0}^{a} be the kenel given in [16.16]. For any positive a and b with $0<b<a$ set

$$
\begin{equation*}
H_{b}^{a}={ }_{0}^{a} \Pi_{b}^{a}+{ }_{0}^{a} \Pi_{b}^{0} H_{o}^{a} \tag{16.22}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{a}(z, d \xi)=H_{y}^{a}(x, d \xi) \quad \text { for } z \text { in } D^{a} \tag{16.23}
\end{equation*}
$$

Then $H=\left\{H^{a}(x, d \xi)\right\}$ belongs to \mathscr{H}. $P=P(H)$ satisfies [$\left.M\right],\left[V_{r}\right](r=$ $1,2, \cdots$) and $\left[L^{*}\right]$ (and therefore [$\left.L\right]$). Moreover H satisfies:
(1) For any f in $C_{r}(r=1,2, \cdots)$ set $u(z)=H^{a} f(z)=\int H^{a}(z, d \xi) f(\xi)$. Then $u, u_{x} . u_{x x}$ and u_{y} are in $C\left(D^{[0, a)}\right)$ and u satisfies

$$
\begin{equation*}
\alpha(x) u_{x x}(x, 0)+\beta(x) u_{x}(x, 0)+u_{y}(x, 0)=0 \tag{16.24}
\end{equation*}
$$

on ∂_{0}.
H in \mathscr{H} is uniquely determined if (1) is satisfied for any f in $C_{b}(R)$.

Proof.

1° Let H satisfy (1) for f in $C_{b}(R)$. For f in $C_{p, N}(R), u=H^{a} f$ is harmonic in D^{a} and $C_{p, N}(R)(N=1,2, \cdots)$. Since $u=f$ on ∂_{a} and u satisfies (16.24), we can easily show, by maximum principle of harmonic function, that u is uniquely determined. Probability kernels $H^{a}(z, d \xi)^{\prime} s\left(a>0, z \in D^{a}\right)$ are also determined, since f is arbitrary in $\bigcup_{N} C_{p, N}(R)$.
2° In the following, let $H=\left\{H^{a}(z, d \xi)\right\}$ be defined by (16.23). Then by definition and [16.16], H satisfies (h.1), (h.3) and (h.4) in [2.1]. For f in C_{0}^{∞}, set $u=H^{a} f, \quad \phi=H_{0}^{a} f, \tilde{u}=H^{b} H_{b}^{a} f$ and $\tilde{\phi}=H_{0}^{b} H_{b}^{a} f=H_{0}^{b}\left({ }_{0}^{a} \Pi_{b}^{0} \phi+{ }_{0}^{a} \Pi_{b}^{a} f\right)(b>a)$. Then u and \tilde{u} are harmonic in $D^{b}, u(x, b)=H^{a} f(x, b)=\tilde{u}(x, b)$ on ∂_{b} and $u=\phi$ and $\tilde{u}=\tilde{\phi}$ on ∂_{0}. By (5) in [16.16] $\tilde{\phi}$ and ϕ satisfy

$$
\begin{gather*}
\alpha \tilde{\phi}^{\prime \prime}+\beta \tilde{\phi}^{\prime}+P^{b} \tilde{\phi}+Q^{b}\left({ }_{0}^{a} \Pi_{b}^{0} \phi+{ }_{0}^{a} \Pi_{b}^{a} f\right)-\frac{1}{b} \tilde{\phi}=0 . \tag{16.25}\\
\alpha \phi^{\prime \prime}+\beta \phi^{\prime}+P^{a} \phi+Q^{a} f-\frac{1}{a} \phi=0 . \tag{16.26}
\end{gather*}
$$

By [16.9], (16.26) is transformed into

$$
\begin{equation*}
\alpha \phi^{\prime \prime}+\beta \phi^{\prime}+P^{b} \phi+Q^{b}\left({ }_{0}^{a} \Pi_{o}^{0} \phi+{ }_{0}^{a} \Pi_{b}^{a} f\right)-\frac{1}{b} \phi=0 \tag{16.27}
\end{equation*}
$$

By (16.25) and (16.27)

$$
\alpha\left(\phi^{\prime \prime}-\tilde{\phi}^{\prime \prime}\right)+\beta\left(\phi^{\prime}-\tilde{\phi}^{\prime}\right)+P^{b}(\phi-\tilde{\phi})-\frac{1}{b}(\tilde{\phi}-\phi)=0 .
$$

Since $\phi-\tilde{\phi}$ is in C_{0}^{*} by (4) in [16.16], we can show $\phi=\tilde{\phi}$ by maximum principle. Therefore $u=\tilde{u}$ and $H^{a}=H^{b} H^{a}$ in D^{b}. Hence (h.2) is proved.
3° For f in C_{r} set $u=H^{a} f$ and $\phi=H_{0}^{a} f$. Then $u(z)={ }_{0}^{a} \Pi_{y}^{a} f(x)+{ }_{0}^{a} \Pi_{y}^{0} \phi(x)$. By (4) and (5) in [16.16] ϕ is in $C^{2}(R) \cap C_{r}$ and satisfies (16.19). On the other hand, by [16.18], $u, u_{x}, u_{x x}$ and u_{y} are in $C\left(D^{[0, a)}\right)$ and $u=\phi, u_{x}=\phi^{\prime}, u_{x x}=\phi^{\prime \prime}$ and $u_{y}=P^{a} \phi+Q^{a} f-(1 / a) \phi$ on ∂_{0}. (16.24) is a consequence of (16.19).
4° Since $H_{0}^{a},{ }_{0}^{a} \Pi_{b}^{a}$ and ${ }_{0}^{a} \Pi_{b}^{0}$ are monotone, H satisfies [M]. Using [16.4], we can see by (1) in [16.7] and (3) in [16.16] that H satisfies $\left[V_{r}\right](r=1,2 \cdots)$. Especially by [16.17], we have

$$
\begin{equation*}
\sup _{x} \int H^{a}(x, d \xi)|\xi-x|^{r} \leqq K_{14}(r) \quad \text { for } 0<a \leqq K_{12}(r) \tag{16.28}
\end{equation*}
$$

On the other hand, by (5) in [16.7] and (6) in [16.16]

$$
\begin{aligned}
& \int_{|\xi-x| z \varepsilon}{ }^{2 a} \Pi^{2 a}(x, d \xi) \leqq C_{2}(\varepsilon, 2 a), \\
& \int_{1 \xi-x \mid z \varepsilon}{ }^{2 a} \Pi_{a}^{0}(x, d \eta) H_{0}^{2 a}(\eta, d \xi) \\
& \leqq\left(\int_{|\eta-x| z \varepsilon / 2}+\int_{|\xi-\eta| z \varepsilon / 2}\right)^{2 a} \Pi_{a}^{0}(x, d \eta) H_{0}^{2 a}(\eta, d \xi) \\
& \leqq C_{2}\left(\frac{\varepsilon}{2}, 2 a\right)+K_{11}\left(\frac{\varepsilon}{2}\right)(2 a)^{3 / 2},
\end{aligned}
$$

where ε is a fixed positive number and $\lim _{a \rightarrow 0}\left(C_{2}(\varepsilon, a) / a^{s}\right)=0$ for any $s>0$. Therefore we have

$$
\int_{|\xi-x| z \varepsilon} H_{a}^{2 a}(x, d \xi) \leqq K^{\prime}(\varepsilon) a^{3 / 2}
$$

For $a \leqq K_{12}(9)$

$$
\begin{aligned}
& \int_{|\xi-x| z 8} H_{a}^{2 a}(x, d \xi)(\xi-x)^{2} \\
& \leqq\left(\int_{a-1 / 6>|\xi-x| z \varepsilon}+\int_{1 \xi-x \mid z a-1 / 6}\right) H_{a}^{2 a}(x, d \xi)(\xi-x)^{2} \\
& \leqq a^{3 / 2-1 / 3} K^{\prime}(\varepsilon)+a^{7 / 6} \int H_{a}^{2 a}(x, d \xi)(\xi-x)^{9} \\
& \leqq a^{7 / 6}\left(K^{\prime}(\varepsilon)+K_{14}(r)\right) .
\end{aligned}
$$

Hence $\lim _{a \rightarrow 0} \sup _{x} \frac{1}{a} \int H_{a}^{2 a}(x, d \xi)(\xi-x)^{2}=0$. By proposition [11.11] H satisfies [L^{*}].
[16.20] Definition. Let α and β be in $C_{p}^{2}(R)$ with $\alpha>0 . P_{\alpha, \beta}$ is the process such that $H_{\alpha, \beta}=H\left(P_{\alpha, \beta}\right)$ satisfies condition (1) in [16.19]. Combining theorem [16.19] with theorem [11.7], we have:
[16.21] Corollary. $P_{\alpha, \beta}$ is a B_{P}-process.

§ 17. Existence of B-process (1): Smooth case.

Let σ and μ be in $M_{p}(R)$ with $\sigma(d x)=s_{0}(x) d x$ and $\mu(d x)=m_{0}(x) d x$. We shall assume s_{0} and m_{0} are $C_{p}^{\infty}(R)$ and positive. For any constant k, set for z in D

$$
\left\{\begin{array}{l}
m(z)=\int_{0}^{2 \pi} \tilde{h}^{\xi}(z) m_{0}(\xi) d \xi \tag{17.1}\\
l(z)=\int_{0}^{2 \pi} \tilde{k}_{\xi}(z) m_{0}(\xi) d \xi-k \\
s(z)=\int_{0}^{2 \pi} \tilde{h}_{\xi}(z) s_{0}(\xi) d \xi \\
t(z)=\int_{0}^{2 \pi} \tilde{k}_{\xi}(z) s_{0}(\xi) d \xi+k
\end{array}\right.
$$

Then, they are in $C^{\infty}(\bar{D})$, and m_{0} and s_{0} are boundary functions of m and s on ∂_{0}, respectively. Let l_{0} and t_{0} be boundary functions of l and t on ∂_{0}, respectively. Since $\{\sigma, \mu\}$ satisfies the condition $[P]$ in [5.11], there exists a nonnegative minimum solution $U=U^{0}$ in D of

$$
\left\{\begin{array}{l}
U_{x}=m t+l s \tag{17.2}\\
U_{y}=m s-l t
\end{array}\right.
$$

Set, $p_{0}=p_{0}(\sigma, \mu, k)$, that is,

$$
\begin{equation*}
2 \pi p_{0}=\int_{0}^{2 \pi} U^{0}(x, 0) s_{0}(x) d x=\inf _{y>0} \int U^{0}(x, y) s(x, y) d x . \tag{17.3}
\end{equation*}
$$

Take any positive p with $p>p_{0}$. Then by definition [4.19] $B=\{\sigma, \mu, k, p\}$ is in B. In this section we shall construct B-process for this B.

Set $U_{B}=p-p_{0}+U^{0}$. Then U_{B} is a solution of (17.2) with

$$
2 \pi p=\inf _{y>0} \int_{0}^{2 \pi} U_{B}(x, y) s(x, y) d x
$$

Obviously, U is in $C_{p}^{\infty}(\bar{D})$ by (17.2) and $U_{B}>0$ in \bar{D} for $p>p_{0}$. Define α and β in $C_{p}^{\infty}(R)$ by

$$
\left\{\begin{array}{l}
\alpha(x)=\frac{1}{s_{0}(x) m_{0}(x)} U_{B}(x, 0), \tag{17.4}\\
\beta(x)=\frac{1}{s_{0}(x)}\left(t_{0}(x)-\alpha(x) s_{0}^{\prime}(x)\right)
\end{array}\right.
$$

Then α and β are in $C_{P}^{\infty}(R)$ with $\alpha>0$. By theorem [16.18] we can construct $P=P_{\alpha, \beta}$. Since P satisfies [M], [V] and [L], $B_{P}=\left\{\sigma_{P}, \mu_{P}, k_{P}, p_{P}\right\}$ is welldefined and belongs to B. Moreover P is B_{P}-process (c.f. [16.21]). In this section, we shall show that $B=B_{P}$. Set $H=H\left(P_{\alpha, \beta}\right)=\left\{H^{a}(z, d \xi)\right\}$.
[17.1] For f in $C_{q}(R)$, set $\phi=H^{a} f$. Then $\phi, \phi_{x}, \phi_{x x}$ and ϕ_{y} are in $C(R)$ and it holds that

$$
\begin{equation*}
\left(\alpha m_{0} \phi_{x}\right)_{x}+m_{0} \phi_{y}-l_{0} \phi_{x}=0 \quad \text { on } \partial_{0} . \tag{17.5}
\end{equation*}
$$

Proof. By theorem [16.19] $\phi, \phi_{x}, \phi_{x x}$ and ϕ_{y} are in $C^{2}(R)$ and

$$
\begin{equation*}
\alpha \phi_{x x}+\beta \phi_{x}+\phi_{y}=0 \tag{17.6}
\end{equation*}
$$

holds on ∂_{0}. By (17.2) and (17.4)

$$
\left(\alpha m_{0} s_{0}\right)^{\prime}=U_{B, x}(x, 0)=m_{0} t_{0}+l_{0} s_{0}
$$

and

$$
\alpha s_{0}^{\prime}+\beta s_{0}-t_{0}=0 .
$$

Eliminating t_{0}, we have

$$
\begin{equation*}
\left(\alpha m_{0}\right)^{\prime}-\beta m_{0}-l_{0}=0 . \tag{17.7}
\end{equation*}
$$

Eliminating β from (17.6) and (17.7), we have (17.5).
[17.2]

$$
\mu=\mu_{P}, k=k_{P}, \quad m=m_{P} \quad \text { and } l=l_{P},
$$

Proof. For f in $C_{q}^{2}(R)$ set $\phi=H^{a} f$. By [8.7], Green's formula and [17.1]

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left(m(x, a) B_{P}^{a} f(x)+l(x, a) f^{\prime}(x)\right) d x \\
& =\int_{0}^{2 \pi}\left(-m(x, a) \phi_{y}(x, a)+l(x, a) \phi_{x}(x, a)\right) d x \\
& =\int_{0}^{2 \pi}\left(-m_{0}(x) \phi_{y}(x, 0)+l_{0}(x) \phi_{x}(x, 0) d x\right. \\
& =\int_{0}^{2 \pi}\left(\alpha m_{0} \phi_{x}(x, 0)\right)_{x} d x=0 .
\end{aligned}
$$

Therefore by (3) in [8.17], we can see

$$
m=m_{P} \text { and } l=l_{P},
$$

and therefore $\mu=\mu_{P}$ and $k=k_{P}$.
[17.3]

$$
\sigma=\sigma_{P}, \quad s=s_{P} \quad \text { and } t=t_{P} .
$$

Proof. Define u by $u_{x}=s, u_{y}=-t$ and $u(0,1)=0$. Then u is harmonic in $D, u(x+2 \pi, y)-u(x, y)=\int_{0}^{2 \pi} s(x, y) d x=2 \pi$ and $u_{x}=s>0$ in \bar{D}. By (17.4)

$$
\begin{aligned}
& \alpha u_{x x}(x, 0)+\beta u_{x}(x, 0)+u_{y}(x, 0) \\
& =\alpha s_{0}^{\prime}+\beta s_{0}-t_{0}=0 .
\end{aligned}
$$

Set $v=H^{a} u(\cdot, a)$. Since $v(\cdot, a)$ is in $C_{1}, v, v_{x}, v_{x x}$ and v_{y} is in $C(\bar{D})$ and

$$
\alpha v_{x x}(x, 0)+\beta v_{x}(x, 0)+v_{y}(x, 0)=0
$$

holhs by theorem [16.19]. Since $w=u-v$ is harmonic in D^{a} and belongs to $C_{p}\left(\bar{D}^{a}\right)$ and $w=0$ on ∂_{a}, we have $w=0$ or $u=v$ by maximum principle. That is, u is in H_{q}. We have $u=u_{P}$ by theorem [9.5]. Therefore $s=s_{P}, t=t_{P}$ and $\sigma=\sigma_{P}$.
[17.4]

$$
U_{B}=U_{P} \text { and } p=p_{P}
$$

Proof. Since U_{P} is a solution of (17.2), we have

$$
U_{P}=U_{B}+C
$$

for some constant C. Therefore U_{P} is in $C_{P}^{\infty}(\bar{D})$ and

$$
U_{P}(x, 0)=\alpha m_{0} s_{0}+C .
$$

Set $\phi=H^{a} f$ for f in $C_{p}(R)$, and let V be any solution of

$$
\left\{\begin{array}{l}
V_{x}=-m \phi_{y}+l \phi_{x}, \tag{17.8}\\
V_{y}=m \phi_{x}+l \phi_{y}
\end{array}\right.
$$

Then V is in $C^{1}(\bar{D})$, and by [17.1]

$$
\begin{aligned}
V_{x}(x, 0) & =-m_{0} \phi_{y}(x, 0)+l_{0} \phi_{x}(x, 0) \\
& =\left(\alpha m_{0} \phi_{x}(x, 0)\right)_{x} .
\end{aligned}
$$

Therefore, for some constant C_{1}

$$
V(x, 0)=\alpha m_{0} \phi_{x}(x, 0)+C_{1} .
$$

Since P is B_{P}-process, choosing a suitable constant C_{1}, we have by (7.1)

$$
V(x, 0) s_{0}(x)=U_{P}(x, 0) \phi_{x}(x, 0)
$$

or

$$
\begin{equation*}
C_{1} s_{0}(x)=C \phi_{x}(x, 0) \tag{17.9}
\end{equation*}
$$

Integrating the both sides from 0 to 2π, we have

$$
2 \pi C_{1}=0 \quad \text { and } \quad C \phi_{x}(x, 0)=0 .
$$

If $\phi_{x}(x, 0) \equiv 0$, then by (16.24) in theorem [16.19] $\phi_{y}(x, 0) \equiv 0$ and ϕ is a constant function. Therefore, choosing nonconstant f in $C_{p}(R)$, we may assume $\phi_{x}\left(x_{0}, 0\right) \neq 0$ for some point x_{0}. Then $C=0$. Therefore we have

$$
U_{B}=U_{P} \quad \text { and } \quad p=p_{P}
$$

By [17.2], [17.3] and [17.4] we have proved $B=B_{P}$. Therefore we have the following theorem.
[17.5] Theorem. Let $B=\{\sigma, \mu, k, p\}$ in \mathscr{B} with the following properties be given: $\sigma(d x)=s_{0}(x) d x$ and $\mu(d x)=m_{0}(x) d x, s_{0}$ and m_{0} are in $C_{p}^{\infty}(R)$ and positive and $p>p_{0}(\sigma, \mu, k)$, where $p_{0}(\dot{\sigma}, \mu, k)$ is given by (4.14). Then, there exists a unique B-process P. Moreover $P=P_{\alpha, \beta}$, where α and β are defined by (17.4).
[17.6] Corollary. The B-process given in theorem [17.5] is in \mathscr{P}_{c} and satisfies $[M],\left[V_{r}\right](r=1,2, \cdots),[L]$ and $[C]$.

Proof. By theorem [16.19], $P=P_{\alpha, \beta}$ satisfies [M], $\left[V_{r}\right](r=1,2, \cdots)$ and [L]. Since $B=B_{P}, \sigma$ and μ are in $M_{i}(R)$ and σ has no discrete mass, we see that P is in \mathscr{Q}_{c} and satisfies [C] (and [H.C]) by theorem [15.10].
\S 18. Existance of B-process (2): Case when σ and μ are in $M_{i}(R)$.
For P in \mathscr{P}, set

$$
\begin{equation*}
M(a, b)=\sup _{x} \int H_{b}^{a}(x, d \xi)(\xi-x)^{2} \tag{18.1}
\end{equation*}
$$

as in $\S 15$. The following lemma gives another bound for $M(a, b)$ (cf. [15.2]).
[18.1] Let P in \mathscr{P} satisfy [M] and [V]. Then fore $0<b<a$

$$
M(a, b) \leqq C_{1}(a) p_{P}(a)+C_{2}(\mathrm{a}),
$$

where $C_{1}(a)$ and $C_{2}(a)$ are constants depending only on a and $p_{P}(a)$ is given in [10.14].

Proof.

$$
s_{P}(x, a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sinh a}{\cosh a-\cos (\xi-x)} \sigma_{P}(d \xi) \geqq \frac{1}{2} \tanh a
$$

and

$$
\left|u_{P}(\xi, a)-u_{P}(x . a)\right| \geqq \tanh a|\xi-x| .
$$

By [8.5] and theorem [10.12]

$$
\begin{aligned}
& 2 \pi p_{P}(a)=B_{P}^{a}(u(\cdot, a), u(\cdot, a)) \\
& \geqq \int_{0}^{2 \pi} m_{P}(x, a) d x \int Q^{a-b} H_{b}^{a}(x, d \xi)(u(\xi, a)-u(x, a))^{2} \\
& \geqq \frac{1}{4}(\tanh a)^{2} \int_{0}^{2 \pi} m_{P}(x, a) d x \int Q^{a-b} H_{b}^{a}(x, d \xi)(\xi-x)^{2} \\
& \geqq \frac{1}{4}(\tanh a)^{2} \int_{0}^{2 \pi} m_{P}(x, a) d x \int Q^{a-b}(x, d \eta) H_{b}^{a}(\eta, d \xi) \\
& \quad \times\left\{\frac{1}{2}(\xi-\eta)^{2}-(\eta-x)^{2}\right\} \\
& \geqq \frac{1}{2} \pi(\tanh a)^{2}\left\{\frac{m(a, b)}{2(a-b)}-C_{1}(a-b)\right\},
\end{aligned}
$$

where $m(a, b)=\inf _{x} \int H_{b}^{a}(x, d \xi)(\xi-x)^{2}$ and C_{1} is an absolute constant given in [16.7], (2). Therefore

$$
m(a, b) \leqq a(\operatorname{coth} a)^{2}\left(4 p_{P}(a)+C_{2}(a) .\right.
$$

By [15.1], [18.1] is proved.
[18.2] Let $P_{(n)}(n=1,2, \cdots)$ in \mathscr{P} satisfy [M] and [V]. Assume that $p_{P(n)}(a) \leqq k(a)<\infty$ for each $a>0$. Then there exist a subsequence $\left\{P\left(n^{\prime}\right)\right\}$ and P in \mathscr{P} such that $P\left(n^{\prime}\right) \rightarrow P\left(n^{\prime} \rightarrow \infty\right)$. Moreover P satisfies [M] and [V].

Proof. Set ${ }^{n} H=H(P(n))$. By [18.1], for $0<b<a$

$$
{ }^{n} H_{b}^{a}(x:|\xi-x| \geqq N) \leqq \frac{1}{N^{2}} M(a, b) \leqq \frac{1}{N^{2}}\left(C_{1}(a) k(a)+C_{2}(a)\right) .
$$

Therefore, by proposition [2.8] we can find a subsequence $\left\{P\left(n^{\prime}\right)\right\}$ which converges to some P in \mathscr{P}. By definition of convergence in \mathscr{P}, P obviously satisfies [M]. Since

$$
\begin{aligned}
\int H_{p b} a(x, d \xi) \operatorname{Min}\left\{(\xi-x)^{2}, K\right\} & \leqq \lim _{n^{\prime} \rightarrow \infty} \int n^{\prime} H_{b}^{a}(x, d \xi)(\xi-x)^{2} \\
& \leqq C_{1}(a) k(a)+C_{2}(a)
\end{aligned}
$$

for any positive K, P also satisfies [V].
As a corollary to [18.2], we have:
[18.3] Let $P(n)(n=1,2, \cdots)$ in \mathscr{P} satisfy [M] and [V] with $p_{P(n)}(a) \leqq$ $k(a)<\infty$. If $P(n) \rightarrow P$, then P satisfies [M] and [V].
[18.4] Let $P(n)(n=1,2, \cdots)$ and P be in \mathscr{P}, and assume $P(n) \rightarrow P(n \rightarrow \infty)$.
Set

$$
{ }^{n} B^{a}(x, d \xi)=B_{P(n)}^{a}(x, d \xi) \quad \text { and } \quad B^{a}(x, d \xi)=B_{P}^{a}(x, d \xi)
$$

(cf. definition [8.12]).
(1) For $\phi(x, \xi)$ in $C_{b}(R \times R)$ with $|\phi(x, \xi)| \leqq K(\xi-x)^{2}$,

$$
\begin{equation*}
\int^{n} B^{a}(x, d \xi) \phi(x, \xi) \longrightarrow \int B^{a}(x, d \xi) \phi(x, \xi) \quad(n \rightarrow \infty) \tag{18.2}
\end{equation*}
$$

boundedly in x for any fixed $a>0$.
(2) For f in $C_{b}^{2}(R)$

$$
\begin{equation*}
{ }^{n} B^{a} f(x) \longrightarrow B^{a} f(x) \quad(n \rightarrow \infty) \tag{18.3}
\end{equation*}
$$

boundedly in x for any fixed $a>0$.
(3) The measures ${ }^{n} B^{a}(x, d \xi)(n=1,2, \cdots)$ converge to $B^{a}(x, d \xi)$ weakly on $R-\{x\}$.

Proof. For ϕ in $C_{b}(R \times R)$ with $|\phi(x, \xi)| \leqq K(\xi-x)^{2}$, by (8.7) in [8.5]

$$
\begin{aligned}
\int{ }^{n} B^{a}(x, d \xi)|\phi(x, \xi)| & \leqq K \int P^{a-c}(x, d \xi)(\xi-x)^{2}+\|\phi\| Q^{a-c}(x, R) \\
& \leqq K(a, c)<\infty
\end{aligned}
$$

where c is some constant less than a. Therefore

$$
\int^{n} B^{a}(x, d \xi) \phi(x, \xi) \quad(n=1,2, \cdots)
$$

are well-defined and bounded in n and x. Using (8.7) again, we have

$$
\begin{aligned}
& \int{ }^{n} B^{a}(x, d \xi) \phi(x, \xi)-\int B^{a}(x, d \xi) \phi(x, \xi) \\
& =\int Q^{a-c}(x, d \eta) \int\left({ }^{n} H_{c}^{a}(\eta, d \xi)-H_{c}^{a}(\eta, d \xi)\right) \phi(x, \xi),
\end{aligned}
$$

where ${ }^{n} H=H(P(n))$ and $H=H(P)$. Since $P(n) \rightarrow P$,

$$
\int{ }^{n} H_{c}^{a}(\eta, d \xi) \phi(x, \xi) \longrightarrow \int H_{c}^{a}(\eta, d \xi) \phi(x, \xi) \quad(n \rightarrow \infty)
$$

boundedly in η. Hence (18.2) is proved. (18.3) can be proved in a similar way. (3) is obvious by (8.7).

Now, we shall define convergence in the space \mathcal{L} of boundary conditions defined in $\S 4$.
[18.5] Definition. Let $\boldsymbol{B}(n)=\left\{\sigma_{n}, \mu_{n}, k_{n}, p_{n}\right\}(n=0,1,2, \cdots)$ be in \boldsymbol{B}. We shall write

$$
\boldsymbol{B}(n) \longrightarrow B(0) \quad(n \rightarrow \infty)
$$

if \boldsymbol{P} and only if:
(1) $\sigma_{n} \rightarrow \sigma_{0}$ and $\mu_{n} \rightarrow \mu_{0}$ in the weak sense as measures on the torus $R /(2 \pi)$.
(2) $k_{n} \rightarrow k_{0}, p_{n} \rightarrow p_{0}$ and $p_{n}(a) \rightarrow p_{0}(a)$ for any $a>0$, where

$$
p_{n}(a)=p(B(n))(a)=\int_{0}^{2 \pi} U(B(n))(x, a) s(B(n))(x, a) d x
$$

[18.6] If $B(n) \rightarrow B(n \rightarrow \infty)$, then

$$
\begin{aligned}
& s(B(n)) \longrightarrow s(B), \quad t(B(n)) \longrightarrow t(B), \quad l(B(n)) \longrightarrow l(B), \\
& m(B(n)) \longrightarrow m(B) \quad \text { and } \quad u(B(n)) \longrightarrow u(B) \quad(n \rightarrow \infty)
\end{aligned}
$$

uniformly in $D^{[b, a]}$ for any $0<b<a$.
Proof. Noting that $s(B(n)), t(B(n)), l(B(n))$ and $m(B(n))(n=1,2, \cdots)$ are harmonic functions in $C_{p}(D)$, and $u(B(n))(n=1,2, \cdots)$ are harmonic functions in $C_{q}(D)$ with $u(B(n))(z+2 \pi)-u(B(n))(z)=2 \pi$, we can easily show [18.] by definitions.
[18.7] Let P in \mathscr{P} satisfy [M] and [V]. Then

$$
\begin{equation*}
\int_{0}^{2 \pi} m_{P}(x, a) d x \int B_{P}^{a}(x, d \xi)(\xi-x)^{2} \leqq 4(\operatorname{coth} a)^{2} p_{P}(a) \tag{18.4}
\end{equation*}
$$

Moreover, if P is in \mathscr{P}_{c} for any $M>11 \pi$

$$
\begin{equation*}
\int_{0}^{2 \pi} m_{P}(x, a) d x \int_{|\xi-x| \geq M} B_{P}^{a}(x, d \xi)(\xi-x)^{2} \leq \frac{C a p_{P}(a)^{2}}{M} \tag{18.5}
\end{equation*}
$$

where C is an absolute constant.
Proof. Since $s_{P}(x, a) \geqq \operatorname{Min}_{x} h_{\xi}(x, a) \geqq(1 / 2) \tanh a$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) d x \int B^{a}(x, d \xi)(\xi-x)^{2} \\
& \leqq \frac{1}{\operatorname{Min}_{x} s_{P}(x, a)^{2}} \int_{0}^{2 \pi} m_{P}(x, a) d x \int B^{a}(x, d \xi)\left(u_{P}(\xi, a)-u_{P}(x, a)\right)^{2} \\
& \leqq 4(\operatorname{coth} a)^{2} p_{P}(a) .
\end{aligned}
$$

If P is in \mathscr{P}_{c}, set $\varepsilon=\pi$ and $\alpha=N \pi$ in [14.7]. Then

$$
\int_{0}^{2 \pi} m_{P}(x, a) d x \int_{|\xi-x| \sum(3 N+8) \pi} B_{P}^{a}(x, d \xi) \leqq \frac{a p_{P}(a)^{2}}{2 \pi^{5} N^{4}} .
$$

Therefore, for $(3 N+8) \pi<M \leqq(3 N+11) \pi(N=1,2, \cdots)$

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{P}(x, a) d x \int_{|\xi-x| \sum M} B_{P}^{a}(x, d \xi)(\xi-x)^{2} \leqq C^{\prime} a p_{P}(a)^{2} \sum_{k \geq N} \frac{(3 k+11 \pi)^{2}}{k^{4}} \\
& \quad \leqq \frac{C^{\prime \prime}}{N} a p_{P}(a)^{2} \leqq \frac{C}{M} a p_{P}(a)^{2} .
\end{aligned}
$$

[18.8] Let $P(n)(n=1,2, \cdots)$ in \mathscr{P}_{c} satisfy [M] and [V]. Set $m_{n}=m_{p(n)}$ and ${ }^{n} B^{a}(x, d \xi)=B_{p(n)}^{a}(x, d \xi)$. Assume that $P(n) \rightarrow P$ in $\mathscr{P}, m_{n} \rightarrow m_{P}$ and $\left\{p_{p(n)}(a)\right\}$ converges $(n \rightarrow \infty)$. If ϕ in $C(R \times R)$, which is not necessarily bounded, satisfies

$$
\begin{equation*}
|\phi(x, \xi)| \leqq K(\xi-x)^{2}, \tag{18.6}
\end{equation*}
$$

then for $a>0$ it holds that

$$
\begin{align*}
& \int_{0}^{2 \pi} m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi) \phi(x, \xi) \longrightarrow \tag{18.7}\\
& \quad \int_{0}^{2 \pi} m_{P}(x, a) d x \int B_{P}^{a}(x, d \xi) \phi(x, \xi) \quad(n \rightarrow \infty)
\end{align*}
$$

Proof. If ϕ is bounded, then (18.7) is obvious by [18.4], since $m_{n}(x, a) \rightarrow$ $m_{P}(x, a)$ uniformly in x for fixed a. For general ϕ, we may assume ϕ is nonnegative. Set

$$
\phi_{M}=\operatorname{Min}\left\{K M^{2}, \phi\right\}
$$

for positive M with $M>11 \pi$. By (18.6), we can see

$$
\phi_{M}(x, \xi)=\phi(x, \xi) \quad \text { if }|\xi-x| \leqq M
$$

Therefore by [18.7]

$$
\begin{aligned}
& \int_{0}^{2 \pi} m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi)\left(\phi-\phi_{M}\right)(x, \xi) \\
& \leqq K \int_{0}^{2 \pi} m_{n}(x, a) d x \int_{|\xi-x|>M}{ }^{n} B^{a}(x, d \xi)(\xi-x)^{2} \\
& \leqq \frac{K C_{a} k(a)^{2}}{M}
\end{aligned}
$$

where $k(a)=\sup _{n} p_{p(n)}(a)$ is finite since $\left\{p_{p(n)}(a)\right\}$ converges. Therefore

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int m_{n}(x, a) d x \int{ }^{n} B^{a}(x, d \xi) \phi_{M}(x, \xi) \\
& =\int m_{P}(x, a) d x \int B_{P}^{a}(x, d \xi) \phi_{M}(x, \xi) \\
& \leqq \lim _{n \rightarrow \infty} \int m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi) \phi(x, \xi) \\
& \leqq \lim _{n \rightarrow \infty} \int m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi) \phi(x, \xi) \\
& \leqq \lim _{n \rightarrow \infty} \int m_{n}(x, a) d x \int{ }^{n} B^{a}(x, d \xi) \phi_{M}(x, \xi)+\frac{K C_{a} k(a)}{M}
\end{aligned}
$$

Since we can take M arbitrarily large, [18.8] is proved.
[18.9] Under the same assumption as in [18.8], let f_{n} and $g_{n}(n=0,1,2, \cdots)$ in $C^{1}(R)$ satisfy

$$
\begin{equation*}
\left\|f_{n}^{\prime}\right\| \leqq K, \quad\left\|g_{n}^{\prime}\right\| \leqq K \tag{18.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{n}^{\prime}-f_{0}^{\prime}\right\| \longrightarrow 0, \quad\left\|g_{n}^{\prime \prime}-g_{0}^{\prime}\right\| \longrightarrow 0 \quad(n \rightarrow \infty) \tag{18.9}
\end{equation*}
$$

Then $B_{p(n)}^{a}\left(f_{n}, g_{n}\right) \rightarrow B_{P}^{a}\left(f_{0}, g_{0}\right)(n \rightarrow \infty)$ (See notation [10.2]).
Proof. Set $p_{n}(a)=p_{P(n)}(a), m_{n}=m_{P(n)},{ }^{n} B^{a}(x, d \xi)=B_{P(n)}^{a}(x, d \xi)$ and

$$
\phi_{n}(x, \xi)=\rho_{f_{n}, g_{n}}(x, \xi)=\int_{x}^{\xi} g_{n}^{\prime}(t) d t \int_{x}^{t} f_{n}^{\prime}(s) d s .
$$

Then

$$
\left|\phi_{n}(x, \xi)-\phi_{0}(x, \xi)\right| \leqq \frac{K}{2}\left(\left\|f_{n}^{\prime}-f_{0}^{\prime}\right\|+\left\|g_{n}^{\prime}-g_{0}^{\prime}\right\|\right)(\xi-x)^{2} .
$$

Therefore, by (18.4) in [18.7]

$$
\begin{aligned}
& \left|B_{p(n)}^{a}\left(f_{n}, g_{n}\right)-B_{p(n)}^{a}\left(f_{0}, g_{0}\right)\right| \\
& =\mid \int_{0}^{2 \pi} m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi)\left(\phi_{n}-\phi_{0}\right)(x, \boldsymbol{\xi}) \\
& \leqq 2 K\left(\left\|f_{n}^{\prime}-f_{0}^{\prime}\right\|+\left\|g_{n}^{\prime}-g_{0}^{\prime}\right\|\right)(\operatorname{coth} a)^{2} p_{n}(a)
\end{aligned}
$$

Since $\left\{p_{n}(a)\right\}$ converges, the right side of the above inequality converges to zero. On the other hand, since $\left|\phi_{0}(x, \xi)\right| \leqq\left(K^{2} / 2\right)(\xi-x)^{2}$, by [18.8]

$$
\begin{aligned}
\lim B_{P(n)}^{\alpha}\left(f_{0}, g_{0}\right) & =\lim \int_{0}^{2 \pi} m_{n}(x, a) d x \int^{n} B^{a}(x, d \xi) \phi_{0}(x, \xi) \\
& =\int_{0}^{2 \pi} m_{P}(x, a) \int B_{P}^{a}(x, d \xi) \phi_{0}(x, \xi) \\
& =B_{P}^{a}\left(f_{0}, g_{0}\right)
\end{aligned}
$$

Hence [18.9] is proved.
[18.10] Lemma. Let $P(n)(n=1,2, \cdots)$ in \mathscr{P}_{c} satisfy [M] and [V]. Assume $B_{P(n) \rightarrow B}$ in \mathscr{Q} and $P(n) \rightarrow P$ in \mathscr{P}. Then $B=B_{P}$.

Proof. Since $p_{n}(a)=p_{P(n)}(a) \rightarrow p_{B}(a)$, it holds that $k(a)=\sup _{n} p_{n}(a)<\infty$. Therefore by [8.3] P satisfies [M] and [V].
1° Set ${ }^{n} H=H(P(n)), H=H(P), u_{n}=u_{p(n)}$ and $u=u(B)$. Since by [18.1]

$$
\int{ }^{n} H_{b}^{a}(x, d \xi)(\xi-x)^{2} \leqq C_{1}(a) k(a)+C_{2}(a)<\infty
$$

for $0<b<a$ and by [18.6] $\left\{u_{n}(x, a)\right\}$ converges to $u(x, a)$ uniformly in x,

$$
u(x, b)=\lim u_{n}(x, b)=\lim ^{n} H_{b}^{a} u_{n}(\cdot, a)(x)=H_{b}^{a} u(\cdot, a)(x) .
$$

It is obviou that $u(0,1)=0$ and $u(z+2 \pi)-u(z)=2 \pi$. By theorem [9.5] we have $u=u_{P}$. Therefore $s(B)=s_{P}, t(B)=t_{P}, \sigma_{B}=\sigma_{P}$ and $k_{B}=k_{P}$ also hold by definition.
2° Set $m_{n}=m_{P(n)}$ and $m=m(B)$. By [8.12] for any f in $C_{p}^{2}(R)$

$$
\int^{2 \pi} m_{n}(x, a)\left(P+{ }^{n} B^{a}\right) f(x) d x=0
$$

where ${ }^{n} B^{a}(x, d \xi)=B_{P(n)}^{\alpha}(x, d \xi)$. Since by $[18.6]\left\{m_{n}(x, a)\right\}$ converges to $m(x, a)$ uniformly in x and by [18.4] $\left\{^{n} B^{a} f(x)\right\}$ converges to $B_{P}^{a} f(x)$ boundedly in x, we have

$$
\int_{0}^{2 \pi} m(x, a)\left(P+B_{P}^{a}\right) f(x) d x=0
$$

It is clear that $\int_{0}^{2 \pi} m(x, a) d x=2 \pi$. By [18.12] we have $m_{B}=m_{P}$ and $\mu_{B}=\mu_{P}$.
3° Set $s_{n}=s_{P(n)}$ and $s=s(B)$.

$$
\begin{aligned}
\left\|u_{n}^{\prime}(\cdot, a)\right\|=\left\|s_{n}(\cdot, a)\right\| & \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\sinh a}{\cosh a-1} \sigma_{p(n)}(d x) \\
& \leqq \frac{\sinh a}{\cosh a-1}
\end{aligned}
$$

and by [18.6]

$$
\left\|u_{n}^{\prime}(\cdot, a)-u^{\prime}(\cdot, a)\right\| \leqq\left\|s_{n}(\cdot, a)-s(\cdot, a)\right\| \longrightarrow 0 \quad(n \rightarrow \infty) .
$$

Therefore, by [18.9]

$$
\begin{aligned}
p_{B}(a)=\lim _{n \rightarrow \infty} p_{n}(a) & =\lim B_{p(n)}^{a}\left(u_{n}(\cdot, a), u_{n}(\cdot, a)\right) \\
& =B_{P}^{\alpha}(u(\cdot, a), u(\cdot, a))=p_{P}(a)
\end{aligned}
$$

and $p_{B}=\inf _{a>0} p_{B}(a)=\operatorname{idf}_{a>0} p_{P}(a)=p_{P}$. By $1^{\circ}, 2^{\circ}$ and 3° we have proved that $B=B_{P}$.
[18.11] Proposition. Let $P(n)(n=1,2, \cdots)$ in \mathscr{P}_{c} satisfy [M] and [V]. Assume that $B_{P(n)} \rightarrow B(n \rightarrow \infty)$ for some $B=\{\sigma, \mu, k, p\}$ in \mathcal{B} with σ and μ in $M_{i}(R)$. Then $P(n) \rightarrow P(n \rightarrow \infty)$ for some P in \mathscr{P}. P is a B-process and $B=B_{P}$. P satisfies $[M],[V]$ and $[L]$.

Proof. 1° Since $p_{n}(a)=p_{P(n)}(a) \rightarrow p_{B}(a) \quad(n \rightarrow \infty)$, it holds that $k(a)=$ $\sup _{n} p_{n}(a)<\infty$. Therefore, by [8.2], for any subsequence of $\{P(n)\}$, we can choose a subsequence $\left\{P\left(n_{r}\right)\right\}$ such that $P\left(n_{r}\right) \rightarrow P$ as $r \rightarrow \infty$ for some P in \mathscr{P} and P satisfies [M] and [V]. By [18.10], $B=B_{P}$. In abbreviation, we shall write $P(r)=P\left(n_{r}\right), \sigma_{r}=\sigma_{P(r)}, \mu_{r}=\mu_{P(r)}, m_{r}=m_{P(r)}, m=m_{P},{ }^{r} B^{a}(x, d \xi)=B_{P(r)}^{a}(x, d \xi)$, $B^{a}(x, d \xi)=B_{P}^{a}(x, d \xi)$ and $p_{r}(a)=p_{P(r)}(a)$.
2° For ρ in $M_{p}(R)$, set $\delta(\rho, \varepsilon)=\sup _{x} \rho((x-\varepsilon, x+\varepsilon))$. Since σ and μ are in $M_{i}(R)$ and $\mu_{r} \rightarrow \mu$ and $\sigma_{r} \rightarrow \sigma$ weakly, we have for any $\varepsilon>0$

$$
\lim _{r \rightarrow \infty} \delta\left(\mu_{r}, \varepsilon\right) \geqq \delta\left(\sigma, \frac{\varepsilon}{2}\right)>0
$$

and

$$
\lim _{r \rightarrow \infty} \delta\left(\sigma_{r}, \varepsilon\right) \geqq \delta\left(\sigma, \frac{\varepsilon}{2}\right)>0
$$

Therefore we may assume

$$
\delta\left(\sigma_{r}, \varepsilon\right), \quad \delta\left(\mu_{r}, \varepsilon\right) \geqq \delta_{0}=\delta_{0}(\varepsilon)>0 .
$$

Therefore by [14.7]

$$
\int_{0}^{2 \pi} m_{r}(x, a)^{r} B^{a}\left(x, U_{11 \varepsilon}^{c}(x)\right) d x \leqq \frac{16 a p_{r}(a)^{2}}{\delta_{0}^{5}}
$$

and by (3) in [18.4]

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}^{r} B^{a}\left(x, U_{11 \varepsilon}^{c}(x)\right) \geqq B_{P}^{\alpha}\left(x, U_{12 \varepsilon}^{c}(x)\right) . \\
& \int_{0}^{2 \pi} m(x, a) B_{P}^{a}\left(x, U_{12 \varepsilon}^{c}(x)\right) d x \\
& \leqq \lim _{r \rightarrow \infty} \int_{0}^{2 \pi} m_{r}(x, a)^{r} B^{a}\left(x, U_{11 \varepsilon}^{c}(x)\right) \leqq \frac{16 a p_{P}(a)^{2}}{\delta_{0}^{5}}
\end{aligned}
$$

for $p_{P}(a)=p(B)(a)=\lim p_{r}(a)$. Since $p_{P}(a)$ is an increasing function in a, we have

$$
\lim _{a \rightarrow 0} \int_{0}^{2 \pi} m(x, a) B_{P}^{a}\left(x, U_{12 \varepsilon}^{c}(x)\right)=0 .
$$

On the other hand, by [18.8] for $M>12 \pi$

$$
\begin{aligned}
& \int_{0}^{2 \pi} m(x, a) d x \int_{|\xi-x| 2 M} B^{a}(x, d \xi)(\xi-x)^{2} \\
& \leqq \lim _{r \rightarrow \infty} \int_{0}^{2 \pi} m_{r}(x, a) d x \int_{|\xi-x| \geq M-\pi}{ }^{r} B^{a}(x, d \xi)(\xi-x)^{2}
\end{aligned}
$$

Since $P(r)(r=1,2, \cdots)$ are in \mathscr{P}_{c}, by [18.7]

$$
\int_{0}^{2 \pi} m_{r}(x, a) d x \int_{|\xi-x| \Sigma M-\pi}{ }^{r} B^{a}(x, d \xi)(\xi-x)^{2} \leqq \frac{C a p_{r}(a)^{2}}{M-\pi}
$$

and therefore

$$
\int_{0}^{2 \pi} m(x, a) d x \int_{|\xi-x| \geq M} B^{a}(x, d \xi)(\xi-x)^{2} \leqq \frac{C a p_{P}(a)^{2}}{M-\pi}
$$

and the right side converges to 0 as $a \rightarrow 0$. Finally we have

$$
\lim _{a \rightarrow 0} \int_{0}^{2 \pi} m(x, a) \int_{|\xi-x| \geq 12 \varepsilon} B^{a}(x, d \xi)(\xi-x)^{2}=0
$$

for any positive ε and P satisfies [L^{*}].
3° Since P satisfies [M], [V] and [$\left.L\right]$ and moreover $B \rightarrow B_{P}$ holds, P is B-process by theorem [11.7]. Therefore by uniqueness of B-process (cf. theorem [7.7]) P is independent of the subsequence $\{P(r)\}=\left\{P\left(n_{r}\right)\right\}$. Hence

$$
P(n) \longrightarrow P \quad(n \rightarrow \infty) .
$$

Proposition [18.11] is proved.
[18.12] Theorem. Let $B=\{\sigma, \mu, k, p\}$ in \mathscr{B} be given. If σ and μ are in $M_{i}(R)$, there exists a unique B-process P such that P satisfies $[M],[V]$ and $[L]$ and $B=B_{P}$. Moreover P is in \mathscr{P}_{c}.

Proof. Set $s=s(B), t=t(B), m=m(B), l=l(B)$ and $U=U(B)$. Define $\sigma_{a}(d x)$ $=s(x, a) d x, \mu_{a}(d x)=m(x, a) d x, k_{a}=k$ and

$$
p_{a}=\frac{1}{2 \pi} \int_{0}^{2 \pi} s(x, a) U(x, a) d x=p_{B}(a) .
$$

Then, $U_{a}(z)=U(x, y+a)$ is a positive solution of

$$
\left\{\begin{array}{l}
\left(U_{a}\right)_{x}=m_{a} t_{a}+l_{a} s_{a} \tag{18.10}\\
\left(U_{a}\right)_{y}=m_{a} s_{a}-l_{a} t_{a}
\end{array}\right.
$$

in D, where

$$
\begin{aligned}
& m_{a}(z)=m(x, y+a)=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \mu_{a}(d \xi), \\
& l_{a}(z)=l(x, y+a)=\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \mu_{a}(d \xi)-k, \\
& s_{a}(z)=s(x, y+a)=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \sigma_{a}(d \xi), \\
& t_{a}(z)=t(x, y+a)=\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \sigma_{a}(d \xi)+k,
\end{aligned}
$$

Noting $p_{a}(b)=\frac{1}{2 \pi} \int_{0}^{2 \pi} s_{a}(x, b) U_{a}(x, b) d x=p_{B}(a+b)$ for $b>0$ and $p_{a}=\inf _{b>0} p_{a}(b)$, we can see $B_{a}=\left\{\sigma_{a}, \mu_{a}, k_{a}, p_{a}\right\}$ is in \mathscr{B}. By representation of U in [5.9] and [5.10] we have $\lim _{y \rightarrow \infty} U(z)=\infty$, therefore $\operatorname{lnf}_{z \in D} U_{a}(z)=\inf _{y=a} U(x, a)>0$ and U_{a} is greater than the minimum nonnegative solution of (18.10) or $p_{a}>p\left(\sigma_{a}, \mu_{a}, k_{a}\right)$. Hence B_{a} satisfies the conditions in theorem [17.5] and there exists a process P_{a} with $B_{P_{a}}=B_{a}$. By [17.6] P_{a} satisfies [M] and $[V]$ and is in \mathscr{P}_{c}. Noting $p_{P_{a}}(b)=p_{a}(b)=p_{B}(a+b)$, we can easily show $B_{a} \rightarrow B$ as $a \rightarrow 0$. Therefore, by proposition [18.11], we can show existence of B-process P which satisfies [M], [V] and [$L]$, since μ and σ are in $M_{i}(R)$. Uniqueness is obvious by theorem [7.7]. By theorem [14.9] we can see P is in \mathscr{P}_{c}.

§ 19. Existence of B-process (3): General case.

Let σ_{i} and $\mu_{j}(i, j=0,1)$ be in $M_{p}(R)$ and k be a constant. Assume that $B_{\imath \jmath}=\left\{\sigma_{\imath}, \mu_{\jmath}, k, p_{i j}\right\}$ is in \mathcal{L}. Set, for $0 \leqq \lambda \leqq 1$,

$$
\begin{aligned}
& \mu_{\lambda}=(1-\lambda) \mu_{0}+\lambda \mu_{1}, \quad \sigma_{\lambda}=(1-\lambda) \sigma_{0}+\lambda \sigma_{1}, \\
& s_{\lambda}=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \sigma_{\lambda}(d \xi), \\
& t_{\lambda}=\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \sigma_{\lambda}(d \xi)+k \\
& m_{\lambda}=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \mu_{\lambda}(d \xi)
\end{aligned}
$$

and

$$
l_{\lambda}=\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \mu_{\lambda}(d \xi)+k
$$

Set

$$
\begin{equation*}
U^{2} \equiv U\left(\lambda: B_{2 j}\right)=(1-\lambda)^{2} U_{00}+\lambda(1-\lambda)\left(U_{01}+U_{10}\right)+\lambda^{2} U_{11} . \tag{19.1}
\end{equation*}
$$

where $U_{\imath \jmath}=U\left(B_{\imath \jmath}\right)$. Then U^{λ} is a nonnegative solution of

$$
\left\{\begin{array}{l}
U_{x}^{\lambda}=m_{\lambda} t_{\lambda}+l_{\lambda} s_{\lambda}, \tag{19.2}\\
U_{\hat{y}}^{\lambda}=m_{\lambda} s_{\lambda}-l_{\lambda} t_{\lambda}
\end{array}\right.
$$

Therefore

$$
\begin{equation*}
B^{\lambda}=B\left(\lambda ; B_{2 \jmath}\right)=\left\{\sigma_{\lambda}, \mu_{\lambda}, k, p_{\lambda}\right\} \tag{19.3}
\end{equation*}
$$

is in $\mathcal{L}(0 \leqq \lambda \leqq 1)$, where $p_{\lambda}=\inf _{a>0} \int U^{\lambda}(x, a) s_{\lambda}(x, a) d x$, and $U^{\lambda}=U\left(B^{\lambda}\right)$.
In the following, we shall choose $r \in[0,2 \pi)$ so that

$$
\begin{equation*}
\sigma_{i}(\{r\})=\mu_{j}(\{r\})=0 \quad(i, j=0,1) \tag{19.4}
\end{equation*}
$$

Set $I(r)=[r, r+2 \pi]$ and

$$
\begin{align*}
& F_{r}(x, \alpha)=\int_{I(r)} F(x, \xi) \alpha(d \xi) \tag{19.5}\\
& F_{r}(\alpha, \beta)=\int_{I(r)^{2}} F(x, \xi) \alpha(d x) \beta(d \xi) \tag{19.6}
\end{align*}
$$

for locally bounded signed measures α and β on R, where $F(x, \xi)$ is defined by (5.3). Since

$$
\int_{[0,2 \pi)} F(x, \xi) \rho(d \xi)-\int_{[r, r+2 \pi]} F(x, \xi+r) \rho(d \xi)=\rho([0, r))
$$

for any periodic measure ρ, the representation of U^{λ} given in [5.13] and [5.14] has the following form;

$$
\begin{equation*}
U^{\lambda}(z)=\int_{0}^{2 \pi} \tilde{h}_{\xi}(z) U_{0}^{\lambda}(\xi) d \xi+\left(1+k^{2}\right) y \tag{19.7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
U_{0}^{\lambda}(z)=-T_{0}\left(x, \sigma_{\lambda}, \mu_{\lambda}\right)+k F_{r}\left(x, \mu_{\lambda}-\sigma_{\lambda}\right)+C_{r \lambda} \tag{19.8}\\
T_{0}\left(x, \sigma_{\lambda}, \mu_{\lambda}\right)=\int_{I(r)^{2}} T_{0}^{*}(x, \xi, \eta) \sigma_{\lambda}(d \xi) \mu_{\lambda}(d \eta) \\
T_{0}^{*}(x, \xi, \eta)= \begin{cases}T_{0}(x, \xi, \eta) & \text { if } \xi \neq \eta \\
0 & \text { if } \xi=\eta\end{cases}
\end{array}\right.
$$

and $T_{0}(x, \xi, \eta)$ is given by (5) in [5.5]. Noting [5.14], $T_{0}\left(x, \sigma_{2}, \mu_{\rho}\right)$ and $F_{r}\left(x, \mu_{j}-\sigma_{i}\right)$ are bounded in $x(i, j=1,2)$. Therefore we can easily see:
[19.1]

$$
\begin{aligned}
& T_{0}\left(x, \sigma_{\lambda}, \mu_{\lambda}\right) \longrightarrow T_{0}\left(x, \sigma_{0}, \mu_{0}\right), \\
& F_{r}\left(x, \sigma_{\lambda}, \mu_{\lambda}\right) \longrightarrow F_{r}\left(x, \sigma_{0}, \mu_{0}\right), \\
& U_{0}^{\lambda}(x) \longrightarrow U_{0}^{0}(x)=\left(U_{00}\right)_{0}(x)
\end{aligned}
$$

as $\lambda \rightarrow 0$ uniformly in x.
We shall note the following elementary lemma without proof.
[19.2] Lemma. Let K be a compact space in R^{d} and let a and α_{n} be bounded measures on K, and β and β_{n} be signed measures on K with $d\left|\beta_{n}\right| \leqq C d \alpha_{n}(n=$ $1,2, \cdots)$. Assume that $\alpha_{n} \rightarrow \alpha$ and $\beta_{n} \rightarrow \beta$ in the weak sense, then $d|\beta| \leqq C d \alpha$. Moreover, let A be a closed subset of K with $\sigma(A)=0$ and g be a bounded measurable function on K which is continuous except at point in A. Then

$$
\int g d \rho_{n} \longrightarrow \int g d \rho \quad(n \rightarrow \infty)
$$

[19.3] Let $\alpha_{\lambda}, \beta_{\lambda}$ and $\gamma_{\lambda}(0 \leqq \lambda \leqq 1)$ be signed periodic measures on R with $\left|\alpha_{\lambda}\right|(d x),\left|\beta_{\lambda}\right|(d x) \leqq K \sigma_{\lambda}(d x)$ and $\left|\gamma_{\lambda}\right|(d x) \leqq K \mu_{\lambda}(d x)(0<K<\infty)$. Assume that $\alpha_{\lambda} \rightarrow \alpha_{0}, \beta_{\lambda} \rightarrow \beta_{0}$ and $\gamma_{\lambda} \rightarrow \gamma_{0}$ in the weak sense as $\lambda \rightarrow 0$. Then, for any f in $C_{p}(R)$,
(1) $T_{0}\left(f \cdot \alpha_{\lambda}, \beta_{\lambda}, \gamma_{\lambda}\right)+T_{0}\left(f \cdot \beta_{\lambda}, \alpha_{\lambda}, \gamma_{\lambda}\right) \longrightarrow$

$$
T_{0}\left(f \cdot \alpha_{0}, \beta_{0}, \gamma_{0}\right)+T_{0}\left(f \cdot \beta_{0}, \alpha_{0}, \gamma_{0}\right)
$$

(2) $F_{r}\left(\alpha_{\lambda}, \gamma_{\lambda}\right) \longrightarrow F_{r}\left(\alpha_{0}, \gamma_{0}\right)$,
(3) $F_{r}\left(f \cdot \alpha_{\lambda}, \beta_{\lambda}\right)+F_{r}\left(f \cdot \beta_{\lambda}, \alpha_{\lambda}\right) \longrightarrow F_{r}\left(f \cdot \alpha_{0}, \beta_{0}\right)+F_{r}\left(f \cdot \beta_{0}, \alpha_{0}\right)$
as $\alpha \rightarrow 0$. Where

$$
\begin{aligned}
& T_{0}(\alpha, \beta, \gamma)=\iiint_{x, \xi, \eta \in[0,2 \pi)} T_{0}^{*}(x, \xi, \eta) \alpha(d x) \beta(d \xi) \gamma(d \eta) \\
& F_{r}(\alpha, \beta)=\iint_{x, \xi \in[r, r+2 \pi)} F(x, \xi) \alpha(d x) \beta(d \xi)
\end{aligned}
$$

Proof. Set

$$
\begin{aligned}
& \tilde{T}_{0}(x, \xi, \eta)=T_{0}^{*}(x, \xi, \eta)+T_{0}^{*}(\xi, x, \eta), \\
& T_{0}^{N}(x, \xi, \eta)=\operatorname{Min}\left\{N, T_{0}^{*}(x, \xi, \eta)\right\}, \\
& \widetilde{T}_{0}^{N}(x, \xi, \eta)=\operatorname{Min}\left\{N, \widetilde{T}_{0}(x, \xi, \eta)\right\} .
\end{aligned}
$$

Then, by definition (cf. [5.3] and [5.5]), it holds that for x, ξ, η in $(r, r+2 \pi)$
(i) $T_{0}^{N}(x, \xi, \eta)$ is bounded and continuous except $\{x=\xi\} \cup\{x=\eta\}$, and
(ii) $\tilde{T}_{0}^{N}(x, \xi, \eta)$ is bounded and continuous except $\{x=\eta\} \cup\{\xi=\eta\}$.

Set $I(r)=[r, r+2 \pi]$ and $\rho_{\lambda}(d x, d \xi, d \eta)=\alpha_{\lambda}(d x) \beta_{\lambda}(d \xi) \gamma_{\lambda}(d \eta)$. Since $T_{0}(x, \xi, \eta)$ is periodic in x, ξ and η, by (19.4)

$$
\begin{aligned}
& J_{\lambda}=T_{0}\left(f \cdot \alpha_{\lambda}, \beta_{\lambda}, \gamma_{\lambda}\right)+T_{0}\left(f \cdot \beta_{\lambda}, \alpha_{\lambda}, \gamma_{\lambda}\right) \\
& =\int_{I(r)^{3}} \widetilde{T}_{0}(x, \xi, \eta) f(\xi) d \rho_{\lambda}+\int_{I(r)^{3}} T_{0}(x, \xi, \eta)(f(x)-f(\xi)) d \rho_{\lambda}=J_{\lambda}^{N}+C_{\lambda}^{N}
\end{aligned}
$$

where $\alpha \rho_{\lambda}=\alpha_{\lambda}(d x) \beta_{\lambda}(d \xi) \gamma_{\lambda}(d \eta)$

$$
J_{\lambda}^{N}=\int_{I(r)^{3}} \tilde{T}_{0}^{N}(x, \xi, \eta) f(\xi) d \rho_{\lambda}+\int_{I(r)^{3}} T_{0}^{N}(x, \xi, \eta)(f(x)-f(\xi)) d \rho_{\lambda}
$$

and

$$
\begin{aligned}
C_{\lambda}^{N}= & \int_{I(r)^{3}}\left(\tilde{T}_{0}-\tilde{T}_{0}^{N}\right)(x, \xi, \eta) f(\xi) d \rho_{\lambda} \\
& +\int_{I(r)^{3}}\left(T_{0}-T_{0}^{N}\right)(x, \xi, \eta)(f(x)-f(\xi)) d \rho_{\lambda}
\end{aligned}
$$

By assumption and condition $[P]$ in [5.11] γ_{λ} has no common mass with α_{λ} and β_{λ}. Therefore by (i) and (ii), using [19.2], we have

$$
J_{\lambda}^{N} \longrightarrow J_{0}^{N} \quad \text { as } \lambda \rightarrow 0
$$

On the other hand by assumption

$$
\left|C_{N}(\lambda)\right| \leqq 4\|f\| K^{3}\left(T_{0}-T_{0}^{N / 2}\right)\left(\sigma_{\lambda}, \sigma_{\lambda}, \mu_{\lambda}\right)
$$

and therefore by [19.1]

$$
\varlimsup_{\lambda \rightarrow 0} \mid C_{N}(\lambda) \leqq 4\|f\| K^{3}\left(T_{0}-T_{0}^{N / 2}\right)\left(\sigma_{0}, \sigma_{0}, \mu_{0}\right)
$$

Since $T_{0}^{N / 2} \uparrow T_{0}$, we have proved (1). For x and ξ in $(r, r+2 \pi)$ it holds that
(iii) $F(x, \xi)$ is bounded and continuous except $\{x=\xi\}$.
(iv) $F(x, \xi)+F(\xi, x)=1$.

Then

$$
\begin{aligned}
& F_{r}\left(f \cdot \alpha_{\lambda}, \beta_{\lambda}\right)+F_{r}\left(f \cdot \beta_{\lambda}, \alpha_{\lambda}\right) \\
& =\int_{I(r) 2} f(\xi) \alpha_{\lambda}(d x) \beta_{\lambda}(d \xi) \\
& \quad+\int_{I(r) 2} F(x, \xi)(f(x)-f(\xi)) \alpha_{\lambda}(d x) \beta_{\lambda}(d \xi)
\end{aligned}
$$

In a way similar to (1), we can easily show (2) and (3).
To proceed from [19.5] to [19.10], we shall impose the following temporary assumption.
[19.4] Assumption. For a positive sequence λ_{n} with $\lambda_{n} \rightarrow 0, f$ in $C_{p, N}(R)$ and a positive constant a, assume:
(1) For each $n, B_{N}^{\lambda_{N} n}$-solution $\phi_{\lambda_{n}}$ for f in D^{a} exists.
(2) $\left\|\phi_{\lambda_{n}}\right\| \leqq K_{1}$ and $\lim _{n \rightarrow \infty} \phi_{\lambda_{n}}(z)=\phi_{0}(z)$ exists.
(3) $\left|\sigma_{\phi_{\lambda_{n}}}\right|(x) \leqq K_{2} \sigma_{\lambda_{n}}(d x)$.

Here K_{1} and K_{2} are positive constants independent of n and $\sigma_{\phi_{\lambda_{n}}}$ is the boundary measures of $\phi_{\lambda_{n}}$ defined in [4.15].

We shall write $B^{n}=B^{\lambda_{n}}, \sigma_{n}=\sigma_{\lambda_{n}}, \mu_{n}=\mu_{\lambda_{n}}, U^{n}=U^{\lambda_{n}}, \phi_{n}=\phi_{\lambda_{n}}$ and etc. Noting $l_{n}=l_{\lambda_{n}} \rightarrow l_{0}$ and $m_{n}=m_{\lambda_{n}} \rightarrow m_{0}(n \rightarrow \infty)$, we can easily have:
[19.5] Under [19.4], $\phi_{0}(z)$ in (2) belongs to $D_{p, N}^{a}\left(B^{0}\right)$ which is defined in [4.13]. The boundary measure $\sigma_{\phi_{0}}$ of $\phi_{0}(z)$ satisfies that $\sigma_{\phi_{n}} \rightarrow \sigma_{\phi_{0}}(n \rightarrow \infty)$ in the weak sense and $\left|\sigma_{\phi_{0}}\right|(d x) \leqq K_{2} \sigma_{0}(d x)$.
[19.6] Let f be in $C_{p}(R)$ and assume [19.4] for $N=1$. As in [5.17], set

$$
\phi_{n}(z)=\left(\phi_{n}\right)_{y}(z)+\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \sigma_{\phi_{n}}(d \xi) \quad(n=1,2, \cdots)
$$

and

$$
\phi_{0}(z)=\left(\phi_{0}\right)_{y}(z)+\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \sigma_{\phi_{0}}(d \xi)
$$

Let $\psi_{n}^{0}(n=1,2, \cdots)$ and ψ_{0}^{0} be their boundary functions on ∂_{0}. Then

$$
\psi_{n}^{0}(x) \longrightarrow \varphi_{0}^{0}(x) \text { nuiformly in } x .
$$

Proof. $\lim _{n \rightarrow \infty} \psi_{n}(z)=\psi_{0}(z)$ in D^{a}. Set

$$
g_{n}(z)=\left(\phi_{n}\right)_{x}(z)-\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \sigma_{\phi_{n}}(d \xi) .
$$

Then g_{n} is a harmonic conjugate of ψ_{n} and can be extended to the harmonic function \tilde{g}_{n} on $\{z=(x, y):-a<y<a\}$. Moreover $g_{n}(z)$ also converges in D^{a} and $\tilde{g}_{n}(n=1,2, \cdots)$ are uniformly bounded in $\{z=(x, y):-b>y<b\}$ for any fixed b with $0<b<a$. Noting $\psi_{n}(z)$ is periodic in x, we can easily show [19.6].
[19.7] Under the same assumption as in [19.6], it holds that, for any g in $C_{p}(R)$,
(1) $T_{0}\left(g \cdot \sigma_{n}, \sigma_{\phi_{n}}, \mu_{n}\right) \longrightarrow T_{0}\left(g \cdot \sigma_{0}, \sigma_{\phi_{0}}, \mu_{0}\right)$
(2) $F_{r}\left(g \cdot \sigma_{n}, k \sigma_{\phi_{n}}+\psi_{n}^{0} \cdot \mu_{n}\right) \longrightarrow F_{r}\left(g \cdot \sigma_{0}, k \sigma_{\phi_{0}}+\psi_{0}^{0} \cdot \mu_{0}\right) \quad(n \rightarrow \infty)$

Proof. By [19.1], it is easily shown that

$$
\begin{align*}
& T_{0}\left(g \cdot \sigma_{\phi_{n}}, \sigma_{n}, \mu_{n}\right) \longrightarrow T_{0}\left(g \cdot \sigma_{\phi_{0}}, \sigma_{0}, \mu_{0}\right), \tag{19.9}\\
& F_{r}\left(g \cdot \sigma_{\phi_{n}}, \sigma_{n}\right) \longrightarrow F_{r}\left(g \cdot \sigma_{\phi_{0}}, \sigma_{0}\right) \quad(n \rightarrow \infty) \tag{19.10}
\end{align*}
$$

On the other hand by [19.3]

$$
\begin{align*}
& T_{0}\left(g \cdot \sigma_{\phi_{n}}, \sigma_{n}, \mu_{n}\right)+T_{0}\left(g \cdot \sigma_{n}, \sigma_{\phi_{n}}, \mu_{n}\right) \tag{19.11}\\
& \longrightarrow T_{0}\left(g \cdot \sigma_{\phi_{0}}, \sigma_{0}, \mu_{0}\right)+T_{0}\left(g \cdot \sigma_{0}, \sigma_{\phi_{0}}, \mu_{0}\right), \\
& F_{r}\left(g \cdot \sigma_{\phi_{n}}, \sigma_{n}\right)+F_{r}\left(g \cdot \sigma_{n}, \sigma_{\phi_{n}}\right) \tag{19.12}\\
& \longrightarrow F_{r}\left(g \cdot \sigma_{\phi_{0}}, \sigma_{0}\right)+F_{r}\left(g \cdot \sigma_{0}, \sigma_{\phi_{0}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
F_{r}\left(g \cdot \sigma_{n}, \phi_{n}^{0} \cdot \mu_{n}\right) \longrightarrow F_{r}\left(g \cdot \sigma_{0}, \psi_{0}^{0} \cdot \mu_{0}\right) \quad(n \rightarrow \infty) \tag{19.13}
\end{equation*}
$$

Now (1) is proved by (19.9) and (19.11). (2) is proved by (19.10), (19.12) and (19.13).
[19.8] Remark. Let f be in $C_{p}(R)$ and a be positive. Assume that a function ϕ_{λ} defined on D^{a} satisfies (1) and (2) in definition [4.16]. Then noting [5.19], [5.20] and lemma [6.1], we can see that ϕ_{λ} is B^{λ}-solution for f in D^{a} if and only if

$$
\begin{equation*}
U_{0}^{\lambda}(\phi)(x) \sigma_{\lambda}(d x)=U_{0}^{\lambda}(x) \sigma_{\phi_{\lambda}}(d x), \tag{19.14}
\end{equation*}
$$

where U_{0}^{λ} is given by (19.8), and $U_{0}\left(\phi_{\lambda}\right)$ is represented by

$$
\begin{equation*}
U_{0}^{\lambda}\left(\phi_{\lambda}\right)=-T_{0}\left(x, \sigma_{\phi_{\lambda}}, \mu_{\lambda}\right)-F_{r}\left(x, k \sigma_{\phi_{\lambda}}+\psi_{\lambda}^{0} \cdot \mu_{\lambda}\right)+C\left(\phi_{\lambda}\right) \tag{19.15}
\end{equation*}
$$

with some constant $C\left(\boldsymbol{\phi}_{\lambda}\right)$.
[19.9] Under the same assumption as in [19.6], $\boldsymbol{\phi}_{0}$ defined by [19.4] is a B^{0}-solution for f in D^{a}.

Proof. By (19.14) and (19.15)

$$
\begin{aligned}
& \int_{I(r)} U_{0}^{n}(x) \sigma_{\phi_{n}}(d x)=\int_{I(r)} U_{0}^{n}\left(\phi_{n}\right)(x) \sigma_{n}(d x) \\
& =-T_{0}\left(\sigma_{n}, \sigma_{\phi_{n}}, \mu_{n}\right)-F_{r}\left(\sigma_{n}, k \sigma_{\phi_{n}}+\psi_{n}^{0} \cdot \mu_{n}\right)+2 \pi C\left(\phi_{n}\right) .
\end{aligned}
$$

By (3) in [19.1] and [19.7], $\left\{C\left(\phi_{n}\right)\right\}$ converges. Set $C=C\left(\phi_{0}\right)=\lim _{n \rightarrow \infty} C\left(\phi_{n}\right)$. By (19.14) and (19.15), it also holds that for g in $C_{p}(R)$

$$
\begin{aligned}
& \int_{I(r)} g(x) U_{0}^{n}(x) \sigma_{\phi_{n}}(d x)=\int_{I(r)} g(x) U_{0}^{n}\left(\phi_{n}\right)(x) \sigma_{n}(d x) \\
& =-T_{0}\left(g \cdot \sigma_{n}, \sigma_{\phi_{n}}, \mu_{n}\right)-F_{r}\left(g \cdot \sigma_{n}, k \sigma_{\phi_{n}}+\psi_{n}^{0} \cdot \mu_{n}\right)+C\left(\phi_{n}\right) \int_{I(r)} g(x) \sigma_{n}(d x)
\end{aligned}
$$

Using (3) in [19.1] and [19.7] again, we can show that

$$
\begin{aligned}
& \int_{[r, r+2 \pi)} g(x) U_{0}^{0}(x) \sigma_{\phi_{0}}(d x) \\
& =-T_{0}\left(g \cdot \sigma_{0}, \sigma_{\phi_{0}}, \mu_{0}\right)-F_{r}\left(g \cdot \sigma_{0}, k \sigma_{\phi_{0}}+\psi_{0}^{0} \cdot \mu_{0}\right)+C \int_{I(r)} g(x) \sigma_{0}(d x) .
\end{aligned}
$$

Noting [19.8] again, we obtain [19.9].
[19.10] Let $\left\{\lambda_{n}\right\}, f$ in $C_{p, N}(R)$ and $a>0$ satisfy the assumption [19.4]. Then ϕ_{0} in (2) of [19.4] is a B_{N}^{o}-solution for f in D^{a}.

Proof. Define $\sigma_{\imath, N}$ and $\mu_{, N}(i, j=0,1)$ by (7.2). Then by [7.4] $B_{\imath, j}^{*}=$ $\left\{\sigma_{\imath, N}, \mu_{\jmath, N}, k, p_{i, j} / N\right\}$ is in \mathscr{B}. As in (19.3) set $B^{* \lambda}=B\left(\lambda, B_{2, j}^{*}\right)$, then

$$
B^{* \lambda}=\left\{\sigma_{\lambda, N}, \mu_{\lambda, N}, k, \frac{p_{\lambda}}{N}\right\}
$$

Since ϕ_{n} is a $B_{N}^{n}=B_{N}^{\lambda_{n}}$-solution for f in $D^{a}, \phi_{n, N}(z)=(1 / N) \phi_{n}(N z)$ is a $B^{* n}=$
 and a / N satisfy [19.4], $\phi_{0, N}=\lim _{n \rightarrow \infty} \phi_{n, N}$ is a $B^{*, 0}$-solution by [19.9]. Using [7.5] again, we can see that ϕ_{0} is a B_{N}^{0}-solution for f in D^{a}.
[19.11] Proposition. Let $B^{\lambda}=B\left(\lambda, B_{2, \jmath}\right)(0 \leqq \lambda \leqq 1)$ be given by (19.3). If $P^{\lambda}(0<\lambda \leqq 1)$ in \mathscr{P}_{c} is B^{λ}-process with $B^{\lambda}=B_{P^{\lambda}}$ and satisfies [M] and [V]. Then $P^{\lambda} \rightarrow P(\lambda \rightarrow 0)$ in \mathscr{P}, where P is a B^{0}-process with $B^{0}=B_{P}$ and satisfies [M] and [V].

Proof. Since $\sigma_{\lambda} \rightarrow \sigma_{0}, \mu_{\lambda} \rightarrow \mu_{0}$ and $U^{\lambda} \rightarrow U^{0}(\lambda \rightarrow 0)$ by definition, it holds that $B^{\lambda} \rightarrow B^{0}(\lambda \rightarrow 0)$ and $\sup _{\lambda} p_{B^{\lambda}}(a) \leqq k(a)<\infty$ for any $a>0$. Therefore, by [18.2] for any sequence $\left\{\lambda_{n}\right\}$ which converges to 0 , we can choose a subsequence $\left\{\lambda_{m}\right\}$ such that $\lambda_{m} \rightarrow 0$ and $P^{\lambda_{m} \rightarrow P(m \rightarrow \infty)}$ in \mathscr{P}. Set $P^{m}=P^{2 m}$. By [18.3] and [18.10] P satisfies [M] and [V] and $B^{0}=B_{P}$. Let any function f be in $C_{p, N}(R)$ and $a>0$ be given. Set $\phi_{m}=H_{P m}^{a} f$. Then by definition

$$
\phi_{m}(z) \longrightarrow \phi_{0}(z)=H_{P}^{\alpha} f(z) .
$$

Since ϕ_{m} is harmonic in D^{a} with $\left\|\phi_{m}\right\| \leqq\|f\|$,

$$
\left\|\left(\boldsymbol{\phi}_{m}\right)_{x}\left(\cdot, \frac{a}{2}\right)\right\| \leqq K(a)\|f\|
$$

and

$$
\frac{\left\|\left(\phi_{m}\right)_{x}\left(\cdot, \frac{a}{2}\right)\right\|}{\left\|s_{m}\left(\cdot, \frac{a}{2}\right)\right\|} \leqq K(a)\|f\| \operatorname{coth} \frac{a}{2}=K(a, f)<\infty .
$$

Therefore, by [9.8], $\left|\sigma_{\phi_{m}}\right|(d x) \leqq K(a, f) d \sigma_{\lambda_{m}}$, and $\left\{\lambda_{m}\right\}, f$ and a satisfy the
assumption [19.4]. Therefore by [19.10] $\phi_{0}=H_{P}^{a} f$ is a B_{N}^{0}-solution for f in D^{a}. Thus P is a B^{0}-process. By the uniqueness of B^{0}-process (cf. [7.6]) P is independent of choice of subsequence $\left\{\lambda_{n}\right\}$. Therefore $P_{\lambda} \rightarrow P(\lambda \rightarrow 0)$ also holds.

Let σ be $M_{p}(R)$ with $\int_{(0,2 \pi)} \sigma(d x)=2 \pi$ and k be any constant. Set

$$
\begin{equation*}
s(z)=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \sigma(d \xi), \quad t(z)=\int_{[0,2 \pi)} \tilde{k}_{\xi}(z) \sigma(d \xi)+k \tag{19.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{m}(z)=\left(1+k^{2}\right) \frac{s}{s^{2}+t^{2}}, \quad \bar{l}(z)=-\left(1+k^{2}\right) \frac{t}{s^{2}+t^{2}} . \tag{19.17}
\end{equation*}
$$

[19.12] Let s, t, \bar{m} and \bar{l} be defined by (19.16) and (19.17). Then it holds that:
(1) \bar{m} is positive, periodic and harmonic in D with $\lim _{y \rightarrow \infty} \bar{m}(z)=1 . \quad i$ is a harmonic conjugate of \bar{m} with $\lim _{y \rightarrow \infty} \tilde{l}(z)=-k$.
(2) Let $\bar{\mu}$ be the boundary measure of \bar{m} on ∂_{0}, that is,

$$
\bar{m}(z)=\int_{[0,2 \pi)} \tilde{h}_{\xi}(z) \bar{\mu}(d \xi) .
$$

Then $\{\sigma, \bar{\mu}\}$ satisfies condition [$P]$ in [5.11].
Proof. Since $\lim _{y \rightarrow \infty} s(z)=1, \lim _{y \rightarrow \infty} t(z)=k$ and

$$
\bar{m}(z)+i \bar{l}(z)=\frac{1+k^{2}}{s(z)+i t(z)}
$$

(1) is obvious. Set $U=\left(1+k^{2}\right) y$. Then U is a nonnegative solution of

$$
\left\{\begin{array}{l}
U_{x}=\bar{m} t+\bar{l} s=0 \tag{19.18}\\
U_{y}=\bar{m} s-\bar{l} t=1+k^{2}
\end{array}\right.
$$

By [5.11] and [4.6] $\{\sigma, \bar{\mu}\}$ satisfies [P].
[19.13] Definition. For σ in $M_{p}(R)$ with $\int_{[0,2 \pi)} \sigma(d x)=2 \pi$ and a constant k, set $\bar{\mu}=F_{k} \sigma$, where $\bar{\mu}$ is defined by (19.17) and [19.12] (2).
[19.14] Remark. (1) $F_{-k} \cdot F_{k}=$ Identity.
(2) Since $U=\left(1+k^{2}\right) y$ is a solution of (19.18), $\left\{\sigma, F_{k} \sigma, k, 0\right\}$ is in \mathscr{B}.
[19.15] Let $\bar{\mu}=F_{k} \sigma$.
(1) If $\sigma([a, b])=0$ for $a<b$, then $\bar{\mu}$ has at most one point mass in (a, b).
(2) If σ is in $M_{i}(R)$, then $\bar{\mu}$ is in $M_{i}(R)$.

Proof. Since $\sigma \neq 0$, we can assume $[a, b] \subset(c, c+2 \pi)$. Set $I=[c, c+2 \pi)$. Then for $\xi \in(a, b)$

$$
s_{0}(\xi)=\lim _{z \rightarrow \xi} s(z)=\lim _{z \rightarrow \xi} \frac{1}{2 \pi} \int_{I-[a, b]} \frac{\sinh y}{\cosh y-\cos (\eta-x)} \sigma(d \eta)=0
$$

and

$$
\begin{aligned}
t_{0}(\xi)=\lim _{z \rightarrow \xi} t(z) & =\lim _{z \rightarrow \xi} \frac{1}{2 \pi} \int_{I-[a, b] \cosh y-\cos (\eta-x)} \sigma(d \eta)+k \\
& =\frac{1}{2 \pi} \int_{I-[a, b]} \cot \left(\frac{\eta-\xi}{2}\right) \sigma(d \eta)+k,
\end{aligned}
$$

Therefore

$$
\frac{d}{d \xi} t_{0}(\xi)=-\frac{1}{2 \pi} \int_{I-[a, b]} \frac{1}{2 \sin ^{2}\left(\frac{\eta-\xi}{2}\right)} \sigma(d \xi)<0
$$

and $t_{0}(\xi) \neq 0$ for $\xi \in(a, b)$ except at most one point. For $\xi \in(a, b)$ with $t_{0}(\xi) \neq 0$,

$$
\lim _{z \rightarrow \xi} \bar{m}(z)=\lim _{z \rightarrow \xi} \frac{\left(1+k^{2}\right) s}{s^{2}+t^{2}}=0
$$

which shows that $\bar{\mu}(d \xi)$ has no mass in (a, b) except at most one point. Hence (1) is proved. To prove (2), assume $\bar{\mu}([a, b])=0$ for some $a<b$. Then by (1) $\sigma=F_{-k} \bar{\mu}$ can not belong to $M_{i}(R)$. Thus (2) is proved.
[19.16] Theorem. For any $B=\{\sigma, \mu, k, p\}$ in \mathscr{B}, there exists a unique B process P with $B=B_{P}$ and P satisfies $[M]$ and $[V]$.

Proof. Set $\rho(d x)=d x$ (Lebesque measure on R) and $\sigma^{*}=(1 / 2)(\sigma+\rho), \bar{\mu}=$ $F_{k} \sigma^{*}$ and $\bar{\sigma}=F_{-k}((1 / 2)(\mu+\bar{\mu}))$. Then by (2) in [19.15], $\bar{\mu}$ and $\bar{\sigma}$ are in $M_{i}(R)$, since σ^{*} is in $M_{i}(R)$. By (2) in [19.12], $\{(1 / 2)(\sigma+\rho), \bar{\mu}\}$, and $\{\bar{\sigma},(1 / 2)(\mu+\bar{\mu})\}$ satisfy condition $[P]$. Therefore, $\{\sigma, \bar{\mu}\},\{\bar{\sigma}, \mu\}$ and $\{\bar{\sigma}, \bar{\mu}\}$ satisfy condition $[P]$. Therefore, $B_{01}=\left\{\sigma, \bar{\mu}, k, p_{01}\right\}, B_{10}=\left\{\bar{\sigma}, \mu, k, p_{10}\right\}$ and $B_{11}=\left\{\bar{\sigma}, \bar{\mu}, k, p_{11}\right\}$, are in \mathscr{B} for sufficiently large p_{01}, p_{10} and p_{11}. Set $B_{00}=B=\{\sigma, \mu, k, p\}$ and $B^{\lambda}=B\left(\lambda, B_{\imath \jmath}\right)(0 \leqq \lambda \leqq 1)$ as in (19.3). Since $\sigma_{\lambda}=(1-\lambda) \sigma+\lambda \bar{\sigma}$ and $\mu_{\lambda}=(1-\lambda) \mu+\lambda \bar{\mu}$ are in $M_{i}(R)$ for $\lambda>0$, by theorem [18.12] there exists a B^{λ}-process P^{λ} with $B_{P^{\lambda}}=B^{\lambda}$, and P^{λ} is in $\mathscr{C P}_{c}$ and satisfies [M] and [V]. Therefore by proposition [19.11], $P^{\lambda} \rightarrow P(\lambda \rightarrow 0)$ and P is $B=B^{0}$-process with $B_{P}=B$ which also satisfies [M] and [V]. The uniqueness is proved in theorem [7.7].
[19.17] Definition. For B in \mathcal{B}, let P_{B} be the unique B-process. Set $\mathscr{P}_{B}=\left\{P_{B}: B \in \mathscr{B}\right\}$.

If P is B-process, then by theorem [19.16] $B=B_{P}$ therefore B is uniquely determined by P. So we have:
[19.18] Corollary. The mapping $B \rightarrow P_{B}$ is a bijection between \mathscr{B} and \mathscr{P}_{B}.
Combining theorem [19.16] with theorems [3.12], [15.10] and [18.12], we can characterize Feller type processes in \bar{D} with continuods path functions in the class of B-processes \mathscr{P}_{B}.
[19.19] ThEOREM. There exists one-to-one correspondence between P in \mathscr{P}_{c} with condition C and $B=\{\sigma, \mu, k, p\}$ such that σ and μ are in $M_{i}(R)$ and σ has no discrete mass. The correspondence is given by $P=P_{B}$.

References

[1] K. Ito and H.P. McKean, Diffusion processes and their sample paths. SpringerVerlag, 1965.
[2] M. Motoo, Periodic extensions of two dimensional Brownian motion on the halfplane, Kodai Math. J. vol. 12, pp. 132-209, 1989.

Department of Information Sciences
Tokyo Denki University

[^0]: Received February 20, 1989; revised April 10, 1990.

