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PERIODIC EXTENSIONS OF TWO-DIMENSIONAL

BROWNIAN MOTION ON THE HALF PLANE, II

BY MINORU MOTOO

This paper is a continuation of the one with the same title [2]. Notation
follow the previous paper. Theorems, propositions and formula in [2] are cited
by their numbers without special mention.

Main results of this paper are summarized as follows:
(1) For any B={σ, μ, k, p) in X, there exists a ^-process P with Bv~Bf

which satisfies conditions [M] and [V]. (See theorem [19.16]. Uniqueness of
/^-process for given B has already been proved in theorem [7.7] in the previous
paper [2].)

(2) A ^-process has continuous path functions in D if and only if a and μ
are positive for any open set. (See theorem [14.9] and theorem [19.16].)

(3) A process P in £P has continuous path functions and is of Feller type
in D if and only if P is a 5-process, such that σ and μ are positive for any
open set and σ has no discrete mass. (See theorem [15.10] and theorem [19.16].)

IV. Characterization of the class £PC.

§12. Certain recurrence relations.

Throughout this section, we shall fix a process P in <p, on which we shall
assume no additional condition.

Let σa(w) be the hitting time of da, and for any positive a and b with
aφb, we define ρn—pn{a, b, w) and τn—τn(a, b, w) by

(12.1) ρ*=σa,

pn+ι=τn+(Ta(θτnw), n = 0 , 1, 2, •••.

Since one-dimensional reflecting Brownian motion is recurrent, by [1.5] and
[1.6] and continuity of the process in D* we can easily see:

[12.1] pn and τn (n=0, 1, 2, •••) are finite except on a set of /^-measure
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zero for any z in D, and Mm ρn=Yιmτn~^> holds.
n-*o n-*co

Set, for t^Q and λ>0,

ρ
n-*-o n-*c

(12.2) Li(t, w) = ̂ -j/cα-*. «+

where z(f, M/)=(;c(ί, w), y(t, w)) for z(f, w)^D and /^ is the indicator of a set
A Noting [1.6], the following results are well known in theory of Brownian
local time [1].

[12.2] For any z in D,
(1) Laity u;)=lim LJ(ί, w) exists a. s. P2,

(2) £,(!.», w))=jto £.(iStf, w)).

(3) Lα(ί, ^) is continuous and increasing in t and satisfies

(12.3) La(t+s, w)=La(t, w)+La(s, θtw)

for any s and t a. s. Pz.
(4) La(t, w) increases only on t with z(t, w)<^da, that is,

(5) La(t, w)=^ha{z{s, w))dLa(s, w) a.s. P,.

(12.4) £,(LS(ί, w)), £,(L«(ί, u;))^ C 2VΓ,

(12.5) £,(££(*, ^ ) 2 ) , Et(La(t, wf)^ C2t,

where C1 and C2 are absolute constants.

[12.3] Let a and b are any positive numbers and z be a point in iλ
(1) If ;y^α<6 or y^

E2(La(σb))=2\b-a\.

(2) In general, it holds that

Ez(La(σb))<2\b-a\

end

[12.4] Let 0 be a bounded continuous function defined on Dίa-C>a+C1 with
0 < £ < α, and λ be a positive number. Then
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Proof.

1° Let ε be any positive number. By (12.3) and (12.4) we can choose T
such that

2° Choose positive ε1 such that (είC1+8\\φ\\Vε~JΓ2WT<ε/2, where d and
C2 are constants appearing in (12.4) and (12.5). The function φ can be extended
to a function $ which is continuous in D with ||0|| = | |$ | | , a n d there exists a
positive integer iV such that, for

N, εί)={ sup
Γ, i β - ί i

! and (,ί/7V)||?5||C1v
/7r<ε/2 hold. Set

kT
ί , = — (ft=o, l, 2, - , N) and

Then by (12.4) and (12.5)

Similarly, by (12.4) and (12.5),
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3° On the other hand, by (12.3) and Markov property of the process, for
fixed N and T we have

By 1°, 2° and 3° proof of [12.4] is completed.

[12.5] Let a and δ be any positive numbers, then

(1) limsupPu,a)(^6^^)—0,
b~*a x

(2) limsupP(Λ.a>(sup|2(s)—*(0)|>β, σb<σ)=0,

(3) lim sup PCx, a )(σ 6 ^ί)=0.
6

/. Noting P(z t β)(^Sδ)^Λar.α)(^^<y)+/>c*.α)(^>^^3), [12.5] is ob-
vious by (p. 4) in [1.1]

[12.6] For φ in CP(R) and α>0

(12.6) ' λEik^e-λtφ{x(t))dLa)^φ{x)mP{xi a)dxy

where £ A ( . ) = ( Ez{-)mP(z)dz and ^^{^^(Λ: , 3;)eD: 0<;c<2π}.
JD

Proof. Set φ(z)=φ(x) for z=(x, ^) in i), then by [8.20]

1 pα + ft Γ2π
Z=:'97Γ\ d ^ \ Φ(x)mp(x, y)d

Lίl Ja-h Jo

φ(x)mP(x, a)dx (Λ-

oOn the other hand, since
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for a + h<c and y^c, we have by [12.4], (4) in [12.2] and the dominated con-
vergence theorem we have

[12.7] For any positive a and b with 0<|&— α | ^ l , pn and τn are defined

as in (12.1). Then, for any positive λ, it holds that

Ά -ι

Especially,

(12.8) \b-a\Ez(τιe-λpn)^K{λ)Mm{ew^y-a\ 1},

where K(λ) is a constant independent of a, b and z.

Proof, If b<a, then we have by [1.5] and [1.6]

Similarly, if b>a, then

Therefore, in both cases we have by induction

(12.9) Ez{e-χPn+ι)^Ez{e-λσ«)e-n^\>-«\ ( π = o , 1,2,

and (12.7) is obvious. Since
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setting K(λ)= sup ^ π - f we have (12.8).

[12.8] THEOREM. For any positive a and b with aφb, let />n=/θn(α, b, w)
and τn=τn(a, b, w) (n=0, 1, 2, •••) be defined as in (12.1), ξn=ξn(w) and ηn=zηn(w)
(72=0, 1, 2, •••) be measurable functions on (W, B) with ρn^=ξn, finikin end λ be
any fixed positive number.

(1) // φ is a bounded uniformly continuous function on R, then we have

l im2 |b-aIE.( Σ e-**»φ(x(.ηn)j)=Ej([~e-λ'φ{x(t))dLa).

(2) // φ is in CP(R), then we have

lim21 b-a \ βJ Σ e~λξnφ(x(ηn)))= yFφWmάx, a)dx.
b-a \π=0 / / Jo Γ

we set φ(x(t))=0 if z(t)=d and £ A ( ) /s de/ίnβί/ m [12.6].

Proof. If (1) holds, then (2) follows from by (12.8), the dominated con-
vergence theorem and [12.6]. Now we shall prove (1).

Γ Set ε—\b—a\ and define

d(δ)= sup \φ(ξ)-φ(x)\
\ξ~X\<0

for any positive δ,

e(t)=e(t, w)= sup \φ{x(s))—φ{x(t))\

and

ίi(e)= sup ECx,aΛe(σb(w)f w)}.
x

Then
' **K " " o π n 1 γ( c ) — γ(Γl j ] *̂> (

OU.JJ I Af\OJ Λ, \\J / I /^ I.

Therefore by [12.5] Πm p^ε^diδ).
e-»0

Since ώ is uniformly continuous, lim d(δ)=O. We have

(12.10) lim ^ ( ε ^ O .
e-0

Set p2(e)=sup Eix,aϊ(l-e-λσb). Then

for any positive δ. Therefore by [12.5]
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(12.11)

2°

Uέ)-2ε{Ez{Σe-λξn<ι

Proof of 2°.

where

and

I2(ε)=2εE

Then by [1.5] and (12.8)

lim />2(e)=0.
e-»0

K ^ ( i ? n ) ) ) — ^ ^ ^ " ^ ^ ( ^ ( O T I ) ) ) } — > (

iyi(e)|Sii(e)+72(ε),

ε)=2εl|^||E2(2τ(^-;ι^~-^-;ι^))

' , ( ί r ^ » SUP |?Kx(s))-0«|0n))l)

and

where ί fy) is defined as in (12.8). Therefore by (12.10) and (12.11)

|/i(β)| =/1(β)+/,(β) —»> 0 (β->0).

3°

Mε)=2εEΛΣe-z'>r>φ(x(pn))}-εJΣφ(x(pn))[Tne->tdLa\ —>0 (e-*0).
I Jpn >

Proof of 3°. By (2) in [12.3]

JPn

Hence
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Therefore by (12.11)

lim/,(e)=0.
e-o

Proof of 4°. Since La(p<,}=0 and La(τn)=Lβ(p.+1) by (4) in [12.2],

Therefore, by (12.10), 4° is proved. From 2°, 3° and 4° we can see that (1)
holds.

In the remainder of the section, we shall investigate properties of the last
hitting time.

[12.9] DEFINITION. Let a and b be any positive numbers with aΦb. If
2(0, w)<^da, set

β=zβ(a, by w)—mί{t\ tίίσb and zs($da for any SG(/, σb)}.

For general w, set

ρ=p(a, b, w)=σa+p(θ<τaw).

This is the last hitting time of da before reaching 96.

For c with CG(G, b), set

(12.12) βc^βda, b, w)=β + σc(θ£w).

The sequence

βn—Pnia, c, w) and r w = r n ( α , c, w) (n=Ό, 1, 2, —)

are as given in (12.1). Then we can easily see:

[12.10]
(1) βcl β as c->α.

(2) If pn<0a+<Tb(θσaw)^pn+ι, then βc=τn.
(3) Especially, β and pc are ^-measurable.
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[12.11] β and βc are finite except on a set of P2-measure zero for any
positive z in D.

Proof, By [1.6], τ^σa+σb(θσaw)<^ a .s. Pz. On the other hand β, β<τ.

[12.12] PROPOSITION. Let f and g be in Bb(R). For positive a and b with
aΦb, set β~β(a, b, w) and τ=σa-}-<7b(θσaw). Then for any positive λ it holds
that

(12.13) Ez{

where Qιb-aιg(x)=\ς]b-a](ξ-x)g(ξ)dξ is defined in §0.8°.

Proof. It is sufficieient to prove (12.13) for / and g in CK(R). For any c
with cG(ΰ, b), βc is defined as in (12.12). Set pn^Pnia, c, w) and ? n = r n ( α , c, w).
Then

Therefore, noting (2) in [12.10] and [1.5], we have

))I{ΐn<τ) mbc g(x(τn))}.

In the same way we get

=EZ{ Σ e-^nfixifn^m

l7i=o

Therefore



426 MINORU MOTOO

(12.14) Ez(e-λ^f(χ(

If c->a, then βe->β by (1) in [12.10]. Therefore f(x(βe))-+f(x(β)) and
bJΊbσ(χ(δ ))a , v i -+Qb-ag(x(β)) boundedly as c-+a, since we have assumed that /

\c a I
and g are in CK(R). By the bounded convergence theorem, (12.13) is obtained
from (12.14).

For positive a and b with aΦb, set β — β{ay b, w), ρn~Pn(a, b, w) and τn=
τn(a, by w). We define βn~βn(ay b, w) by

(12.15) βn=pn+β(θPnw) ( n = 0 , 1, 2, •••).

For any c in (α, 6), set ~f>k — Pk(a, cy w) and τk—τk{a, c, w). We also define

(12.16) P*.c=βn+σe(θϊnw).

Then as a generalization of .[12.10], we have:

[12.13]

(1) βn.ciβn as c->α.
(2) pk<τn<Pk+ί for some n if and only if pΛ + σ6(0^ku/)<j5ik+i. In this

case, it holds that ρn<Pk, pn+i^pk+u βn,e^=τk and τn—pk-\-ob{θPkw)—

[12.14] PROPOSITION. For any positive a and b with aΦb> let βn—βn(a,b, w)
and Tn—Tnia, b, w) be defined by (12.15) and by (12.1), respectively. Then for,
any positive λ, it holds that:

(1) for φ, φ in Bb(R) and z in D

(12.17) 2EZ{
1.71=

and

(2) for φ and φ in BP(R)

(12.18) 2EJ Σ e-
κn=o

, a)dx.

Proof.
1° The both sides of (12.17) and those of (12.18) consist of integrations
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(and sumation) of φ and φ by positive measures and they are finite if φ^φ—1.
Therefore, we may assume that φ and φ are in CK(R) in (12.17) and in CP(R)
in (12.18), respectively.

2° If (12.17) holds iovj> and φ in CP(R), then, integrating the both sides
of (12.7) by mP{z)dz over D, we immediately obtain (12.18) by [12.6].

3° Since by [1.5] and [12.12]

If follows from 1°, 2° and 3°, that, in order to prove (12.17), it is sufficient to
show

(12.19) 2|δ-α|

for φ which is bounded and uniformly continuous.
4° For any c in (α, b), let pn = Pn(α, b, w), ρk — pk(α, c, w) and τk~

τk{α, c, w) be defined by (12.1) and βn,c be defined by (12.16). Then by (2) in
[12.13]

Therefore, we have

(12.20)

=EZ{ S

By theorem [12.8], the right side of (12.20) converges to

as c-,
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The left side of (12.20) converges to

Ea(fle-*fi»φ(x(βn))) as c->α ,
\n=o /

since e-λfi* *φίx{pn.c)Y+e'λ*»φίx(βn)) by (1) in [12.13], \e-*fi

e-λPn\\φ\\ and £ , ( n | e - ; ^ ) < o o by [12.7]. Therefore (12.20) is proved

§ 13. A sufficient condition for a process belonging to £PC.

For p in M(R), we shall write

(13.1) pεLMi(R)

if and only if ρ(U)>0 for any open set U in R. Set

(13.2) δ(p, e)= inf pdx-e, x + e)).
X

[13.1] Remark. In [11.9], we have seen that, if p is in MVtN(R), then
is in Mi(R) if and only if δ(p, ε)>0 for any positive ε.

[13.2] For p in MPtN(R), set v(*)= ̂ ( f - ; φ ( < / f ) . Then 3(V(Λ:, y)dx, ε)

^δ(p, ε) holds for any positive ε.

Proof.

In this section, we shall fix a process P in £P which satisfies [M] and [ F ] ,
and BP—{σP, μPt kPy pP}f sPy mP, uP, UP etc. are as defined in chapter III. As
a corollary to [13.2], we immediately have:

[13.3]

uP(x+ε, y)-uP(x-ε, y)=δ(sP(x, y)dx, ε)^δ(σP, ε).

[13.4] For any a, b, a and β with 0<b<a, 0<β and

(13.3) Hi(x, U2Ca o(μP, a)δ(σP, βf

where p^a)^B^u^9 a), uP( , α)) and Ufa)={ξ: \ξ~x\^δ\ in /?.
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Proof, By (8.7) in [8.5], for any b<a

BP(x, dξ)=(Pa-b+Qa-bm)(x, dξ).

Noting φ(x)=[Qa-bHξ(x, dξ)(uP(ξ, a)-uP(x, a)) is in CP, we have by [13.3],

^Qa-\t, dη)[° Hξ(η, dζ)(uP{ξ, a)-uP{t, a)f

ϊ{η, lx+2a+2β, oo))δ(σP, β)\

We have Hft(η, [x+2α+2^, ™))^Hϊ{x, [x+2^+2^, oo)) if χ^η by [M] (See
also [9.2]), and for x^t

Using [13.2]

δiμi"a^σpβrm(x, ίx+2a+2β,

In a similar way, we can show that

f , (-co, x-2a-2β]).

Therefore (13.3) is proved.

By (3) in [10.15] pP(a) decreases as a decreases. Hence as a corollary to [13.4],
the following holds.

[13.5] For positive a and ε, set

d(fl, e)= sup H%(x,Uε(x)c).
x,δ;δ<α

If σP and μP are in Mt(R), then lim Cx(a, e)=0.
α-0

In the following, (Tα (α>0) denotes the hitting time of 9α. For b>0,
and ε>0, set

(13.4) D(ξ,b,e)={z=(x,y);y^b and U-f|^

and let τ(£)=r(£, 6, e, u;) be the hitting time of D(ξ, b, ε).

[13.6] For positive a and ε, set

C,(fl, β)= sup ΓπmU, 2α)ύ?x(ρα(x, dξ)Pcξ,aMξ, b, ε)^σ2a).
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If P satisfies [L] and σP and μP are in Mt{R), then

lim Cs(a, e)=0.

Proof. Set τ=τ(ξ, b, ε) and σ=σ2a. Take α0 so small that Ci(2a, 2e)<l/2
for α ^ α 0 . Since |x(σ)-f I ̂ 2ε if both τ<σ and |x(σ)-x(z ) |<2e hold, by [1.5]

σ, \x(σ)-x(τ)\<2ε)

, Hl«M(x(τ), U2£(x(τ)Y)}

l*(ζ, Uu(ξY)

Therefore, for a<a0

Now

m(x, 2a)dx\jQ
a(x,

where

/1(a)=f2*m(x, 2a)dx[ Qa(x, dξ)
Jθ J l f - O ί l δ β

and

Ja(α)=Γ*ro(;c, 2α)d;cίζ?α(x, dξ)[ Ha(ζ, dη).
Jθ J Jifl-jruβ '

—

and lim/1(α)=0. Moreover, by (8.7) in [8.5] B%a(x, dη)^QaH2

a

a(x, dη) and

Λ ε/2)2
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where B%{u ε) is given in [11.4] and the condition [L] implies that lim B£(u ε)

=0. Thus [13.6] is proved.

For positive α, let pn=pn(2a, a, w) and τn—τn{2a, α, w) be defined as in
(12.1) (n=0, 1, 2, •••). For any b with 0<b<a and any positive e, let τ(£)=
r(£, by ε, w) be defined as in (13.4). Set

(13.5) τ»=τ n + τ ( * ( r n ) , θtnw)) (n=0, 1, 2,

and for positive T

(13.6) ϊl(fl, fe, e, T)={iί;: there exist r n with r n ^ T and s in [τn, pn+{\
such that both ys>b and U(s)-x(r w ) | ^4ε hold}

— {w\ there exists n such that τn^T and r ^ / ) B + i hold.}.

[13.7] Set

Cz(a,ε)= sup ^P*(U(α, 6, e, T)),

where PA( ) = ( Pz( )mP(z)dz and D={ZZED; 0 ^ X < 2 T Γ } . If P satisfies [L] and

0> and jt/p are in Mi(R), then

Proof. For positive λ

P (U(α, b, ε

lim
α-o

c,

Σ3
n=0

la,

P*

β)=0.

Let β — β(2a, a, w) be the last exist time to 32 α before reaching da defined in
[12.9]. Set βn~pn+ρ(θPnw) and φ(x)=Pcx,a^τ(x)<σ2a). Since i o n < r n and φ
is in Bp(fl) by (p.5), we have, by (12.18) in [12.14],

Pm(VL(a, b, ε, T))£eλTE^(Σ(

— ~wγ\ Qaφ{x)mP{x, 2a)dx

exτC
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where C2(α, ε) is defined as in [13.6]. Put Jl=l/T. Then

~P*(U(fl, b,e, T))SγC,(fl, ε).

[13.7] is a consequence of [13.6].

[13.8] PROPOSITION. // P satisfies [M], [V] αwd [L], and μ
m Mi(R), then P is in £PC.

Proof. 1° By [13.7], we can choose a positive sequence {an\ such that
α n + 1 < α n , Σan<°° and ΣC3(an, l/2π)<oo. Then, for fixed T

"Vi n / i t / T"1 \ \<^* ^~i 'T' ẑ 1 i I ^

π=o V \ ' 2n> // n=o V ' 2π/

Set U(T)=ΠmU(αn, α n + 1 , l/2n, T). Then, by Borel-Cantelli's theorem for σ-

finite measure P Λ , we have P A ( U ( T ) ) = 0 . Set

Uzz: 0 U(A )̂, VL(T) T U (T T oo), and P Λ (U)=0.
i V = l

2° If z(0, M/)6D[α'M) and 0<b<a, then w elI(Λ^) implies θσbw<=Vί(N). For,
σb<σ2an=po(2an, an) if 2α 7 l<6. Conversely, if θσbw(=Vί(N) and M>σb(w), then
u eϊl(ΛH-Af). Therefore, ẑ GlX if and only if 0tfftu;(=U for u; with ^(0, w)
^Dφ'°°\ Pz(Vi) is harmonic and therefore continuous in D. Noting that P2(U)
is in CP(D), by Γ we have F2(U)=0 for any 2r in D.

3° Set pk(n)-ρk(2an, an, w), τk(n)=τk(2an, an, w) and Wn = {w:zφ, u;)e
βc2αn,oo)j ( f e = = 0 , 1, 2, . . . , n = l, 2, . . .) . Define

~ ,. λ_(pk+i(n)-t)z(τk(n))-\-(t-τk(n))z(ρk+1(n))
pk+i(n)-τk(n)

if ίe(r f t (n), /t>*+i(n)) (fe=0, 1, 2, •••)

=^r(ί, w) if otherwise.

Then, for w^Wn, zn{t, w) is a continuous mapping of t in [0, oo) into Dlan'°°^.
4° Let n0 and iV be any fixed positive integers. For any fixed w in

WnoΓΛVL(N)c, we shall show that %n(t, w) converges uniformly in ί e [ 0 , A/"] by
the topology of B.

Proof of 4J. For a fixed w e l f nonU(A/")c, there exists a positive integer
nί=n1(w)^nQ such that tt/<£il(αn, αΛ+i, l/2n, N) for n^Wi.

Take any w^Wi.
(i) If t£\J{τk{n), ph+ι(n)), then z(t}w)^D^n^ and f£ y(r,(n+l),

/t>i+i(n + l)). Therefore
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(ii) If t^N, iG=(r*(n), ρk+ι(n)) for some k and ^ ) e D C f l 7 ί + 1 M), then \x(t)-
x(τk{n))\ <4/2w, since w£U(an, α n + 1 , l/2n, Λί). Especially

4 4
I x(pk+i(n)-x(τk(n)) \ £ — and | *n(0—*(r*(w)) I > ^

(iii) If t£N, ίG(rA(n), ρk+i(n)) for some ft and £

then ^n+1(0=2r(0eZ)cα»+i ββ). Therefore by (ii) |itn+1(O-*r>(OI <8/2π.
(iv) If tr^N and t<Ξ.(τk(n), ρ*+i(w))n(rι(n + l), /0z+i(w + Ό) for some & and /,

then 2re(ri(w + l)) and z(|0 l+1(w+l)) are in Z}cαn+i °°\ Therefore, by (ii) we also
have

(v) If t^N and ίe(rA(w), pk+i(n)) for some &, then £n(ί) and zn+i(ί) are in
/)2αn a n ( j ijjίn+1(ί)—yn{t)\<*2an. In this case, by (iii) and (iv) we have seen
\xn+iίt)-xn(t)\^8/2n, and therefore |^»+i(ί)-^n(ί)|^8/2 l >+4fl J l.

Since 2'(8/2n+4αn)<oo, 4° is proved by (i) and (v).
5° Set W^KjWn^iw s(0, u ; )£i) | and ^0=VFooΠUc. Noting 2° and [1.2],

we have Pz(ffl0)=l for any z in D. Let ^ G T F 0 be given. Then, for any posi-
tive integer N, there exists n such that w<^WnΓ\VL(N)c. Therefore zn(f, w)
converges uniformly in £CΞ[0, ΛΓ] for any N. Set f(ί, w)—\imzn(t, w). Then
f(ί, M;) is a continuous function of fίΞ[0, oo) into .D. Define a mapping ^ from
P̂ o into W by

)=z(t, w)

Measurability of the mapping φ is obvious by definition. Therefore, by pro-
position [1.11], we can see that P is in £PC. Proposition [13.8] is proved.

§ 14. Necessity of the conditions given in § 13.

In the following, we shall use the identical notation σa (fl^O) for the hit-
ting time of 3α for paths in W and in W. Here σo{w) for w in W denotes
the hitting time of 9. For O^α, b and aφb,

pn(a, b)=ρn(a, b} w) or pn(a, b, w)

rn(a, b)=τn(a, b, w) or τn(a, b, w)

are definen as in (12.1), and

β(a, b)=β(a, b, w) or β(a, b, w)

as in [12.9] also far paths in W or W.
Note that σa=po(a, b) and

τ(α, 6)=
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Then if holds that

σa(w)—σa(tw), pn(a, b, w)—pn(a, b, tw),
(14.1) .

τn{a, by w)=τn(a, b, tw) and β{a, b, w)—β{ay b, tw)

where t is the injection defined by (1.6).

[14.1] Let P be in ^ and P be in 5\
(1) Set

Wr = {w<^W z(r, w)^D for any rational r\
and

Wr — {w^W z(r, w)^D for any rational r).

Then P2(Wr)^l and Pz(Wr)=l for any z in D.
(2) Let γ be any random time and σt (ft>0) be the hitting time to Dίb'°°\

Set Tb=T+<ff°θr. Then γbi γ as bi 0 a. s. P* (or a. s. Pz) for any z in D.
(3) It holds that σo<β(O, fc)<r(0, 6) for ^>0, and

τ(0, 6) I σ0 as 6 10 a. s. P, (or a. s. P2)

for any z in 2).
(4) Fix b>0. If τ(0, b)<oo, then there exists a1=a1(b, w) or αi(&, w;) such

that ^(0, b)<β(a, b) for α ^ d , and

(14.2) lim^α, b)=β(O,b).
α-»o

Proo/. (1) is a consequence of (p.2) in [1.1] (or (ρ.2) in [1.8]). (2) and (3)
follow from (1). If β(an, b)<β(Q, b) holds for some sequence {an} with an I 0,
then σap^β(an, b)<τ(an, b)<σ0 and σajι T ̂ o, which contradict the continuity
of 2r(f). The first part of (4) is proved. For a with 0<α<min{α 1 , b}, σo^
βφ, b)<β(a, b)<τ(0, b) and β(a, b) decreases as a decreases. Therefore
z(\im β(a, b))=\imz(β(a, b))=d (or e9 0), which implies that (14.2) holds.

α->0 α-»0

In the remainder of this section, we shall fix a process P in £P which
satisfies [ F ] and [M].

[14.2] Assume σp((cly c2)):=0 for some Ci and c2 with Cχ<c2, and φ—Haf
for / in Bb(R). Then the boundary function of 0 on d0 is constant on (ci, c2),
that is, for ζ=(f, 0) with ξ in (d, c2)

(14.3) Iimί5(2r)=*.

. Let / be a closed interval contained in (c1} c2). Then

(ί/ί)->0 as z->(ξ, 0) uniformly in ξ<=J. Therefore, by (3) in [9.9],

φx(z)~>0 as 2r->(f, 0) uniformly in £ e / , and (14.3) is easily proved.
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[14.3] PROPOSITION. // P in £BC satisfies [M] and [ F ] , then σP is in Mi(R).

Proof. Since P is in 5»c, P=cP for some P in £P. Assuming σ((ci, c2))=0
for some Ci and c2 with Cι<c2, we shall show a contradiction.

1° Let / be a fixed non-empty open interval with J(Z(cί} c2). For any
positive α, set φa(z)—HaIj(z), where Ij is the indicator of /. Then by [14.2]
φa(z)-+ka=ka(J) as *->(£, 0) for ξ in (d, c2). Since 0^fe α ^l, we can choose a
sequence {αn} such that αn->0 and kan-*k as n-^oo. Set φn=φan, kn — kan

and r n = r ( 0 , αn).
2° Let ϋC be another non-empty open interval with Kd(cu c2). Then by

[1.5], for any m and n with m<n, and 2r(ί)=(^(0> 3>(0),

(14.4) Pz{x{

Set A*=/ in (14.4). Since τn I #o as τz->oo by (3) in [14.1], we have, for path's
in W,

lim lim {x(τn)*=J,
m-*oo n-*oo

and

Therefore

P Um lim £2{

By (p.4) in [1.8]

and

Hence we have k=l.
3° Take a non-empty if with Jr\K=0. Then, for paths in

φ={x(σ<,)(ΞJΓ\K}Σ)\m\ Πϊn ( i(

and

By (14.4), we have
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Since Pz(x(σ0)<^K)=Pf 2(x(σ0)
(^K)>Q, we have k=0, which is a contradiction.

[14.4] PROPOSITION. // P in ί?c satisfies [ 7 ] , ί t e μP *s m Mt(R).

Proof. Let P=<rP for P in £P. Assume μP is not in Mi(R). Then there
exist Cι and £2 with 0<£i<c2<2τr such that μP{{cu c2))=0. We shall show^ a
contradiction. Take a non-empty open interval / with Jc.(cu c2). Set / =

G (J+2nπ) and for 0<a<b

F(a, b, T)=PΛ(σa^T, x(τ(a, 6))e/).

Then by [12.14] for a fixed positive Λ

F(a, b, T) ^e"E*\ f) ί-^ ' 'WxWβ, ft)))}
U=0 J

- ^ - Γ m P ( x , a)Qb'aIj(x)dx.
Iλ Jo

Since σα ΐ σ0, Qb~aIj(x)->QbIAx) uniformly in x and mP(x, a)dx->μP(dx) weakly
as α->0. By

T ( α , 6)=τ(0, b) if α<^> and ^(0, b)<β(a, b),

and by (4) in [14.1], we have

Fφ, T)=

<: lim F(α, 6, T)
α-0

where ε=inf{ |*--£| : Λ e / , fe(0, 23r)-(c1; ct}). Therefore, by (2) in [14.1],

PaiσotiT, x(σa)€Ξj)^ lim F(b, T)=0.
δ-0

On the other hand, for T > 0

which is a contradiction.

[14.5] Let / be in Bb(R) and a be a positive number. Then for a fixed
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positive ε

where the left side converges boundedly in x.

Proof. By (h.3) in [2.2] and (8.7) in [8.5], we can easily see for a fixed c
with 0<c<b<a

M Hf(x, dξ)f(ζ)
χ\ze

a—

χ^ε

a-c7Cb-c(y)dη\H«{y, dξ)f(ξ)

is bounded in b and x for b^[a+c/2, a), and converges to 1 B$(x, dξ)f(ξ)
J\ξ-x\Zε

as b t a.

For any positive ε, set

(14.5) γε(w)=inf{t: \x(t)-x(0)\>ε and z{t)^D)

for lί; in W with ^(0, w)^D, and

(14.6) rε(^)=inf{ί: |x(ί)-x(0) |>e}

for w in ΪF. Then, by (1) in [14.1] it is easily seen that for any z in D

(14.7) UW)=Mcw) a.s. ?z.

[14.6] Let P in £>c satisfy [ F ] and [M]. Set r=r«+5s for positive a and
ε with 0 < ε ^ π . Then, there exists a positive constant aQ^aQ(εy P) such that

(14.8)
β — y

for any a^a0.

Proof. By proposition [14.3] and [14.4], we have seen that σP and μP are
in Mi(R) and therefore δ(σP> ε), δ(μP> ε) and δ(σP, a) are positive. Set

Λ y r . (δ(σP, ε)2δ(μPf ε) }
α o = Min-J 77j—TjT , lϊ

and for 0<b<a γb=γ+σt°θγ, where σf is the hitting time of Dίb>°°\ Then
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where

\x(σa)-x\<a, \x(n)-

\x(σa)-x\<a, \x(n)-x\<a+4ε),

Since pP(a)^pP(l) if a<ao<l by (2) in [10.15], for a^a0 by [1.5] and [13.4]

=Ez(H«vW(x(r,,), Uu

- 8app(a)

and

J3£Pz(\x(σa)-x\^a)=Ha(z, Ua(x)c).

Therefore,

z, Ua(x)c).

Since γbiϊ as 6 1 0 by (2) in [14.1] and

\x(7> iϋ)—x(0, w)\—a+5ε if r(^)<°° for w in ΪF,

and

where ±

and by

P=cP for

[14.5]

P2π

\ mP(x,
Jo

P

i

_^_

lim/
6 4 0

in $.

Dz(r<o

2£P2(\χ(r)-

Therefore

δ-»o

a-y

<

•x\^aJr^

we have

:2j o mP(x,

:2[2πmP(x,

for α£

ία(z, £/

β)Γim

a)BH:

a(x)

H%

' >

Z, Ua(xY)
a-y

a(xY)dx
Jo

S i n c e \uP(ξ, a ) — u P ( x , a)\^δ(σP, a ) if \ξ— x \ ^ a b y [ 1 3 . 3 ] , w e h a v e f o r a<La0

1 mP(x, α)hm—~ cίx
Jo ytα α — 3 ;

p(̂ ^ α)(wp(ί, O)-M/<Λ;, α))2

3;

7Pf Oί)
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which completes the proof.

[14.7] Let P in £PC satisfy [ 7 ] and [M]. Then for any positive a and ε
with

(14.9) \ 2 π m P ( x , a ) B K x , ^ U r ^
J o δ(μP, ε)δ(σP,

for at^a0, where a0 is the constant given in [14.6] and Uε(x)—{ξ<^R \ξ— x\ <δ}.

Proof. Let P=cP for P i n 3>. Set r=r«+5£ and r & = r + ^ ° ^ r where rα + 5 ε

is defined by (14.5) and σb is the hitting time to D^-^ (b>0). Since \x(γ, w)-
x(0, w)\=a+5ε if γ(w)<oo for w; in W, by [13.4]

c =P 2 ( I x(σa)-x I ^

' I x(σa)-x(r)\ ^

=ljm Et{H*w(x(rb), U2Ca+ε>(x(γb))c)Iίrb<σa)
b-*o

__ 8app(a)
_

3(/£P, ε

Therefore, by [14.5] and [14.6], for

which completes the proof.

[14.8] PROPOSITION. Let P in £BC satisfy [ 7 ] and [AT], f/ι<m P sα '̂s/z ŝ [L*]
therefore [L].

/. By [11.10] it is sufficient to prove [L*]. Take ε=ττ and a~Nπ
in (14.9). Then δ(μP, π)=2π and 3 ( ^ , Nπ)=2Nπ and

Ϊ 2π

^ W P ( X , a)Bf>(x, UC8+B
apΛaf

*• X — - fk » T /( c
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for a<a0 with positive a0. Therefore

[2πmP{x, a)dx[ BKx, dξ) (ξ-xf
Jo Jι£-j?ifciijr

= 2τr5 J & ΛΓ

Take α=e and δ=ε in (14.9), for o ^

, α)d*ί
>\ξ-x\ϋlU

= δ{μP! ε)δ(σP, ε)' '

Therefore, for a fixed positive ε and a<

βg(llε)= PmpU, a)dx[
Jo Jlί-zi^llε

Since pp(a) decreases as a decreases by (3) in [10.15], we have

lim 5«l lε)=0.
α-o

[14.8] is proved, for ε is arbitrary.

From propositions [13.8], [14.3], [14.4] and [14.8], we have the following
theorem.

[14.9] THEOREM. Let P in 3> satisfy [V] and [M]. Then P is in 3>c if
and only if P satisfies [L] and μP and σP are in Mι(R).

Combining theorem [14.9] with theorem [11.7], we also have:

[14.10] COROLLARY. Let P in £PC satisfy [V] and [M], then P is BP-proce$s
with μp and σP in Mi(R).

§15. Processes which satisfy the condition [H.C].

[15.1] Let P in £B satisfy [7] and [Λf]. Set

M(a, ft)=s

m(a, b)^i

for 0<b<a. Then
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M(a, b)£2m(a, b)+24π2.

Proof. For fixed a and b with 0<b<a, set

M+(x)=\ Hξ(x, dξ)(ξ-x)2 and

M-(x)=[ Ht(x,dξXξ-x?.

Then M(a, b)=sup{M+(x)+M-(x)} and m(a, b)='mf{M+(x)+M-(x)\.
X X

By [M], 5K0=ί #?(*> dξ)(ξ—x)* is nondecreasing in ί. For x<3;<x+2π ,

M+(^)=( mix,

By (ρ.5) in [1.1], M+(x) is periodic with period 2π. Therefore

for any x and ^. Similarly we have for any x and y

M-(x)£2M-(y)+12π2.

We have

sup (M+(x)+M-(%)):g2 inf (M+(x)+M~(x))+24π2.

[15.2] Let P in £P satisfy [V] and [M] and c be α fixed positive number.
Then for any a and b with 0<&<α^c, M(α, ft)^/f, where K=K(c) is a con-
stant independent of a and 6.

Proof. By §0, 8°, we can see for 0 < s < r

1 Γ w2 / c \ —
where C^^—Λ— τdu is an absolute constant. For i G h r , ^), by (Λ, 3)

2π3Jcosh w — 1 \2 /
in [2.2]
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M(c, ί>)^
X Jc/2

C/2

For 6e(0, c/2), again by (A.3)

2M(C, j ) ^ n U x , dη)Hl(η, dξ\ξ-xf

.Ux, dη)Htϋη,

^±-m(c, b)-2C{c-bf.

Therefore by [15.1]

M(c, b)£

For 0<b<a<c, by (A.2) in [2.2]

2M(c, b)^Ht(x, dη)Hc

a{ηy dξ){ξ-xf

^m{a, b)-2M(c, a).

By [15.1]

M(a, b)<4(M(c, b)+M(c,

whicn completes the proof.

[15.3] PROPOSITION. Let P in & satisfy [ F ] and [M]. Then P satisfies
[_H. C] if and only if σP has no discrete mass.

Proof. Since — uP(z)~sP(z)—— \ — — 2 σP(dξ), uP has a continuous
ax 7Γ j {ζ x) ~χ~y

boundary function on d0 in D if and only if σP has no discrete mass. Assume
that P satisfies [ # . C ] . For α>0, set
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Up(N> a) if x^N,

/ * ( * ) = • uP(x, a) if \x\<N,

ιip(-N, a) if x£-N

and φN(z)=HafN(z) for z in Dα (iV=l, 2, •••). By the assumption, φN(z) can
be extended to a continuous function in βί0'a:i=Da. On the other hand,
\uP(x, a)-up(ξ, a)£C+\x-ξ\. Therefore, for z in D? = {0<y<a, \x\ <r)

and N>r

ϊ,dξ)\uP(ξ, a)-fN(ξ)\dξ

C+2NK< \HHx dίYf xY<

by [15.2]. The function uP(z) can be approximated by ΦN(Z) uniformly in D?.
Since r is arbitrary, uP can be extended to a continuous function on Da. Con-
versely, assume that σP has no discrete mass. Let / be any function in CK(R)
and a be any positive number. Set φ{z)—Haf{z) for z in D α . Then, by (3)
in [9.9], for a fixed b<a and z in Db

(15.1) I0*(*)|^/fsp(z).

g(t)σP(dt) on

30 with Hgii^if. Thus (1) in the condition [H.C] in [3.3] is proved. Note
that by (2) in [9.8], the constant K appearing in (15.1) can be taken so as

K=supJ
x Sp{X, 0)

where C=C(P, a, b) is a constant independent of φ. Let fN (N=l, 2, •••) be in
CK(R) with fyj 1 as N->oof and set φN—HafN. We may assume that φN is
continuous in Db—Dl*'bl. Then, by the above remark, the boundary functions
of φπ's (iV=l, 2, •••) on d0 and on db are equicontinuous. They are also equi-
continuous in Db. Since φ^z)^! for z in Db, we have φN(x, O)T1 (A/"->oo).
Hence (2) in the condition [i/.C] is proved.

Let P be in £FC and P—rP for P in ̂ , and P satisfy the condition \_H.C~],
For / in C6(P), jset φ=Haf (α>0). JΓhen by [//.C] and [3.5] we may assume
that φ is in Cb(Da). Set ̂ ( i S)={^ei9 α ; φ>β} for any real /3 and

f pβ(w)=mf {t: z(t)^Λ(β)ΓΛD} for
(15.2) {

{ pβ(w)=inf {t: z(t)(=A(β)} for WΪΞ

Then, by (1) in [14.1], for any z in D
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ρβ(w)=:pβ(cw) a. s. Pt.

For any open set U in R, define U in B by

(15.3) n={w : lim x(σa)^U and X(0)ΪΞD},
α-»o

where σα is the hitting time of 9α (α^O). Then U is in BσQ and

r ^ f w : x(σo)^U and 40)eZ>}.

[15.4] Under the above assumptions and notations, set ra=(7o+ffae0ao. If
there exists an open set U such that φ(x, 0)<a for any x in U, then, for any
β>a and z in /),

)^β for any se(σ 0 , rα)}>0 .

Proof, Set ρ—σϋ

Jrpβ°θσ{iy where pβ is defined in (15.2). Assuming

P for any s(=(σ0, τa)}

we shall show a contradiction. For b<a set

and

where σb is the hitting time of Dίb °°\ By (2), (3) in [14.1] ρbiρ and
as 6 10.

Γ Using [1.5], we have

I\zCσ0)&U, p<τa))

= B m Ez(φ(z(pc))I[pb<Tat xta

I{z(<7oyEU, p<ra))

2° Similarly, we obtain
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lim Eiφ(,z(τh))h)
δ-»0

Since P£z(σo)tΞU)=Pf \z(σQ)<ΞU)>O, by 1° and 2° we have a contradiction.

[15.5] Remark. Replacing φ by — 0 in [15.4], we also obtain: If there
exists an open set U such that φ(x, 0)>a for any x in U, then, for any β<a
and z in Z),

)^β for any se(σ 0 , r α ) }>0.

[15.6] PROPOSITION. Let P in £PC satisfy [H.C], then P satisfies [M].

Proof. Let / in Cb(R) be any nondecreasing function and set φ—Haf
(α>0). We may assume that φ is in Cb(Da) by [ # . C ] . Assume that there
exist Xi and x2 in i? such that φ(xu 0)>φ(x2, 0) and xx<x2. Then there exist
open intervals Jx and /2 with /jGx t (ί = l, 2) and ]\Γ\]i—Φ and α and /3 with
a<β such that ^(x, 0)>/3 for x in /i and φ(x, 0)<a for x in /2. Take ά and
j5 such that a<ά<β<β. Then by [15.4] and [15.5]

)^β for any seΞ(<τ0, τa)\

and

A2—{w : z(σo)EiJ2, φ(z(s))<ά for any SG(<70, τα)}

have positive probabilities (F2, z^D). Especially they are non-empty sets. Take
Wι from Ax and w2 from ^42. Then curves

and

in Da both start from 90 and end on da and they can not intersect. On the
other hand, by construction of Jλ and /2,

*(0 o(££iX ^1X^(^0(^2), ^2) and

since

This is impossible. Therefore φ(x, 0) is nondecreasing. Then
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is also nondecreasing, which completes the proof.

[15.7] Let P in £B satisfy the condition [M]. Then for any fixed positive a

(15.3) lim sup Ha(z, Ua(x)c)=0 ,
α-oo z^Da

where Ua(x)={ξ^-R: \ξ-x\<a} and z=(x, y).

Proof. Set H(z, a)=Ha(z, [α, °°)), then //"(*, α) is increasing in x by [M]
and //(•, α) is bounded harmonic in Da with Q:£H(z, α ) ^ l . Therefore #( , α)
has a monotone bounded boundary function HQ(x, a)—H((xy 0), α) such that

(15.5) H{{x, y), a)=ma

v(x, C«, ~))+Jβ

βΠJ(x, dξ)HQ(ξ 'a).

We may assume that H0(x, a) is right continuous in x. Since H(zf a) (0^y<a)
is increasing in x, decreasing in a and H(z+2π, a+2π)—H(z, a), we have

(15.6) ff((0, y), *+2;r)5S#((x, j ) , x+α)^Λ((0, ^), α-2w).

Also, by (15.5), lim i/0(0, α)=0 holds, for lim #(z, α)=0 holds for ZEΞD". By
α-»oo α-»oo

(15.5) and (15.6)

, y), «)̂ SΠ?(0, [α, oo))+gπ?(θ, [ | , °°))+ft(y, a)

2

and lim &(α)=0. Therefore, by using (15.6) again, we have
a-*oo

O^lim sup H(z, α)^lim sup #((0, y), α-2π)
Z> α 0<

In a similar way we can show

lim sup Ha(z, (-00, - α ) ) = 0 .

[15.8] Let P in £PC satisfy the condition [ # . C ] , Set

r«(fi?)=inf {t: \x(t)-x(0)\^a}.

Then lim sup P

Proof. Set r«.&=rα + 0tfβ0 rβ where σ? is the hitting time of
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a> \x(σa)-x\<ψ).

Since \x(γa)—x(0)\=a if γa<<χ> in W, noting γa t i T<* as b[ 0, we have by
[1-5]

= SlimPlγa,b<σa, \x(σa)-x\<^, \x(ΐa.i,)-x\>Ύa)
6-.0 \ 3 3 /

!g SUP Ha(z,Ua,s(x)C).

Therefore

Cσa)^2 sup Ha(z, Ua/3(x)c).

[15.8] follows from [15.7], for P satisfies condition [M],

[15.9] PROPOSITION. Let P in £BC satisfy [#. C]. T/ẑ n P sαί/sjίes [Vr]
(r=l, 2, .-.).

Proof. Define γa and ^α,6 as in [15.8]. By [15.8] we can take a so large
that sup Pz(γa<σα)<l/2. Then, by [1.5],

6-»0

^lim-r-
δ-*0 ,6

= -2-P*(

By induction we have
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SUP

Since

(σa)-x\ >2na)£Pz(r2na<σa),

we have

sup
Z&D&

Combining [15.3], [15.6] and [15.9] with theorem [14.9], we have proved the
following theorem.

[15.10] THEOREM. Let P be in &. Then, P is in £BC and satisfies [ # . C ] if
and only if P satisfies [M], [V] and [L], μP and σP are in Mt(R) and σP has
no discrete mass. In this case, P is a BP-process.

By theorem [3.12] and [4.10], we also have:

[15.11] PROPOSITION. // P in £P is a Feller process on D with continuous
path functions in the sense that P is in £PC and satisfies [C], then P is BP-process
for which μP and σP are in Mt{R) and σP has no discrete mass.

V Construction of 5-processes.

§16. Construction of processes Pa,β

We begin by giving several notations and lemmas. Set

Cί=ί/eC r : lίm —£^i_ =0}
I 1 * 1 - 0 0 1 + \x\ )

and set [|/ r | l=sup J j ^ ' (r=0, 1, 2, •••). Then Cr and C* are Banach spaces
x I I X I

with || ||r-norm.

[16.1] C*dCrcC*+u

CK(R) is dense in Cf,

, 1
and || | | 0 = 2

By an operator A on Cr (or C?), we shall mean a linear operator A from
Cr into Cr (or from Cf into C*). Set
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||i4||r = s u p ί ί ^ and \\A\\ = \\A\\0.

We shall say:
A is monotone if Af is nondecreasing for any nondecreasing /.
A is positive if Af is nonnegative for any nonnegative /.
A is periodic (with period 2π) if Af2π(x+2π)=f(x), where f2π(x)=f(x—2π).

[16.2] Let Q(x, dξ) be a positive kernel on Rx$(R) with ||Q||=sup Q(x,R)

<oo. If sup^?(jc, dξ)\ξ-x\r = k<oo for r ^ l , then Q/(JC)=JQ(X, dξ)f(ξ) is

well-defined for / in Cr and ||Q/||r^2r-KI|Q|| + A0ll/llr holds. Moreover Q is
an operator on C$.

If / is in C r

If / is in Ct, then

I <?/(*)! ̂ 11/11 [, <?(*,«)+ sup

and Πm \Qf{x)\^^\\f\\\Q(x, dξ)\ξ-x\r. Since r ^ l and iV is arbitrary,
Ul-oo iV J

is in Cf.

[16.3] For r^O, let ^ be an operator on Cr with ||A||r<oo. If Af^Q
for any nonnegative / in Cκ(R)f then there exists a unique positive kernel
QU, dξ) on ΛxS(Λ) for which

(16.1)

for / in Cf. If, moreover, A is periodic, then Q is periodic (that is,
Q(x+2π, dξ+2π)=Q(x, dξ)),

and A is an operator on Cf.



450 MINORU MOTOO

Proof. It is obvious that there exists a unique positive kernel Q{x, dξ)
with ||Q||=supQ(x, Λ)<oo for which (16.1) holds for / in Cff. Set φN(x)=

ffl Then ^ is in Cί and

(16.2) \Q(X, dξ)(l+\ξ\r)= Mm

^ lim
JV-»oo

Therefore, approximating any function in Cf by functions in CJ in || ||r-norm,
we can see that (16.1) holds for any / in C?. If A is periodic, then 0 is ob-
viously periodic and by (16.2)

sup ((?(*, d£ ) l€ -* | r = sup \Q(X, dξ)\ξ-x\r

^ - 1 sup ίρ(x, dξK\ξ\r+πr)
\x\£πj

By [16.2] A is an operator on Cf.

[16.4] Let 0 and S be positive kernels on Rx%(R) with \\Q\\=supQ(x,R)

<co and ||S||=supS(A:,/?)<oo. If
X

and sup \s(x, dξ)\ξ-x | r =
J

for some r ^ l , then

(16.3)

and

(16.4)

Proof. We have

and
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c, dξι)Q(ξί9 </&)••• <?(£„-!, dξn)( Έ l£*-S*-ilr

For / in C(R), set

(16.5) ll/lliv*) = .sup \f(ξ)\,

where UP(x)—{ξ^R: \ζ—x\<p}

[16,5] Let ̂ 4 and B be bounded operators on Co. For given xei? and
e>0, assume that

and

for any ί > 0 and / in Co. Then,

(16.6) \\ABf\\VpM

where r=r^rs and ̂  Ά + δ J β l l , and

(16.7) lli4VII^

where fn—Tίl and

Proof. Since

/ll^c«)^^ll5/||σ p +,(,,+^||S/||

iiJ3|| n/ii

(16.6) is proved. (16.7) is obtained by induction.

[16.6] Let / be in C\R). Then for any

l/'toljg-J- sup \f(ξ)\+\ψ. SUp |/"(|)|,
| Λ | ξ(Ξlx.x+K2 Z ξeix,x+Ki

where [x, x+K~\ is replaced by [_x+K> x~\ if /ί<0.

. Since /(jc+iT)=/(x)+^//(x)+(l/2)ii:2///(f) for some £e[x, x+K~]y
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[lβ.β] is obvious.

In the following, C/s (&=1, 2, •••) stand for absolute positive constants
and Ck(x)'s for positive functions which depend only on x. Set for α>0

(16.8)

By §0, 8° and (16.8), we can easily obtain:

[16.7]

(1) ^aπb(x)\x\rdx£C1(r)ar (0<b<a, O^r),

(2)

(3)

(4) JiT(*)UΓ^^Ci(r)α ( r / 2 ) + 1 (0<α, O^r),

For positive ε

(5) f aπ\x)dx£C2(ε, a) (0<b<a),

(6) ί ^ U M ^ C 2 ( e , Λ)

(7) f ίo(x)xMA:^C2( ε > α)
J|XI££

(8) ( £α(x)rf;t^C2(ε, α)

where lim C 2 ( £ ; fl) = 0 for any s>0.
α-0 a

For positive α and x^R set

(16.9) G β/(χ)

where (Pf 1, x(ί)) is the one-dimensional Brownian motion starting at x. Paf
and Q α / are defined as in (8.3) and (8.4).

[16.8] For / in Cr

(1) II8IB/Hr, ll8Πf/llrSC8(rXl+α r)ll/llr (0<b<af O^r),
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(2) \\Qaf\\r£Cs(r)j(l+ar)\\f\\r (0<a,0<r),

(3) | |P°/ | | r ^C 3 (r)α(l+α r ) | | /Ί | r (0<β, 0£r, f'(=Cτ),

(4) ||Gα/llr^C8(r)α(l+αr/2)ll/llr (0<α, 0£r).

For / in Co and positive £ and e

(5) ||SΠ»/l|{Γp<i), lloΠ°/llιΓp(x).^C4||/||pp+,<I)+Ct(e, α)||/| | (0<&<α),

(6) ||(

(7) \U

(8) II ('

where lira ' a = 0 for any s>0.
0 α

Proof. We shall prove (3) and (7). The rest are easy to prove. By (3) in
[16.7], we have

\Paf(χ)\ =

SUP
ye(a?5

Similarly by (3) and (7) in [16.7]

[16.9]
(1) For / in Cτ and 0<b<a

(16.10) Qaf=Q6aomf.

(2) For / in C\R) with / ' e C r and 0<b<a

(16.11) / > α / =
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Proof. By [16.1] and (2) and (3) in [16.8], it is sufficient to prove (16.10)
for / in CK(R) and (16.11) for / in C2

K(R). (16.10) is a consequence of the
relation

8 Π ? = a E 8 Π ί for 0<c<b<a.

For / in C2

K(R) and 0<c<b<a

Therefore

In the following assume that functions a(x) and /3(x) in C\(R) with
are given and fixed. Set α*=sup a(x) and α*(x)=inf a(x). Then a* is positive.

Hereafter K/s (/=1, 2, •••) stand for positive constants which depend only on
α*, α* and ||j8||, and Kj{xYs (/=1, 2, •••) for positive functions of x which
depend only on a*, a* and ||/3||. Define for α>0

Then by Kac's theorem we immediately have:

[16.10] For / in Co and positive a, Gaf is in C2(R)Γ\C0 and it holds that

[16.11] For any r^O and / in CT, Gaf is in C\R)r\C0 and for

(1) UGVI

(2) ||(Gβ/

(3) IKG /
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For any / in Co, any p>0, s>0 and

(4) \\Gaf\\Up<x^aK2\\f\\Up+εCx,+K / |

(5) KGaf)'\\UpωtίVaKt(ε)\\f\\Up+εCx)+K3(ε, a)\\fl

(6) KGafy\\UpCx^K2\\f\\Up+εCx,+Ks(ε, a)\\fl

where l i m — — 9 — = 0 for any s>0.
α-o as

Proof. Since

(16.14) \Gaf(x)\£Ga\f\(x)^ — Gaa*\f\(x),

Gaf is well-defined for / in Cr and (1) holds for 0 < α ^ l by (4) in [16.8]. If
/ is in Co, then by (16.13)

(16.15) \(GafY(x)\£

and (3) is an immediate consequence of (1). Taking K—^J~a in [16.6], we get

(16.16) |(Gα/)'(x)|5g-jL sup \Gaf(ξ)\ + ̂ * s u p |(G"/)"(f)|.

Hence (2) follows to (1) and (3). For / in C r , take a sequence {/„} in Co such
that /»-»/ in Cr+1. Replacing r by r + 1 in the above argument, we can see
that Gafn-*Gaf in C r + 1 and {(Gα/n)'} and {(Ga/n)^} converge in C r + 1 . There-
fore G a / is in C2(i?) and (16.15) and (16.16) hold for / in C r . (2) and (3) can
be easily proved for / in C r . (4) is a consequence of (16.14) and (8) in [16.8],
(6) is proved by (4) and (16.15). For / in Co and a<(ε/2f we have by (16.16),

Therefore (5) is obtained from (4) and (6).

[16.12] Remark. In a way similar to the proof of [16.11], we can show
(16.13) also holds for / in Cr.

[16.13] Set Fa=Pa+β(xXd/dx). Then for 0<a^l, r>0 and / in Cr

(1) \\FaGaf\\r£VaKδ(r)\\f\\r.

For 0 < α ^ l , p>0, ε>0 and / in Co

(2) \\FaG«f\\UpU,ύVaK&(ε)\\f\\Up+stx,+KΊ(ε, a)\\f\\.

Proof. (1) is a consequence of (3) in [16.3] and (2) and (3) in [16.11].



456 MINORU MOTOO

Applying [16.5], we have, by (7) in [16.8] and (6) in [16.11],

\\PaG*f\\Upζx><aC<K*\\f\\Up+βix>

Combining this with (5) in [16.11] we can prove (2).

[16.14] For any r^O, there exists K8(r) such that for 0<a£K8(r)

(16.17) Σ>\\FaGa\\?<co.

Set Laf='Σ(FaGa)nf for / in Cr and 0<a^K8(r). Then
n=0

(1) \\Laf\\r<K9(r)\\f\\r.

(2) \\GaLaf\\r^aKlr)\\f\\r,

(3) WG L ^ ^

(4) GaLaf is in C\R)Γ\Cr and satisfies

(16.18)

/. Take ϋf8(r)=Min(l, l/2K,(rf). By (1) in [16.13], (16.17) and (1) are
obvious. (2) is a consequence of (1) and (1) in [16.11]. By [16.5], [16.11] and
[16.13], for / in Co

where \im(K'(ε, a)/as)=0 for any s>0. Thus (3) is proved. Since Laf is in
α-o

CTi GaLaf is in C\R) and by remark [16.12]

=f+Pa(GaLaf)+βj^(GaLaf).

(16.18) is proved.

By construction it is easily seen:
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[16.15] GaLa is periodic as an operator on Cr (r>0, a^K8(r)).

[16.16] For any positive a there exists a positive kernel H%(x, dξ) on
with the following properties:

(1) //g is a periodic probability kernel.
(2) H% is monotone.

(3) sup (#?(* , dξ)\ξ-x\r<<*> ( r = l , 2 , ».).
X J

(4) H% maps Cr into C r (r=0, 1, 2, •••) and C? into CJ.
(5) For / in C r , φ=H$f is in C2(i?) and satisfies

1

(16.19) a(x)φ"(x)+β(x)φ'(x)+Paφ0

(6) For any positive ε

\ #o(#> d £ ) ^

Moreover,
(7) A kernel Hi(x, dξ) is uuiquely determined by the properties that H%

maps Cf into C?πC2(i?) and φ=Ha

of satisfies (16.19).

Proof. 1° Uniqueness Suppose that there exist two kernels Hξ% (z=l, 2)
satisfying conditions in (7). For / in C$, set φ=HS1f—H%2f. Then ^ is in
CJπC2(i?) and satisfies

(16.20) aφ"+βφ'+Paφ- — ψ=0.

Therefore, φ can not take positive maximum nor negative minimum, and hence
^ = 0 . (7) is proved.

2° For any given r ( r=0, 1, 2, •••) take K'(r)=MinKB(s), where K8(s) is

given in [16.14]. For a£K'(r) set Hf=GaLaQaf. Then, by (2) in [16.8] and
(2) in [16.14], \\βf\\t£K"(r)\\fh for / in Cs (s=0, 1, 2, ..., r+1). Moreover,
by (4) in [16.14] Hf is in C\R) and satisfies (16.19) for / in C r + 1 and by

[16.15] H is periodic as an operator on C r + 1 . If / is in 0 Cp N(R)(zCo and
N = l

nonnegative, then φ~Hf is in 0 CP>N and satisfies
N=l

a

Therefore φ can not take negative minimum and Hf^O. Since any function in
CO

CK(R) can be approximated by functions in \J CViN in C?+i-topology (r^O),
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we have Hf^O if / is in CK(R), Now, applying [16.3] to H (where r is re-
placed by r+1), we see that there exists a positive periodic kernel H%(xy dξ)
such that

Ha

of(x) for

(16.21) sup[#8(*, dξ)\ξ-x\r<K«\r)
X J

and H%=H maps CJ into Cff by [16.2]. The function ψ=H%l-l is a solution
of (16.20) and in CP(R). Therefore by maximum principle # 8 1 = 1 , or H% is a
probability kernel. Now for K'(0)^K'(l)^ ••• ^K'(r)^ ••• >0 we have con-
tructed kernels &%(x, dξ) (0<a£K'(r)) which satisfy (1), (3), (4) and (5) for
fixed r. By (7) they are independent of r if defined.

3° Using [16.5], we have, by (2) and (6) in [16.8] and (3) in [16.14],

ε', α)+2α3/2C3(0))||/||}

for any / in Co. Take p=ε', ε=iε' and / in Co with

0 in £/,.,(*),

1 1 in Uε(x)c.
Then

Thus (6) is proved.
4° We shall prove (2) for small a. Let / be in Cl(R) and nondecreasing.

For a fixed a with (Kα^/f 'Q) , set φ=HaJ. We shall show that lim φ'(x)=0.
IX\-+oo

There exists μ— lim f(x) and
X-*°o

|^)-^|^[ Ha

0(x,dξ)\f(ξ)-μ\+2\lf\U H%(x,dξ).
hξ-χ\^κ J\$-χ\>κ

Therefore, for any positive K

Ux, dξ)\ξ-x\,

and \ϊmφ(x)~μ. Similarly we have lim φ{x)— lim f(x). Noting (3) in [16.11],

we have

and \φ'(x)-l/ε(φ(x+ε)-φ{x))\^ε\\φ"\\. Therefore, ψnjφ'(x)\ ^ ε | | ^ | | for any

positive e, and lim φ'(χ)=0. Since by (16.19).
| X | o o
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φ is in CZ(R\ Differentiating (16.19), we also have

aφ"'+{βJra')φ"+(βr-— ^φ'+Paφ' = -Qaf'^O.

Take α^Min {K'(l), (l/(l+||j8'| |)}, then φ' can not take negative minimum..
Since we have seen that φ' is in C$, φ'^0 or φ is nondecreasing, (2) is proved
for

5° Let a be any positive number. For a fixed r ( r = l , 2, •••) take b so

small as b<M'm{a, K, K'(r)}, and set

Since HΪ%Tll(x, R)=(a-b/a)<l and Hb

0 SΠ?U, R)=b/a, Ha

Q is well-defined as
a periodic probability kernel. Using [16.4], we have by (1) in [16.7] and (16.21)

sup li/SOc, dξ)\ξ-x\r<oo .
X J

Noting [16.2], we see that H% satisfies (1), (3) and (4). (2) is obvious, since
#o, oil? and JΠ? are monotone. Set φ~H%f for / in C r . Then φ—
^o(oΠδ^+oΠδ/). Since we have already seen that H\ satisfies (16.19), φ
satisfies

and by [16.9] φ itself satisfies (16.19). Hence (5) is proved. By uniqueness, we
see that H% is independent of b and H%—H% if the right side is defined. (6)
is trivial, since it holds for a^K'(0) by 3° and H%(x, R)—l for any a.

[16.17] Remark. By (16.21) it holds that for 0<a£K12(r)

where the right side is independent of α.

By the explicit form of rπs(x) in §0.8° and the definitions of Pr and Qr in
(8.3) and (8.4), we can easily show:

[16.18] L e t / b e in Cr and g be in CrΓ\C\R). Set u(z)=ΐΐί%f(x)+%Π*g{x)
for z in Όa. Then u is well-defined and harmonic in Da and M, UX9 UXX and
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uy are in C(^°'α)). Moreover, u(x,0)=g(x), ux(x, 0)=g'(x), uxx(x, ΰ)=g»(x)
and

uv(x, 0)=Pag--^g+Qaf.

[16.19] THEOREM. Let a and β in C2

V(R) with α > 0 be given, and Ha

Q be
the kenel given in [16.16]. For any positive a and b with 0<b<a set

(16.22)

and

(16.23) H\zy dξ)=Ha

y(x, dξ) for z in Da .

Then H={Ha(x, dξ)} belongs to JC. P=P(H) satisfies [M], [ 7 r ] ( r =
1, 2, •••) and [L*] (and therefore [L]). Moreover H satisfies:

(1) For any / in Cr (r=l, 2, •••) set u(z)^Ha>f(z)=\)H
a(z) dξ)f(ξ). Then

u, ux. uxx and uy are in C(Dc° α )) and u satisfies

(16.24) a(x)uxx(x, 0)+β(x)ux(x, 0)+uy(x, 0)=0

on 90.
// in M is uniquely determined if (1) is satisfied for any / in Cb(R).

Proof.
1° Let H satisfy (1) for / in Cb(R). For / in CPίN(R), u^=Haf is har-

monic in Da and CPtN(R) (N=l, 2, •••)• Since « = / on 3α and w satisfies (16.24),
we can easily show, by maximum principle of harmonic function, that u is
uniquely determined. Probability kernels Ha(z, dξ)'s (α>0, z^Da) are also
determined, since / is arbitrary in \jCPtN(R).

2° In the following, let H={Ha(z, dξ)} be defined by (16.23). Then by
definition and [16.16], H satisfies (h.l), (h.3) and (h.4) in [2.1]. For / in C<J,
set u=Haf, φ=mf, U^HbHίf and φ^mmf=m{%mφ+%ΉSf) Φ>a).
Then u and u are harmonic in Db, u(x, b)—Haf(x, b)=u(xf b) on db and u—φ
and u—^> on 30 By (5) in [16.16] φ and φ satisfy

(16.25) aφ'/+βΦ'+Pbφ+QKmoφ+mSf)

(16.26) aφ"+βφ'+Paφ+Qaf- — φ=O.

By [16.9], (16.26) is transformed into

(16.27) a

By (16.25) and (16.27)
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a{φ»-φ'')+β{φ'-φ')+P\φ-φ)- j(φ~φ)=O.

Since φ—φ is in C$ by (4) in [16.16], we can show φ—φ by maximum principle.
Therefore u=iί and Ha=HbHa in D\ Hence (h.2) is proved.

3° For / in Cr set u=Haf and φ=Ha

of. Then u(z)=Hlvf(x)+*ILWW>
By (4) and (5) in [16.16] φ is in C\R)Γ\Cr and satisfies (16.19). On the other
hand, by [16.18], u, ux, uxx and uy are in C(Dc0 α )) and w=0, ux=φ', uxx—φ"
and uy=Paφ+Qaf-(l/a)φ on 30 (16.24) is a consequence of (16.19).

4° Since H%, SΠf and ?Π2 are monotone, ίΓ satisfies [M]. Using [16.4],
we can see by (1) in [16.7] and (3) in [16.16] that H satisfies [ F r ] ( r = l , 2 ).
Especially by [16.17], we have

(16.28) sup \Ha{x, dξ)\ξ-x\r^Ku(r) for 0<a£K12(r).

On the other hand, by (5) in [16.7] and (6) in [16.16]

f8lΓ2(*, dξ)£C2(ε, 2a),
\zε

\ !SΠί(x, dη)Hl'(η, dξ)

S(\ +\ )f8ΠS(*, dη)Hla{η, dξ)

where ε is a fixed positive number and lim (C2(β, α)/α s)=0 for any s>0. There-
α-*0

fore we have

For

Hence limsup—ί/f2 α(x, d£X£-*) 2 =0. By proposition [11.11] Jϊ satisfies [L*l.
α-0 ί CJ
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[16.20] DEFINITION. Let a and β be in C2

P{R) with a>0. Pa,p is the
process such that Ha,β=H(Pa,β) satisfies condition (1) in [16.19]. Combining
theorem [16.19] with theorem [11.7], we have:

[16.21] COROLLARY. Pa,β is a BP-process.

§ 17. Existence of ^-process (1): Smooth case.

Let σ and μ be in MP(R) with σ(dx)—so(x)dx and μ(dx)=mo(x)dx. We
shall assume s0 and m0 are C%R) and positive. For any constant k, set for
z in D

(17.1)

Then, they are in C°°(D), and m0 and s0 are boundary functions of m and s on
do, respectively. Let l0 and tQ be boundary functions of / and t on 90, respec-
tively. Since {σ, μ) satisfies the condition [P] in [5.11], there exists a non-
negative minimum solution U=U° in D of

ί Ux=mt+ls ,
(17.2) ί

i Uv=ms-lt.

Set, ρQ=p0(σ, μ, k), that is,

(17.3) 2πίo=Γtt/°(Λ;, O)so(x)dx= inf [u\x, y)s(x, y)dx .
JO 2/>0 J

Take any positive p with p>p0. Then by definition [4.19] £ = {
in 5 . In this section we shall construct J3-process for this B.

Set Uβ^p-po+U0. Then UB is a solution of (17.2) with

μ, k, p\ is

Obviously, U is in
in C~(R) by

J 2π
UB(x, y)s{x, y)dx

o

) by (17.2) and UB>0 in D for p>p0. Define α and
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cUB(x,0),

Then a and β are in CP(R) with α>0. By theorem [16.18] we can construct
P=Patβ. Since P satisfies [M], [V] and [L], BP={σP,μP,kP,pP} is well-
defined and belongs to B. Moreover P is jBP-process (c. f. [16.21]). In this
section, we shall show that B=BP. Set H=H(Pa,β)={Ha(z, dξ)}.

[17.1] For / in Cq(R), set φ=Haf. Then φ, φx, φxx and φy are in C(R)
and it holds that

(17.5) (a m0 φx)χ+moφy—loφχ:=zO on 90

Pm?/. By theorem [16.19] φ} φx, φxx and 0 y are in C\R) and

(17.6) aφxx+βφx+φy=0

holds on 3 0. By (17.2) and (17.4)

(amoSo)'=UB,x(x, O)=moto

JtloSo

and

Eliminating t0, we have

(17.7) (αmo)'-j8roo-/o=O.

Eliminating j8 from (17.6) and (17.7), we have (17.5).

[17.2]

μ—μP, k — kp, m—mP and l=lP,

Proof. For / in C2

q(R) set φ=Haf. By [8.7], Green's formula and [17.1]

, a)f'(x))dx

S2π
(—m(x, a)φy(x, a)+l(x, a)φx(x, a))dx

o

S
Therefore by (3) in [8.17], we can see
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m—mp and l—lP,

and therefore μ—μP and k = kP.

[17.3]
σ—σP, s=sP and t=tP.

Proof. Define u by ux—sy uv ——t and w(0, l)=0. Then u is harmonic in

D, u(x+2π, y)-u(x, 3O=Ps(*, y)άx~2π and ux=s>0 in 5 . By (17.4)
Jo

auxx(x, 0)+βux(x, 0)+uy(x, 0)

Set v=Hau(', a). Since ι/( , α) is in Cu v, vx, vxx and vy is in C(D) and

8^(x, 0 ) + ^ ( x , 0)=0

holhs by theorem [16.19]. Since w — u—v is harmonic in Da and belongs to
Cp(Da) and w=0 on 9α, we have w=0 or w=ι; by maximum principle. That
is, u is in Hq. We have u — uP by theorem [9.5]. Therefore s—sP> t=tP and

[17.4]
UB=UP and p=pP.

Proof. Since £/P is a solution of (17.2), we have

UP=UB+C

for some constant C. Therefore ί/P is in CP(D) and

Set φ=Haf for / in CP(R), and let V be any solution of

ί Vx=-mφy+lφx,(17.8) I

Then V is in C\D), and by [17.1]

Vx(x, O)=-moφv(x, O)+loφx(x, 0)

=(amoφx(x, 0))x.

Therefore, for some constant Cx

V(x, 0)=am0φx(x, 0)+Cι.
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Since P is £P-process, choosing a suitable constant Cu we have by (7.1)

V{x, O)so(x)=UP(x, 0)φx(x, 0)

or

(17.9) CMx)=Cφx(x,0).

Integrating the both sides from 0 to 2π, we have

2wCi=0 and Cφx(x, 0)=0.

If φx{x, 0 ) Ξ 0 , then by (16.24) in theorem [16.19] φy{x, 0)ΞΞ0 and φ is a con-
stant function. Therefore, choosing nonconstant / in CP(R), we may assume
φx(xo, O)Φθ for some point x0. Then C=0. Therefore we have

UB—Up and p—pP.

By [17.2], [17.3] and [17.4] we have proved 5 = 5 P . Therefore we have
the following theorem.

[17.5] THEOREM. Let B={σ, μ, k, p) in & with the following properties be
given: σ(dx)=sQ(x)dx and μ(dx)=mo(x)dx, s0 and m0 are in C%(R) and positive
and p>po(<τ, μ, k), where po(σ, μ, k) is given by (4.14). Then, there exists a
unique B-process P. Moreover P=Pa,β, where a and β are defined by (17.4).

[17.6] COROLLARY. The B-process given in theorem [17.5] is in £PC and
satisfies [M], [ F r ] ( r = l , 2, •••), [L] and [C].

Proof. By theorem [16.19], P=Pa,β satisfies [M], [V r ] ( r = l , 2, •••) and
[L]. Since B—BP, σ and j« are in Mt(R) and σ has no discrete mass, we see
that P is in £PC and satisfies [C] (and [ # . C]) by theorem [15.10].

§ 18. Existance of 5-process (2): Case when a and μ are in Mt(R).

For P in <2», set

(18.1)

as in § 15. The following lemma gives another bound for M(a, b) (cf. [15.2]).

[18.1] Let P in & satisfy [M] and [ F ] . Then fore

where Ci(α) and C2(α) are constants depending only on a and AP(G) is given
in [10.14].
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Sp(x, a)
1 r *

2τrJo
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sinhα
cosh a—cos(£—x)

σP{dξ)^-z-

\uP(ξ, a)-up(x. a)\>tanha\$-x\.

By [8.5] and theorem [10.12]

(α)=BKu( , α), u( , α))

u(ζ, α)-u(x, α)f

, α)dx^Qα-"(x, dη)H$(η, dξ)

where m(α, b)— inf \H%(x, dξ)(ξ—x)2 and Cλ is an absolute constant given in
X J

[16.7], (2). Therefore

m{α, 6)^α(coth α)2(4pP(α)+C2(α).

By [15.1], [18.1] is proved.

[18.2] Let PC n ) (n = l, 2, •••) in £P satisfy [M] and [ F ] . Assume that
ppίn )(Q>)^Lk(ά)<cn for each α>0. Then there exist a subsequence {P(n')} and
P in £P such that P{nr)-*P (n'->oo). Moreover P satisfies [M] and [ 7 ] .

Proof. Set nH=H(P(n)). By [18.1], for

Therefore, by proposition [2.8] we can find a subsequence {P(n')} which con-
verges to some P in £P. By definition of convergence in £P, P obviously satisfies
[M]. Since

# „ ? ( * , dξ)Mm{(ξ-x)\ K}< lίm (π'//?(x,
l ' J
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for any positive K, P also satisfies [ 7 ] .

As a corollary to [18.2], we have:

[18.3] Let P{n) (n = l, 2, •••) in & satisfy [M] and [ 7 ] with pP^{a)<
k(a)<oo. If p( n)->p, then P satisfies [M] and [ 7 ] .

[18.4] Let P(n) (τz = l, 2, •••) and P be in S>, and assume P(n)-*P (w->oo).
Set

»Sβ(x, dξ)=B£,Ax, dξ) and 5α(%, dξ)=BKx, dζ)

(cf. definition [8.12]).

(1) For 00c, f) in C^RxR) with

(18.2) j-5α(x, dξ)φ(x, ξ) -

boundedly in x for any fixed α>0.

(2) For / in C&R)
(18.3) nBaf(x) — 5 α /(x) (n->oo)

boundedly in x for any fixed α>0.
(3) The measures W5α(x, dξ) (n = l, 2, •••) converge to 5 a U , df) weakly on

Proof. For 0 in Cb(RχR) with |0(x, ί ) | ^ / Γ ( ί - x ) 2 , by (8.7) in [8.5]

a-%χ, dξ)(ξ-χ)2+\\Φ\\Qa-c(χ, R)

<K(a, c)<oo

where c is some constant less than a. Therefore

\nB%x, dξ)φ(x, I ) (n = ί, 2, •••)

are well-defined and bounded in n and x. Using (8.7) again, we have

γBa(x, dξ)φ{x, f)-Jβα(x, dξ)φ(x, ξ)

nH?(η, dξ)-H?(η, dξ))φ(x, ξ),

where nH=H{P{n)) and H=H(P). Since P{n)-+P,

, dξ)φ(x, ξ) —
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boundedly in η. Hence (18.2) is proved. (18.3) can be proved in a similar way.
(3) is obvious by (8.7).

Now, we shall define convergence in the space X of boundary conditions
defined in §4.

[18.5] DEFINITION. Let B(n)={σn, μny kn> pn\ ( Λ = 0 , 1, 2, •••) be in B. We
shall write

B(n) — > B(0) (n~>oo)
ifland only if:

(1) σn-*σ0 and μn-+μo in the weak sense as measures on the torus R/(2π).
(2) kn-+ko, pn->po and pn(a)->Po(a) for any a>0, where

x, a) s{B(n)){x, a)dx .

[18.6] If β(n)->B (n->oo), then

s(B(n))—>s(B), t(B(n))—>t(B), l(B(n))—* l(B),

m{B{n))—>m(B) and u(B(n))—> u(B) (n->oo)

uniformly in Dίb>al for any 0<b<a.

Proof. Noting that s(B(n)), t(B(n)), l(B{n)) and m(B(n)) (n = l , 2, •••)' are
harmonic functions in CP(D), and u(B(n)) ( n = l , 2, •••) are harmonic functions
in Cq(D) with u(B(n))(z+2π)-u(B(n))(z)=2π} we can easily show [18. ] by
definitions.

[18.7] Let P in £B satisfy [M] and [V]. Then

(18.4) Γ'mpU, α)c/xίB^(x, ύfί)(f-x)2^4(coth afpP(a\

Moreover, if P is in £PC for any M>llττ

(18.5)
JO J iξ-ar i^Λf M

where C is an absolute constant.

Proof. Since sP(x, a)^MinA$(*, α)^(l/2)tanh a,

-MfasAx af\omp{X) aϊdx\Ba(χ> d&(u*(ξ> a)-uP(x9 a)f

a)2pp(a).
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If P is in £e, set s=π and a=Nπ in [14.7]. Then

ΓW(*, a)dx\ BRx, dξ)^ψ^£.

Therefore, for (3N+S)π<M£(3N+ll)π (N=l, 2, •••)

, a)dx\ BKx, dζ){ζ-xf<C>apP(af

[18.8] Let P(n) (n=l, 2, •••) in ^ c satisfy [M] and [F]. Set mn=mpW

and n£α(%, df)=55(n)(x, df). Assume that P(n)->P in £B, ?nn->mP and {ppζn>(a)}
converges (n—>oo). If φ in C(RχR), which is not necessarily bounded, satisfies

(18.6)

then for α>0 it holds that

(18.7) j]*m»(x, α)oίxJn5α(x, di)^(x, ί)

| ) (n->oo).

Proof. If 0 is bounded, then (18.7) is obvious by [18.4], since mn(x, α)->
mP(x, a) uniformly in x for fixed a. For general ^, we may assume φ is non-
negative. Set

φM=Min {KM\ φ\

for positive M with M>ll;r. By (18.6), we can see

ΦM(X, ξ)=φ(x, ξ) if \ξ-x\£M.

Therefore by [18.7]

mn{x, a)dx^B\x, dξ)(φ-φMXx, ξ)

, a)dx\ nB\x, dξ){ξ-xf
J\ξ-x\>M

where ^(α)=suρ pp(in-)(a) is finite since {pP(n)(a)} converges. Therefore
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limfm.ίx, a)dx[nB\x, dξ)φM(x, ξ)

= \mP{x, a)dx^BRx, dξ)φM{x, ξ)

<\jm\mn(x, a)dx\nBa(x, dξ)φ(x, ξ)

a{x, dξ)φ{x, ξ)

a(x, dζ)φu{x, ξ)+ KC^{a) .

Since we can take M arbitrarily large, [18.8] is proved.

[18.9] Under the same assumption as in [18.8], let fn and gπ (n=0,1,2, )
in Cι(R) satisfy

(18.8) U

and

(18.9) I l / W ί l l — * 0 , l l ^ - ^ l l — > 0 (n^oo)

Then Ba

pW{fn, gn)->Ba

P{f,, gt) {n-*oo) (See notation [10.2]).

Proof. Set pn(a)=pPM(a), mn=mP<n->,
 nBa{x, dξ)=B^n>(x, dξ) and

Φn(x, ξ)=P,n,Bπ(x, ξ)=\ζ g'nWtΐ f'n(s)ds .
J X J X

Then

Therefore, by (18.4) in [18.7]

, dξ)(φn-φo)(x, ξ)

Since {/>n(α)} converges, the right side of the above inequality converges to
zero. On the other hand, since \φo(x, ξ)\£(K2/2Xξ-x)2, by [18.8]
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lim J3ί(n)(/o, So)=l'im J[*m»(x, a)d/xjTC£aU, d£)0β(*, ξ)

Hence [18.9] is proved.

[18.10] LEMMA. Let P(n) (n = l, 2, •••) in £PC satisfy [M] and [ F ] .
BPM->B in SB and P(n)->P in &. Then B=BP.

Proof. Since pn(a)=pP<in)(a)-+pB(a), it holds that &(α)= sup pn(a)<°°.

Therefore by [8.3] P satisfies [M] and [ 7 ] .
1° Set nH=H(P(n)), H=H(P), un=upin, and M = M ( B ) . Since by [18.1]

for 0<b<a and by [18.6] {un(x, a)} converges to u(x, a) uniformly in x,

u(x, b)=limun(x, b)=\imnHξun(-, a)(x)=Hξu(-, a){x).

It is obviou that w(0, l ) = 0 and u{z+2π)—u{z)—2π. By theorem [9.5] we have
u=uP. Therefore s(B)=sP, t(B)=tP, σB=σP2inά kB=kP also hold by definition.

2° Set mn-mPCn) and m=m(J3). By [8.12] for any / in C|(Λ)

nn(x, a)(P+nBa)f(x)dx=0,

where nBa(x, dξ)=Bfan)(x, dξ). Since by [18.6] {mn(x, a)} converges to m(x, a)
uniformly in x and by [18.4] {nBaf(x)\ converges to Bf>f(x) boundedly in x,
we have

\f*m(x, aXP+Bf)f(x)dx=O.

$ 2π

m{x, a)dx=2π. By [18.12] we have mB=mP and μB—μP.
o

3° Set sn—sPCn^ and s = s(B).

sinh a

α—

and by [18.6]
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\\u'n(.y a)-u'( , a)\m\sn(', a)-s( , a)\\—>0

Therefore, by [18.9]

pB(a)=\ιm pn(a)^\im B^(un(-, a), un( y a))
7l-»oo

= B « M ( , a), u(-, α))=

and />B= inf PB(CL)— idf pp(a)=pP. By 1°, 2° and 3° we have proved that B=BP.
α>0 α>0

[18.11] PROPOSITION. Lei P ( n ) ( n = l , 2, •••) in &c satisfy [ M ] and [ V ] .

Assume that BP<in)-*B («->oo) /<?r 5<?m^ 5={cr, ^, &, />} m ^ ?̂YΛ σ and μ in

MIR). Then P(n)->P (n->oo) / o r some P in &. P is a B-process and B=BP.
P satisfies [Af], [ F ]

Proof. 1° Since pn(a)~pP(n)(a)-+pB{a) (n-+oo), it holds that *(β) =
. Therefore, by [8.2], for any subsequence of {P(n)}, we can

choose a subsequence {P(?2r)} such that P ( n r ) ^ P a s r->oo for some P in £P and
P satisfies [Aί] and [ F ] . By [18.10], B^BP. In abbreviation, we shall write
P(r)=P(nr), <r r=σP Cr), μr=μp^' mr-=mPiry m=mP,

 rBa(x, dξ)—B^r^(xt dξ),
Ba(x, dξ)=BKx, dξ) and pr{a)-pP^a).

2° For p in MP(R), set δ(p, ε)=suρ p{{x—ε, x+ε)). Since <τ and ^ are in

Mi(R) and r̂~>jM and σr-^σ weakly, we have for any ε>0

and

Therefore we may assume

δ(0r> ε), δ(μr, ε)2:δo—δc

Therefore by [14.7]

[**mr(x, a)rB°>(xy Uc

llε(x))dxS16altfa)2,
Jo d 0

and by (3) in [18.4]

lίm rBa(x, Ue

lu(x))^Bpix, Uc

m(x)).

\2πm(x, a)BKx, Ue

lu(x))d*
Jo
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for pp(a)~p(B)(a)—\\mpr{a). Since pP(a) is an increasing function in α, we
have

lim \Um(x, a)Ba

P{xy Uc

12ε(x))=0.
a-*o Jo

On the other hand, by [18.8] for M>12π

\2πm(x, a)dx\ Ba(x, dξ)(ξ-x)2

Jo J\ξ-x\^M

rglim [2*mr(x, a)dx\ rBa(x, dξ){ζ-x)\
r-oojo J\ξ~x\^M-π

Since P{r) ( r = l , 2, •••) are in 3>c, by [18.7]

\**mr(x, a)dx\ rB\xy

 C

JO J\ξ-xi*M-π

and therefore

Jo Ji€-arisjf M—π

and the right side converges to 0 as α->0. Finally we have

lim (
α-o Jo

for any positive ε and P satisfies [L*].
3° Since P satisfies [M], [F] and [L] and moreover 5-^.Bp holds, P is

5-ρrocess by theorem [11.7]. Therefore by uniqueness of .B-process (cf. theorem
[7.7]) P is independent of the subsequence {P(r)} = {P(nr)}. Hence

P{n)—>P (n-+oo).

Proposition [18.11] is proved.

[18.12] THEOREM. Let B^{σ, μ, k, p) in & be given. If a and μ are in
Mt(R), there exists a unique B-process P such that P satisfies [M], [V] and [L]
and B=BP. Moreover P is in £PC.

Proof. Set s=s(B), t=t(B), m=m{B), ί^l(B) and ί/=£/(B). Define σa(dx)
=s(;c, a)dx, μa(dx)=m(x, a)dx} ka — k and

1 f2π
ί o = 9—\ s(x, a)U(x, a)dx=pB(a).

ΔK Jo

Then, Ua{z)—U{Xy y + a) is a positive solution of

(Ua)χ — mJa+laSa
(18-10) . ... = m s _ n
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in D, where

sa(z)=s(x,

[0,2π)

Noting £α(6)= o-Γsα(*, Wα(*, b)dx=pB(a+b) for 6>0 and £ α = inf £β(ft), we
2πJo δ>o

can see Ba={σa, μa, ka> Pa} is in &. By representation of U in [5.9] and
[5.10] we have limt/(2r)=oo, therefore Inf Ua{z)— inf ί/(x, α)>0 and Ua is

greater than the minimum nonnegative solution of (18.10) or pa>P(<Ta> μa, ka).
Hence Ba satisfies the conditions in theorem [17.5] and there exists a process
Pa with BPa=Ba. By [17.6] Pa satisfies [M] and [ F ] and is in s?e. Noting
pPa(b)=pa(b)=pB(a+b), we can easily show Ba~^B as α-»0. Therefore, by
proposition [18.11], we can show existence of β-process P which satisfies [M],
[ 7 ] and [L] , since μ and σ* are in Mt(R). Uniqueness is obvious by theorem
[7.7]. By theorem [14.9] we can see P is in 3>c#

§ 19. Existence of ^-process (3): General case.

Let ύι and μά (f, j = 0 , 1) be in MP(R) and ft be a constant. Assume that

t J={(7 ι, μJt ky pij) is in X. Set, for O^^^l ,

//̂  =(l—λ)μo+λμi, ox =(l—λ)

hξ(z)μχ{dξ)

and

Set

(19.1)
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where Utj—U(BtJ). Then Uλ is a nonnegative solution of

(19.2)

Therefore

(19.3) Bλ=B(λ; Bt,)={σλ, μx, k, px}

is in X ( O ^ ^ l ) , where px = inf[ux(x, a)sλ(x, a)dx, and Uλ=U{Bλ).
α>o J

In the following, we shall choose r<E[0, 2π) so that

(19.4) σi({r})=μj({r})=0 (i, ; = 0 , 1).

Set I(r)=lr, r+2π~] and

(19.5) Fr(jc,α) = ( F{x,ξ)a{dζ)

(19.6) ί r(o, i8) = J / ( r ) / ( * . ξMdx)β(dξ)

for locally bounded signed measures a and j8 on R, where F(x, f) is defined by
(5.3). Since

ί F(x, ξ)p(dξ)-\ F{x, ξ+r)pidζ)=piίθ, r))

for any periodic measure p, the representation of Uλ given in [5.13] and [5.14]
has the following form

(19.7)

where
i(z)=-T0(x, σλ, μλ)+kFr(x, μλ-σλ)+Crλ ,

(19.8) Tax, σλί /O)=j / ( r ) a Tί(*, ξ> η)σλ{dζ)μλ{dη),

ftx,ξ, η) = ( T0(x,ξ, η) if ξΦη ,

I 0 if f = 7

and T0(x, f, 27) is given by (5) in [5.5]. Noting [5.14], TQ(x, σx> μ3) and
Fr(x, μj—σx) are bounded in x (i, j=l, 2). Therefore we can easily see:

[19.1] T0(x, σλ, μλ)
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as λ->0 uniformly in x.

We shall note the following elementary lemma without proof.

[19.2] LEMMA. Let K be a compact space in Rd and let a and an be bounded
measures on K, and β and βn be signed measures on K with d\βn\^Cdan (n=
1,2, •••). Assume that an-*a and βn->β in the weak sense, then d\β\^Cda.
Moreover, let A be a closed subset of K with σ{A)—0 and g be a bounded mea-
surable function on K which is continuous except at point in A. Then

(n-»oo).

[19.3] Let ax, βx and Yx (O^Λ^l) be signed periodic measures on R with
\aλ\{dx), \βχ\(dx)£Kσλ(dx) and \γλ \(dx)<Kμλ(dx) (0<K<co). Assume that
aχ->a0, βχ-*βo and Yχ->7o in the weak sense as Λ->0. Then, for any / in
CP(R),

(1) T0(f aλ, βλ, n)+T0(f βχ, ax, γλ) —>

T 0(/ ofo, j80, ro)+To(f-βQ, aQ, To),

(2) Fr(aχ,γχ)—>Fr(ao,ro),

(3) Fr(f-aχ, βχ)+Fr{f.βλ, aλ) — * F r(/ αβ, βo)+Fr(f-βo, αβ)

as α:—>0. Where

T^a,β,r)=\\\ t Tf(x,ζ,η)a(dx)β(dξ)r(dv),

Fr(a,β)=\\ F(x,ξ)a(dx)β(dξ).

Proof. Set

fo(x, ξ, ηY=T%(x, ζ, η)+T%{ξ, x, η).

, fo(x, ξ, η)}.

Then, by definition (cf. [5.3] and [5.5]), it holds that for x, ξ, η in (r, r+2π)

(i) Tξ(x, ξ, η) is bounded and continuous except {χ=ξ}κj{χ — η}, and
(ii) f^(x, ξ, η) is bounded and continuous except {x = η}\J{ξ=η}.

Set I(r)=[r, r + 2 π ] and pλ(dx, dξ, dη)=aλ(dx)βλ(dζ)rx(dη). Since TQ(x, ξ, η)
is periodic in x, ζ and η, by (19.4)
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h=TJJ alt βi, ΐύ+Toif βi, aλ, yx)

, ξ, η)f(ξ)dpz+\i(nT0(x, ξ, η){f{x)-f(ξ))dpλ=J^

where apλ=ax{dx)βχ{dξ)γλ{dη)

/ f = J / ( r ) 3 ^ ( x , ξ, η)f(ξ)dpλ + ̂ ^T»(x, ξ, η)(f(x)-f(ξ))dpt

and

Cf=ί (f,-fn(x,
I ( f )

, ξ, η)(f(x)-f(ξ))dpx

By assumption and condition [P] in [5.11] γx has no common mass with
and j8i. Therefore by (i) and (ii), using [19.2], we have

On the other hand by assumption

| C ^ ) | < 4 | | / | | ^ 3 ( r o - r o ^ 2 ) ( ^ , σλ, μλ)

and therefore by [19.1]

Πm|CivU)^4||/||^3(To-T0^/2)(σ0, σ0, μ0).

Since T^ / 21 To, we have proved (1). For x and ξ in (r, r+2π) it holds that
(iii) F(x, ξ) is bounded and continuous except {x—ξ}.
(iv) F{x,ξ)+F(ξ,x)=l.

Then

In a way similar to (1), we can easily show (2) and (3).

To proceed from [19.5] to [19.10], we shall impose the following temporary
assumption.

[19.4] ASSUMPTION. For a positive sequence λn with Λn->0, / in CP>N(R)
and a positive constant a, assume:

(1) For each n, 5^π-solution φχn for / in Da exists.
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(2) WφχJ^Kt and lim φλn(z)=φ0(z) exists.

(3) \σΦλJ(x)£K2σλn(dx).

Here Kι and K2 are positive constants independent of n and σφl is the boundary
Λ n

measures of φχn defined in [4.15].
We shall write Bn=Bχn, σn=σλn, μn=μzn, Un=Uχn, φn=φxn and etc.

Noting ln—hn-*h and mn—mχn-^m^ (n-+oo)f we can easily have:

[19.5] Under [19.4], φo(z) in (2) belongs to D%,N(B°) which is defined in
[4.13]. The boundary measure σΦo of φo(z) satisfies that 0φn-+0φQ (w->oo) in
the weak sense and \σΦo\(dx)^K2σo(dx).

[19.6] Let / be in CP(R) and assume [19.4] for N=l. As in [5.17], set

ψn(z) = (φn)y(z) + \ kξ(z)σφn(dξ) (* = 1, 2, - )
J[0,2r)

and

ψo(z)=(φo)v(z)+\ k$(z)σΦo(dξ).

Let φ°n (w=l, 2, •••) and 02 be their boundary functions on 90. Then

^n(^) — > ψoM nuiformly in x.

Proof, lim ψn(z)=ψ,(z) in £>α. Set

- \ h
J QO, 27Γ)

Then gn is a harmonic conjugate of ^ n and can be extended to the harmonic
function gn on {z=(x, y): —a<y<a}. Moreover gn(z) also converges in Da

and gn ( n = l , 2, •••) are uniformly bounded in {z—(x, y): —b>y<b} for any
fixed b with 0<b<a. Noting φn{z) is periodic in x, we can easily show [19.6].

[19.7] Under the same assumption as in [19.6], it holds that, for any g in

CP(R),

(1) TQ{g-any σΦn, μn) — > T 0 ( ^ σ0, σΦo> μ0)

(2) Fr(g σn, kσΦn+φl μn)—* Fr(g σ0, kσΦo+φlμ0) (n-*oo)

Proof. By [19.1], it is easily shown that

(19.9) T0(g-σΦnf any μn) — > To(g σΦo, σ0, μ0),

(19.10) Fr(g σΦn, σn)—>Fr(g σΦo, σQ) (n->oo).

On the other hand by [19.3]
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(19.11) To(g-σΦn, σn, μn)+To(g-σn, σΦn, μn)

—>T 0(g σφQ, σ0, μo)+To(g σo, <τΦo, μ0),

(19.12) FΛg σΦn, σn)+Fr{g<σn, σΦn)

—>F r(g σΦo, σo)-\-Fr(g σo, σΦo)

and

(19.13) Fr(g σn, ψon-μn) —+ Fr(g σ,, ψlμ0) (n->oo).

Now (1) is proved by (19.9) and (19.11). (2) is proved by (19.10), (19.12) and
(19.13).

[19.8] REMARK. Let / be in CV{R) and a be positive. Assume that a
function φχ defined on Da satisfies (1) and (2) in definition [4.16]. Then noting
[5.19], [5.20] and lemma [6.1], we can see that φx is Bλ-solution for / in Da

if and only if

(19.14) Ui(φXx)σλ(dx)=Uλ

o(x)σΦλ(dx),

where Ui is given by (19.8), and U0(φχ) is represented by

(19.15) Ul(φλ)=-T0(x, σΦv μλ)-Fr(x} kσΦλ+ψ°λ μλ)+C(φλ)

with some constant C(φλ).

[19.9] Under the same assumption as in [19.6], φ0 defined by [19.4] is a
£°-solution for / in Da.

Proof. By (19.14) and (19.15)

= -T0(σn, σΦn, μn)-Fr(σn, kσΦn+φZ-

By (3) in [19.1] and [19.7], {C(φn)\ converges. Set C = C(φo)=\im C(φn). By

(19.14) and (19.15), it also holds that for g in CV(R)

= —TQ(g-σn, <*φn, μn)-Fr(g>σn, kσΦn+φ% μn)+C(φn)] g(x)σn(dx).

Using (3) in [19.1] and [19.7] again, we can show that
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ί g(x)U°Q(x)σΦo(dx)

——To(g'σo,σΦo,μo)—Fr(g σo, kσΦo+ψ°o μo)+c\ g(x)σo(dx).

Noting [19.8] again, we obtain [19.9].

[19.10] Let {λn},f in CPtN(R) and α>0 satisfy the assumption [19.4].
Then φ0 in (2) of [19.4] is a B°N-solution for / in Da.

Proof. Define σι>N and μJ>N (/,/=0, 1) by (7.2). Then by [7.4] BftJ-
{σι,N, μj.N, k, pi.j/N] is in B. As in (19.3) set B*λ=B(λ, BftJ), then

Since φn is a .£ ft=5 ̂ "-solution for / in Da, φn,N(z)=(l/N)φn(Nz) is a J3*n=:
B*'»-solution for f N{x)=(l/N)f{Nx) in Z ) α ^ by [7.5]. Since {λn}, fN in CP(R)
and α/Λ' satisfy [19.4], φ,,N^\\mφntN is a £ * °-solution by [19.9]. Using [7.5]

W-»oo

again, we can see that φQ is a J3Vsolution for / in ^ α

[19.11] PROPOSITION. Let Bλ=B(λ, BttJ) (O^^^l) be given by (19.3). //
Pλ (0<Λ^l) in &c is Bλ-process with Bλ=Bpλ and satisfies [M] and [V]. Then
PX-^P (X-+0) in £P, where P is a B°-process with B°=BP and satisfies [M] and

Proof. Since σχ->σ0, μχ-^μo and U2-*U° (λ-+0) by definition, it holds that
Bλ->B° (Λ->0) and sup pBχ(a)^k(a)<oo for any α>0. Therefore, by [18.2] for

any sequence {λn} which converges to 0, we can choose a subsequence {λm}
such that Λm->0 and Pλ™->P (m->oo) in £p. Set p™=p*m. By [18.3] and
[18.10] P satisfies [M] and [ 7 ] and B°=BP. Let any function / be in CP,N(R)
and a>0 be given. Set φm=H^mf. Then by definition

Since 0 m is harmonic in Z)α with

and

•(••1)1
Therefore, by [9.8], \σΦm\(dx)£K(a, f)dσχm, and {^m}, / and a satisfy the
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assumption [19.4]. Therefore by [19.10] <pQ=H£f is a B^-solution for / in Da.
Thus P is a £°-process. By the uniqueness of 5°-ρrocess (cf. [7.6]) P is inde-
pendent of choice of subsequence {λn}. Therefore Pλ->P (λ->0) also holds.

Let a be MJR) with \ σ(dx)=2π and k be any constant. Set
J { 0 , 2 π )

(19.16) s(*)=( hξ(z)σ(dξ), *(*)=[ &
J [ 0 , 2 J Γ ) Jcθ,27r)

and

(19.17) M(z)=(l+k2)-^--2, ϊ(z)=-(l+k2) *
s2+t2

[19.12] Let s, t, fh and Z be defined by (19.16) and (19.17). Then it holds
that:

(1) m is positive, periodic and harmonic in D with lim m(z)=l. I is a
y-*oo

harmonic conjugate of fh with \m\l{z)—--k.

(2) Let μ be the boundary measure of m on 30, that is,

( hξ(z)β(dξ).

Then {(T, //} satisfies condition [P] in [5.11].

Proof. Since lim s(2)=l, limί(z)=^ and

ΛΛ-b*

(1) is obvious. Set U—(l+k2)y. Then U is a nonnegative solution of

(19.18)
Uy=fns-lt=l+k2.

By [5.11] and [4.6] {σ, μ) satisfies [ P ] .

[19.13] DEFINITION. For σ in MP(R) with \ σ(dx)—2π and a constant

k, set μ=Fkσ, where /I is defined by (19.17) and [19.12] (2).

[19.14] Remark. (1) F-k-Fk= Identity.
(2) Since £/=(l+£2);y is a solution of (19.18), {σ, F*σ, &, 0} is in &.

[19.15] Let /£=
(1) If <τ([α, fc])=0 for α<^?, then /« has at most one point mass in (a, b).
(2) If a is in Mt(R), then /2 is in Mt{R).
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Proof. Since σ=£Q, we can assume [α, ft]C(c, c+2τr). Set / = [ c , c+2ττ).
Then for ξe(β, ft)

So(6)=lim S(Z)=1ΊIΪI ττ~\ — ί 7 r^(^^)= : 0
*-»€ *-*$ 2^ J/-cα,δ:cosh 3^—cos()y—x)

and

;—cos()? —

Therefore

and to(ξ)Φθ for ί e ( α , 6) except at most one point. For £<=(α, ft) with to(ξ)Φθ,

\zi s2

which shows that /Z(d£) has no mass in (α, ft) except at most one point. Hence
(1) is proved. To prove (2), assume /z([α, 6])=0 for some α<ft. Then by (1)
σ—F-kμ can not belong to Mi(R). Thus (2) is proved.

[19.16] THEOREM. For any B={σ, μ, k, p} in &, there exists a unique B-
process P with B—BP and P satisfies [M] and [ F ] .

Proof. Set p(dx)=-dx (Lebesque measure on R) and σ*=(l/2)(<7+ρ), jδ=
F,σ* and σ=F-h((X/2Xμ+β)). Then by (2) in [19.15], /Z and σ are in Mt(i?),
since <;* is in M,(Λ). By (2) in [19.12], {(1/2)0+^), β}9 and {σ, (l/2)(μ+fi)}
satisfy condition [ P ] . Therefore, {<τ, /?}, {σ, μ) and {or, /z} satisfy condition
[ P ] . Therefore, 5 O i={^, /Z, k, p01], B10=:{σ, μ, k, p1Q} and Bn={σ, β, k, pn],
are in & for sufficiently large p01, p1Q and pn. Set JB 0 O=^={O", ^, *, P) and
Bλ=B(λ, BtJ) ( O ^ ^ l ) as in (19.3). Since ^ ^ = ( 1 - ^ + ^ 5 and μλ=(l-λ)μ+λβ
are in M^i?) for λ>0, by theorem [18.12] there exists a JB'1-process P^ with
Bpλ=Bλ, and P^ is in £BC and satisfies [M] and [ F ] . Therefore by proposi-
tion [19.11], Pλ->P (λ->0) and P is 5=£°-process with 5 P = 5 which also
satisfies [M] and [ F ] . The uniqueness is proved in theorem [7.7].

[19.17] DEFINITION. For 5 in ^ , let PB be the unique ^-process. Set

If P is 5-process, then by theorem [19.16] B=BP therefore B is uniquely
determined by P. So we have:
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[19.18] COROLLARY. The mapping B->PB is a bijection between JS and &B.

Combining theorem [19.16] with theorems [3.12], [15.10] and [18.12], we
can characterize Feller type processes in D with continuods path functions in
the class of jB-processes £Pβ.

[19.19] THEOREM. There exists one-to-one correspondence between P in <£c

with condition C and B = {σ, μ, k, p} such that a and μ are in Mi(R) and σ has
no discrete mass. The correspondence is given by P=PB
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