M. MOTOO KODAI MATH. J. 13 (1990), 417-483

PERIODIC EXTENSIONS OF TWO-DIMENSIONAL BROWNIAN MOTION ON THE HALF PLANE, II

By Minoru Motoo

This paper is a continuation of the one with the same title [2]. Notation follow the previous paper. Theorems, propositions and formula in [2] are cited by their numbers without special mention.

Main results of this paper are summarized as follows:

(1) For any $B = \{\sigma, \mu, k, p\}$ in \mathcal{L} , there exists a *B*-process *P* with $B_p = B$, which satisfies conditions [M] and [V]. (See theorem [19.16]. Uniqueness of *B*-process for given *B* has already been proved in theorem [7.7] in the previous paper [2].)

(2) A B-process has continuous path functions in \overline{D} if and only if σ and μ are positive for any open set. (See theorem [14.9] and theorem [19.16].)

(3) A process P in \mathcal{P} has continuous path functions and is of Feller type in \overline{D} if and only if P is a *B*-process, such that σ and μ are positive for any open set and σ has no discrete mass. (See theorem [15.10] and theorem [19.16].)

IV. Characterization of the class \mathcal{P}_c .

§12. Certain recurrence relations.

Throughout this section, we shall fix a process P in \mathcal{P} , on which we shall assume no additional condition.

Let $\sigma_a(w)$ be the hitting time of ∂a , and for any positive a and b with $a \neq b$, we define $\rho_n = \rho_n(a, b, w)$ and $\tau_n = \tau_n(a, b, w)$ by

(12.1) $\rho_0 = \sigma_a$,

$$\tau_n = \rho_n + \sigma_b(\theta_{\rho_n} w),$$

$$\rho_{n+1} = \tau_n + \sigma_a(\theta_{\tau_n} w), \qquad n = 0, 1, 2, \cdots.$$

Since one-dimensional reflecting Brownian motion is recurrent, by [1.5] and [1.6] and continuity of the process in D^* we can easily see:

[12.1] ρ_n and τ_n $(n=0, 1, 2, \dots)$ are finite except on a set of P_z -measure

Received February 20, 1989; revised April 10, 1990.

zero for any z in D, and $\lim_{n\to\infty} \rho_n = \lim_{n\to\infty} \tau_n = \infty$ holds.

Set, for $t \ge 0$ and h > 0,

(12.2)
$$L_a^h(t, w) = \frac{1}{2h} \int_0^t I_{[a-h, a+h]}(y(s, w)) ds,$$

where z(t, w) = (x(t, w), y(t, w)) for $z(t, w) \in D$ and I_A is the indicator of a set A. Noting [1.6], the following results are well known in theory of Brownian local time [1].

[12.2] For any z in D,
(1)
$$L_a(t, w) = \lim_{h \to 0} L_a^h(t, w)$$
 exists a.s. P_z ,

- (2) $E_z(L_a(t, w)) = \lim_{h \to \infty} E_z(L_a^h(t, w)).$
- (3) $L_a(t, w)$ is continuous and increasing in t and satisfies

(12.3)
$$L_a(t+s, w) = L_a(t, w) + L_a(s, \theta_t w)$$

for any s and t a.s. P_z .

(4) $L_a(t, w)$ increases only on t with $z(t, w) \in \partial_a$, that is,

(5)
$$L_a(t, w) = \int_0^t I_{\partial_a}(z(s, w)) dL_a(s, w) \quad \text{a.s. } P_z.$$

(12.4)
$$E_z(L_a^h(t, w)), \qquad E_z(L_a(t, w)) \leq C_1 \sqrt{t},$$

(12.5)
$$E_z(L_a^h(t, w)^2), \quad E_z(L_a(t, w)^2) \leq C_2 t$$
,

where C_1 and C_2 are absolute constants.

[12.3] Let a and b are any positive numbers and z be a point in D. (1) If $y \le a < b$ or $y \ge a > b$,

$$E_{\mathbf{z}}(L_{\mathbf{a}}(\boldsymbol{\sigma}_{\mathbf{b}}))=2|b-a|.$$

(2) In general, it holds that

$$E_{z}(L_{a}(\sigma_{b})) \leq 2|b-a|$$

and

$$E_{z}(L_{a}(\sigma_{b})^{2}) \leq 8(b-a)^{2}$$
.

[12.4] Let ϕ be a bounded continuous function defined on $D^{[a-c, a+c]}$ with 0 < c < a, and λ be a positive number. Then

$$\lim_{h\to 0} E_z \left(\int_0^\infty e^{-\lambda t} \phi(z(t)) dL_a^h \right) = E_z \left(\int_0^\infty e^{-\lambda t} \phi(z(t)) dL_a \right).$$

Proof.

 $1^\circ\,$ Let ε be any positive number. By (12.3) and (12.4) we can choose T such that

$$E_{z}\left(\int_{T}^{\infty}e^{-\lambda t}|\phi(z(t))|dL_{a}^{h}\right), \qquad E_{z}\left(\int_{T}^{\infty}e^{-\lambda t}|\phi(z(t))|dL_{a}\right) < \varepsilon.$$

2° Choose positive ε_1 such that $(\varepsilon_1 C_1 + 8 \| \phi \| \sqrt{\varepsilon_1 C_2}) \sqrt{T} < \varepsilon/2$, where C_1 and C_2 are constants appearing in (12.4) and (12.5). The function ϕ can be extended to a function $\tilde{\phi}$ which is continuous in D with $\| \phi \| = \| \tilde{\phi} \|$, and there exists a positive integer N such that, for

$$\mathfrak{u}=\mathfrak{u}(T, N, \varepsilon_1)=\{w: \sup_{s, t\leq T, |s-t|\leq 1/N} |\tilde{\phi}(z(s))-\tilde{\phi}(z(t))|<\varepsilon_1\},\$$

 $P_{\mathbf{z}}(\mathbf{u}^c) < \varepsilon_1 \text{ and } (\lambda/N) \| \phi \| C_1 \sqrt{T} < \varepsilon/2 \text{ hold.}$ Set

$$\begin{split} t_{k} &= \frac{kT}{N} \qquad (k = 0, 1, 2, \cdots, N) \quad \text{and} \\ I_{N}^{h} &= E_{z} \Big\{ \sum_{k=0}^{N-1} e^{-\lambda t_{k}} \widetilde{\phi}(z(t_{k})) (L_{a}^{h}(t_{k+1}) - L_{a}^{h}(t_{k})) \Big\} , \\ I_{N} &= E_{z} \Big\{ \sum_{k=0}^{N-1} e^{-\lambda t_{k}} \widetilde{\phi}(z(t_{k})) (L_{a}(t_{k+1}) - L_{a}(t_{k})) \Big\} . \end{split}$$

Then by (12.4) and (12.5)

$$\begin{split} \left| E_{z} \left(\int_{0}^{T} e^{-\lambda t} \phi(z(t) d L_{a}^{h}) - I_{N}^{h} \right| \\ &\leq (1 - e^{-\lambda T/N}) \| \phi \| E_{z}(L_{a}^{h}(t)) \\ &+ E_{z} \left(\sum_{k=0}^{N-1} e^{-\lambda t}_{k} \int_{t_{1}}^{t_{k+1}} | \tilde{\phi}(z(t)) - \tilde{\phi}(z(t_{k}))| d L_{a}^{h} \right) \\ &\leq \frac{\lambda T}{N} \| \phi \| E_{z}(L_{a}^{h}(T)) + \varepsilon_{1} E_{z}(I_{u}L_{a}^{h}(T)) + 2 \| \tilde{\phi} \| E_{z}(I_{uc}L_{a}^{h}(T)) \\ &\leq \left(\frac{\lambda T}{N} \| \phi \| + \varepsilon_{1} \right) E_{z}(L_{a}^{h}(T)) + 2 \| \phi \| P_{z}(\mathfrak{U}^{c})^{1/2} E_{z}(L_{a}^{h}(T)^{2})^{1/2} \\ &\leq \left(\frac{\lambda T}{N} \| \phi \| + \varepsilon_{1} \right) C_{1} \sqrt{T} + 4\sqrt{2} \| \phi \| \sqrt{\varepsilon_{1} C_{2} T} < \varepsilon \,. \end{split}$$

Similarly, by (12.4) and (12.5),

$$\left|E_{z}\left(\int_{0}^{T}e^{-\lambda t}\phi(z(t))dL_{a}\right)-I_{N}\right|<\varepsilon.$$

 $3^\circ\,$ On the other hand, by (12.3) and Markov property of the process, for fixed N and T we have

$$\lim_{h \to 0} I_N^h = \lim_{h \to 0} E_z \left\{ \sum_{k=0}^{N-1} e^{-\lambda t_k} \tilde{\phi}(z(t_k)) E_{z(t_k)} \left(L_a^h \left(\frac{T}{N} \right) \right) \right\}$$
$$= E_z \left\{ \sum_{k=0}^{N-1} e^{-\lambda t_k} \tilde{\phi}(z(t_k)) E_{z(t_k)} \left(L_a \left(\frac{T}{N} \right) \right) \right\}$$
$$= I_N.$$

By 1°, 2° and 3° proof of [12.4] is completed.

[12.5] Let a and δ be any positive numbers, then

- (1) $\lim_{b\to a} \sup_{x} P_{(x,a)}(\sigma_b \geq \sigma) = 0,$
- (2) $\lim_{b\to a} \sup_{x} P_{(x,a)}(\sup_{s \leq \sigma_b} |z(s) z(0)| > \delta, \sigma_b < \sigma) = 0,$
- (3) $\lim_{b\to a} \sup_{x} P_{(x,a)}(\sigma_b \geq \delta) = 0.$

Proof. Noting $P_{(x,a)}(\sigma_b \ge \delta) \le P_{(x,a)}(\sigma_b \ge \sigma) + P_{(x,a)}(\sigma > \sigma_b \ge \delta)$, [12.5] is obvious by (p. 4) in [1.1]

[12.6] For ϕ in $C_p(R)$ and a > 0

(12.6)
$$\lambda E_{\tilde{m}}\left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) dL_{a}\right) = \int_{0}^{2\pi} \phi(x) m_{P}(x, a) dx,$$

where $E_{\tilde{m}}(\cdot) = \int_{\tilde{D}} E_z(\cdot) m_P(z) dz$ and $\tilde{D} = \{z = (x, y) \in D : 0 < x < 2\pi\}.$

Proof. Set
$$\tilde{\phi}(z) = \phi(x)$$
 for $z = (x, y)$ in D , then by [8.20]
 $\lambda E_{\tilde{m}} \left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) dL_{a}^{h} \right) = \frac{\lambda}{2h} \int_{\tilde{D}} G_{\lambda}(I_{[a-h, a+h]}\tilde{\phi})(z) m_{P}(z) dz$

$$= \frac{1}{2h} \int_{a-h}^{a+h} dy \int_{0}^{2\pi} \phi(x) m_{P}(x, y) dx$$
 $\longrightarrow \int_{0}^{2\pi} \phi(x) m_{P}(x, a) dx \qquad (h \to 0).$

On the other hand, since

$$\left| E_{z} \left(\int_{0}^{\infty} e^{-\lambda t} \widetilde{\phi}(z(t)) dL_{a}^{h} \right) \right| \leq \|\phi\| E_{y}^{R,1} \left(\int_{0}^{\infty} e^{-\lambda t} dL_{a}^{h} \right)$$
$$= \|\phi\| e^{-\sqrt{2\lambda}(y-c)} E_{c}^{R,1} \left(\int_{0}^{\infty} e^{-\lambda t} dL_{a}^{h} \right)$$

for a+h < c and $y \ge c$, we have by [12.4], (4) in [12.2] and the dominated convergence theorem we have

$$\lim_{h \to 0} \lambda E_{\tilde{m}} \left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) dL_{a}^{h} \right)$$
$$= \lambda E_{\tilde{m}} \left(\int_{0}^{\infty} e^{-\lambda t} \tilde{\phi}(z(t)) dL_{a} \right)$$
$$= \lambda E_{\tilde{m}} \left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) dL_{a} \right).$$

[12.7] For any positive a and b with $0 < |b-a| \le 1$, ρ_n and τ_n are defined as in (12.1). Then, for any positive λ , it holds that

(12.7)
$$E_{z}\left(\sum_{n=0}^{\infty}e^{-\lambda\rho_{n}}\right) \leq \frac{E_{z}(e^{-\lambda\sigma_{a}})}{1-e^{-\sqrt{2\lambda}|b-a|}}.$$

Especially,

(12.8)
$$|b-a|E_{z}\left(\sum_{n=0}^{\infty}e^{-\lambda\rho_{n}}\right) \leq K(\lambda) \operatorname{Min}\left\{e^{-\sqrt{2\lambda}(y-a)}, 1\right\},$$

where $K(\lambda)$ is a constant independent of a, b and z.

Proof. If b < a, then we have by [1.5] and [1.6]

$$E_{z}(e^{-\lambda\rho_{n+1}}) \leq E_{z}(e^{-\lambda\tau_{n}})$$

$$= E_{z}(e^{-\lambda\rho_{n}}E_{z(\rho_{n})}(e^{-\lambda\sigma_{b}}))$$

$$= E_{z}(e^{-\lambda\rho_{n}}E_{a}^{R,1}(e^{-\lambda\sigma_{b}}))$$

$$= E_{z}(e^{-\lambda\rho_{n}})e^{-\sqrt{2\lambda}(a-b)}.$$

Similarly, if b > a, then

$$E_{z}(e^{-\rho_{n+1}}) \leq E_{z}(e^{-\lambda\rho_{n}-\lambda(\rho_{n+1}-\tau_{m})})$$

= $E_{z}(e^{-\lambda\rho_{n}}E_{z(\tau_{n})}(e^{-\lambda\sigma_{a}}))$
= $E_{z}(e^{-\lambda\rho_{n}}E_{b}^{R,1}(e^{-\lambda\sigma_{a}}))$
= $E_{z}(e^{-\lambda\rho_{n}})e^{-\sqrt{2\lambda}(b-a)}.$

Therefore, in both cases we have by induction

(12.9) $E_{z}(e^{-\lambda \rho_{n+1}}) \leq E_{z}(e^{-\lambda \sigma_{a}})e^{-n\sqrt{2\lambda}|b-a|} \qquad (n=0, 1, 2, \cdots)$

and (12.7) is obvious. Since

$$E_{z}(e^{-\lambda\sigma_{a}}) = E_{y}^{R,1}(e^{-\lambda\sigma_{a}}) = e^{-\sqrt{2\lambda}(y-a)} \quad \text{if } y \ge a,$$

setting $K(\lambda) = \sup_{0 < y \leq 1} \frac{y}{1 - e^{-\sqrt{2\lambda}y}}$, we have (12.8).

[12.8] THEOREM. For any positive a and b with $a \neq b$, let $\rho_n = \rho_n(a, b, w)$ and $\tau_n = \tau_n(a, b, w)$ $(n=0, 1, 2, \cdots)$ be defined as in (12.1), $\xi_n = \xi_n(w)$ and $\eta_n = \eta_n(w)$ $(n=0, 1, 2, \cdots)$ be measurable functions on (W, B) with $\rho_n \leq \xi_n$, $\eta_n \leq \tau_n$ and λ be any fixed positive number.

(1) If ϕ is a bounded uniformly continuous function on R, then we have

$$\lim_{a \to a} 2|b-a|E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda\xi_{n}}\phi(x(\eta_{n}))\right) = E_{z}\left(\int_{0}^{\infty} e^{-\lambda t}\phi(x(t))dL_{a}\right).$$

(2) If ϕ is in $C_p(R)$, then we have

$$\lim_{b\to a} 2|b-a| E_{\tilde{m}}\left(\sum_{n=0}^{\infty} e^{-\lambda \xi_n} \phi(x(\eta_n))\right) = \frac{1}{\lambda} \int_0^{2\pi} \phi(x) m_P(x, a) dx.$$

we set $\phi(x(t))=0$ if $z(t)=\partial$ and $E_{\tilde{m}}(\cdot)$ is defined in [12.6].

Proof. If (1) holds, then (2) follows from by (12.8), the dominated convergence theorem and [12.6]. Now we shall prove (1).

1° Set $\varepsilon = |b-a|$ and define

$$d(\delta) = \sup_{|\xi - x| < \delta} |\phi(\xi) - \phi(x)|$$

for any positive δ ,

$$e(t) = e(t, w) = \sup_{0 \le s \le t} |\phi(x(s)) - \phi(x(t))|$$

and

$$p_1(\varepsilon) = \sup_{\alpha} E_{(\alpha,\alpha)} \{ e(\sigma_b(w), w) \}.$$

Then

$$p_{1}(\varepsilon) \leq d(\delta) + 2\|\phi\| \sup_{x} P_{(x,a)}(\sup_{0 \leq s \leq \sigma_{b}} |x(s) - x(0)| > \delta, \sigma_{b} < \sigma)$$
$$+ 2\|\phi\| \sup_{x} P_{(x,a)}(\sigma_{b} \geq \sigma).$$

Therefore by [12.5] $\overline{\lim_{\varepsilon \to 0}} p_1(\varepsilon) \leq d(\delta)$.

Since ϕ is uniformly continuous, $\lim_{\delta \to 0} d(\delta) = 0$. We have

(12.10)
$$\lim_{\varepsilon \to 0} p_1(\varepsilon) = 0.$$

Set $p_2(\varepsilon) = \sup_{\lambda} E_{(x,a)}(1 - e^{-\lambda \sigma_b})$. Then

$$p_2(\varepsilon) \leq \lambda \delta + \sup_r P_{(x,a)}(\sigma_b > \delta)$$

for any positive δ . Therefore by [12.5]

(12.11)
$$\lim_{\varepsilon \to 0} p_2(\varepsilon) = 0$$

$$2^{\circ} \qquad J_1(\varepsilon) = 2\varepsilon \{ E_z(\Sigma e^{-\lambda \varepsilon_n} \phi(x(\eta_n))) - E_z(\Sigma e^{-\lambda \rho_n} \phi(x(\rho_n))) \} \longrightarrow 0 \qquad (\varepsilon \to 0) \,.$$

Proof of 2°.

$$|J_1(arepsilon)| \leq I_1(arepsilon) + I_2(arepsilon)$$
 ,

where

$$I_{i}(\varepsilon) = 2\varepsilon \|\phi\| E_{z}(\Sigma(e^{-\lambda\rho_{n}} - e^{-\lambda\tau_{n}}))$$

and

and

$$I_{2}(\varepsilon) = 2\varepsilon E_{z} \Big(\Sigma e^{-\lambda \rho_{n}} \sup_{\rho_{n} \leq s \leq r_{n}} |\phi(x(s)) - \phi(x(\rho_{n}))| \Big).$$

Then by [1.5] and (12.8)

$$\begin{split} I_{1}(\varepsilon) &= 2\varepsilon \|\phi\| E_{z} \{ \Sigma e^{-\lambda \rho_{n}} E_{z(\rho_{n})}(1 - e^{-\lambda \sigma_{b}}) \} \\ &\leq 2 \|\phi\| K(\lambda) p_{2}(\varepsilon) \\ I_{2}(\varepsilon) &= 2E_{z} \{ \Sigma e^{-\lambda \rho_{n}} E_{z(\rho_{n})}(e(\sigma_{b})) \} \\ &\leq 2K(\lambda) p_{1}(\varepsilon) , \end{split}$$

where $K(\lambda)$ is defined as in (12.8). Therefore by (12.10) and (12.11)

$$|J_1(\varepsilon)| = I_1(\varepsilon) + I_2(\varepsilon) \longrightarrow 0 \qquad (\varepsilon \rightarrow 0).$$

3°

$$J_{2}(\varepsilon) = 2\varepsilon E_{z} \{ \Sigma e^{-\lambda \rho_{n}} \phi(x(\rho_{n})) \} - E_{z} \{ \Sigma \phi(x(\rho_{n})) \int_{\rho_{n}}^{\tau_{n}} e^{-\lambda t} dL_{a} \} \longrightarrow 0 \quad (\varepsilon \to 0) .$$

Proof of 3°. By (2) in [12.3]

$$2\varepsilon E_{z}\{\Sigma e^{-\lambda\rho_{n}}\phi(x(\rho_{n}))\} = E_{z}\{\Sigma e^{-\lambda\rho_{n}}\phi(x(\rho_{n}))L_{a}(\sigma_{b})\}$$
$$= E_{z}\left\{e^{-\lambda\rho_{n}}\phi(x(\rho_{n}))\int_{\rho_{n}}^{\tau_{n}}dL_{a}\right\}.$$

Hence

$$\begin{split} |J_{2}(\varepsilon)| &\leq E_{z} \Big\{ \sum e^{-\lambda\rho_{n}} |\phi(z(\rho_{n}))| \int_{\rho_{n}}^{\tau_{n}} (1-e^{-\lambda t}) dL_{a} \Big\} \\ &\leq \|\phi\| E_{z} [\sum e^{-\lambda\rho_{n}} E_{z(\rho_{n})} \{ (1-e^{-\lambda\sigma_{b}}) L_{a}(\sigma_{b}) \}] \\ &\leq \|\phi\| E_{z} [\sum e^{-\lambda\rho_{n}} E_{z(\rho_{n})} (1-e^{-\lambda\sigma_{b}})^{1/2} E_{z(\rho_{n})} (L_{a}(\sigma_{b})^{2})^{1/2}] \\ &\leq \|\phi\| E_{z} (\sum e^{-\lambda\rho_{n}}) p_{2}(\varepsilon)^{1/2} \sqrt{8\varepsilon^{2}} \\ &\leq \|\phi\| K(\lambda) \sqrt{8} p_{2}(\varepsilon)^{1/2} . \end{split}$$

Therefore by (12.11)

$$\lim_{\varepsilon\to 0} J_2(\varepsilon)=0.$$

4°

$$J_{s}(\varepsilon) = E_{z} \left\{ \Sigma \phi(x(\rho_{n})) \int_{\rho_{n}}^{\tau_{n}} e^{-\lambda t} dL_{a} \right\} - E_{z} \left(\int_{0}^{\infty} e^{-\lambda t} \phi(x(t)) dL_{a} \right) \longrightarrow 0 \quad (\varepsilon \to 0)$$

Proof of 4°. Since $L_a(\rho_0)=0$ and $L_a(\tau_n)=L_a(\rho_{n+1})$ by (4) in [12.2],

$$J_{\mathfrak{s}}(\varepsilon) = E_{\mathfrak{s}} \left\{ \sum_{\rho_n}^{\tau_n} e^{-\lambda t} (\phi(x(\rho_n)) - \phi(x(t))) dL_a \right\}.$$

$$|J_{\mathfrak{s}}(\varepsilon)| \leq E_{\mathfrak{s}} (\Sigma e^{-\lambda \rho_n}) \sup_{\mathfrak{x}} E_{(\mathfrak{x},\mathfrak{a})} (e(\sigma_b) L_a(\sigma_b))$$

$$\leq E_{\mathfrak{s}} (\Sigma e^{-\lambda \rho_n}) \sup_{\mathfrak{x}} E_{(\mathfrak{x},\mathfrak{a})} (e(\sigma_b)^2)^{1/2} E_{(\mathfrak{x},\mathfrak{a})} (L_a(\sigma_b)^2)^{1/2}$$

$$\leq 4K(\lambda) \|\phi\|^{1/2} p_1(\varepsilon)^{1/2}.$$

Therefore, by (12.10), 4° is proved. From 2°, 3° and 4° we can see that (1) holds.

In the remainder of the section, we shall investigate properties of the last hitting time.

[12.9] DEFINITION. Let a and b be any positive numbers with $a \neq b$. If $z(0, w) \in \partial_a$, set

$$\hat{\rho} = \hat{\rho}(a, b, w) = \inf\{t : t \leq \sigma_b \text{ and } z_s \notin \partial_a \text{ for any } s \in (t, \sigma_b)\}.$$

For general w, set

 $\hat{\rho} = \hat{\rho}(a, b, w) = \sigma_a + \hat{\rho}(\theta_{\sigma_a}w).$

This is the last hitting time of ∂_a before reaching ∂_b .

For c with $c \in (a, b)$, set

(12.12)
$$\hat{\rho}_c = \hat{\rho}_c(a, b, w) = \hat{\rho} + \sigma_c(\theta_{\hat{\rho}}w).$$

The sequence

$$\bar{\rho}_n = \rho_n(a, c, w)$$
 and $\bar{\tau}_n = \tau_n(a, c, w)$ $(n=0, 1, 2, \cdots)$

are as given in (12.1). Then we can easily see:

[12.10]

- (1) $\hat{\rho}_c \downarrow \hat{\rho}$ as $c \rightarrow a$.
- (2) If $\bar{\rho}_n < \sigma_a + \sigma_b(\theta_{\sigma_a}w) \leq \bar{\rho}_{n+1}$, then $\hat{\rho}_c = \bar{\tau}_n$.
- (3) Especially, $\hat{\rho}$ and $\hat{\rho}_c$ are *B*-measurable.

[12.11] $\hat{\rho}$ and $\hat{\rho}_c$ are finite except on a set of P_z -measure zero for any positive z in D.

Proof. By [1.6], $\tau = \sigma_a + \sigma_b(\theta_{\sigma_a} w) < \infty$ a.s. P_z . On the other hand $\hat{\rho}$, $\hat{\rho} < \tau$.

[12.12] PROPOSITION. Let f and g be in $B_b(R)$. For positive a and b with $a \neq b$, set $\hat{\rho} = \hat{\rho}(a, b, w)$ and $\tau = \sigma_a + \sigma_b(\theta_{\sigma_a}w)$. Then for any positive λ it holds that

(12.13)
$$E_{z}\left\{e^{-\lambda\rho}f(x(\hat{\rho}))g(x(\tau))\right\}$$
$$= |b-a|E_{z}\left\{e^{-\lambda\rho}f(x(\hat{\rho}))Q^{|b-a|}g(x(\hat{\rho}))\right\},$$

where $Q^{|b-a|}g(x) = \int q^{|b-a|}(\xi - x)g(\xi)d\xi$ is defined in §0.8°.

Proof. It is sufficient to prove (12.13) for f and g in $C_K(R)$. For any c with $c \in (a, b)$, $\hat{\rho}_c$ is defined as in (12.12). Set $\bar{\rho}_n = \rho_n(a, c, w)$ and $\bar{\tau}_n = \tau_n(a, c, w)$. Then

$$g(x(\tau))I_{(\bar{\rho}_n < \tau < n_{+1})} = g(x(\tau))I_{(\bar{\tau}_n < \tau < \bar{\rho}_{n+1})}$$

$$= g(x(\sigma_b(\theta_{\bar{\tau}_n}w), \, \theta_{\bar{\tau}_n}w)) I_{(\bar{\tau}_n < \tau)} I_{(\sigma_b(\theta_{\bar{\tau}_n}w) < \sigma_a(\theta_{\bar{\tau}_n}w))} \, .$$

Therefore, noting (2) in [12.10] and [1.5], we have

$$\begin{split} &E_{z}(e^{-\lambda\rho_{c}}f(x(\hat{\rho}_{c}))g(x(\tau)))\\ &=E_{z}\left(\sum_{n=0}^{\infty}e^{-\lambda\bar{\tau}_{n}}f(x(\bar{\tau}_{n}))g(x(\tau))I_{(\bar{\rho}_{n}<\tau<\bar{\rho}_{n+1})}\right)\\ &=E_{z}\left(\sum_{n=0}^{\infty}e^{-\lambda\bar{\tau}_{n}}f(x(\bar{\tau}_{n}))I_{(\bar{\tau}_{n}<\tau)}E_{z(\bar{\tau}_{n})}(g(x(\sigma_{b})))I_{(\sigma_{b}<\sigma_{a})}\right)\\ &=E_{z}\left\{\sum_{n=0}^{\infty}e^{-\lambda\bar{\tau}_{n}}f(x(\bar{\tau}_{n}))I_{(\bar{\tau}_{n}<\tau)}e^{-\lambda\bar{\mu}}G(x(\bar{\tau}_{n}))\right\}. \end{split}$$

In the same way we get

$$\begin{split} &E_{z}\left\{e^{-\lambda\rho_{c}}f(x(\hat{\rho}_{c}))\stackrel{b}{=}\Pi^{b}_{c}g(x(\hat{\rho}_{c}))\right\}\\ &=E_{z}\left\{e^{-\lambda\rho_{c}}\right)\stackrel{b}{=}\Pi^{b}_{c}g(x(\hat{\rho}_{c}))\mathbf{1}(x(\tau))\}\\ &=E_{z}\left\{\sum_{n=0}^{\infty}e^{-\lambda\bar{\sigma}_{n}}f(x(\bar{\tau}_{n}))\stackrel{b}{=}\Pi^{b}_{c}g(x(\bar{\tau}_{n}))I_{(\bar{\tau}_{n}<\tau)}\stackrel{b}{=}\Pi^{b}_{c}\mathbf{1}(x(\bar{\tau}_{n}))\right\}\\ &=\frac{c-a}{b-a}E_{z}\left\{\sum_{n=0}^{\infty}e^{-\lambda\bar{\sigma}_{n}}f(x(\bar{\tau}_{n}))\stackrel{b}{=}\Pi^{b}_{c}g(x(\bar{\tau}_{n}))I_{(\bar{\tau}_{n}<\tau)}\right\}.\end{split}$$

Therefore

(12.14) $E_z(e^{-\lambda\hat{\rho}_c}f(x(\hat{\rho}_c))g(x(\tau)))$

$$= |b-a| E_z \Big(e^{-\lambda \hat{\rho}_c} f(x(\hat{\rho}_c)) \frac{{}^b \prod_c^b g(x(\hat{\rho}_c))}{|c-a|} \Big).$$

If $c \to a$, then $\hat{\rho}_c \to \hat{\rho}$ by (1) in [12.10]. Therefore $f(x(\hat{\rho}_c)) \to f(x(\hat{\rho}))$ and $\frac{{}^{b}_{a} \Pi^{b}_{c} g(x(\hat{\rho}_c))}{|c-a|} \to Q^{b-a} g(x(\hat{\rho}))$ boundedly as $c \to a$, since we have assumed that fand g are in $C_K(R)$. By the bounded convergence theorem, (12.13) is obtained from (12.14).

For positive a and b with $a \neq b$, set $\hat{\rho} = \hat{\rho}(a, b, w)$, $\rho_n = \rho_n(a, b, w)$ and $\tau_n = \tau_n(a, b, w)$. We define $\hat{\rho}_n = \hat{\rho}_n(a, b, w)$ by

(12.15)
$$\hat{\rho}_n = \rho_n + \hat{\rho}(\theta_{\rho_n} w) \qquad (n = 0, 1, 2, \cdots).$$

For any c in (a, b), set $\overline{\rho}_k = \rho_k(a, c, w)$ and $\overline{\tau}_k = \tau_k(a, c, w)$. We also define

$$\hat{\rho}_{n,c} = \hat{\rho}_n + \sigma_c(\theta_{\hat{\rho}_n} w)$$

Then as a generalization of [12.10], we have:

[12.13]

(1)
$$\hat{\rho}_{n,c} \downarrow \hat{\rho}_n$$
 as $c \rightarrow a$.

(2) $\overline{\rho}_k < \tau_n < \overline{\rho}_{k+1}$ for some *n* if and only if $\overline{\rho}_k + \sigma_b(\theta_{\overline{\rho}_k}w) < \overline{\rho}_{k+1}$. In this case, it holds that $\rho_n \leq \overline{\rho}_k$, $\rho_{n+1} = \overline{\rho}_{k+1}$, $\hat{\rho}_{n,c} = \overline{\tau}_k$ and $\tau_n = \overline{\rho}_k + \sigma_b(\theta_{\overline{\rho}_k}w) = \overline{\tau}_k + \sigma_b(\theta_{\overline{\rho}_k}w)$.

[12.14] PROPOSITION. For any positive a and b with $a \neq b$, let $\hat{\rho}_n = \hat{\rho}_n(a, b, w)$ and $\tau_n = \tau_n(a, b, w)$ be defined by (12.15) and by (12.1), respectively. Then for, any positive λ , it holds that:

(1) for ϕ , ψ in $B_b(R)$ and z in D

(12.17)
$$2E_{z}\left\{\sum_{n=0}^{\infty}e^{-\lambda\hat{\rho}_{n}}\phi(x(\hat{\rho}_{n}))\psi(x(\tau_{n}))\right\}$$
$$=E_{z}\left\{\int_{0}^{\infty}e^{-\lambda t}\phi(x(t))Q^{1b-a}\psi(x(t))dL_{a}\right\}$$

and

(2) for ϕ and ψ in $B_p(R)$

(12.18)
$$2E_{\tilde{m}}\left\{\sum_{n=0}^{\infty}e^{-\lambda\hat{\rho}_{n}}\phi(x(\rho_{n}))\psi(x(\tau_{n}))\right\}$$
$$=\frac{1}{\lambda}\int_{0}^{2\pi}\phi(x)Q^{|b-a|}\psi(x)m_{P}(x, a)dx$$

Proof.

1° The both sides of (12.17) and those of (12.18) consist of integrations

(and sumation) of ϕ and ψ by positive measures and they are finite if $\phi = \phi = 1$. Therefore, we may assume that ϕ and ψ are in $C_{\kappa}(R)$ in (12.17) and in $C_{p}(R)$ in (12.18), respectively.

2° If (12.17) holds for ϕ and ψ in $C_p(R)$, then, integrating the both sides of (12.7) by $m_P(z)dz$ over \tilde{D} , we immediately obtain (12.18) by [12.6].

3° Since by [1.5] and [12.12]

$$\begin{split} &E_z \Big\{ \sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_n} \phi(x(\hat{\rho}_n)) \psi(x(\tau_n)) \Big\} \\ &= E_z \{ \sum e^{-\lambda \rho_n} E_{z(\rho_p)}(e^{-\lambda \rho} \phi(x(\hat{\rho})) \psi(x(\tau))) \} \\ &= |b-a| E_z \{ \sum e^{-\lambda \rho_n} E_{z(\rho_n)}(e^{-\lambda \hat{\rho}} \phi(x(\hat{\rho})) Q^{|b-a|} \psi(x(\hat{\rho}))) \} \\ &= |b-a| E_z \{ \sum e^{-\lambda \hat{\rho}_n} \phi(x(\hat{\rho}_n)) Q^{|b-a|} \psi(x(\hat{\rho}_n)) \} \;. \end{split}$$

If follows from 1°, 2° and 3°, that, in order to prove (12.17), it is sufficient to show

(12.19)
$$2|b-a|E_{z}\left\{\sum_{n=0}^{\infty}e^{-\lambda\hat{\rho}_{n}}\phi(x(\hat{\rho}_{n}))\right\}$$
$$=E_{z}\left\{\int_{0}^{\infty}e^{-\lambda t}\phi(x(t))dL^{a}\right\}$$

for ϕ which is bounded and uniformly continuous.

4° For any c in (a, b), let $\rho_n = \rho_n(a, b, w)$, $\overline{\rho}_k = \rho_k(a, c, w)$ and $\overline{\tau}_k = \tau_k(a, c, w)$ be defined by (12.1) and $\hat{\rho}_{n,c}$ be defined by (12.16). Then by (2) in [12.13]

$$\sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_{n,c}} \phi(x(\hat{\rho}_{n,c})) = \sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi(x(\bar{\tau}_{k})) I_{(\bar{\rho}_{k}+\sigma_{\delta}(\theta \bar{\rho}_{k},w) < \bar{\rho}_{k+1})}$$
$$= \sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi(x(\bar{\tau}_{k})) I_{(\bar{\tau}_{k}+\sigma_{k}(\theta \bar{\tau}_{k},w) < \bar{\rho}_{k+1})}.$$

Therefore, we have

(12.20)
$$E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda \rho_{n,c}} \phi(x(\hat{\rho}_{n,c}))\right)$$
$$= E_{z}\left\{\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi(x(\bar{\tau}_{k})) P_{z(\bar{\tau}_{k})}(\sigma_{b} < \sigma_{a})\right\}$$
$$= E_{z}\left(\sum_{k=0}^{\infty} e^{-\lambda \bar{\tau}_{k}} \phi(x(\bar{\tau}_{k}))\right) \frac{c-a}{b-a}.$$

By theorem [12.8], the right side of (12.20) converges to

$$\frac{1}{2|b-a|}E_{z}\left(\int_{0}^{\infty}e^{-\lambda t}\phi(x(t))dL_{a}\right) \quad \text{ as } c \to a.$$

The left side of (12.20) converges to

$$E_{z}\left(\sum_{n=0}^{\infty}e^{-\lambda\hat{
ho}_{n}}\phi(x(\hat{
ho}_{n}))\right)$$
 as $c \rightarrow a$,

since $e^{-\lambda\hat{\rho}_{n,c}}\phi(x(\hat{\rho}_{n,c})) \rightarrow e^{-\lambda\hat{\rho}_{n}}\phi(x(\hat{\rho}_{n}))$ by (1) in [12.13], $|e^{-\lambda\hat{\rho}_{n,c}}\phi(x(\hat{\rho}_{n,c}))| \leq e^{-\lambda\rho_{n}} \|\phi\|$ and $E_{z}\left(\sum_{n=0}^{\infty} e^{-\lambda\rho_{n}}\right) < \infty$ by [12.7]. Therefore (12.20) is proved.

§ 13. A sufficient condition for a process belonging to \mathcal{P}_c .

For ρ in M(R), we shall write

$$(13.1) \qquad \rho \in M_i(R)$$

if and only if $\rho(U) > 0$ for any open set U in R. Set

(13.2)
$$\delta(\rho, \varepsilon) = \inf_{x} \rho((x-\varepsilon, x+\varepsilon)).$$

[13.1] Remark. In [11.9], we have seen that, if ρ is in $M_{p,N}(R)$, then ρ is in $M_i(R)$ if and only if $\delta(\rho, \varepsilon) > 0$ for any positive ε .

[13.2] For ρ in $M_{p,N}(R)$, set $v(z) = \int \pi^{y}(\xi - x)\rho(d\xi)$. Then $\delta(v(x, y)dx, \varepsilon) \ge \delta(\rho, \varepsilon)$ holds for any positive ε .

Proof.

$$\int_{x-\varepsilon}^{x+\varepsilon} v(t, y) dt = \frac{1}{\pi} \int_{x-\varepsilon}^{x+\varepsilon} dt \int \frac{y \rho(d\xi)}{y^2 + (\xi - t^2)}$$
$$= \frac{1}{\pi} \int \frac{y d\eta}{y^2 + \eta^2} \int_{x-\eta-\varepsilon}^{x-\eta+\varepsilon} \rho(d\xi)$$
$$\ge \delta(\rho, \varepsilon) .$$

In this section, we shall fix a process P in \mathcal{P} which satisfies [M] and [V], and $B_P = \{\sigma_P, \mu_P, k_P, p_P\}$, s_P, m_P, u_P, U_P etc. are as defined in chapter III. As a corollary to [13.2], we immediately have:

[13.3]

$$u_P(x+\varepsilon, y)-u_P(x-\varepsilon, y)=\delta(s_P(x, y)dx, \varepsilon)\geq\delta(\sigma_P, \varepsilon)$$

[13.4] For any a, b, α and β with 0 < b < a, $0 < \beta$ and $0 < \alpha \le \pi$,

(13.3)
$$H^{a}_{b}(x, U_{2(\alpha+\beta)}(x)^{c}) \leq \frac{8a p_{P}(a)}{\delta(\mu_{P}, \alpha)\delta(\sigma_{P}, \beta)^{2}},$$

where $p_P(a) = B_P(u_P(\cdot, a), u_P(\cdot, a))$ and $U_{\delta}(x) = \{\xi \colon |\xi - x| \leq \delta\}$ in R.

Proof. By (8.7) in [8.5], for any b < a

$$B_P(x, d\xi) = (P^{a-b} + Q^{a-b}H^a_b)(x, d\xi).$$

Noting $\phi(x) = \int Q^{a-b} H^a_b(x, d\xi)(u_P(\xi, a) - u_P(x, a))$ is in C_P , we have by [13.3],

$$\begin{split} 2p_P(a) &\geq \int_x^{x+2a} m_P(t, a) dt \int_x^{\infty} Q^{a-b}(t, d\eta) \int_{x+2\alpha+2\beta}^{\infty} H^a_b(\eta, d\xi) (u_P(\xi, a) - u_P(t, a))^2 \\ &\geq \int_x^{x+2\alpha} m_P(t, a) dt \int_x^{\infty} Q^{a-b}(t, d\eta) H^a_b(\eta, [x+2\alpha+2\beta, \infty)) \delta(\sigma_P, \beta)^2. \end{split}$$

We have $H^a_b(\eta, [x+2\alpha+2\beta, \infty)) \ge H^a_b(x, [x+2\alpha+2\beta, \infty))$ if $x \le \eta$ by [M] (See also [9.2]), and for $x \le t$

$$\int_x^{\infty} Q^{a-b}(t, d\eta) \ge \int_x^{\infty} q^{a-b}(\eta) d\eta = \frac{1}{2(a-b)}.$$

Using [13.2]

$$2p_P(a) \geq \frac{\delta(\mu_P, \alpha)\delta(\sigma_P, \beta)^2}{2a} H^a_b(x, [x+2\alpha+2\beta, \infty)).$$

In a similar way, we can show that

$$2p_P(a) \ge \frac{\delta(\mu_P, \alpha)\delta(\sigma_P, \beta)^2}{2a} H^a_\delta(x, (-\infty, x-2\alpha-2\beta]).$$

Therefore (13.3) is proved.

By (3) in [10.15] $p_P(a)$ decreases as a decreases. Hence as a corollary to [13.4], the following holds.

[13.5] For positive a and ε , set

$$C_1(a, \varepsilon) = \sup_{x, b; b < a} H^a_b(x, U_{\varepsilon}(x)^c).$$

If σ_P and μ_P are in $M_i(R)$, then $\lim_{a\to 0} C_1(a, \epsilon)=0$.

In the following, σ_a (a>0) denotes the hitting time of ∂_a . For b>0, $\xi \in R$ and $\varepsilon > 0$, set

(13.4)
$$D(\xi, b, \varepsilon) = \{z = (x, y); y \ge b \text{ and } |x - \xi| \ge 4\varepsilon\}$$

and let $\tau(\xi) = \tau(\xi, b, \varepsilon, w)$ be the hitting time of $D(\xi, b, \varepsilon)$.

[13.6] For positive a and ε , set

$$C_2(a, \varepsilon) = \sup_{b; b < a} \int_0^{2\pi} m(x, 2a) dx \int Q^a(x, d\xi) P_{(\xi, a)}(\tau(\xi, b, \varepsilon) \leq \sigma_{2a}).$$

If P satisfies [L] and σ_P and μ_P are in $M_i(R)$, then

$$\lim_{a\to 0} C_2(a, \varepsilon)=0.$$

Proof. Set $\tau = \tau(\xi, b, \varepsilon)$ and $\sigma = \sigma_{2a}$. Take a_0 so small that $C_1(2a, 2\varepsilon) < 1/2$ for $a \leq a_0$. Since $|x(\sigma) - \xi| \geq 2\varepsilon$ if both $\tau \leq \sigma$ and $|x(\sigma) - x(\tau)| < 2\varepsilon$ hold, by [1.5]

$$P_{(\xi, a)}(\tau \leq \sigma) \leq P_{(\xi, a)}(\tau \leq \sigma, |x(\sigma) - x(\tau)| \geq 2\varepsilon)$$

$$+ P_{(\xi, a)}(\tau \leq \sigma, |x(\sigma) - x(\tau)| < 2\varepsilon)$$

$$\leq E_{(\xi, a)}\{\tau \leq \sigma, H^{2a}_{y(\tau)}(x(\tau), U_{2\varepsilon}(x(\tau))^{c})\}$$

$$+ P_{(\xi, a)}(|x(\sigma) - \xi| \geq 2\varepsilon)$$

$$\leq C_{1}(2a, 2\varepsilon)P_{(\xi, a)}(\tau \leq \sigma) + H^{2a}_{a}(\xi, U_{2\varepsilon}(\xi)^{c})$$

•

Therefore, for $a \leq a_0$

$$P_{(\xi, a)}(\tau \leq \sigma) \leq 2H_a^{2a}(\xi, U_{2\varepsilon}(\xi)^c).$$

Now

$$\begin{split} &\int_{0}^{2\pi} m(x, 2a) dx \int Q^{a}(x, d\xi) P_{(\xi, a)}(\tau \leq \sigma) \\ &\leq 2 \int_{0}^{2\pi} m(x, 2a) dx \int Q^{a}(x, d\xi) \int_{|\eta - \xi| \geq 2\varepsilon} H_{a}^{2a}(\xi, d\eta) \\ &\leq 2(I_{1}(a) + I_{2}(a)) \,, \end{split}$$

where

$$I_{1}(a) = \int_{0}^{2\pi} m(x, 2a) dx \int_{|\xi - x| \ge \varepsilon} Q^{a}(x, d\xi)$$

and

$$I_{2}(a) = \int_{0}^{2\pi} m(x, 2a) dx \int Q^{a}(x, d\xi) \int_{|\eta - x| \ge \varepsilon} H^{a}(\xi, d\eta).$$
$$I_{1}(a) = 2\pi \int_{|\xi| \ge \varepsilon} q^{a}(\xi) d\xi = \frac{4\pi}{a} \left(1 - \tanh \frac{\pi\varepsilon}{2a}\right)$$

and $\lim I_1(a)=0$. Moreover, by (8.7) in [8.5] $B_P^{2a}(x, d\eta) \ge Q^a H_a^{2a}(x, d\eta)$ and

$$I_{2}(a) \leq \int_{0}^{2\pi} m(x, 2a) \int_{|\xi-x| \geq \varepsilon} B_{P}^{a}(x, d\eta)$$

$$\leq \inf_{|\eta-x| \geq \varepsilon} \frac{1}{(u_{P}(\xi, 2a) - u|x, 2a))^{2}} B_{P}^{a}(u; \varepsilon)$$

$$\leq \frac{1}{\delta(\sigma_{P}, \varepsilon/2)^{2}} B_{P}^{a}(u; \varepsilon),$$

where $B_P^a(u; \varepsilon)$ is given in [11.4] and the condition [L] implies that $\lim_{a\to 0} B_P^a(u; \varepsilon)$ =0. Thus [13.6] is proved.

For positive a, let $\rho_n = \rho_n(2a, a, w)$ and $\tau_n = \tau_n(2a, a, w)$ be defined as in (12.1) $(n=0, 1, 2, \cdots)$. For any b with 0 < b < a and any positive ε , let $\tilde{\tau}(\xi) = \tau(\xi, b, \varepsilon, w)$ be defined as in (13.4). Set

(13.5)
$$\tilde{\tau}_n = \tau_n + \tilde{\tau}(x(\tau_n), \theta_{\tau_n} w)) \qquad (n = 0, 1, 2, \cdots)$$

and for positive T

(13.6)
$$\mathfrak{U}(a, b, \varepsilon, T) = \{w: \text{there exist } \tau_n \text{ with } \tau_n \leq T \text{ and } s \text{ in } [\tau_n, \rho_{n+1}] \text{ such that both } y_s \geq b \text{ and } |x(s) - x(\tau_n)| \geq 4\varepsilon \text{ hold} \}$$

 $= \{ w : \text{there exists } n \text{ such that } \tau_n \leq T \text{ and } \tilde{\tau}_n \leq \rho_{n+1} \text{ hold.} \}.$

[13.7] Set

$$C_{\mathfrak{s}}(a, \varepsilon) = \sup_{T, b; b < a} \frac{1}{T} P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)),$$

where $P_{\tilde{m}}(\cdot) = \int_{\tilde{D}} P_z(\cdot) m_P(z) dz$ and $\tilde{D} = \{z \in D; 0 \leq x < 2\pi\}$. If P satisfies [L] and σ_P and μ_P are in $M_i(R)$, then

$$\lim_{a\to 0} C_3(a, \varepsilon)=0.$$

Proof. For positive λ

$$\begin{split} P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)) &\leq \sum_{n=0}^{\infty} P_{\tilde{m}}(\tilde{\tau}_{n} \leq \rho_{n+1}, \tau_{n} \leq T) \\ &\leq e^{\lambda T} E_{\tilde{m}}(\Sigma e^{-\lambda \tau_{n}} I_{|\tilde{\tau}_{n} < \rho_{p+1})}) \\ &= e^{\lambda T} E_{\tilde{m}}\{\Sigma e^{-\lambda \tau_{n}} P_{z(\tau_{n})}(\tilde{\tau}(x(0)) < \sigma_{2a})\}. \end{split}$$

Let $\hat{\rho} = \hat{\rho}(2a, a, w)$ be the last exist time to ∂_{2a} before reaching ∂_a defined in [12.9]. Set $\hat{\rho}_n = \rho_n + \hat{\rho}(\theta_{\rho_n}w)$ and $\phi(x) = P_{(x,a)}(\tilde{\tau}(x) < \sigma_{2a})$. Since $\hat{\rho}_n < \tau_n$ and ϕ is in $B_p(R)$ by (p.5), we have, by (12.18) in [12.14],

$$\begin{split} P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)) &\leq e^{\lambda T} E_{\tilde{m}}(\Sigma e^{-\lambda \hat{\rho}_{n}} \phi(x(\tau_{n}))) \\ &= \frac{e^{\lambda T}}{2\lambda} \int_{0}^{2\pi} Q^{a} \phi(x) m_{P}(x, 2a) dx \\ &= \frac{e^{\lambda T}}{2\lambda} \int_{0}^{2\pi} m_{P}(x, 2a) dx \int Q^{a}(x, d\xi) P_{(\xi, a)}(\tilde{\tau}(\xi) < \sigma_{2a}) \\ &\leq \frac{e^{\lambda T}}{2\lambda} C_{2}(a, \varepsilon), \end{split}$$

where $C_2(a, \varepsilon)$ is defined as in [13.6]. Put $\lambda = 1/T$. Then

$$\frac{1}{T}P_{\tilde{m}}(\mathfrak{U}(a, b, \varepsilon, T)) \leq \frac{e}{2}C_{2}(a, \varepsilon).$$

[13.7] is a consequence of [13.6].

[13.8] PROPOSITION. If P satisfies [M], [V] and [L], and μ_P and σ_P are in $M_i(R)$, then P is in \mathcal{P}_c .

Proof. 1° By [13.7], we can choose a positive sequence $\{a_n\}$ such that $a_{n+1} < a_n$, $\Sigma a_n < \infty$ and $\Sigma C_{\mathfrak{s}}(a_n, 1/2^n) < \infty$. Then, for fixed T

$$\sum_{n=0}^{\infty} P_{\tilde{m}}\left(\mathfrak{l}\left(a_{n}, a_{n+1}, \frac{1}{2^{n}}, T\right)\right) \leq \sum_{n=0}^{\infty} TC_{\mathfrak{s}}\left(a_{n}, \frac{1}{2^{n}}\right) < \infty.$$

Set $\mathfrak{U}(T) = \overline{\lim_{n \to \infty}} \mathfrak{U}(a_n, a_{n+1}, 1/2^n, T)$. Then, by Borel-Cantelli's theorem for σ -finite measure $P_{\tilde{m}}$, we have $P_{\tilde{m}}(\mathfrak{U}(T))=0$. Set

$$\mathfrak{u} = \bigcup_{N=1}^{\infty} \mathfrak{u}(N), \quad \mathfrak{u}(T) \uparrow \mathfrak{u} \ (T \uparrow \infty), \quad \text{and} \quad P_{\tilde{m}}(\mathfrak{u}) = 0.$$

2° If $z(0, w) \in D^{(a,\infty)}$ and 0 < b < a, then $w \in \mathfrak{U}(N)$ implies $\theta_{\sigma_b} w \in \mathfrak{U}(N)$. For, $\sigma_b < \sigma_{2a_n} = \rho_0(2a_n, a_n)$ if $2a_n < b$. Conversely, if $\theta_{\sigma_b} w \in \mathfrak{U}(N)$ and $M > \sigma_b(w)$, then $w \in \mathfrak{U}(N+M)$. Therefore, $w \in \mathfrak{U}$ if and only if $\theta_{\sigma_b} w \in \mathfrak{U}$ for w with z(0, w) $\in D^{(b,\infty)}$. $P_z(\mathfrak{U})$ is harmonic and therefore continuous in D. Noting that $P_z(\mathfrak{U})$ is in $C_p(D)$, by 1° we have $P_z(\mathfrak{U})=0$ for any z in D.

3° Set $\rho_k(n) = \rho_k(2a_n, a_n, w), \tau_k(n) = \tau_k(2a_n, a_n, w)$ and $W_n = \{w : z(0, w) \in D^{(2a_n, \infty)}\}$ $(k=0, 1, 2, \dots, n=1, 2, \dots)$. Define

$$\tilde{z}_{n}(t, w) = \frac{(\rho_{k+1}(n) - t)z(\tau_{k}(n)) + (t - \tau_{k}(n))z(\rho_{k+1}(n))}{\rho_{k+1}(n) - \tau_{k}(n)}$$

if $t \in (\tau_{k}(n), \rho_{k+1}(n))$ (k=0, 1, 2, ...)
 $= z(t, w)$ if otherwise.

Then, for $w \in W_n$, $\tilde{z}_n(t, w)$ is a continuous mapping of t in $[0, \infty)$ into $D^{(a_n,\infty)}$.

4° Let n_0 and N be any fixed positive integers. For any fixed w in $W_{n_0} \cap \mathfrak{U}(N)^c$, we shall show that $\tilde{z}_n(t, w)$ converges uniformly in $t \in [0, N]$ by the topology of \overline{D} .

Proof of 4[°]₁. For a fixed $w \in W_{n_0} \cap \mathfrak{U}(N)^c$, there exists a positive integer $n_1 = n_1(w) \ge n_0$ such that $w \notin \mathfrak{U}(a_n, a_{n+1}, 1/2^n, N)$ for $n \ge n_1$. Take any $n \ge n_1$.

(i) If $t \notin \bigcup_{k} (\tau_{k}(n), \rho_{k+1}(n))$, then $z(t, w) \in D^{(a_{n}, \infty)}$ and $t \notin \bigcup_{l} (\tau_{l}(n+1), \rho_{l+1}(n+1))$. Therefore

$$\tilde{z}_n(t) = z(t) = \tilde{z}_{n+1}(t)$$
.

(ii) If $t \leq N$, $t \in (\tau_k(n), \rho_{k+1}(n))$ for some k and $z(t) \in D^{\lfloor a_{n+1},\infty \rfloor}$, then $|x(t) - x(\tau_k(n))| < 4/2^n$, since $w \notin \mathfrak{U}(a_n, a_{n+1}, 1/2^n, N)$. Especially

$$|x(\rho_{k+1}(n)-x(\tau_k(n))| \leq \frac{4}{2^n}$$
 and $|\tilde{x}_n(t)-x(\tau_k(n))| > \frac{4}{2^n}$.

(iii) If $t \leq N$, $t \in (\tau_k(n), \rho_{k+1}(n))$ for some k and $t \notin \bigcup_{l} (\tau_l(n+1), \rho_{l+1}(n+1))$,

then $\tilde{z}_{n+1}(t) = z(t) \in D^{\lfloor a_{n+1},\infty)}$. Therefore by (ii) $|\tilde{x}_{n+1}(t) - \tilde{x}_n(t)| < 8/2^n$.

(iv) If $t \leq N$ and $t \in (\tau_k(n), \rho_{k+1}(n)) \cap (\tau_l(n+1), \rho_{l+1}(n+1))$ for some k and l, then $z \in (\tau_l(n+1))$ and $z(\rho_{l+1}(n+1))$ are in $D^{(\alpha_{n+1},\infty)}$. Therefore, by (ii) we also have

$$|\tilde{x}_{n+1}(t)-\tilde{x}_n(t)|<\frac{8}{2^n}$$
.

(v) If $t \leq N$ and $t \in (\tau_k(n), \rho_{k+1}(n))$ for some k, then $\tilde{z}_n(t)$ and $\tilde{z}_{n+1}(t)$ are in D^{2a_n} and $|\tilde{y}_{n+1}(t) - \tilde{y}_n(t)| \leq 2a_n$. In this case, by (iii) and (iv) we have seen $|\tilde{x}_{n+1}(t) - \tilde{x}_n(t)| \leq 8/2^n$, and therefore $|\tilde{z}_{n+1}(t) - \tilde{z}_n(t)| \leq 8/2^n + 4a_n$.

Since $\Sigma(8/2^n+4a_n) < \infty$, 4° is proved by (i) and (v).

5° Set $W_{\infty} = \bigcup W_n = \{w ; z(0, w) \in D\}$ and $W_0 = W_{\infty} \cap \mathbb{U}^c$. Noting 2° and [1.2], we have $P_z(W_0) = 1$ for any z in D. Let $w \in W_0$ be given. Then, for any positive integer N, there exists n such that $w \in W_n \cap \mathfrak{U}(N)^c$. Therefore $\tilde{z}_n(t, w)$ converges uniformly in $t \in [0, N]$ for any N. Set $\tilde{z}(t, w) = \lim \tilde{z}_n(t, w)$. Then $\tilde{z}(t, w)$ is a continuous function of $t \in [0, \infty)$ into \overline{D} . Define a mapping ψ from W_0 into \overline{W} by

$$\mathbf{z}(t, \boldsymbol{\psi}(w)) = \tilde{\mathbf{z}}(t, w) \qquad (0 \leq t < \infty).$$

Measurability of the mapping ψ is obvious by definition. Therefore, by proposition [1.11], we can see that P is in \mathcal{P}_c . Proposition [13.8] is proved.

§14. Necessity of the conditions given in §13.

In the following, we shall use the identical notation σ_a $(a \ge 0)$ for the hitting time of ∂_a for paths in W and in \overline{W} . Here $\sigma_o(w)$ for w in W denotes the hitting time of ∂ . For $0 \le a$, b and $a \ne b$,

$$\rho_n(a, b) = \rho_n(a, b, w) \text{ or } \rho_n(a, b, \overline{w})$$

 $\tau_n(a, b) = \tau_n(a, b, w) \text{ or } \tau_n(a, b, \overline{w})$

are definen as in (12.1), and

$$\hat{\rho}(a, b) = \hat{\rho}(a, b, w)$$
 or $\hat{\rho}(a, b, \bar{w})$

as in [12.9] also far paths in W or \overline{W} .

Note that $\sigma_a = \rho_0(a, b)$ and

$$\tau(a, b) = \tau_0(a, b) = \sigma_a + \sigma_b \cdot \theta_{\sigma_a}$$

Then if holds that

(14.1)
$$\begin{cases} \sigma_{a}(\overline{w}) = \sigma_{a}(\iota \overline{w}), \quad \rho_{n}(a, b, \overline{w}) = \rho_{n}(a, b, \iota \overline{w}), \\ \tau_{n}(a, b, \overline{w}) = \tau_{n}(a, b, \iota \overline{w}) \text{ and } \hat{\rho}(a, b, \overline{w}) = \hat{\rho}(a, b, \iota \overline{w}) \end{cases}$$

where ι is the injection defined by (1.6).

[14.1] Let P be in \mathcal{P} and \overline{P} be in $\overline{\mathcal{P}}$. (1) Set

 $W_r = \{ w \in W ; z(r, w) \in D \text{ for any rational } r \}$

and

$$\overline{W}_r = \{ w \in \overline{W} ; z(r, \overline{w}) \in D \text{ for any rational } r \}.$$

Then $P_z(W_r)=1$ and $\overline{P}_z(\overline{W}_r)=1$ for any z in D.

(2) Let γ be any random time and σ_{δ}^* (b>0) be the hitting time to $D^{(b,\infty)}$. Set $\gamma_b = \gamma + \sigma_{\delta}^* \circ \theta_{\gamma}$. Then $\gamma_b \downarrow \gamma$ as $b \downarrow 0$ a.s. P_z (or a.s. $\overline{P_z}$) for any z in D.

(3) It holds that $\sigma_0 \leq \hat{\rho}(0, b) < \tau(0, b)$ for b > 0, and

$$\tau(0, b) \downarrow \sigma_0$$
 as $b \downarrow 0$ a.s. P_z (or a.s. P_z)

for any z in D.

(4) Fix b>0. If $\tau(0, b) < \infty$, then there exists $a_1=a_1(b, w)$ or $a_1(b, \overline{w})$ such that $\hat{\rho}(0, b) < \hat{\rho}(a, b)$ for $a \leq a_1$, and

(14.2)
$$\lim_{a\to 0} \hat{\rho}(a, b) = \hat{\rho}(0, b).$$

Proof. (1) is a consequence of (p.2) in [1.1] (or (\bar{p} .2) in [1.8]). (2) and (3) follow from (1). If $\hat{\rho}(a_n, b) < \hat{\rho}(0, b)$ holds for some sequence $\{a_n\}$ with $a_n \downarrow 0$, then $\sigma_{a_p} \leq \hat{\rho}(a_n, b) < \tau(a_n, b) \leq \sigma_0$ and $\sigma_{a_n} \uparrow \sigma_0$, which contradict the continuity of z(t). The first part of (4) is proved. For a with $0 < a < \min\{a_1, b\}, \sigma_0 \leq \hat{\rho}(0, b) < \hat{\rho}(a, b) < \tau(0, b)$ and $\hat{\rho}(a, b)$ decreases as a decreases. Therefore $z(\lim_{a \to 0} \hat{\rho}(a, b)) = \lim_{a \to 0} z(\hat{\rho}(a, b)) = \partial$ (or $\in \partial_0$), which implies that (14.2) holds.

In the remainder of this section, we shall fix a process P in \mathcal{P} which satisfies [V] and [M].

[14.2] Assume $\sigma_P((c_1, c_2))=0$ for some c_1 and c_2 with $c_1 < c_2$, and $\phi = H^a f$ for f in $B_b(R)$. Then the boundary function of ϕ on ∂_0 is constant on (c_1, c_2) , that is, for $\zeta = (\xi, 0)$ with ξ in (c_1, c_2)

(14.3)
$$\lim_{z \to \zeta} \phi(z) = k \; .$$

Proof. Let \overline{J} be a closed interval contained in (c_1, c_2) . Then $s_P(z) = \int \pi^y(\xi - x)\sigma_P(d\xi) \to 0$ as $z \to (\xi, 0)$ uniformly in $\xi \in \overline{J}$. Therefore, by (3) in [9.9], $\phi_x(z) \to 0$ as $z \to (\xi, 0)$ uniformly in $\xi \in J$, and (14.3) is easily proved.

[14.3] PROPOSITION. If P in \mathcal{P}_c satisfies [M] and [V], then σ_P is in $M_i(R)$.

Proof. Since P is in \mathcal{P}_c , $P = \iota \overline{P}$ for some \overline{P} in $\overline{\mathcal{P}}$. Assuming $\sigma((c_1, c_2)) = 0$ for some c_1 and c_2 with $c_1 < c_2$, we shall show a contradiction.

1° Let J be a fixed non-empty open interval with $\bar{J} \subset (c_1, c_2)$. For any positive a, set $\phi_a(z) = H^a I_J(z)$, where I_J is the indicator of J. Then by [14.2] $\phi_a(z) \rightarrow k_a = k_a(J)$ as $z \rightarrow (\xi, 0)$ for ξ in (c_1, c_2) . Since $0 \le k_a \le 1$, we can choose a sequence $\{a_n\}$ such that $a_n \rightarrow 0$ and $k_{a_n} \rightarrow k$ as $n \rightarrow \infty$. Set $\phi_n = \phi_{a_n}$, $k_n = k_{a_n}$ and $\tau_n = \tau(0, a_n)$.

2° Let K be another non-empty open interval with $\overline{K} \subset (c_1, c_2)$. Then by [1.5], for any m and n with m < n, and z(t) = (x(t), y(t)),

(14.4)
$$\overline{P}_{z}(x(\tau_{n}) \in K, x(\tau_{m}) \in J) = P_{z}(x(\tau_{n}) \in K, x(\tau_{m}) \in J)$$
$$= E_{z}(\phi_{m}(z(\tau_{n}))I_{(x(\tau_{n}) \in K)})$$
$$= \overline{E}_{z}(\phi_{m}(z(\tau_{n}))I_{(x(\tau_{n}) \in K)}).$$

Set K=J in (14.4). Since $\tau_n \downarrow \sigma_0$ as $n \to \infty$ by (3) in [14.1], we have, for path's in \overline{W} ,

$${x(\sigma_0) \in J} \subset \lim_{m \to \infty} \lim_{n \to \infty} {x(\tau_n) \in J}, x(\tau_m) \in J}$$

and

$$k_m I_{\{x(\sigma_0)\in\overline{J}\}} \geq \overline{\lim}_{n\to\infty} \phi_m(z(\tau_n)) I_{\{x(\tau_n)\in J\}}.$$

Therefore

$$\begin{split} \bar{P}_{z}(x(\sigma_{0}) \in J) &\leq \lim_{m \to \infty} \lim_{n \to \infty} \bar{E}_{z} \{ \phi_{m}(z(\tau_{n})) I_{(x(\tau_{n}) \in J)} \} \\ &\leq \lim_{m \to \infty} k_{m} \bar{P}_{z}(x(\sigma_{0}) \in \bar{J}) \\ &= k \bar{P}_{z}(x(\sigma_{0}) \in \bar{J}) \,. \end{split}$$

By (p.4) in [1.8]

$$\overline{P}_{z}(z(\sigma_{0}) \in J) = P_{z}^{B,2}(z(\sigma_{0}) \in J) > 0$$

and

$$\overline{P}_{z}(z(\sigma_{0}) \in \overline{J}) = P_{z}^{B,2}(z(\sigma_{0}) \in \overline{J}) = P_{z}^{B,2}(z(\sigma_{0}) \in J).$$

Hence we have k=1.

3° Take a non-empty K with $\overline{J} \cap \overline{K} = \emptyset$. Then, for paths in \overline{W}

$$\phi = \{x(\sigma_0) \in \overline{J} \cap \overline{K}\} \supset \lim_{m \to \infty} \lim_{n \to \infty} \{x(\tau_n) \in K, x(\tau_m) \in J\}$$

and

$$k_m I_{\{x(\sigma_0)\in K\}} \leq \lim_{n\to\infty} \phi_m(z(\tau_n)) I_{\{x(\tau_n)\in K\}}.$$

By (14.4), we have

$$0 \ge k \overline{P}_{z}(x(\sigma_{0}) \in K)$$
.

Since $\overline{P}_{z}(x(\sigma_{0}) \in K) = P_{z}^{B,2}(x(\sigma_{0}) \in K) > 0$, we have k=0, which is a contradiction.

[14.4] PROPOSITION. If P in \mathcal{P}_c satisfies [V], then μ_P is in $M_i(R)$.

Proof. Let $P=\iota \overline{P}$ for \overline{P} in $\overline{\mathcal{P}}$. Assume μ_P is not in $M_i(R)$. Then there exist c_1 and c_2 with $0 < c_1 < c_2 < 2\pi$ such that $\mu_P((c_1, c_2))=0$. We shall show a contradiction. Take a non-empty open interval J with $\overline{J} \subset (c_1, c_2)$. Set $\widetilde{J} = \bigcup_{n=1}^{\infty} (J+2n\pi)$ and for 0 < a < b

$$F(a, b, T) = \overline{P}_{\tilde{m}}(\sigma_a \leq T, x(\tau(a, b)) \in J).$$

Then by [12.14] for a fixed positive λ

$$F(a, b, T) \leq e^{\lambda T} E_{\tilde{m}} \left\{ \sum_{n=0}^{\infty} e^{-\lambda \hat{\rho}_n(a, b)} I_J(x(\tau_n(a, b))) \right\}$$
$$= \frac{e^{\lambda T}}{2\lambda} \int_0^{2\pi} m_P(x, a) Q^{b-a} I_J(x) dx .$$

Since $\sigma_a \uparrow \sigma_0$, $Q^{b-a}I_J(x) \rightarrow Q^bI_J(x)$ uniformly in x and $m_P(x, a)dx \rightarrow \mu_P(dx)$ weakly as $a \rightarrow 0$. By

 $\tau(a, b) = \tau(0, b)$ if a < b and $\hat{\rho}(0, b) < \hat{\rho}(a, b)$,

and by (4) in [14.1], we have

$$F(b, T) = \overline{P}_{\tilde{m}}(\sigma_0 \leq T, x(\tau(0, b)) \in J)$$

$$\leq \lim_{a \to 0} F(a, b, T)$$

$$= \frac{e^{\lambda T}}{2\lambda} \int_0^{2\pi} Q^b I_J(x) \mu_P(dx)$$

$$\leq \frac{\pi e^{\lambda T}}{2\lambda} Q^b(0, U_{\varepsilon}(0)^c),$$

where $\varepsilon = \inf\{|x - \xi| : x \in \tilde{J}, \xi \in (0, 2\pi) - (c_1, c_2)\}$. Therefore, by (2) in [14.1],

$$\overline{P}_{\tilde{m}}(\sigma_0 \leq T, x(\sigma_0) \in J) \leq \lim_{b \to 0} F(b, T) = 0.$$

On the other hand, for T > 0

$$\overline{P}_{\tilde{m}}(\sigma_0 \leq T, x(\sigma_0) \in J) = P^{B,2}_{\tilde{m}}(\sigma_0 \leq T, x(\sigma_0) \in J) > 0$$
,

which is a contradiction.

[14.5] Let f be in $B_b(R)$ and a be a positive number. Then for a fixed

positive ε

$$\lim_{b \neq a} \int_{|\xi - x| \ge \varepsilon} \frac{H_b^a(x, d\xi) f(\xi)}{a - b} = \int_{|\xi - x| \ge \varepsilon} B_P^a(x, d\xi) f(\xi)$$

where the left side converges boundedly in x.

Proof. By $(\bar{h}.3)$ in [2.2] and (8.7) in [8.5], we can easily see for a fixed c with 0 < c < b < a

$$\begin{split} &\frac{1}{a-b}\int_{|\xi-x|\geq\varepsilon}H^a_b(x,\,d\xi)f(\xi)\\ &=\frac{1}{a-b}\left\{\int_{|\xi-x|\geq\varepsilon}a^{-c}\pi^{a-b}(\xi)f(x+\xi)d\xi\right.\\ &\left.+\int_{|\xi-x|\geq\varepsilon}a^{-c}\pi^{b-c}(\eta)d\eta\right\}H^a_c(\eta,\,d\xi)f(\xi) \end{split}$$

is bounded in b and x for $b \in [a+c/2, a)$, and converges to $\int_{|\xi-x| \ge \varepsilon} B_P^a(x, d\xi) f(\xi)$ as $b \uparrow a$.

For any positive ε , set

(14.5)
$$\gamma_{\varepsilon}(w) = \inf\{t : |x(t) - x(0)| > \varepsilon \text{ and } z(t) \in D\}$$
for w in W with $z(0, w) \in D$, and

(14.6)
$$\gamma_{\varepsilon}(\overline{w}) = \inf\{t : |x(t) - x(0)| > \varepsilon\}$$

for \overline{w} in \overline{W} . Then, by (1) in [14.1] it is easily seen that for any z in D

(14.7)
$$\gamma_{\varepsilon}(\bar{w}) = \gamma_{\varepsilon}(\varepsilon \bar{w})$$
 a.s. \bar{P}_{ε}

[14.6] Let P in $\mathcal{P}_{\varepsilon}$ satisfy [V] and [M]. Set $\gamma = \gamma_{\alpha+\delta\varepsilon}$ for positive α and ε with $0 < \varepsilon \leq \pi$. Then, there exists a positive constant $a_0 = a_0(\varepsilon, P)$ such that

(14.8)
$$\int_{0}^{2\pi} m(x, a) \overline{\lim_{y \uparrow a}} \frac{P_{z}(\gamma < \sigma_{a})}{a - y} dx \leq \frac{2p_{P}(a)}{\delta(\sigma_{P}, \alpha)^{2}}$$

for any $a \leq a_0$.

Proof. By proposition [14.3] and [14.4], we have seen that σ_P and μ_P are in $M_i(R)$ and therefore $\delta(\sigma_P, \varepsilon)$, $\delta(\mu_P, \varepsilon)$ and $\delta(\sigma_P, \alpha)$ are positive. Set

$$a_0 = \operatorname{Min}\left\{\frac{\delta(\sigma_P, \varepsilon)^2 \delta(\mu_P, \varepsilon)}{16p_P(1)}, 1\right\}$$

and for $0 < b < a \gamma_b = \gamma + \sigma_b^* \circ \theta_\gamma$, where σ_b^* is the hitting time of $D^{(b,\infty)}$. Then

$$P_{z}(\gamma_{b} < \sigma_{a}) \leq J_{1} + J_{2} + J_{3}$$

where

$$J_{1} = P_{\varepsilon}(\gamma_{b} < \sigma_{a'}, |x(\sigma_{a}) - x| < \alpha, |x(\gamma_{b}) - x| \ge \alpha + 4\varepsilon),$$

$$J_{2} = P_{\varepsilon}(\gamma_{b} < \sigma_{a'}, |x(\sigma_{a}) - x| < \alpha, |x(\gamma_{b}) - x| < \alpha + 4\varepsilon),$$

$$J_{3} = P_{\varepsilon}(\gamma_{b} < \sigma_{a}, |x(\sigma_{a}) - x| \ge \alpha).$$

Since $p_P(a) \leq p_P(1)$ if $a \leq a_0 \leq 1$ by (2) in [10.15], for $a \leq a_0$ by [1.5] and [13.4]

$$J_{1} \leq P_{z}(\gamma_{b} < \sigma_{a}, |x(\sigma_{a}) - x(\gamma_{b})| \geq 4\varepsilon)$$

$$= E_{z}(H_{y(\gamma_{b})}^{a}(x(\gamma_{b}), U_{4\varepsilon}(x(\gamma_{b}))^{c})I_{(\gamma_{b} < \sigma_{a})})$$

$$\leq \frac{8ap_{P}(a)}{\delta(\sigma_{P}, \varepsilon)^{\varepsilon}\delta(\mu_{P}, \varepsilon)} P_{z}(\gamma_{b} < \sigma_{a}) \leq \frac{1}{2} P_{z}(\gamma_{b} < \sigma_{a}),$$

and

$$J_3 \leq P_z(|x(\sigma_a) - x| \geq \alpha) = H^a(z, U_a(x)^c).$$

Therefore,

$$P_{z}(\gamma_{b} < \sigma_{a}) \leq 2 J_{2} + 2 H^{a}(z, U_{a}(x)^{c}).$$

Since $\gamma_b \downarrow \gamma$ as $b \downarrow 0$ by (2) in [14.1] and

$$|x(\gamma, \overline{w}) - x(0, \overline{w})| = \alpha + 5\varepsilon \quad \text{if } \gamma(\overline{w}) < \infty \text{ for } \overline{w} \text{ in } \overline{W},$$
$$J_2 \leq \overline{P}_z(|x(\gamma_b) - x| < \alpha + 4\varepsilon, \gamma_b < \infty)$$

and

$$\varlimsup_{b
eq 0} J_2 {\leq} ar{P}_{z}(|x(\gamma){-}x|{\leq} lpha{+}4arepsilon, \gamma{<}\infty){=}0$$
 ,

where $P = \iota \overline{P}$ for \overline{P} in $\overline{\mathcal{P}}$. Therefore we have for $a \leq a_0$

$$P_{z}(\gamma < \sigma_{a}) = \lim_{b \to 0} P_{z}(\gamma_{b} < \sigma_{a}) \leq 2H^{a}(z, U_{a}(x)^{c}).$$

and by [14.5]

$$\int_{0}^{2\pi} m_P(x, a) \lim_{y \neq a} \frac{P_z(\gamma < \sigma_a)}{a - y} dx \leq 2 \int_{0}^{2\pi} m_P(x, a) \lim_{y \neq a} \frac{H^a(z, U_a(x)^c)}{a - y} dx$$
$$\leq 2 \int_{0}^{2\pi} m_P(x, a) B_P^a(x, U_a(x)^c) dx$$

Since $|u_P(\xi, a) - u_P(x, a)| \ge \delta(\sigma_P, \alpha)$ if $|\xi - x| \ge \alpha$ by [13.3], we have for $a \le a_0$

$$\begin{split} &\int_{0}^{2\pi} m_{P}(x, a) \lim_{y \neq a} \frac{P_{z}(\gamma < \sigma_{a})}{a - y} dx \\ &\leq \frac{2}{\delta(\sigma_{P}, \alpha)^{2}} \int_{0}^{2\pi} m_{P}(x, a) \int B_{P}^{a}(x, a) (u_{P}(\xi, a) - u_{P}(x, a))^{2} \\ &= \frac{2p_{P}(a)}{\delta(\sigma_{P}, \alpha)^{2}}, \end{split}$$

which completes the proof.

[14.7] Let P in \mathcal{P}_c satisfy [V] and [M]. Then for any positive α and ε with $0 < \varepsilon \leq \pi$,

(14.9)
$$\int_{0}^{2\pi} m_{P}(x, a) B_{P}^{a}(x, U_{3\alpha+8\varepsilon}(x)^{c}) dx \leq \frac{16a p_{P}(a)^{2}}{\delta(\mu_{P}, \varepsilon) \delta(\sigma_{P}, \alpha)^{4}}$$

for $a \leq a_0$, where a_0 is the constant given in [14.6] and $U_{\epsilon}(x) = \{\xi \in \mathbb{R} ; |\xi - x| < \delta\}$.

Proof. Let $P = \iota \overline{P}$ for \overline{P} in \mathcal{P} . Set $\gamma = \gamma_{\alpha+\delta\varepsilon}$ and $\gamma_b = \gamma + \sigma_b^* \circ \theta_{\gamma}$ where $\gamma_{\alpha+\delta\varepsilon}$ is defined by (14.5) and σ_b is the hitting time to $D^{(b,\infty)}$ (b>0). Since $|x(\gamma, \overline{w}) - x(0, \overline{w})| = \alpha + \delta\varepsilon$ if $\gamma(\overline{w}) < \infty$ for \overline{w} in \overline{W} , by [13.4]

$$H^{a}(z, U_{3\alpha+8\varepsilon}(x)^{c} = \overline{P}_{z}(|x(\sigma_{a})-x| \ge 3\alpha+8\varepsilon)$$

$$\leq \overline{P}_{z}(\gamma < \sigma_{a'} |x(\sigma_{a})-x(\gamma)| \ge 2\alpha+3\varepsilon)$$

$$\leq \lim_{b \to 0} \overline{P}_{z}(\gamma_{b} < \sigma_{a}, |x(\sigma_{a})-x(\gamma_{b})| \ge 2(\alpha+\varepsilon))$$

$$= \lim_{b \to 0} \overline{E}_{z}\{H^{a}_{y(\gamma_{b})}(x(\gamma_{b}), U_{2(\alpha+\varepsilon)}(x(\gamma_{b}))^{c})I_{(\gamma_{b} < \sigma_{a})}\}$$

$$\leq \frac{8ap_{P}(a)}{\delta(\mu_{P}, \varepsilon)\delta(\sigma_{P}, \alpha)^{2}}\lim_{b \to 0} \overline{P}_{z}(\gamma < \sigma_{a})$$

$$= \frac{8ap_{P}(a)}{\delta(\mu_{P}, \varepsilon)\delta(\sigma_{P}, \alpha)^{2}}\overline{P}_{z}(\gamma < \sigma_{a}).$$

Therefore, by [14.5] and [14.6], for $a \leq a_0$

$$\begin{split} &\int_{0}^{2\pi} m_{P}(x, a) B_{P}^{a}(x, U_{3\alpha+8\varepsilon}(x)^{c} dx \\ &= \int_{0}^{2\pi} m_{P}(x, a) \lim_{y \neq a} \frac{H^{a}(z, U_{3\alpha+8\varepsilon}(x)^{c})}{a-y} dx \\ &\leq \frac{16a p_{P}(a)^{2}}{\delta(\mu_{P}, \varepsilon) \delta(\sigma_{P}, \alpha)^{4}}, \end{split}$$

which completes the proof.

[14.8] PROPOSITION. Let P in \mathcal{P}_c satisfy [V] and [M], then P satisfies [L*] and therefore [L].

Proof. By [11.10] it is sufficient to prove $[L^*]$. Take $\varepsilon = \pi$ and $\alpha = N\pi$ in (14.9). Then $\delta(\mu_P, \pi) = 2\pi$ and $\delta(\sigma_P, N\pi) = 2N\pi$ and

$$\int_{0}^{2\pi} m_{P}(x, a) B_{P}^{a}(x, U_{(8+3N)\pi}(x)^{c}) dx \leq \frac{a p_{P}(a)^{2}}{2N^{4} \pi^{5}}$$

for $a \leq a_0$ with positive a_0 . Therefore

$$\int_{0}^{2\pi} m_{P}(x, a) dx \int_{|\xi-x| \ge 11\pi} B_{P}^{a}(x, d\xi) \qquad (\xi-x)^{2}$$
$$\leq \frac{a p_{P}(a)^{2}}{2\pi^{5}} \sum_{N=1}^{\infty} \frac{(11\pi + 8N\pi)^{2}}{N^{4}}.$$

Take $\alpha = \varepsilon$ and $\delta = \varepsilon$ in (14.9), for $a \leq a_0(\varepsilon)$

$$\begin{split} &\int_{0}^{2\pi} m_P(x, a) dx \int_{11\pi > |\xi-x| \ge 11\varepsilon} B_P^a(x, d\xi) (\xi-x)^2 \\ & \le \frac{16(11\pi)^2 a p_P(a)^2}{\delta(\mu_P, \varepsilon) \delta(\sigma_P, \varepsilon)^4} \,. \end{split}$$

Therefore, for a fixed positive ε and $a \leq a_0(\varepsilon)$

$$B_P^a(11\varepsilon) = \int_0^{2\pi} m_P(x, a) dx \int_{|\xi-x| \ge 11\varepsilon} B_P^a(x, d\xi) (\xi-x)^2 \leq Kap_P(a)^2.$$

Since $p_P(a)$ decreases as a decreases by (3) in [10.15], we have

$$\lim_{a\to 0} B_P^a(11\varepsilon)=0.$$

[14.8] is proved, for ε is arbitrary.

From propositions [13.8], [14.3], [14.4] and [14.8], we have the following theorem.

[14.9] THEOREM. Let P in \mathcal{P} satisfy [V] and [M]. Then P is in \mathcal{P}_c if and only if P satisfies [L] and μ_P and σ_P are in $M_i(R)$.

Combining theorem [14.9] with theorem [11.7], we also have:

[14.10] COROLLARY. Let P in \mathcal{P}_c satisfy [V] and [M], then P is B_P -process with μ_P and σ_P in $M_i(R)$.

\S 15. Processes which satisfy the condition [H.C].

[15.1] Let P in \mathcal{P} satisfy [V] and [M]. Set

$$M(a, b) = \sup_{x} \int H^{a}_{b}(x, d\xi)(\xi - x)^{2},$$
$$m(a, b) = \inf_{x} \int H^{a}_{b}(x, d\xi)(\xi - x)^{2}$$

for 0 < b < a. Then

$$M(a, b) \leq 2m(a, b) + 24\pi^2$$

Proof. For fixed a and b with 0 < b < a, set

$$M^{+}(x) = \int_{\xi \ge x} H^{a}_{b}(x, d\xi)(\xi - x)^{2} \quad \text{and}$$
$$M^{-}(x) = \int_{\xi \le x} H^{a}_{b}(x, d\xi)(\xi - x)^{2}.$$

Then $M(a, b) = \sup_{x} \{M^{+}(x) + M^{-}(x)\}$ and $m(a, b) = \inf_{x} \{M^{+}(x) + M^{-}(x)\}.$

By
$$[M]$$
, $\phi(t) = \int_{\xi \ge x} H_b^a(t, d\xi)(\xi - x)^2$ is nondecreasing in t. For $x < y < x + 2\pi$,
 $M^+(x) = \int_{\xi \ge y} H_b^a(x, d\xi)(\xi - x)^2 + \int_{y > \xi \ge x} H_b^a(\xi - x)(\xi - x)^2$
 $\leq 2 \int_{\xi \ge y} H_b^a(x, d\xi)(\xi - y)^2 + 2 \int_{\xi \ge x} H_b^a(x, d\xi)(y - x)^2 + (2\pi)^2$
 $\leq 2M^+(y) + 12\pi^2$.

By (p.5) in [1.1], $M^+(x)$ is periodic with period 2π . Therefore

$$M^+(x) \leq 2M^+(y) + 12\pi^2$$

for any x and y. Similarly we have for any x and y

$$M^{-}(x) \leq 2M^{-}(y) + 12\pi^{2}$$
.

We have

$$\sup_{x} (M^{+}(x) + M^{-}(x)) \leq 2 \inf_{x} (M^{+}(x) + M^{-}(x)) + 24\pi^{2}.$$

[15.2] Let P in \mathcal{P} satisfy [V] and [M] and c be a fixed positive number. Then for any a and b with $0 < b < a \le c$, $M(a, b) \le K$, where K = K(c) is a constant independent of a and b.

Proof. By $\S 0$, 8°, we can see for 0 < s < r

$$\int^r \pi^{s}(x) x^2 dx \leq Cr^2$$

where $C = \frac{1}{2\pi^3} \int \frac{u^2}{\cosh u - 1} du$ is an absolute constant. For $b \in (\frac{c}{2}, c)$, by $(\bar{h}, 3)$ in [2.2]

$$\begin{split} M(c, b) &\leq \sup_{x} \int_{c/2}^{c} \prod_{b} f(x, d\xi) (\xi - x)^{2} \\ &+ 2 \int_{c/2}^{c} \prod_{b} f^{c/2}(x, d\eta) H_{c/2}^{c}(\eta, d\xi) \{ (\xi - \eta)^{2} + (\eta - x)^{2} \} \\ &\leq C \Big(\frac{c}{2} \Big)^{2} + 2M \Big(c, \frac{c}{2} \Big) + 2C \Big(\frac{c}{2} \Big)^{2} = C_{1} \,. \end{split}$$

For $b \in (0, c/2)$, again by $(\bar{h}.3)$

$$2M\left(c, \frac{c}{2}\right) \ge 2\int_{\delta} \prod_{c/2}^{b} (x, d\eta) H_{\delta}(\eta, d\xi) (\xi - x)^{2}$$
$$\ge \int_{\delta}^{b} \prod_{c/2}^{b} (x, d\eta) H_{\delta}(\eta, d\xi) \{ (\xi - \eta)^{2} - 2(\eta - x)^{2} \}$$
$$\ge \frac{1}{2} m(c, b) - 2C(c - b)^{2}.$$

Therefore by [15.1]

$$M(c, b) \leq 2m(c, b) + 24\pi^{2}$$
$$\leq 8M\left(c, \frac{c}{2}\right) + 8Cc^{2} + 24\pi^{2} = C_{2},$$

For 0 < b < a < c, by $(\bar{h}.2)$ in [2.2]

$$2M(c, b) \ge 2 \int H^a_b(x, d\eta) H^c_a(\eta, d\xi) (\xi - x)^2$$
$$\ge \int H^a_b(x, d\eta) H^c_a(\eta, d\xi) \{ (\eta - x)^2 - 2(\xi - \eta)^2 \}$$
$$\ge m(a, b) - 2M(c, a).$$

By [15.1]

$$M(a, b) \leq 4(M(c, b) + M(c, a)) + 24\pi^{2}$$
$$\leq 8 \operatorname{Max} \{C_{1}, C_{2}\} + 24\pi^{2} = K,$$

whicn completes the proof.

[15.3] PROPOSITION. Let P in \mathcal{P} satisfy [V] and [M]. Then P satisfies [H.C] if and only if σ_P has no discrete mass.

Proof. Since $\frac{d}{dx}u_P(z)=s_P(z)=\frac{1}{\pi}\int \frac{y}{(\xi-x)^2+y^2}\sigma_P(d\xi)$, u_P has a continuous boundary function on ∂_0 in \overline{D} if and only if σ_P has no discrete mass. Assume that P satisfies [H.C]. For a>0, set

$$f_{N}(x) = \begin{cases} u_{P}(N, a) & \text{if } x \ge N, \\ u_{P}(x, a) & \text{if } |x| < N, \\ u_{P}(-N, a) & \text{if } x \le -N \end{cases}$$

and $\phi_N(z) = H^a f_N(z)$ for z in D^a $(N=1, 2, \cdots)$. By the assumption, $\phi_N(z)$ can be extended to a continuous function in $D^{[0, a]} = \overline{D}^a$. On the other hand, $|u_P(x, a) - u_P(\xi, a) \leq C + |x - \xi|$. Therefore, for z in $D^a_r = \{0 < y < a, |x| \leq r\}$ and N > r

$$|u_{P}(z) - \phi_{N}(z)| \leq \int_{|\xi| \geq N} H_{y}^{a}(x, d\xi) |u_{P}(\xi, a) - f_{N}(\xi)| d\xi$$
$$\leq \frac{C + 2N}{(N - r)^{2}} \int H_{y}^{a}(x, d\xi) (\xi - x)^{2} \leq \frac{C + 2N}{(N - r)^{2}} K$$

by [15.2]. The function $u_P(z)$ can be approximated by $\phi_N(z)$ uniformly in D_r^a . Since r is arbitrary, u_P can be extended to a continuous function on \overline{D}^a . Conversely, assume that σ_P has no discrete mass. Let f be any function in $C_K(R)$ and a be any positive number. Set $\phi(z)=H^af(z)$ for z in D^a . Then, by (3) in [9.9], for a fixed b < a and z in D^b

$$(15.1) \qquad \qquad |\phi_x(z)| \leq K s_P(z) \,.$$

Therefore, $\phi(z)$ has a continuous boundary function $\phi_0(x) = \phi_0(0) + \int_0^x g(t)\sigma_P(dt)$ on ∂_0 with $||g|| \leq K$. Thus (1) in the condition [H.C] in [3.3] is proved. Note that by (2) in [9.8], the constant K appearing in (15.1) can be taken so as

$$K = \sup_{x} \frac{|\phi_{x}(x, b)|}{s_{P}(x, b)} \leq C \|\phi\| = C \|f\|,$$

where C = C(P, a, b) is a constant independent of ϕ . Let f_N $(N=1, 2, \cdots)$ be in $C_K(R)$ with $f_N \uparrow 1$ as $N \to \infty$, and set $\phi_N = H^a f_N$. We may assume that ϕ_N is continuous in $\overline{D}^b = D^{[0,b]}$. Then, by the above remark, the boundary functions of ϕ_N 's $(N=1, 2, \cdots)$ on ∂_0 and on ∂_b are equicontinuous. They are also equicontinuous in \overline{D}^b . Since $\phi_N(z) \uparrow 1$ for z in D^b , we have $\phi_N(x, 0) \uparrow 1$ $(N \to \infty)$. Hence (2) in the condition [H.C] is proved.

Let P be in \mathcal{F}_c and $P = \iota \overline{P}$ for \overline{P} in $\widetilde{\mathcal{P}}$, and P satisfy the condition [H.C]. For f in $C_b(R)$, set $\phi = H^a f$ (a>0). Then by [H.C] and [3.5] we may assume that ϕ is in $C_b(\overline{D}^a)$. Set $A(\beta) = \{z \in \overline{D}^a; \phi > \beta\}$ for any real β and

(15.2)
$$\begin{cases} \rho_{\beta}(w) = \inf \{t : z(t) \in A(\beta) \cap D\} & \text{for } w \in W, \\ \rho_{\beta}(\overline{w}) = \inf \{t : z(t) \in A(\beta)\} & \text{for } w \in \overline{W}. \end{cases}$$

Then, by (1) in [14.1], for any z in D

$$\rho_{\beta}(\overline{w}) = \rho_{\beta}(\iota \overline{w}) \qquad \text{a.s. } \overline{P}_{\iota}.$$

For any open set U in R, define \mathfrak{U} in B by

(15.3)
$$\mathfrak{ll} = \{ w : \lim_{a \to 0} x(\sigma_a) \in U \text{ and } x(0) \in D \},$$

where σ_a is the hitting time of ∂_a ($a \ge 0$). Then \mathfrak{l} is in B_{σ_0} and

$$\iota^{-1}\mathfrak{U} = \{\overline{w} : x(\sigma_q) \in U \text{ and } x(0) \in D\}.$$

[15.4] Under the above assumptions and notations, set $\tau_a = \sigma_0 + \sigma_a \circ \theta_{\sigma_0}$. If there exists an open set U such that $\phi(x, 0) < \alpha$ for any x in U, then, for any $\beta > \alpha$ and z in D,

$$\overline{P}_{z}\{x(\sigma_{0})\in U, \phi(z(s))\leq \beta \text{ for any } s\in(\sigma_{0}, \tau_{a})\}>0.$$

Proof. Set $\rho = \sigma_0 + \rho_\beta \circ \theta_{\sigma_0}$, where ρ_β is defined in (15.2). Assuming

$$\begin{split} \bar{P}_{z}\{x(\sigma_{0}) \in U, \ \phi(z(s)) \leq \beta & \text{for any } s \in (\sigma_{0}, \tau_{a})\} \\ = \bar{P}_{z}(x(\sigma_{0}) \in U \rho \geq \tau_{a}) = 0 , \end{split}$$

we shall show a contradiction. For b < a set

$$\rho_b = \rho + \sigma_b \circ \theta_p$$

and

$$\tau_b = \sigma_0 + \sigma_b \circ \theta_{\sigma_0},$$

where σ_b is the hitting time of $D^{[b,\infty)}$. By (2), (3) in [14.1] $\rho_b \downarrow \rho$ and $\tau_b \downarrow \sigma_0$ as $b \downarrow 0$.

1° Using [1.5], we have

$$\begin{split} \bar{E}_{z}(f(x(\tau_{a}))I_{(z(\sigma_{0})\in U)}) \\ &= \bar{E}_{z}(f(x(\tau_{a}))I_{(z(\sigma_{0})\in U, \rho<\tau_{a})}) \\ &= \lim_{b\to 0} \bar{E}_{z}(f(x(\tau_{a}))I_{(\rho_{b}<\tau_{a}, x(\sigma_{0})\in U)}) \\ &= \lim_{b\to 0} E_{z}E_{z(\rho_{b})}(f(x(\tau_{a})))I_{(\rho_{b}<\tau_{a}, 1\cap U)}) \\ &= \lim_{b\to 0} \bar{E}_{z}(\phi(z(\rho_{c}))I_{(\rho_{b}<\tau_{a}, x(\sigma_{0})\in U)}) \\ &= \bar{E}_{z}(\phi(z(\rho))I_{(z(\sigma_{0})\in U, \rho<\tau_{a})}) \\ &\geq \beta P_{z}(z(\sigma_{0})\in U) \,. \end{split}$$

2° Similarly, we obtain

TWO-DIMENSIONAL BROWNIAN MOTION

$$\begin{split} & \overline{E}_{z}(f(x(\tau_{a}))I_{\{z(\sigma_{0})\in U\}}) \\ &= E_{z}(f(x(\tau_{a}))I_{\mathfrak{u}}) \\ &= \lim_{b \to 0} E_{z}(\phi(z(\tau_{b}))I_{\mathfrak{u}}) \\ &= \lim_{b \to 0} \overline{E}_{z}(\phi(z(\tau_{b}))I_{\{z(\sigma_{0})\in U\}}) \\ &= \overline{E}_{z}(\phi(z(\sigma_{0}))I_{\{z(\sigma_{0})\in U\}}) \\ &\leq \alpha \overline{P}_{z}(z(\sigma_{0})\in U) \,. \end{split}$$

Since $\overline{P}_{z}(z(\sigma_{0}) \in U) = P_{z}^{B,2}(z(\sigma_{0}) \in U) > 0$, by 1° and 2° we have a contradiction.

[15.5] Remark. Replacing ϕ by $-\phi$ in [15.4], we also obtain: If there exists an open set U such that $\phi(x, 0) > \alpha$ for any x in U, then, for any $\beta < \alpha$ and z in D,

$$\overline{P}_{z}\{z(\sigma_{0}) \in U, \phi(z(s)) \geq \beta \text{ for any } s \in (\sigma_{0}, \tau_{a})\} > 0.$$

[15.6] PROPOSITION. Let P in \mathcal{P}_c satisfy [H.C], then P satisfies [M].

Proof. Let f in $C_b(R)$ be any nondecreasing function and set $\phi = H^a f$ (a>0). We may assume that ϕ is in $C_b(\overline{D}^a)$ by [H.C]. Assume that there exist x_1 and x_2 in R such that $\phi(x_1, 0) > \phi(x_2, 0)$ and $x_1 < x_2$. Then there exist open intervals J_1 and J_2 with $J_i \in x_i$ (i=1, 2) and $J_1 \cap J_2 = \emptyset$ and α and β with $\alpha < \beta$ such that $\phi(x, 0) > \beta$ for x in J_1 and $\phi(x, 0) < \alpha$ for x in J_2 . Take $\overline{\alpha}$ and $\overline{\beta}$ such that $\alpha < \overline{\alpha} < \overline{\beta} < \beta$. Then by [15.4] and [15.5]

$$A_1 = \{ \overline{w} : z(\sigma_0) \in J_1, \phi(z(s)) \ge \overline{\beta} \text{ for any } s \in (\sigma_0, \tau_a) \}$$

and

$$A_2 = \{ \overline{w} : z(\sigma_0) \in J_2, \phi(z(s)) \leq \overline{\alpha} \text{ for any } s \in (\sigma_0, \tau_a) \}$$

have positive probabilities $(\overline{P}_z, z \in D)$. Especially they are non-empty sets. Take \overline{w}_1 from A_1 and \overline{w}_2 from A_2 . Then curves

$$C_1 = \{ z(s, \overline{w}_1) : \sigma_0(\overline{w}_1) \leq s \leq \tau_a(\overline{w}_1) \}$$

and

$$C_2 = \{z(s, \overline{w}_2) : \sigma_0(\overline{w}_2) \leq s \leq \tau_a(\overline{w}_2)\}$$

in \overline{D}^{α} both start from ∂_0 and end on ∂_{α} and they can not intersect. On the other hand, by construction of J_1 and J_2 ,

$$x(\sigma_0(\bar{w}_1), \bar{w}_1) < x(\sigma_0(\bar{w}_2), \bar{w}_2)$$
 and $x(\tau_a(\bar{w}_1), \bar{w}_1) > x(\tau_a(\bar{w}_2), \bar{w}_2)$,

since

$$f(x(\tau_a(\overline{w}_1), \overline{w}_1)) \geq \overline{\beta} > \overline{\alpha} \geq f(x(\tau_a(\overline{w}_2), \overline{w}_2)).$$

This is impossible. Therefore $\phi(x, 0)$ is nondecreasing. Then

$$\phi(z) = {}_{0}^{a} \prod_{y}^{a} f(x) + {}_{0}^{a} \prod_{y}^{0} \phi(\cdot, 0)(x)$$

is also nondecreasing, which completes the proof.

[15.7] Let P in \mathcal{P} satisfy the condition [M]. Then for any fixed positive a

(15.3)
$$\lim_{a\to\infty} \sup_{z\in D^a} H^a(z, U_a(x)^c) = 0,$$

where $U_a(x) = \{ \boldsymbol{\xi} \in R : |\boldsymbol{\xi} - x| < \alpha \}$ and z = (x, y).

Proof. Set $H(z, \alpha) = H^a(z, [\alpha, \infty))$, then $H(z, \alpha)$ is increasing in x by [M] and $H(\cdot, \alpha)$ is bounded harmonic in D^a with $0 \le H(z, \alpha) \le 1$. Therefore $H(\cdot, \alpha)$ has a monotone bounded boundary function $H_0(x, \alpha) = H((x, 0), \alpha)$ such that

(15.5)
$$H((x, y), \alpha) = {}_0^a \prod_y^a (x, [\alpha, \infty)) + \int_0^a \prod_y^0 (x, d\xi) H_0(\xi \, \alpha).$$

We may assume that $H_0(x, \alpha)$ is right continuous in x. Since $H(z, \alpha)$ $(0 \le y < a)$ is increasing in x, decreasing in α and $H(z+2\pi, \alpha+2\pi)=H(z, \alpha)$, we have

(15.6)
$$H((0, y), \alpha + 2\pi) \leq H((x, y), x + \alpha) \leq H((0, y), \alpha - 2\pi).$$

Also, by (15.5), $\lim_{a\to\infty} H_0(0, \alpha) = 0$ holds, for $\lim_{a\to\infty} H(z, \alpha) = 0$ holds for $z \in D^a$. By (15.5) and (15.6)

$$H((0, y), \alpha) \leq {}^{a}_{0} \Pi^{0}_{y}(0, [\alpha, \infty)) + {}^{a}_{0} \Pi^{0}_{y}\left(0, \left[\frac{\alpha}{2}, \infty\right)\right) + H_{0}\left(\frac{\alpha}{2}, \alpha\right)$$
$$\leq 2 \int_{\alpha/2}^{\infty} \frac{d\xi}{\cosh(\pi\xi/a) - 1} + H_{0}\left(0, \frac{\alpha}{2} - 2\pi\right) = k(\alpha)$$

and $\lim_{\alpha \to \infty} k(\alpha) = 0$. Therefore, by using (15.6) again, we have

$$0 \leq \lim_{\alpha \to \infty} \sup_{z \in D^{\alpha}} H(z, \alpha) \leq \lim_{\alpha \to \infty} \sup_{0 < y < a} H((0, y), \alpha - 2\pi)$$
$$\leq \lim_{\alpha \to \infty} k(\alpha - 2\pi) = 0.$$

In a similar way we can show

$$\lim_{\alpha\to\infty}\sup_{z\in D^a}H^a(z,(-\infty,-\alpha))=0.$$

[15.8] Let P in \mathcal{P}_c satisfy the condition [H.C]. Set

 $\gamma_{\alpha}(\overline{w}) = \inf \{t : |x(t) - x(0)| \ge \alpha\}.$

Then $\lim_{\alpha\to\infty} \sup_{z\in D^a} \overline{P}_z(\gamma_{\alpha} < \sigma_a) = 0.$

Proof. Set $\gamma_{\alpha,b} = \gamma_{\alpha} + \sigma_b^* \circ \theta_{\gamma_{\alpha}}$ where σ_b^* is the hitting time of $D^{[b,\infty)}$ (b < a).

$$\overline{P}_{z}(\gamma_{\alpha} < \sigma_{a}) \leq \overline{P}_{z}\left(|x(\sigma_{\alpha}) - x| \geq \frac{\alpha}{3}\right) + \overline{P}_{z}\left(\gamma_{\alpha} < \sigma_{a}, |x(\sigma_{a}) - x| < \frac{\alpha}{3}\right).$$

Since $|x(\gamma_{\alpha})-x(0)| = \alpha$ if $\gamma_{\alpha} < \infty$ in \overline{W} , noting $\gamma_{\alpha,b} \downarrow \gamma_{\alpha}$ as $b \downarrow 0$, we have by [1.5]

$$\begin{split} &\bar{P}_{z}\left(\gamma_{\alpha} < \sigma_{a}, |x(\sigma_{a}) - x| < \frac{\alpha}{3}\right) \\ &\leq \lim_{b \to 0} \bar{P}_{z}\left(\gamma_{\alpha, b} < \sigma_{a}, |x(\sigma_{a}) - x| < \frac{\alpha}{3}, |x(\gamma_{\alpha, b}) - x| > \frac{2}{3}\alpha\right) \\ &\leq \lim_{b \to 0} \bar{P}_{z}\left(\gamma_{\alpha, b} < \sigma_{a}, |x(\sigma_{a}) - x(\gamma_{\alpha, b})| \ge \frac{\alpha}{3}\right) \\ &= \lim_{b \to 0} \bar{E}_{z}\left\{I_{(\gamma_{\alpha, b} < \sigma_{a})}P_{z(\gamma_{\alpha, b})}(|x(\sigma_{a}) - x(0)| \ge \frac{\alpha}{3}\right)\right\} \\ &\leq \sup_{z \in D^{a}} H^{a}(z, U_{\alpha/3}(x)^{c}). \end{split}$$

Therefore

$$\overline{P}_{z}(\gamma_{\alpha} < \sigma_{\alpha}) \leq 2 \sup_{z \in D^{\alpha}} H^{a}(z, U_{\alpha/3}(x)^{c}).$$

[15.8] follows from [15.7], for P satisfies condition [M].

[15.9] PROPOSITION. Let P in \mathcal{P}_c satisfy [H.C]. Then P satisfies $[V_r]$ $(r=1, 2, \cdots)$.

Proof. Define γ_{α} and $\gamma_{\alpha,b}$ as in [15.8]. By [15.8] we can take α so large that $\sup_{z \in D^{\alpha}} P_z(\gamma_{\alpha} < \sigma_a) < 1/2$. Then, by [1.5],

$$\begin{split} &\bar{P}_{z}(\gamma_{2(n+1)\alpha} < \sigma_{a}) \\ &\leq \lim_{b \to 0} \bar{P}_{z}\{\gamma_{2n\alpha,b} < \gamma_{2(n+1)\alpha} < \sigma_{a}, |x(\gamma_{2n\alpha,b}) - x| < (2n+1)\alpha\} \\ &\leq \lim_{b \to 0} \bar{P}_{z}\{\gamma_{2n\alpha,b} < \gamma_{2n\alpha,b} + \gamma_{\alpha} \circ \theta_{\gamma_{2n\alpha,b}} < \sigma_{a}\} \\ &= \lim_{b \to 0} E_{z}\{I_{(\gamma_{2n\alpha,b} < \sigma_{a})}P_{z(\gamma_{2n\alpha,b})}(\gamma_{a} < \sigma_{a})\} \\ &\leq \lim_{b \to 0} \frac{1}{2}\bar{P}_{z}(\gamma_{2n\alpha,b} < \sigma_{a}) \\ &= \frac{1}{2}\bar{P}_{z}(\gamma_{2n\alpha} < \sigma_{a}). \end{split}$$

By induction we have

$$\sup_{z\in D^a}\overline{P}_z(\gamma_{2n\alpha}<\sigma_a)<\frac{1}{2^n}$$

Since

$$P_{z}(|x(\sigma_{a})-x|>2n\alpha) \leq \overline{P}_{z}(\gamma_{2n\alpha}<\sigma_{a}),$$

we have

$$\sup_{z\in D^{a}} \int H^{a}(z, d\xi)(\xi - x)^{2r} \leq \sum_{n=0}^{\infty} \{2(n+1)\alpha\}^{2r} \frac{1}{2^{n}} < \infty .$$

Combining [15.3], [15.6] and [15.9] with theorem [14.9], we have proved the following theorem.

[15.10] THEOREM. Let P be in \mathcal{P} . Then, P is in \mathcal{P}_c and satisfies [H.C] if and only if P satisfies [M], [V] and [L], μ_P and σ_P are in $M_i(R)$ and σ_P has no discrete mass. In this case, P is a B_P -process.

By theorem [3.12] and [4.10], we also have:

[15.11] PROPOSITION. If P in \mathcal{P} is a Feller process on \overline{D} with continuous path functions in the sense that P is in \mathcal{P}_c and satisfies [C], then P is B_P -process for which μ_P and σ_P are in $M_i(R)$ and σ_P has no discrete mass.

V Construction of *B*-processes.

§ 16. Construction of processes $P_{\alpha,\beta}$

We begin by giving several notations and lemmas. Set

$$C_{r} = \left\{ f \in C(R) : \sup_{x} \frac{|f(x)|}{1 + |x|^{r}} < \infty \right\},$$
$$C_{r}^{*} = \left\{ f \in C_{r} : \lim_{|x| \to \infty} \frac{f(x)}{1 + |x|^{r}} = 0 \right\}$$

and set $||f_r|| = \sup_x \frac{|f(x)|}{1+|x|^r}$ (r=0, 1, 2, ...). Then C_r and C_r^* are Banach spaces with $|| ||_r$ -norm.

 $[16.1] \quad C_r^* \subset C_r \subset C_{r+1}^*,$

$$C_{\kappa}(R)$$
 is dense in C_{r}^{*} ,

$$C_0 = C_b(R)$$
 and $|| ||_0 = \frac{1}{2} || ||.$

By an operator A on C_r (or C_r^*), we shall mean a linear operator A from C_r into C_r (or from C_r^* into C_r^*). Set

$$||A||_r = \sup_{f \neq 0} \frac{||Af||_r}{||f||_r}$$
 and $||A|| = ||A||_0$.

We shall say:

A is monotone if Af is nondecreasing for any nondecreasing f.

A is positive if Af is nonnegative for any nonnegative f.

A is periodic (with period 2π) if $Af_{2\pi}(x+2\pi)=f(x)$, where $f_{2\pi}(x)=f(x-2\pi)$.

[16.2] Let $Q(x, d\xi)$ be a positive kernel on $R \times \mathcal{B}(R)$ with $||Q|| = \sup_{x} Q(x, R)$ $<\infty$. If $\sup_{x} \int Q(x, d\xi) |\xi - x|^{r} = k < \infty$ for $r \ge 1$, then $Qf(x) = \int Q(x, d\xi) f(\xi)$ is well-defined for f in C_{r} and $||Qf||_{r} \le 2^{r-1} (||Q|| + k) ||f||_{r}$ holds. Moreover Q is an operator on C_{0}^{*} .

Proof. If
$$f$$
 is in C_r

$$\begin{aligned} \frac{|Qf(x)|}{1+|x|^{r}} &\leq \|f\|_{r} \int Q(x, d\xi) \frac{1+|\xi|^{r}}{1+|x|^{r}} \\ &\leq 2^{r-1} \|f\|_{r} \int Q(x, d\xi) \frac{1+|x|^{r}+|\xi-x|^{r}}{1+x^{r}} \\ &\leq 2^{r-1} (\|Q\|+k) \|f\|_{r}. \end{aligned}$$

If f is in C_0^* , then

$$|Qf(x)| \leq ||f|| \int_{|\xi-x| \geq N} Q(x, d\xi) + \sup_{|\xi-x| < N} |f(\xi)| ||Q||$$
$$\leq \frac{k}{N^r} ||f|| \int Q(x, d\xi) |\xi-x|^r + \sup_{|\xi-x| < N} |f(\xi)| ||Q||$$

and $\overline{\lim_{|x|\to\infty}} |Qf(x)| \le \frac{k}{N^r} ||f|| \int Q(x, d\xi) |\xi - x|^r$. Since $r \ge 1$ and N is arbitrary, Qf is in C_0^* .

[16.3] For $r \ge 0$, let A be an operator on C_r with $||A||_r < \infty$. If $Af \ge 0$ for any nonnegative f in $C_K(R)$, then there exists a unique positive kernel $Q(x, d\xi)$ on $R \times \mathfrak{B}(R)$ for which

(16.1)
$$Af(x) = \int Q(x, d\xi) f(\xi)$$

for f in C_r^* . If, moreover, A is periodic, then Q is periodic (that is, $Q(x+2\pi, d\xi+2\pi)=Q(x, d\xi)$),

$$|\sup_{x} \int Q(x, d\xi)|\xi - x|^{r} < 2^{r-1}\pi^{r}(1+\pi^{r})||A||_{r}$$

and A is an operator on C_0^* .

Proof. It is obvious that there exists a unique positive kernel $Q(x, d\xi)$ with $||Q|| = \sup_{x} Q(x, R) < \infty$ for which (16.1) holds for f in C_0^* . Set $\phi_N(x) = \frac{N(1+|x|^r)}{N+|x|^{r+1}}$. Then ϕ_N is in C_0^* and

(16.2)
$$\int Q(x, d\xi)(1+|\xi|^r) = \lim_{N \to \infty} \int Q(x, d\xi) \phi_N(\xi)$$
$$\leq \lim_{N \to \infty} A \phi_N(x)$$
$$\leq (1+|x|^r) \|A\|_r < \infty.$$

Therefore, approximating any function in C_r^* by functions in C_0^* in $|| ||_r$ -norm, we can see that (16.1) holds for any f in C_r^* . If A is periodic, then Q is obviously periodic and by (16.2)

$$\begin{split} \sup_{x} \int Q(x, d\xi) |\xi - x|^{r} &= \sup_{|x| \le \pi} \int Q(x, d\xi) |\xi - x|^{r} \\ &\leq 2^{r-1} \sup_{|x| \le \pi} \int Q(x, d\xi) (|\xi|^{r} + \pi^{r}) \\ &\leq 2^{r-1} \pi^{r} (1 + \pi^{r}) \|A\|_{r} \,. \end{split}$$

By [16.2] A is an operator on C_0^* .

[16.4] Let Q and S be positive kernels on $R \times \mathfrak{B}(R)$ with $||Q|| = \sup_{x} Q(x, R) < \infty$ and $||S|| = \sup_{x} S(x, R) < \infty$. If

$$\sup_{x} \int Q(x, d\xi) |\xi - x|^{r} = k_{Q} < \infty \quad \text{and} \quad \sup_{x} \int S(x, d\xi) |\xi - x|^{r} = k_{S} < \infty$$

for some $r \ge 1$, then

(16.3)
$$\int QS(x, d\xi) |\xi - x|^r \leq 2^{r-1} (k_Q ||S|| + k_S ||Q||)$$

and

(16.4)
$$\int Q^{n}(x, d\xi) |\xi - x|^{r} \leq n^{r} k_{Q} ||Q||^{n-1}.$$

Proof. We have

$$\begin{split} \int QS(x, d\xi) |\xi - x|^{r} &\leq 2^{r-1} \int Q(x, d\eta) S(\eta, d\xi) (|\eta - x|^{r} + |\xi - \eta|^{r}) \\ &\leq 2^{r-1} (k_{Q} \|S\| + k_{S} \|Q\|) \end{split}$$

and

$$\begin{split} &\int Q^{n}(x, d\xi) |\xi - x|^{r} \\ &\leq n^{r-1} \int Q(x, d\xi_{1}) Q(\xi_{1}, d\xi_{2}) \cdots Q(\xi_{n-1}, d\xi_{n}) \Big(\sum_{k=1}^{n} |\xi_{k} - \xi_{k-1}|^{r} \Big) \\ &\leq n^{r-1} \cdot n k_{Q} \|Q\|^{n-1} \qquad (\xi_{0} = x) \,. \end{split}$$

For f in C(R), set

(16.5)
$$||f||_{U_p(x)} = \sup_{\xi \in U_p(x)} |f(\xi)|,$$

where $U_P(x) = \{ \xi \in R : |\xi - x|$

[16,5] Let A and B be bounded operators on C_0 . For given $x \in R$ and $\varepsilon > 0$, assume that

 $\|Af\|_{U_p(x)} \leq \gamma_A \|f\|_{U_p+\varepsilon(x)} + \delta_A \|f\|$

and

 $\|Bf\|_{U_p(x)} \leq \gamma_B \|f\|_{U_{p+\varepsilon}(x)} + \delta_B \|f\|$

for any
$$p > 0$$
 and f in C_0 . Then,

(16.6)
$$\|ABf\|_{U_n(x)} \leq \gamma \|f\|_{U_n+2_{\varepsilon}(x)} + \delta \|f\|,$$

where $\gamma = \gamma_A \gamma_B$ and $\delta = \gamma_A \delta_B + \delta_A ||B||$, and

(16.7)
$$\|A^n f\|_{U_p(x)} \leq \gamma_n \|f\|_{p_p + n_{\varepsilon}(x)} + \delta_n \|f\|,$$

where $\gamma_n = \gamma_A^n$ and

$$\delta_n = (\gamma_A^{n-1} + \gamma_A^{n-2} ||A|| + \cdots + \gamma_A ||A||^{n-2} + ||A||^{n-1}) \delta_A.$$

Proof. Since

$$\begin{split} \|ABf\|_{\mathcal{U}_{p}(x)} \leq & \gamma_{A} \|Bf\|_{\mathcal{U}_{p+\varepsilon}(x)} + \delta_{A} \|Bf\| \\ \leq & \gamma_{A}(\gamma_{B} \|f\|_{\mathcal{U}_{p+2\varepsilon}(x)} + \delta_{B} \|f\|) + \delta_{A} \|B\| \|f\| \\ \leq & \gamma_{A}\gamma_{B} \|f\|_{\mathcal{U}_{p+2\varepsilon}(x)} + (\gamma_{A}\delta_{B} + \delta_{A} \|B\|) \|f\| , \end{split}$$

(16.6) is proved. (16.7) is obtained by induction.

[16.6] Let f be in $C^2(R)$. Then for any $K \neq 0$

$$|f'(x)| \leq \frac{2}{|K|} \sup_{\xi \in [x, x+K]} |f(\xi)| + \frac{|K|}{2} \sup_{\xi \in [x, x+K]} |f''(\xi)|,$$

where [x, x+K] is replaced by [x+K, x] if K < 0.

Proof. Since
$$f(x+K)=f(x)+Kf'(x)+(1/2)K^2f''(\xi)$$
 for some $\xi \in [x, x+K]$,

[16.6] is obvious.

In the following, C_k 's $(k=1, 2, \dots)$ stand for absolute positive constants and $C_k(x)$'s for positive functions which depend only on x. Set for a>0

(16.8)
$$\tilde{g}^{a}(x) = \int_{0}^{\infty} e^{-t/a} \frac{1}{\sqrt{2\pi t}} e^{-x^{2}/2t} dt = \sqrt{a/2} e^{-\sqrt{2/a} |x|} .$$

By $0, 8^{\circ}$ and (16.8), we can easily obtain:

$$[16.7]$$

$$(1) \int^{a} \pi^{b}(x) |x|^{r} dx \leq C_{1}(r) a^{r} \quad (0 < b < a, 0 \leq r),$$

$$(2) \int q^{a}(x) |x|^{r} dx \leq C_{1}(r) a^{r-1} \quad (0 < a, 0 \leq r),$$

$$(3) \int p^{a}(x) |x|^{r} dx \leq C_{1}(r) a^{r-1} \quad (0 < a, 2 \leq r),$$

$$(4) \int \tilde{g}^{a}(x) |x|^{r} dx \leq C_{1}(r) a^{(r/2)+1} \quad (0 < a, 0 \leq r),$$

For positive ε

(5)
$$\int_{|x|\geq\varepsilon}^{a} \pi^{b}(x) dx \leq C_{2}(\varepsilon, a) \quad (0 < b < a),$$

(6)
$$\int_{|x|\geq\varepsilon}^{a} q^{a}(x) dx \leq C_{2}(\varepsilon, a) \quad (0 < a),$$

(7)
$$\int_{|x|\geq\varepsilon}^{a} p^{a}(x) x^{2} dx \leq C_{2}(\varepsilon, a) \quad (0 < a),$$

(8)
$$\int_{|x|\geq\varepsilon}^{a} \tilde{g}^{a}(x) dx \leq C_{2}(\varepsilon, a) \quad (0 < a),$$

where $\lim_{a\to 0} \frac{C_2(\varepsilon, a)}{a^s} = 0$ for any s > 0. For positive a and $x \in R$ set

(16.9)
$$\widetilde{G}^a f(x) = \int \widetilde{g}^a (\xi - x) f(\xi) d\xi = E_x^{B,1} \left(\int_0^\infty e^{-t/a} f(x(t)) dt \right),$$

where $(P_x^{B,1}, x(t))$ is the one-dimensional Brownian motion starting at x. $P^a f$ and $Q^a f$ are defined as in (8.3) and (8.4).

[16.8] For
$$f$$
 in C_r
(1) $\| {}^a_{\Pi} \Pi^a_{b} f \|_r$, $\| {}^a_{\theta} \Pi^a_{b} f \|_r \leq C_s(r)(1+a^r) \| f \|_r$ $(0 < b < a, 0 \leq r)$,

(2)
$$\|Q^a f\|_r \leq C_s(r) \frac{1}{a} (1+a^r) \|f\|_r$$
 (0<*a*, 0≤*r*),

(3)
$$||P^a f||_r \leq C_s(r)a(1+a^r)||f''||_r$$
 (0

(4) $\|\widetilde{G}^a f\|_r \leq C_s(r)a(1+a^{r/2})\|f\|_r$ (0<*a*, 0≤*r*).

For f in C_0 and positive p and ε

(5) $\|_{0}^{a}\Pi_{b}^{0}f\|_{U_{p}(x)}, \|_{0}^{a}\Pi_{b}^{a}f\|_{U_{p}(x)} \leq C_{4}\|f\|_{U_{p+\varepsilon}(x)} + C_{5}(\varepsilon, a)\|f\| \quad (0 < b < a),$ (6) $\|Q^{a}f\|_{U_{p}(x)} \leq \frac{1}{C_{4}}\|f\|_{U_{p+\varepsilon}(x)} + C_{5}(\varepsilon, a)\|f\|) \quad (a > 0),$

- (7) $||P^a f||_{U_p(x)} \leq a(C_4 ||f''||_{U_{p+\varepsilon}(x)} + C_5(\varepsilon, a)||f''||)$ $(a>0, f'' \in C_0),$
- (8) $\|\tilde{G}^a f\|_{U_p(x)} \leq a(C_4 \|f\|_{U_{p+\varepsilon}(x)} + C_5(\varepsilon, a)\|f\|)$ (a>0),

where $\lim_{a\to 0} \frac{C_{5}(\varepsilon, a)}{a^{s}} = 0$ for any s > 0.

Proof. We shall prove (3) and (7). The rest are easy to prove. By (3) in [16.7], we have

$$\begin{split} |P^{a}f(x)| &= \left| \int_{[x]}^{*} P^{a}(x, d\xi) (f(\xi) - f(x) - (\xi - x)f'(x)) \right| \\ &\leq \int P^{a}(x, d\xi) \sup_{y \in (x, \xi)} |f''(y)| \frac{(x - \xi)^{2}}{2} \\ &\leq C'(r) \|f''\|_{r} \int P^{a}(x, d\xi) \frac{(\xi - x)^{2}}{2} \{1 + |x|^{r} + |\xi - x\}^{r} \} \\ &\leq C'(r) \{C_{2}(2)a(1 + |x|^{r}) + C_{2}(r + 2)a^{r+1}\} \|f''\|_{r} \,. \end{split}$$

Similarly by (3) and (7) in [16.7]

$$\begin{split} \|P^{a}f\|_{\mathcal{U}_{p}(x)} &\leq \|f''\|_{\mathcal{U}_{p+\varepsilon}(x)} \int P^{a}(x, d\xi) \frac{(x-\xi)^{2}}{2} + \|f''\|_{\int_{|x|\geq\varepsilon}} p^{a}(x) \frac{x^{2}}{2} dx \\ &\leq a \Big(C_{1}(2) \|f''\|_{\mathcal{U}_{p+\varepsilon}(x)} + \frac{1}{a} C_{2}(\varepsilon, a) \|f''\| \Big). \end{split}$$

[16.9]

(1) For f in C_r and 0 < b < a

(2) For f in $C^2(R)$ with $f'' \in C_r$ and 0 < b < a

(16.11)
$$P^{a}f = P^{b}f + Q^{b}{}^{a}_{0}\Pi^{0}_{b}f + \left(\frac{1}{a} - \frac{1}{b}\right)f.$$

Proof. By [16.1] and (2) and (3) in [16.8], it is sufficient to prove (16.10) for f in $C_K(R)$ and (16.11) for f in $C_K^2(R)$. (16.10) is a consequence of the relation

 ${}^a_0 \prod {}^a_c = {}^b_0 \prod {}^b_c {}^a_0 \prod {}^a_b$ for 0 < c < b < a.

For f in $C_K^2(R)$ and 0 < c < b < a

$$\begin{split} &\int_{0}^{a} \prod_{c}^{0} (x, d\xi) (f(\xi) - f(x)) \\ &= {}_{0}^{a} \prod_{c}^{0} f(x) - \frac{a - c}{a} f(x) \\ &= {}_{0}^{b} \prod_{c}^{0} f(x) + {}_{0}^{b} \prod_{c}^{b} {}_{0}^{a} \prod_{b}^{0} f(x) - \frac{a - c}{a} f(x) \\ &= \int_{0}^{b} \prod_{c}^{0} (x, d\xi) (f(\xi) - f(x)) + {}_{0}^{b} \prod_{c}^{b} {}_{0}^{a} \prod_{b}^{0} f(x) + \left(\frac{c}{a} - \frac{c}{b}\right) f(x). \end{split}$$

Therefore

$$P^{a}f(x) = \lim_{c \to 0} \frac{1}{c} \int_{0}^{a} \prod_{c}^{0} (x, d\xi) (f(\xi) - f(x))$$
$$= P^{b}f(x) + Q^{b} \int_{0}^{a} \prod_{b}^{0} f(x) + \left(\frac{1}{a} - \frac{1}{b}\right) f(x)$$

In the following assume that functions $\alpha(x)$ and $\beta(x)$ in $C_p^2(R)$ with $\alpha(x)>0$ are given and fixed. Set $\alpha^* = \sup_x \alpha(x)$ and $\alpha_*(x) = \inf_x \alpha(x)$. Then α_* is positive. Hereafter K_j 's $(j=1, 2, \cdots)$ stand for positive constants which depend only on α^* , α_* and $\|\beta\|$, and $K_j(x)$'s $(j=1, 2, \cdots)$ for positive functions of x which depend only on α^* , α_* and $\|\beta\|$. Define for a>0

(16.12)
$$G^{a}f(x) = E_{x}^{B,1} \left[\int_{0}^{\infty} \exp\left\{ -\int_{0}^{t} \frac{ds}{a\alpha(x(s))} \right\} \frac{f(x(t))}{\alpha(x(t))} dt \right].$$

Then by Kac's theorem we immediately have:

[16.10] For f in C_0 and positive a, $G^a f$ is in $C^2(R) \cap C_0$ and it holds that (16.13) $\left(\frac{1}{a} - \alpha \frac{d^2}{dx^2}\right) G^a f = f.$

[16.11] For any $r \ge 0$ and f in C_r , $G^a f$ is in $C^2(R) \cap C_0$ and for $0 < a \le 1$

- (1) $||G^a f||_r \leq a K_1(r) ||f||_r$,
- (2) $||(G^a f)'||_r \leq \sqrt{a} K_1(r) ||f||_r$,
- (3) $\|(G^a f)''\|_r \leq K_1(r) \|f\|_r$.

For any f in C_0 , any p>0, $\varepsilon>0$ and $0 < a \le 1$,

- (4) $||G^a f||_{U_p(x)} \leq a K_2 ||f||_{U_{p+\varepsilon}(x)} + K_3(\varepsilon, a) ||f||,$
- (5) $||(G^a f)'||_{U_p(x)} \leq \sqrt{a} K_4(\varepsilon) ||f||_{U_{p+\varepsilon}(x)} + K_3(\varepsilon, a) ||f||,$
- (6) $||(G^a f)''||_{U_p(x)} \leq K_2 ||f||_{U_{p+\varepsilon}(x)} + K_3(\varepsilon, a) ||f||,$

where $\lim_{a\to 0} \frac{K_s(\varepsilon, a)}{a^s} = 0$ for any s > 0.

Proof. Since

(16.14)
$$|G^a f(x)| \leq G^a |f|(x) \leq \frac{1}{\alpha_*} \tilde{G}^{aa*} |f|(x),$$

 $G^a f$ is well-defined for f in C_r and (1) holds for $0 < a \le 1$ by (4) in [16.8]. If f is in C_0 , then by (16.13)

(16.15)
$$|(G^a f)''(x)| \leq \frac{1}{\alpha_*} \left(\frac{1}{a} |G^a f(x)| + |f(x)| \right)$$

and (3) is an immediate consequence of (1). Taking $K=\sqrt{a}$ in [16.6], we get

(16.16)
$$|(G^a f)'(x)| \leq \frac{2}{\sqrt{a}} \sup_{\xi \in [x, x+\sqrt{a}]} |G^a f(\xi)| + \frac{\sqrt{a}}{2} \sup_{\xi \in [x, x+\sqrt{a}]} |(G^a f)''(\xi)|.$$

Hence (2) follows to (1) and (3). For f in C_r , take a sequence $\{f_n\}$ in C_0 such that $f_n \rightarrow f$ in C_{r+1} . Replacing r by r+1 in the above argument, we can see that $G^a f_n \rightarrow G^a f$ in C_{r+1} and $\{(G^a f_n)'\}$ and $\{(G^a f_n)''\}$ converge in C_{r+1} . Therefore $G^a f$ is in $C^2(R)$ and (16.15) and (16.16) hold for f in C_r . (2) and (3) can be easily proved for f in C_r . (4) is a consequence of (16.14) and (8) in [16.8]. (6) is proved by (4) and (16.15). For f in C_0 and $a \leq (\varepsilon/2)^2$ we have by (16.16),

$$\|(G^{a}f)'\|_{U_{p}(x)} \leq \frac{2}{\sqrt{a}} \|G^{a}f\|_{U_{p+\varepsilon/2}(x)} + \frac{\sqrt{a}}{2} \|(G^{a}f)''\|_{U_{p+\varepsilon/2}}$$

Therefore (5) is obtained from (4) and (6).

[16.12] Remark. In a way similar to the proof of [16.11], we can show (16.13) also holds for f in C_r .

[16.13] Set
$$F^a = P^a + \beta(x)(d/dx)$$
. Then for $0 < a \le 1$, $r \ge 0$ and f in C_r

(1)
$$||F^a G^a f||_r \leq \sqrt{a} K_5(r) ||f||_r$$

For $0 < a \leq 1$, p > 0, $\varepsilon > 0$ and f in C_0

(2)
$$||F^a G^a f||_{U_n(x)} \leq \sqrt{a} K_6(\varepsilon) ||f||_{U_{n+s}(x)} + K_7(\varepsilon, a) ||f||.$$

Proof. (1) is a consequence of (3) in [16.3] and (2) and (3) in [16.11].

Applying [16.5], we have, by (7) in [16.8] and (6) in [16.11],

 $||P^{a}G^{a}f||_{U_{p}(x)} \leq aC_{4}K_{2}||f||_{U_{p+\varepsilon}(x)}$

+
$$\left(aC_4K_3\left(\frac{\varepsilon}{2}, a\right)+a^2C_5\left(\frac{\varepsilon}{2}, a\right)K_1(0)\right)||f||$$
.

Combining this with (5) in [16.11] we can prove (2).

[16.14] For any $r \ge 0$, there exists $K_{s}(r)$ such that for $0 < a \le K_{s}(r)$

(16.17)
$$\sum_{n=0}^{\infty} \|F^a G^a\|_r^n < \infty .$$

Set $L^a f = \sum_{n=0}^{\infty} (F^a G^a)^n f$ for f in C_r and $0 < a \le K_8(r)$. Then

- (1) $\|L^a f\|_r \leq K_9(r) \|f\|_r$
- (2) $\|G^a L^a f\|_r \leq a K_9(r) \|f\|_r$
- (3) $\|G^a L^a f\|_{U_p(x)} \leq a K_{10}(\varepsilon) (\|f\|_{U_{p+\varepsilon}(x)} + a^{3/2} \|f\|).$
- (4) $G^{a}L^{a}f$ is in $C^{2}(R)\cap C_{r}$ and satisfies

(16.18)
$$\left(\alpha(x)\frac{d^2}{dx^2} + \beta(x)\frac{d}{dx} + P^a - \frac{1}{a}\right)G^aL^af = -f.$$

Proof. Take $K_8(r) = Min(1, 1/2K_5(r)^2)$. By (1) in [16.13], (16.17) and (1) are obvious. (2) is a consequence of (1) and (1) in [16.11]. By [16.5], [16.11] and [16.13], for f in C_0

$$\begin{split} \|G^{a}L^{a}f\|_{\mathcal{U}_{p}(x)} &\leq \sum_{n=0}^{\infty} \|G^{a}(F^{a}G^{a})^{n}f\|_{\mathcal{U}_{p}(x)} + \|G^{a}(F^{a}G^{a})^{3}L^{a}f\| \\ &\leq aK_{2}\|f\|_{\mathcal{U}_{p+\varepsilon}(x)} + a^{3/2}K_{2}K_{6}(\varepsilon)\|f\|_{\mathcal{U}_{p+2\varepsilon}(x)} \\ &\quad + a^{2}K_{2}K_{6}(\varepsilon)^{2}\|f\|_{\mathcal{U}_{p+3\varepsilon}(x)} + (K'(\varepsilon, a) + a^{5/2}K_{1}(0)K_{5}(0)^{3}K_{9}(0))\|f\|_{2} \end{split}$$

where $\lim_{a\to 0} (K'(\varepsilon, a)/a^s)=0$ for any s>0. Thus (3) is proved. Since $L^a f$ is in C_r , $G^a L^a f$ is in $C^2(R)$ and by remark [16.12]

$$\left(\frac{1}{2} - \alpha \frac{d^2}{dx^2}\right) G^a L^a f = L^a f = f + F^a G^a L^a f$$
$$= f + P^a (G^a L^a f) + \beta \frac{d}{dx} (G^a L^a f).$$

(16.18) is proved.

By construction it is easily seen:

[16.15] $G^{a}L^{a}$ is periodic as an operator on C_{r} $(r \ge 0, a \le K_{s}(r))$.

[16.16] For any positive *a* there exists a positive kernel $H_0^a(x, d\xi)$ on $R \times \mathfrak{B}(R)$ with the following properties:

- (1) H_0^a is a periodic probability kernel.
- (2) H_0^a is monotone.
- (3) $\sup \int H_0^a(x, d\xi) |\xi x|^r < \infty$ (r=1, 2, ...).
- (4) H_0^a maps C_r into C_r (r=0, 1, 2, ...) and C_0^* into C_0^* .
- (5) For f in C_r , $\phi = H_0^a f$ is in $C^2(R)$ and satisfies

(16.19)
$$\alpha(x)\phi''(x) + \beta(x)\phi'(x) + P^{a}\phi(x) + Q^{a}f(x) - \frac{1}{a}\phi(x) = 0.$$

(6) For any positive ε

$$\int_{|\xi-x|\geq\varepsilon}H^a_0(x, d\xi)\leq a^{3/2}K_{11}(\varepsilon).$$

Moreover,

(7) A kernel $H_0^a(x, d\xi)$ is uniquely determined by the properties that H_0^a maps C_0^* into $C_0^* \cap C^2(R)$ and $\phi = H_0^a f$ satisfies (16.19).

Proof. 1° Uniqueness Suppose that there exist two kernels H_{0i}^{a} (i=1, 2) satisfying conditions in (7). For f in C_{0}^{*} , set $\psi = H_{01}^{a}f - H_{02}^{a}f$. Then ψ is in $C_{0}^{*} \cap C^{2}(R)$ and satisfies

(16.20)
$$\alpha \phi'' + \beta \phi' + P^a \phi - \frac{1}{a} \phi = 0.$$

Therefore, ψ can not take positive maximum nor negative minimum, and hence $\psi=0$. (7) is proved.

2° For any given $r (r=0, 1, 2, \cdots)$ take $K'(r) = \underset{s \le r+1}{\min} K_{\mathfrak{s}}(s)$, where $K_{\mathfrak{s}}(s)$ is given in [16.14]. For $a \le K'(r)$ set $\tilde{H}f = G^{a}L^{a}Q^{a}f$. Then, by (2) in [16.8] and (2) in [16.14], $\|\tilde{H}f\|_{\mathfrak{s}} \le K''(r)\|f\|_{\mathfrak{s}}$ for f in $C_{\mathfrak{s}}(\mathfrak{s}=0, 1, 2, \cdots, r+1)$. Moreover, by (4) in [16.14] $\tilde{H}f$ is in $C^{2}(R)$ and satisfies (16.19) for f in C_{r+1} and by [16.15] \tilde{H} is periodic as an operator on C_{r+1} . If f is in $\bigcup_{N=1}^{\infty} C_{p,N}(R) \subset C_{0}$ and nonnegative, then $\phi = \tilde{H}f$ is in $\bigcup_{N=1}^{\infty} C_{p,N}$ and satisfies

$$\alpha\phi''+\beta\phi'+P^a\phi-\frac{1}{a}\phi=-Q^af\leq 0.$$

Therefore ϕ can not take negative minimum and $\tilde{H}f \ge 0$. Since any function in $C_{\mathcal{K}}(R)$ can be approximated by functions in $\bigcup_{N=1}^{\infty} C_{p,N}$ in C_{r+1}^* -topology $(r \ge 0)$,

we have $\tilde{H}f \ge 0$ if f is in $C_K(R)$. Now, applying [16.3] to \tilde{H} (where r is replaced by r+1), we see that there exists a positive periodic kernel $\tilde{H}_0^a(x, d\xi)$ such that

(16.21) $\widetilde{H}f(x) = \widetilde{H}_0^a f(x) \quad \text{for } f \in C_r \subset C_{r+1}^*,$ $\sup_x \int \widetilde{H}_0^a(x, d\xi) |\xi - x|^r < K^{(3)}(r)$

and $\tilde{H}_0^a = \tilde{H}$ maps C_0^* into C_0^* by [16.2]. The function $\phi = \tilde{H}_0^a 1 - 1$ is a solution of (16.20) and in $C_p(R)$. Therefore by maximum principle $\tilde{H}_0^a 1 = 1$, or \tilde{H}_0^a is a probability kernel. Now for $K'(0) \ge K'(1) \ge \cdots \ge K'(r) \ge \cdots > 0$ we have contructed kernels $\tilde{H}_0^a(x, d\xi)$ $(0 < a \le K'(r))$ which satisfy (1), (3), (4) and (5) for fixed r. By (7) they are independent of r if defined.

3° Using [16.5], we have, by (2) and (6) in [16.8] and (3) in [16.14],

$$\|\tilde{H}_{0}^{a}f\|_{U_{p}(x)} = \|G^{a}L^{a}Q^{a}f\|_{U_{p}(x)}$$

$$\leq K_{10}(\varepsilon')\{C_{4}\|f\|_{U_{p+2\varepsilon'}(x)} + (C_{5}(\varepsilon', a) + 2a^{3/2}C_{3}(0))\|f\|\}$$

for any f in C_0 . Take $p = \varepsilon'$, $\varepsilon = 4\varepsilon'$ and f in C_0 with

$$f = \begin{cases} 0 & \text{ in } U_{3\varepsilon'}(x), \\ 1 & \text{ in } U_{\varepsilon}(x)^c. \end{cases}$$

Then

$$\int_{|\xi-x|\geq\varepsilon} \tilde{H}_0^a(x, d\xi) \leq K^{(4)}(\varepsilon) a^{3/2} \ (a \leq K'(0))).$$

Thus (6) is proved.

4° We shall prove (2) for small *a*. Let *f* be in $C_b(R)$ and nondecreasing. For a fixed *a* with $0 < a \le K'(1)$, set $\phi = \tilde{H}_0^a f$. We shall show that $\lim_{|x| \to \infty} \phi'(x) = 0$. There exists $\mu = \lim_{x \to \infty} f(x)$ and

$$|\phi(x) - \mu| \leq \int_{|\xi - x| \leq K} \tilde{H}_0^a(x, d\xi) |f(\xi) - \mu| + 2||f|| \int_{|\xi - x| > K} \tilde{H}_0^a(x, d\xi).$$

Therefore, for any positive K

$$\overline{\lim_{x\to\infty}} |\phi(x) - \mu| \leq 2 ||f|| \frac{1}{K} \int \tilde{H}_0^a(x, d\xi) |\xi - x|,$$

and $\lim_{x\to\infty} \phi(x) = \mu$. Similarly we have $\lim_{x\to-\infty} \phi(x) = \lim_{x\to-\infty} f(x)$. Noting (3) in [16.11], we have

$$\|\phi''\| = \|(G^a L^a Q^p f)''\| \le K_1(0) \|L^a\| \|Q^a\| \|f\| < \infty$$

and $|\phi'(x)-1/\varepsilon(\phi(x+\varepsilon)-\phi(x))| \le \varepsilon \|\phi''\|$. Therefore, $\lim_{|x|\to\infty} |\phi'(x)| \le \varepsilon \|\phi''\|$ for any positive ε , and $\lim_{|x|\to\infty} \phi'(x)=0$. Since by (16.19).

$$\phi'' = \frac{1}{\alpha} \left(\frac{1}{a} \phi - \beta \phi' - P^a \phi - Q^a f \right),$$

 ϕ is in $C^{3}(R)$. Differentiating (16.19), we also have

$$\alpha\phi'''+(\beta+\alpha')\phi''+(\beta'-\frac{1}{a})\phi'+P^a\phi'=-Q^af'\leq 0.$$

Take $a \leq Min \{K'(1), (1/(1+\|\beta'\|)\}\)$, then ϕ' can not take negative minimum.. Since we have seen that ϕ' is in C_0^* , $\phi' \geq 0$ or ϕ is nondecreasing, (2) is proved for

$$0 < a \leq \widetilde{K} = \operatorname{Min}\left\{K'(1), \frac{1}{1 + \|\beta'\|}\right\}.$$

5° Let a be any positive number. For a fixed r (r=1, 2, ...) take b so small as $b < Min\{a, \tilde{K}, K'(r)\}$, and set

$$H^{a}_{0} = \sum_{n=0}^{\infty} (\tilde{H}^{b}_{0} \, {}^{a}_{0} \Pi^{0}_{b})^{n} \tilde{H}^{b}_{0} \, {}^{a}_{0} \Pi^{a}_{b} \, .$$

Since $\tilde{H}_a^b {}^a_0 \prod_{k=0}^{b} (x, R) = (a-b/a) < 1$ and $\tilde{H}_0^b {}^a_0 \prod_{k=0}^{a} (x, R) = b/a$, H_0^a is well-defined as a periodic probability kernel. Using [16.4], we have by (1) in [16.7] and (16.21)

$$\sup_{x}\int H^a_0(x, d\xi)|\xi-x|^r < \infty.$$

Noting [16.2], we see that \tilde{H}_0^a satisfies (1), (3) and (4). (2) is obvious, since \tilde{H}_0^b , ${}^a_{\Pi}\Pi_b^a$ and ${}^a_{\Pi}\Pi_b^a$ are monotone. Set $\phi = H_0^a f$ for f in C_r . Then $\phi = \tilde{H}_0^b ({}^a_{\Pi}\Pi_b^b f + {}^a_{\Pi}\Pi_b^a f)$. Since we have already seen that \tilde{H}_0^b satisfies (16.19), ϕ satisfies

$$\alpha\phi'' + \beta\phi' + P^{b}\phi + Q^{b}({}^{a}_{b}\Pi^{b}_{b}\phi + {}^{a}_{b}\Pi^{a}_{b}f) - \frac{1}{b}\phi = 0$$

and by [16.9] ϕ itself satisfies (16.19). Hence (5) is proved. By uniqueness, we see that H_0^a is independent of b and $H_0^a = \tilde{H}_0^a$ if the right side is defined. (6) is trivial, since it holds for $a \leq K'(0)$ by 3° and $H_0^a(x, R) = 1$ for any a.

[16.17] *Remark.* By (16.21) it holds that for $0 < a \le K_{12}(r)$

$$\sup_{x} \int H_{0}^{a}(x, d\xi) |\xi - x|^{r} \leq K_{13}(r),$$

where the right side is independent of a.

By the explicit form of ${}^{r}\pi^{s}(x)$ in §0.8° and the definitions of P^{r} and Q^{r} in (8.3) and (8.4), we can easily show:

[16.18] Let f be in C_r and g be in $C_r \cap C^2(R)$. Set $u(z) = {}^a_0 \prod_y f(x) + {}^a_0 \prod_y g(x)$ for z in D^a . Then u is well-defined and harmonic in D^a and u, u_x , u_{xx} and

 u_y are in $C(D^{[0,a]})$. Moreover, u(x, 0)=g(x), $u_x(x, 0)=g'(x)$, $u_{xx}(x, 0)=g''(x)$ and

$$u_y(x, 0) = P^a g - \frac{1}{a} g + Q^a f$$
.

[16.19] THEOREM. Let α and β in $C_p^2(R)$ with $\alpha > 0$ be given, and H_0^a be the kenel given in [16.16]. For any positive a and b with 0 < b < a set

(16.22)
$$H_b^a = {}^a_0 \prod_b^a + {}^a_0 \prod_b^0 H_0^a$$

and

(16.23)
$$H^{a}(z, d\xi) = H^{a}_{y}(x, d\xi)$$
 for z in D^{a} .

Then $H = \{H^a(x, d\xi)\}$ belongs to \mathcal{H} . P = P(H) satisfies [M], $[V_r]$ $(r = 1, 2, \dots)$ and $[L^*]$ (and therefore [L]). Moreover H satisfies:

(1) For any
$$f$$
 in C_r $(r=1, 2, \cdots)$ set $u(z)=H^af(z)=\int H^a(z, d\xi)f(\xi)$. Then

 u, u_x . u_{xx} and u_y are in $C(D^{[0,a]})$ and u satisfies

(16.24)
$$\alpha(x)u_{xx}(x, 0) + \beta(x)u_x(x, 0) + u_y(x, 0) = 0$$

on ∂_0 .

H in \mathcal{H} is uniquely determined if (1) is satisfied for any f in $C_b(R)$.

Proof.

1° Let H satisfy (1) for f in $C_b(R)$. For f in $C_{p,N}(R)$, $u=H^a f$ is harmonic in D^a and $C_{p,N}(R)$ $(N=1, 2, \cdots)$. Since u=f on ∂_a and u satisfies (16.24), we can easily show, by maximum principle of harmonic function, that u is uniquely determined. Probability kernels $H^a(z, d\xi)'s$ $(a>0, z \in D^a)$ are also determined, since f is arbitrary in $\bigcup_N C_{p,N}(R)$.

2° In the following, let $H = \{H^a(z, d\xi)\}$ be defined by (16.23). Then by definition and [16.16], H satisfies (h.1), (h.3) and (h.4) in [2.1]. For f in C_0^{∞} , set $u = H^a f$, $\phi = H_0^a f$, $\tilde{u} = H^b H_b^a f$ and $\tilde{\phi} = H_b^b H_b^a f = H_0^b (a \prod_b^a \phi + a \prod_b^a f)$ (b > a). Then u and \tilde{u} are harmonic in D^b , $u(x, b) = H^a f(x, b) = \tilde{u}(x, b)$ on ∂_b and $u = \phi$ and $\tilde{u} = \tilde{\phi}$ on ∂_0 . By (5) in [16.16] $\tilde{\phi}$ and ϕ satisfy

(16.25)
$$\alpha \tilde{\phi}'' + \beta \tilde{\phi}' + P^b \tilde{\phi} + Q^b ({}^a_0 \Pi^b_b \phi + {}^a_0 \Pi^a_b f) - \frac{1}{b} \tilde{\phi} = 0.$$

(16.26)
$$\alpha \phi'' + \beta \phi' + P^a \phi + Q^a f - \frac{1}{a} \phi = 0.$$

By [16.9], (16.26) is transformed into

(16.27)
$$\alpha \phi'' + \beta \phi' + P^b \phi + Q^b ({}^a_b \Pi^b_b \phi + {}^a_b \Pi^a_b f) - \frac{1}{b} \phi = 0$$

By (16.25) and (16.27)

$$\alpha(\phi''-\tilde{\phi}'')+\beta(\phi'-\tilde{\phi}')+P^b(\phi-\tilde{\phi})-\frac{1}{b}(\tilde{\phi}-\phi)=0.$$

Since $\phi - \tilde{\phi}$ is in C_0^* by (4) in [16.16], we can show $\phi = \tilde{\phi}$ by maximum principle. Therefore $u = \tilde{u}$ and $H^a = H^b H^a$ in D^b . Hence (h.2) is proved.

3° For f in C_r set $u=H^a f$ and $\phi=H_0^a f$. Then $u(z)=_0^a \prod_y^a f(x)+_0^a \prod_y^0 \phi(x)$. By (4) and (5) in [16.16] ϕ is in $C^2(R) \cap C_r$ and satisfies (16.19). On the other hand, by [16.18], u, u_x, u_{xx} and u_y are in $C(D^{[0,a]})$ and $u=\phi, u_x=\phi', u_{xx}=\phi''$ and $u_y=P^a\phi+Q^af-(1/a)\phi$ on ∂_0 . (16.24) is a consequence of (16.19).

4° Since H_0^a , ${}_0^a\Pi_b^a$ and ${}_0^a\Pi_b^a$ are monotone, H satisfies [M]. Using [16.4], we can see by (1) in [16.7] and (3) in [16.16] that H satisfies $[V_r]$ $(r=1, 2\cdots)$. Especially by [16.17], we have

(16.28)
$$\sup_{x} \int H^{a}(x, d\xi) |\xi - x|^{r} \leq K_{14}(r) \quad \text{for } 0 < a \leq K_{12}(r).$$

On the other hand, by (5) in [16.7] and (6) in [16.16]

$$\begin{split} &\int_{|\xi-x|\geq\varepsilon} {}^{2a} \Pi^{2a}_{a}(x, d\xi) \leq C_{2}(\varepsilon, 2a), \\ &\int_{|\xi-x|\geq\varepsilon} {}^{2a} \Pi^{0}_{a}(x, d\eta) H^{2a}_{0}(\eta, d\xi) \\ \leq & \left(\int_{|\eta-x|\geq\varepsilon/2} + \int_{|\xi-\eta|\geq\varepsilon/2} \right)^{2a}_{0} \Pi^{0}_{a}(x, d\eta) H^{2a}_{0}(\eta, d\xi) \\ \leq & C_{2} \left(\frac{\varepsilon}{2}, 2a\right) + K_{11} \left(\frac{\varepsilon}{2}\right) (2a)^{3/2}, \end{split}$$

where ε is a fixed positive number and $\lim_{a\to 0} (C_2(\varepsilon, a)/a^s) = 0$ for any s > 0. Therefore we have

$$\int_{|\xi-x|\geq\varepsilon} H_a^{2a}(x, d\xi) \leq K'(\varepsilon) a^{3/2}.$$

For $a \leq K_{12}(9)$

$$\begin{split} &\int_{|\xi-x|\ge \epsilon} H_{a}^{2a}(x, d\xi)(\xi-x)^{2} \\ &\leq \Bigl(\int_{a^{-1/6} > |\xi-x|\ge \epsilon} + \int_{|\xi-x|\ge a^{-1/6}} \Bigr) H_{a}^{2a}(x, d\xi)(\xi-x)^{2} \\ &\leq a^{3/2 - 1/3} K'(\varepsilon) + a^{7/6} \int H_{a}^{2a}(x, d\xi)(\xi-x)^{9} \\ &\leq a^{7/6} (K'(\varepsilon) + K_{14}(r)) \,. \end{split}$$

Hence $\lim_{a\to 0} \sup_x \frac{1}{a} \int H_a^{2a}(x, d\xi)(\xi - x)^2 = 0$. By proposition [11.11] *H* satisfies [*L**].

[16.20] DEFINITION. Let α and β be in $C_p^2(R)$ with $\alpha > 0$. $P_{\alpha,\beta}$ is the process such that $H_{\alpha,\beta} = H(P_{\alpha,\beta})$ satisfies condition (1) in [16.19]. Combining theorem [16.19] with theorem [11.7], we have:

[16.21] COROLLARY. $P_{\alpha,\beta}$ is a B_{P} -process.

§17. Existence of B-process (1): Smooth case.

Let σ and μ be in $M_p(R)$ with $\sigma(dx)=s_0(x)dx$ and $\mu(dx)=m_0(x)dx$. We shall assume s_0 and m_0 are $C_p^{\infty}(R)$ and positive. For any constant k, set for z in D

(17.1)
$$\begin{cases} m(z) = \int_{0}^{2\pi} \tilde{h}^{\xi}(z) m_{0}(\xi) d\xi , \\ l(z) = \int_{0}^{2\pi} \tilde{k}_{\xi}(z) m_{0}(\xi) d\xi - k , \\ s(z) = \int_{0}^{2\pi} \tilde{h}_{\xi}(z) s_{0}(\xi) d\xi , \\ t(z) = \int_{0}^{2\pi} \tilde{k}_{\xi}(z) s_{0}(\xi) d\xi + k . \end{cases}$$

Then, they are in $C^{\infty}(\overline{D})$, and m_0 and s_0 are boundary functions of m and s on ∂_0 , respectively. Let l_0 and t_0 be boundary functions of l and t on ∂_0 , respectively. Since $\{\sigma, \mu\}$ satisfies the condition [P] in [5.11], there exists a non-negative minimum solution $U=U^0$ in D of

(17.2)
$$\begin{cases} U_x = mt + ls, \\ U_y = ms - lt. \end{cases}$$

Set, $p_0 = p_0(\sigma, \mu, k)$, that is,

(17.3)
$$2\pi p_0 = \int_0^{2\pi} U^0(x, 0) s_0(x) dx = \inf_{y>0} \int U^0(x, y) s(x, y) dx.$$

Take any positive p with $p > p_0$. Then by definition [4.19] $B = \{\sigma, \mu, k, p\}$ is in B. In this section we shall construct B-process for this B.

Set $U_B = p - p_0 + U^0$. Then U_B is a solution of (17.2) with

$$2\pi p = \inf_{y>0} \int_0^{2\pi} U_B(x, y) s(x, y) dx$$

Obviously, U is in $C_p^{\infty}(\overline{D})$ by (17.2) and $U_B > 0$ in \overline{D} for $p > p_0$. Define α and β in $C_p^{\infty}(R)$ by

(17.4)
$$\begin{cases} \alpha(x) = \frac{1}{s_0(x)m_0(x)} U_B(x, 0), \\ \beta(x) = \frac{1}{s_0(x)} (t_0(x) - \alpha(x)s_0'(x)). \end{cases}$$

Then α and β are in $C_P^{\infty}(R)$ with $\alpha > 0$. By theorem [16.18] we can construct $P = P_{\alpha,\beta}$. Since P satisfies [M], [V] and [L], $B_P = \{\sigma_{P'}\mu_{P'}k_{P'}p_P\}$ is well-defined and belongs to B. Moreover P is B_P -process (c. f. [16.21]). In this section, we shall show that $B = B_P$. Set $H = H(P_{\alpha,\beta}) = \{H^a(z, d\xi)\}$.

[17.1] For f in $C_q(R)$, set $\phi = H^a f$. Then ϕ , ϕ_x , ϕ_{xx} and ϕ_y are in C(R) and it holds that

(17.5)
$$(\alpha \ m_0 \ \phi_x)_x + m_0 \phi_y - l_0 \phi_x = 0 \quad \text{on } \partial_0 .$$

Proof. By theorem [16.19] ϕ , ϕ_x , ϕ_{xx} and ϕ_y are in $C^2(R)$ and

(17.6)
$$\alpha \phi_{xx} + \beta \phi_x + \phi_y = 0$$

holds on ∂_0 . By (17.2) and (17.4)

$$(\alpha m_0 s_0)' = U_{B,x}(x, 0) = m_0 t_0 + l_0 s_0$$

and

$$\alpha s_0' + \beta s_0 - t_0 = 0$$
.

Eliminating t_0 , we have

(17.7) $(\alpha m_0)' - \beta m_0 - l_0 = 0.$

Eliminating β from (17.6) and (17.7), we have (17.5).

[17.2]

$$\mu = \mu_{P'}$$
 $k = k_{P'}$ $m = m_P$ and $l = l_P$,

Proof. For f in $C_q^2(R)$ set $\phi = H^a f$. By [8.7], Green's formula and [17.1]

$$\int_{0}^{2\pi} (m(x, a)B_{P}^{a}f(x)+l(x, a)f'(x))dx$$

= $\int_{0}^{2\pi} (-m(x, a)\phi_{y}(x, a)+l(x, a)\phi_{x}(x, a))dx$
= $\int_{0}^{2\pi} (-m_{0}(x)\phi_{y}(x, 0)+l_{0}(x)\phi_{x}(x, 0)dx$
= $\int_{0}^{2\pi} (\alpha m_{0}\phi_{x}(x, 0))_{x}dx = 0.$

Therefore by (3) in [8.17], we can see

 $m=m_P$ and $l=l_P$,

and therefore $\mu = \mu_P$ and $k = k_P$.

[17.3]

 $\sigma = \sigma_P$, $s = s_P$ and $t = t_P$.

Proof. Define u by $u_x = s$, $u_y = -t$ and u(0, 1) = 0. Then u is harmonic in D, $u(x+2\pi, y) - u(x, y) = \int_0^{2\pi} s(x, y) dx = 2\pi$ and $u_x = s > 0$ in \overline{D} . By (17.4)

$$\alpha u_{xx}(x, 0) + \beta u_x(x, 0) + u_y(x, 0)$$

= $\alpha s_0' + \beta s_0 - t_0 = 0$.

Set $v = H^a u(\cdot, a)$. Since $v(\cdot, a)$ is in C_1, v, v_x, v_{xx} and v_y is in $C(\overline{D})$ and

$$\alpha v_{xx}(x, 0) + \beta v_x(x, 0) + v_y(x, 0) = 0$$

holhs by theorem [16.19]. Since w=u-v is harmonic in D^a and belongs to $C_p(\overline{D}^a)$ and w=0 on ∂_a , we have w=0 or u=v by maximum principle. That is, u is in H_q . We have $u=u_P$ by theorem [9.5]. Therefore $s=s_P$, $t=t_P$ and $\sigma=\sigma_P$.

[17.4]

$$U_B = U_P$$
 and $p = p_P$.

Proof. Since U_P is a solution of (17.2), we have

 $U_P = U_B + C$

for some constant C. Therefore U_P is in $C_P^{\infty}(\overline{D})$ and

 $U_P(x, 0) = \alpha m_0 s_0 + C.$

Set $\phi = H^a f$ for f in $C_p(R)$, and let V be any solution of

(17.8)
$$\begin{cases} V_x = -m\phi_y + l\phi_x, \\ V_y = m\phi_x + l\phi_y. \end{cases}$$

Then V is in $C^{1}(\overline{D})$, and by [17.1]

$$V_x(x, 0) = -m_0 \phi_y(x, 0) + l_0 \phi_x(x, 0)$$

= $(\alpha m_0 \phi_x(x, 0))_x$.

Therefore, for some constant C_1

$$V(x, 0) = \alpha m_0 \phi_x(x, 0) + C_1$$
.

Since P is B_P -process, choosing a suitable constant C_1 , we have by (7.1)

$$V(x, 0)s_0(x) = U_P(x, 0)\phi_x(x, 0)$$

or

(17.9)
$$C_1 s_0(x) = C \phi_x(x, 0).$$

Integrating the both sides from 0 to 2π , we have

$$2\pi C_1 = 0$$
 and $C\phi_x(x, 0) = 0$.

If $\phi_x(x, 0)\equiv 0$, then by (16.24) in theorem [16.19] $\phi_y(x, 0)\equiv 0$ and ϕ is a constant function. Therefore, choosing nonconstant f in $C_p(R)$, we may assume $\phi_x(x_0, 0)\neq 0$ for some point x_0 . Then C=0. Therefore we have

$$U_B = U_P$$
 and $p = p_P$.

By [17.2], [17.3] and [17.4] we have proved $B=B_P$. Therefore we have the following theorem.

[17.5] THEOREM. Let $B = \{\sigma, \mu, k, p\}$ in \mathcal{B} with the following properties be given: $\sigma(dx) = s_0(x)dx$ and $\mu(dx) = m_0(x)dx$, s_0 and m_0 are in $C_p^{\infty}(R)$ and positive and $p > p_0(\sigma, \mu, k)$, where $p_0(\sigma, \mu, k)$ is given by (4.14). Then, there exists a unique B-process P. Moreover $P = P_{\alpha,\beta}$, where α and β are defined by (17.4).

[17.6] COROLLARY. The B-process given in theorem [17.5] is in \mathcal{P}_c and satisfies [M], $[V_r]$ $(r=1, 2, \cdots)$, [L] and [C].

Proof. By theorem [16.19], $P=P_{\alpha,\beta}$ satisfies [M], $[V_r]$ $(r=1, 2, \cdots)$ and [L]. Since $B=B_{P'}$ σ and μ are in $M_i(R)$ and σ has no discrete mass, we see that P is in \mathcal{P}_c and satisfies [C] (and [H, C]) by theorem [15.10].

§18. Existance of *B*-process (2): Case when σ and μ are in $M_i(R)$.

For P in \mathcal{P} , set

(18.1)
$$M(a, b) = \sup_{x} \int H_{b}^{a}(x, d\xi)(\xi - x)^{2}$$

as in §15. The following lemma gives another bound for M(a, b) (cf. [15.2]).

[18.1] Let P in \mathcal{P} satisfy [M] and [V]. Then fore 0 < b < a

$$M(a, b) \leq C_1(a) p_P(a) + C_2(a)$$
,

where $C_1(a)$ and $C_2(a)$ are constants depending only on a and $p_P(a)$ is given in [10.14].

Proof.

$$s_P(x, a) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\sinh a}{\cosh a - \cos \left(\xi - x\right)} \sigma_P(d\xi) \ge \frac{1}{2} \tanh a$$

and

$$|u_P(\xi, a)-u_P(x, a)| \ge \tanh a |\xi-x|.$$

By [8.5] and theorem [10.12]

$$\begin{split} &2\pi p_{P}(a) = B_{P}^{a}(u(\cdot, a), u(\cdot, a)) \\ &\geq \int_{0}^{2\pi} m_{P}(x, a) dx \int Q^{a-b} H_{b}^{a}(x, d\xi) (u(\xi, a) - u(x, a))^{2} \\ &\geq \frac{1}{4} (\tanh a)^{2} \int_{0}^{2\pi} m_{P}(x, a) dx \int Q^{a-b} H_{b}^{a}(x, d\xi) (\xi-x)^{2} \\ &\geq \frac{1}{4} (\tanh a)^{2} \int_{0}^{2\pi} m_{P}(x, a) dx \int Q^{a-b}(x, d\eta) H_{b}^{a}(\eta, d\xi) \\ &\qquad \times \left\{ \frac{1}{2} (\xi-\eta)^{2} - (\eta-x)^{2} \right\} \\ &\geq \frac{1}{2} \pi (\tanh a)^{2} \left\{ \frac{m(a, b)}{2(a-b)} - C_{1}(a-b) \right\}, \end{split}$$

where $m(a, b) = \inf_{x} \int H^{a}_{b}(x, d\xi)(\xi - x)^{2}$ and C_{1} is an absolute constant given in [16.7], (2). Therefore

$$m(a, b) \leq a (\operatorname{coth} a)^2 (4p_P(a) + C_2(a)).$$

By [15.1], [18.1] is proved.

[18.2] Let $P_{(n)}$ $(n=1, 2, \cdots)$ in \mathscr{P} satisfy [M] and [V]. Assume that $p_{P(n)}(a) \leq k(a) < \infty$ for each a > 0. Then there exist a subsequence $\{P(n')\}$ and P in \mathscr{P} such that $P(n') \rightarrow P(n' \rightarrow \infty)$. Moreover P satisfies [M] and [V].

Proof. Set ${}^{n}H = H(P(n))$. By [18.1], for 0 < b < a ${}^{n}H_{b}^{a}(x: |\xi - x| \ge N) \le \frac{1}{N^{2}}M(a, b) \le \frac{1}{N^{2}}(C_{1}(a)k(a) + C_{2}(a)).$

Therefore, by proposition [2.8] we can find a subsequence $\{P(n')\}$ which converges to some P in \mathcal{P} . By definition of convergence in \mathcal{P} , P obviously satisfies [M]. Since

$$\int H_{pb}^{a}(x, d\xi) \operatorname{Min}\{(\xi - x)^{2}, K\} \leq \lim_{n' \to \infty} \int^{n'} H_{b}^{a}(x, d\xi)(\xi - x)^{2}$$
$$\leq C_{1}(a)k(a) + C_{2}(a)$$

for any positive K, P also satisfies [V].

As a corollary to [18.2], we have:

[18.3] Let P(n) $(n=1, 2, \cdots)$ in \mathcal{P} satisfy [M] and [V] with $p_{P(n)}(a) \leq k(a) < \infty$. If $P(n) \rightarrow P$, then P satisfies [M] and [V].

[18.4] Let P(n) (n=1, 2, ...) and P be in \mathcal{P} , and assume $P(n) \rightarrow P$ $(n \rightarrow \infty)$. Set

$${}^{n}B^{a}(x, d\xi) = B^{a}_{P(n)}(x, d\xi)$$
 and $B^{a}(x, d\xi) = B^{a}_{P}(x, d\xi)$

(cf. definition [8.12]).

(1) For
$$\phi(x, \xi)$$
 in $C_b(R \times R)$ with $|\phi(x, \xi)| \leq K(\xi - x)^2$,

(18.2)
$$\int^{n} B^{a}(x, d\xi) \phi(x, \xi) \longrightarrow \int B^{a}(x, d\xi) \phi(x, \xi) \qquad (n \to \infty)$$

boundedly in x for any fixed a>0. (2) For f in $C_b^2(R)$

(18.3)
$${}^{n}B^{a}f(x) \longrightarrow B^{a}f(x) \quad (n \to \infty)$$

boundedly in x for any fixed a > 0.

(3) The measures ${}^{n}B^{a}(x, d\xi)$ $(n=1, 2, \dots)$ converge to $B^{a}(x, d\xi)$ weakly on $R-\{x\}$.

Proof. For
$$\phi$$
 in $C_b(R \times R)$ with $|\phi(x, \xi)| \leq K(\xi - x)^2$, by (8.7) in [8.5]
$$\int^n B^a(x, d\xi) |\phi(x, \xi)| \leq K \int P^{a-c}(x, d\xi) (\xi - x)^2 + \|\phi\| Q^{a-c}(x, R)$$
$$\leq K(a, c) < \infty$$

where c is some constant less than a. Therefore

$$\int^{n} B^{a}(x, d\xi) \phi(x, \xi) \qquad (n=1, 2, \dots)$$

are well-defined and bounded in n and x. Using (8.7) again, we have

$$\int^{n} B^{a}(x, d\xi)\phi(x, \xi) - \int B^{a}(x, d\xi)\phi(x, \xi)$$
$$= \int Q^{a-c}(x, d\eta) \int ({}^{n}H^{a}_{c}(\eta, d\xi) - H^{a}_{c}(\eta, d\xi))\phi(x, \xi)$$

where ${}^{n}H = H(P(n))$ and H = H(P). Since $P(n) \rightarrow P$,

$$\int^{n} H^{a}_{c}(\eta, d\xi) \phi(x, \xi) \longrightarrow \int H^{a}_{c}(\eta, d\xi) \phi(x, \xi) \qquad (n \to \infty)$$

boundedly in η . Hence (18.2) is proved. (18.3) can be proved in a similar way. (3) is obvious by (8.7).

Now, we shall define convergence in the space \mathcal{L} of boundary conditions defined in §4.

[18.5] DEFINITION. Let $B(n) = \{\sigma_n, \mu_n, k_n, p_n\}$ $(n=0, 1, 2, \dots)$ be in \mathcal{B} . We shall write)

$$\boldsymbol{B}(n) \longrightarrow B(0) \qquad (n \rightarrow \infty)$$

if and only if:

(1) $\sigma_n \rightarrow \sigma_0$ and $\mu_n \rightarrow \mu_0$ in the weak sense as measures on the torus $R/(2\pi)$. (2) $k_n \rightarrow k_0$, $p_n \rightarrow p_0$ and $p_n(a) \rightarrow p_0(a)$ for any a > 0, where

$$p_n(a) = p(B(n))(a) = \int_0^{2\pi} U(B(n))(x, a) \, s(B(n))(x, a) \, dx \, .$$

[18.6] If $B(n) \rightarrow B$ $(n \rightarrow \infty)$, then

$$s(B(n)) \longrightarrow s(B), \quad t(B(n)) \longrightarrow t(B), \quad l(B(n)) \longrightarrow l(B),$$

 $m(B(n)) \longrightarrow m(B) \text{ and } u(B(n)) \longrightarrow u(B) \quad (n \to \infty)$

uniformly in $D^{[b,a]}$ for any 0 < b < a.

Proof. Noting that s(B(n)), t(B(n)), l(B(n)) and m(B(n)) $(n=1, 2, \cdots)$ are harmonic functions in $C_p(D)$, and u(B(n)) $(n=1, 2, \dots)$ are harmonic functions in $C_q(D)$ with $u(B(n))(z+2\pi)-u(B(n))(z)=2\pi$, we can easily show [18.] by definitions.

[18.7] Let P in \mathcal{P} satisfy [M] and [V]. Then

(18.4)
$$\int_{0}^{2\pi} m_{P}(x, a) dx \int B_{P}^{a}(x, d\xi) (\xi - x)^{2} \leq 4 (\coth a)^{2} p_{P}(a).$$

Moreover, if P is in \mathcal{P}_c for any $M{>}11\pi$

(18.5)
$$\int_{0}^{2\pi} m_{P}(x, a) dx \int_{|\xi-x| \ge M} B_{P}^{a}(x, d\xi) (\xi-x)^{2} \le \frac{C a' p_{P}(a)^{2}}{M} ,$$

where C is an absolute constant.

Proof. Since
$$s_P(x, a) \ge M_x h_{\xi}(x, a) \ge (1/2) \tanh a$$
,
 $\int_0^{2\pi} m_P(x, a) dx \int B^a(x, d\xi) (\xi - x)^2$
 $\le \frac{1}{\min_x s_P(x, a)^2} \int_0^{2\pi} m_P(x, a) dx \int B^a(x, d\xi) (u_P(\xi, a) - u_P(x, a))^2$
 $\le 4(\coth a)^2 p_P(a).$

If P is in \mathcal{P}_c , set $\varepsilon = \pi$ and $\alpha = N\pi$ in [14.7]. Then

$$\int_0^{2\pi} m_P(x, a) dx \int_{|\xi-x| \ge (3N+8)\pi} B_P^a(x, d\xi) \le \frac{a p_P(a)^2}{2\pi^5 N^4}.$$

Therefore, for $(3N+8)\pi < M \leq (3N+11)\pi$ (N=1, 2, ...)

$$\int_{0}^{2\pi} m_{P}(x, a) dx \int_{|\xi-x| \ge M} B_{P}^{a}(x, d\xi) (\xi-x)^{2} \le C' a p_{P}(a)^{2} \sum_{k \ge N} \frac{(3k+11\pi)^{2}}{k^{4}}$$
$$\le \frac{C''}{N} a p_{P}(a)^{2} \le \frac{C}{M} a p_{P}(a)^{2}.$$

[18.8] Let P(n) $(n=1, 2, \cdots)$ in \mathcal{P}_c satisfy [M] and [V]. Set $m_n = m_{p(n)}$ and ${}^nB^a(x, d\xi) = B^a_{p(n)}(x, d\xi)$. Assume that $P(n) \rightarrow P$ in \mathcal{P} , $m_n \rightarrow m_P$ and $\{p_{p(n)}(a)\}$ converges $(n \rightarrow \infty)$. If ϕ in $C(R \times R)$, which is not necessarily bounded, satisfies

(18.6)
$$|\phi(x, \xi)| \leq K(\xi - x)^2$$
,

then for a > 0 it holds that

(18.7)
$$\int_{0}^{2\pi} m_{n}(x, a) dx \int^{n} B^{a}(x, d\xi) \phi(x, \xi) \longrightarrow$$
$$\int_{0}^{2\pi} m_{P}(x, a) dx \int B^{a}_{P}(x, d\xi) \phi(x, \xi) \qquad (n \to \infty).$$

Proof. If ϕ is bounded, then (18.7) is obvious by [18.4], since $m_n(x, a) \rightarrow m_P(x, a)$ uniformly in x for fixed a. For general ϕ , we may assume ϕ is non-negative. Set

$$\phi_{M} = \text{Min} \{KM^{2}, \phi\}$$

for positive M with $M > 11\pi$. By (18.6), we can see

$$\phi_M(x, \xi) = \phi(x, \xi) \quad \text{if } |\xi - x| \leq M.$$

Therefore by [18.7]

$$\begin{split} &\int_{0}^{2\pi} m_{n}(x, a) dx \int^{n} B^{a}(x, d\xi) (\phi - \phi_{M})(x, \xi) \\ &\leq K \int_{0}^{2\pi} m_{n}(x, a) dx \int_{|\xi - x| > M} {}^{n} B^{a}(x, d\xi) (\xi - x)^{2} \\ &\leq \frac{K C_{a} k(a)^{2}}{M}, \end{split}$$

where $k(a) = \sup_{n} p_{p(n)}(a)$ is finite since $\{p_{p(n)}(a)\}$ converges. Therefore

$$\lim_{n\to\infty} \int m_n(x, a) dx \int^n B^a(x, d\xi) \phi_M(x, \xi)$$

= $\int m_P(x, a) dx \int B^a_P(x, d\xi) \phi_M(x, \xi)$
 $\leq \lim_{n\to\infty} \int m_n(x, a) dx \int^n B^a(x, d\xi) \phi(x, \xi)$
 $\leq \lim_{n\to\infty} \int m_n(x, a) dx \int^n B^a(x, d\xi) \phi(x, \xi)$
 $\leq \lim_{n\to\infty} \int m_n(x, a) dx \int^n B^a(x, d\xi) \phi_M(x, \xi) + \frac{KC_a k(a)}{M}.$

Since we can take M arbitrarily large, [18.8] is proved.

[18.9] Under the same assumption as in [18.8], let f_n and g_n $(n{=}0,1,2,{\cdots})$ in $C^1(R)$ satisfy

(18.8) $||f'_n|| \leq K, \quad ||g'_n|| \leq K$

and

(18.9)
$$||f'_n - f'_0|| \longrightarrow 0$$
, $||g''_n - g'_0|| \longrightarrow 0$ $(n \to \infty)$

Then $B_{p(n)}^{a}(f_{n}, g_{n}) \rightarrow B_{P}^{a}(f_{0}, g_{0}) \ (n \rightarrow \infty)$ (See notation [10.2]).

Proof. Set
$$p_n(a) = p_{P(n)}(a)$$
, $m_n = m_{P(n)}$, ${}^n B^a(x, d\xi) = B^a_{P(n)}(x, d\xi)$ and
 $\phi_n(x, \xi) = \rho_{f_n, \xi_n}(x, \xi) = \int_x^{\xi} g'_n(t) dt \int_x^t f'_n(s) ds$.

Then

$$|\phi_n(x, \xi) - \phi_0(x, \xi)| \leq \frac{K}{2} (\|f'_n - f'_0\| + \|g'_n - g'_0\|) (\xi - x)^2.$$

Therefore, by (18.4) in [18.7]

$$|B_{p(n)}^{a}(f_{n}, g_{n}) - B_{p(n)}^{a}(f_{0}, g_{0})|$$

$$= \left| \int_{0}^{2\pi} m_{n}(x, a) dx \int_{0}^{n} B^{a}(x, d\xi) (\phi_{n} - \phi_{0})(x, \xi) \right|$$

$$\leq 2K (\|f_{n}' - f_{0}'\| + \|g_{n}' - g_{0}'\|) (\coth a)^{2} p_{n}(a).$$

Since $\{p_n(a)\}$ converges, the right side of the above inequality converges to zero. On the other hand, since $|\phi_0(x, \xi)| \leq (K^2/2)(\xi - x)^2$, by [18.8]

$$\lim B_{P(n)}^{a}(f_{0}, g_{0}) = \lim \int_{0}^{2\pi} m_{n}(x, a) dx \int^{n} B^{a}(x, d\xi) \phi_{0}(x, \xi)$$
$$= \int_{0}^{2\pi} m_{P}(x, a) \int B_{P}^{a}(x, d\xi) \phi_{0}(x, \xi)$$
$$= B_{P}^{a}(f_{0}, g_{0}).$$

Hence [18.9] is proved.

[18.10] LEMMA. Let P(n) $(n=1, 2, \dots)$ in \mathcal{P}_c satisfy [M] and [V]. Assume $B_{P(n)} \rightarrow B$ in \mathcal{P} and $P(n) \rightarrow P$ in \mathcal{P} . Then $B = B_P$.

Proof. Since $p_n(a) = p_{P(n)}(a) \rightarrow p_B(a)$, it holds that $k(a) = \sup_n p_n(a) < \infty$. Therefore by [8.3] P satisfies [M] and [V].

1° Set ${}^{n}H = H(P(n))$, H = H(P), $u_{n} = u_{p(n)}$ and u = u(B). Since by [18.1]

$$\int^{n} H^{a}_{b}(x, d\xi)(\xi - x)^{2} \leq C_{1}(a)k(a) + C_{2}(a) < \infty$$

for $0 \le b \le a$ and by [18.6] $\{u_n(x, a)\}$ converges to u(x, a) uniformly in x,

$$u(x, b) = \lim u_n(x, b) = \lim {}^n H^a_b u_n(\cdot, a)(x) = H^a_b u(\cdot, a)(x).$$

It is obviou that u(0, 1)=0 and $u(z+2\pi)-u(z)=2\pi$. By theorem [9.5] we have $u=u_P$. Therefore $s(B)=s_P$, $t(B)=t_P$, $\sigma_B=\sigma_P$ and $k_B=k_P$ also hold by definition. 2° Set $m_n=m_{P(n)}$ and m=m(B). By [8.12] for any f in $C_p^2(R)$

$$\int^{2\pi} m_n(x, a)(P+{}^nB^a)f(x)dx = 0,$$

where ${}^{n}B^{a}(x, d\xi) = B^{a}_{P(n)}(x, d\xi)$. Since by [18.6] $\{m_{n}(x, a)\}$ converges to m(x, a) uniformly in x and by [18.4] $\{{}^{n}B^{a}f(x)\}$ converges to $B^{a}_{P}f(x)$ boundedly in x, we have

$$\int_{0}^{2\pi} m(x, a)(P+B_{P}^{a})f(x)dx = 0.$$

It is clear that $\int_{0}^{2\pi} m(x, a) dx = 2\pi$. By [18.12] we have $m_B = m_P$ and $\mu_B = \mu_P$.

3° Set $s_n = s_{P(n)}$ and s = s(B).

$$\begin{aligned} \|u'_n(\cdot, a)\| &= \|s_n(\cdot, a)\| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\sinh a}{\cosh a - 1} \sigma_{p(n)}(dx) \\ &\leq \frac{\sinh a}{\cosh a - 1} , \end{aligned}$$

and by [18.6]

 $\|u'_n(\cdot, a)-u'(\cdot, a)\|\leq \|s_n(\cdot, a)-s(\cdot, a)\|\longrightarrow 0 \qquad (n\to\infty).$

Therefore, by [18.9]

$$p_B(a) = \lim_{n \to \infty} p_n(a) = \lim B^a_{p(n)}(u_n(\cdot, a), u_n(\cdot, a))$$
$$= B^a_P(u(\cdot, a), u(\cdot, a)) = p_P(a)$$

and $p_B = \inf_{a>0} p_B(a) = \inf_{a>0} p_P(a) = p_P$. By 1°, 2° and 3° we have proved that $B = B_P$.

[18.11] PROPOSITION. Let P(n) $(n=1, 2, \cdots)$ in \mathcal{P}_c satisfy [M] and [V]. Assume that $B_{P(n)} \rightarrow B$ $(n \rightarrow \infty)$ for some $B = \{\sigma, \mu, k, p\}$ in \mathcal{B} with σ and μ in $M_i(R)$. Then $P(n) \rightarrow P$ $(n \rightarrow \infty)$ for some P in \mathcal{P} . P is a B-process and $B = B_P$. P satisfies [M], [V] and [L].

Proof. 1° Since $p_n(a) = p_{P(n)}(a) \rightarrow p_B(a)$ $(n \rightarrow \infty)$, it holds that $k(a) = \sup_n p_n(a) < \infty$. Therefore, by [8.2], for any subsequence of $\{P(n)\}$, we can choose a subsequence $\{P(n_r)\}$ such that $P(n_r) \rightarrow P$ as $r \rightarrow \infty$ for some P in \mathcal{P} and P satisfies [M] and [V]. By [18.10], $B = B_P$. In abbreviation, we shall write $P(r) = P(n_r)$, $\sigma_r = \sigma_{P(r)}$, $\mu_r = \mu_{P(r)}$, $m_r = m_{P(r)}$, $m = m_P$, ${}^rB^a(x, d\xi) = B^a_{P(r)}(x, d\xi)$, $B^a(x, d\xi) = B^a_P(x, d\xi)$ and $p_r(a) = p_{P(r)}(a)$.

2° For ρ in $M_p(R)$, set $\delta(\rho, \varepsilon) = \sup_x \rho((x-\varepsilon, x+\varepsilon))$. Since σ and μ are in $M_i(R)$ and $\mu_r \to \mu$ and $\sigma_r \to \sigma$ weakly, we have for any $\varepsilon > 0$

$$\lim_{r\to\infty}\delta(\mu_r,\,\varepsilon)\geq\delta\!\left(\sigma,\,\frac{\varepsilon}{2}\right)>0$$

and

$$\lim_{r\to\infty}\delta(\sigma_r,\,\varepsilon)\geq\delta\!\left(\sigma,\,\frac{\varepsilon}{2}\right)\!\!>\!\!0.$$

Therefore we may assume

$$\delta(\sigma_r, \varepsilon), \quad \delta(\mu_r, \varepsilon) \ge \delta_0 = \delta_0(\varepsilon) > 0.$$

Therefore by [14.7]

$$\int_{0}^{2\pi} m_{r}(x, a)^{r} B^{a}(x, U_{11e}^{c}(x)) dx \leq \frac{16a p_{r}(a)^{2}}{\delta_{0}^{5}},$$

and by (3) in [18.4]

$$\lim_{r \to \infty} {}^{r}B^{a}(x, U_{11\varepsilon}^{c}(x)) \ge B_{P}^{a}(x, U_{12\varepsilon}^{c}(x)).$$
$$\int_{0}^{2\pi} m(x, a) B_{P}^{a}(x, U_{12\varepsilon}^{c}(x)) dx$$
$$\le \lim_{r \to \infty} \int_{0}^{2\pi} m_{r}(x, a)^{r} B^{a}(x, U_{11\varepsilon}^{c}(x)) \le \frac{16ap_{P}(a)^{2}}{\delta_{0}^{5}}$$

for $p_P(a) = p(B)(a) = \lim p_\tau(a)$. Since $p_P(a)$ is an increasing function in a, we have

$$\lim_{a\to 0}\int_0^{2\pi} m(x, a)B_P^a(x, U_{12\varepsilon}^c(x))=0.$$

On the other hand, by [18.8] for $M > 12\pi$

$$\int_{0}^{2\pi} m(x, a) dx \int_{|\xi-x| \ge M} B^{a}(x, d\xi) (\xi-x)^{2}$$

$$\leq \lim_{\tau \to \infty} \int_{0}^{2\pi} m_{\tau}(x, a) dx \int_{|\xi-x| \ge M-\pi} {}^{\tau} B^{a}(x, d\xi) (\xi-x)^{2}.$$

Since P(r) $(r=1, 2, \dots)$ are in \mathcal{P}_c , by [18.7]

$$\int_{0}^{2\pi} m_{r}(x, a) dx \int_{|\xi-x| \ge M-\pi} {}^{r} B^{a}(x, d\xi) (\xi-x)^{2} \le \frac{C a p_{r}(a)^{2}}{M-\pi}$$

and therefore

$$\int_{0}^{2\pi} m(x, a) dx \int_{|\xi-x| \ge M} B^{a}(x, d\xi) (\xi-x)^{2} \le \frac{C a p_{P}(a)^{2}}{M - \pi}$$

and the right side converges to 0 as $a \rightarrow 0$. Finally we have

$$\lim_{a\to 0} \int_0^{2\pi} m(x, a) \int_{|\xi-x| \ge 12\varepsilon} B^a(x, d\xi) (\xi-x)^2 = 0$$

for any positive ε and P satisfies [L*].

3° Since P satisfies [M], [V] and [L] and moreover $B \rightarrow B_P$ holds, P is B-process by theorem [11.7]. Therefore by uniqueness of B-process (cf. theorem [7.7]) P is independent of the subsequence $\{P(r)\} = \{P(n_r)\}$. Hence

$$P(n) \longrightarrow P \qquad (n \to \infty) \,.$$

Proposition [18.11] is proved.

[18.12] THEOREM. Let $B = \{\sigma, \mu, k, p\}$ in \mathcal{B} be given. If σ and μ are in $M_i(R)$, there exists a unique B-process P such that P satisfies [M], [V] and [L] and $B = B_P$. Moreover P is in \mathcal{P}_c .

Proof. Set s=s(B), t=t(B), m=m(B), l=l(B) and U=U(B). Define $\sigma_a(dx) = s(x, a)dx$, $\mu_a(dx)=m(x, a)dx$, $k_a=k$ and

$$p_{a} = \frac{1}{2\pi} \int_{0}^{2\pi} s(x, a) U(x, a) dx = p_{B}(a).$$

Then, $U_a(z) = U(x, y+a)$ is a positive solution of

(18.10)
$$\begin{cases} (U_a)_x = m_a t_a + l_a s_a \\ (U_a)_y = m_a s_a - l_a t_a \end{cases}$$

in D, where

$$\begin{split} m_{a}(z) &= m(x, y+a) = \int_{[0,2\pi)} \tilde{h}_{\xi}(z) \mu_{a}(d\xi) ,\\ l_{a}(z) &= l(x, y+a) = \int_{[0,2\pi)} \tilde{k}_{\xi}(z) \mu_{a}(d\xi) - k ,\\ s_{a}(z) &= s(x, y+a) = \int_{[0,2\pi)} \tilde{h}_{\xi}(z) \sigma_{a}(d\xi) ,\\ t_{a}(z) &= t(x, y+a) = \int_{[0,2\pi)} \tilde{k}_{\xi}(z) \sigma_{a}(d\xi) + k , \end{split}$$

Noting $p_a(b) = \frac{1}{2\pi} \int_0^{2\pi} s_a(x, b) U_a(x, b) dx = p_B(a+b)$ for b > 0 and $p_a = \inf_{b>0} p_a(b)$, we can see $B_a = \{\sigma_a, \mu_a, k_a, p_a\}$ is in \mathscr{B} . By representation of U in [5.9] and [5.10] we have $\lim_{y \to \infty} U(z) = \infty$, therefore $\inf_{z \in D} U_a(z) = \inf_{y=a} U(x, a) > 0$ and U_a is greater than the minimum nonnegative solution of (18.10) or $p_a > p(\sigma_a, \mu_a, k_a)$. Hence B_a satisfies the conditions in theorem [17.5] and there exists a process P_a with $B_{P_a} = B_a$. By [17.6] P_a satisfies [M] and [V] and is in \mathscr{P}_c . Noting $p_{F_a}(b) = p_a(b) = p_B(a+b)$, we can easily show $B_a \to B$ as $a \to 0$. Therefore, by proposition [18.11], we can show existence of B-process P which satisfies [M], [V] and [L], since μ and σ are in $M_i(R)$. Uniqueness is obvious by theorem [7.7]. By theorem [14.9] we can see P is in \mathscr{P}_c .

§ 19. Existence of B-process (3): General case.

Let σ_i and μ_j (i, j=0, 1) be in $M_p(R)$ and k be a constant. Assume that $B_{ij} = \{\sigma_i, \mu_j, k, p_{ij}\}$ is in \mathcal{L} . Set, for $0 \leq \lambda \leq 1$,

$$\mu_{\lambda} = (1 - \lambda)\mu_{0} + \lambda\mu_{1}, \qquad \sigma_{\lambda} = (1 - \lambda)\sigma_{0} + \lambda\sigma_{1},$$

$$s_{\lambda} = \int_{[0, 2\pi)} \tilde{h}_{\xi}(z)\sigma_{\lambda}(d\xi),$$

$$t_{\lambda} = \int_{[0, 2\pi)} \tilde{k}_{\xi}(z)\sigma_{\lambda}(d\xi) + k,$$

$$m_{\lambda} = \int_{[0, 2\pi)} \tilde{h}_{\xi}(z)\mu_{\lambda}(d\xi)$$

and

$$l_{\lambda} = \int_{[0,2\pi)} \tilde{k}_{\xi}(z) \mu_{\lambda}(d\xi) + k$$

Set

(19.1)
$$U^{\lambda} \equiv U(\lambda; B_{ij}) = (1-\lambda)^2 U_{00} + \lambda (1-\lambda) (U_{01} + U_{10}) + \lambda^2 U_{11}$$

TWO-DIMENSIONAL BROWNIAN MOTION

where $U_{ij} = U(B_{ij})$. Then U^{λ} is a nonnegative solution of

(19.2)
$$\begin{cases} U_x^{\lambda} = m_{\lambda} t_{\lambda} + l_{\lambda} s_{\lambda} , \\ U_y^{\lambda} = m_{\lambda} s_{\lambda} - l_{\lambda} t_{\lambda} . \end{cases}$$

Therefore

(19.3)
$$B^{\lambda} = B(\lambda; B_{ij}) = \{\sigma_{\lambda}, \mu_{\lambda}, k, p_{\lambda}\}$$

is in \mathcal{L} $(0 \leq \lambda \leq 1)$, where $p_{\lambda} = \inf_{a>0} \int U^{\lambda}(x, a) s_{\lambda}(x, a) dx$, and $U^{\lambda} = U(B^{\lambda})$.

In the following, we shall choose $r\!\in\![0,\,2\pi)$ so that

(19.4)
$$\sigma_i(\{r\}) = \mu_j(\{r\}) = 0 \quad (i, j=0, 1).$$

Set $I(r) = [r, r+2\pi]$ and

(19.5)
$$F_r(x, \alpha) = \int_{I(r)} F(x, \xi) \alpha(d\xi)$$

(19.6)
$$F_{\tau}(\alpha, \beta) = \int_{I(\tau)^2} F(x, \xi) \alpha(dx) \beta(d\xi)$$

for locally bounded signed measures α and β on R, where $F(x, \xi)$ is defined by (5.3). Since

$$\int_{[0,2\pi)} F(x,\xi)\rho(d\xi) - \int_{[r,r+2\pi]} F(x,\xi+r)\rho(d\xi) = \rho([0,r))$$

for any periodic measure $\rho,$ the representation of $U^{\,\rm 2}$ given in [5.13] and [5.14] has the following form;

(19.7)
$$U^{\lambda}(z) = \int_{0}^{2\pi} \tilde{h}_{\xi}(z) U_{0}^{\lambda}(\xi) d\xi + (1+k^{2})y ,$$

where

(19.8)
$$\begin{cases} U_{0}^{*}(z) = -T_{0}(x, \sigma_{\lambda}, \mu_{\lambda}) + kF_{r}(x, \mu_{\lambda} - \sigma_{\lambda}) + C_{r\lambda}, \\ T_{0}(x, \sigma_{\lambda}, \mu_{\lambda}) = \int_{I(r)^{2}} T_{0}^{*}(x, \xi, \eta) \sigma_{\lambda}(d\xi) \mu_{\lambda}(d\eta), \\ T_{0}^{*}(x, \xi, \eta) = \begin{cases} T_{0}(x, \xi, \eta) & \text{if } \xi \neq \eta, \\ 0 & \text{if } \xi = \eta \end{cases}$$

and
$$T_0(x, \xi, \eta)$$
 is given by (5) in [5.5]. Noting [5.14], $T_0(x, \sigma_i, \mu_j)$ and $F_r(x, \mu_j - \sigma_i)$ are bounded in x $(i, j=1, 2)$. Therefore we can easily see:

[19.1]
$$T_{0}(x, \sigma_{\lambda}, \mu_{\lambda}) \longrightarrow T_{0}(x, \sigma_{0}, \mu_{0}),$$
$$F_{r}(x, \sigma_{\lambda}, \mu_{\lambda}) \longrightarrow F_{r}(x, \sigma_{0}, \mu_{0}),$$
$$U_{0}^{\lambda}(x) \longrightarrow U_{0}^{0}(x) = (U_{00})_{0}(x)$$

as $\lambda \rightarrow 0$ uniformly in x.

We shall note the following elementary lemma without proof.

[19.2] LEMMA. Let K be a compact space in \mathbb{R}^d and let a and α_n be bounded measures on K, and β and β_n be signed measures on K with $d|\beta_n| \leq C d\alpha_n$ (n= 1, 2, ...). Assume that $\alpha_n \rightarrow \alpha$ and $\beta_n \rightarrow \beta$ in the weak sense, then $d|\beta| \leq C d\alpha$. Moreover, let A be a closed subset of K with $\sigma(A)=0$ and g be a bounded measurable function on K which is continuous except at point in A. Then

$$\int g d\rho_n \longrightarrow \int g d\rho \qquad (n \to \infty).$$

[19.3] Let α_{λ} , β_{λ} and γ_{λ} $(0 \le \lambda \le 1)$ be signed periodic measures on R with $|\alpha_{\lambda}|(dx)$, $|\beta_{\lambda}|(dx) \le K\sigma_{\lambda}(dx)$ and $|\gamma_{\lambda}|(dx) \le K\mu_{\lambda}(dx)$ $(0 < K < \infty)$. Assume that $\alpha_{\lambda} \rightarrow \alpha_{0}$, $\beta_{\lambda} \rightarrow \beta_{0}$ and $\gamma_{\lambda} \rightarrow \gamma_{0}$ in the weak sense as $\lambda \rightarrow 0$. Then, for any f in $C_{p}(R)$,

(1)
$$T_0(f \cdot \alpha_\lambda, \beta_\lambda, \gamma_\lambda) + T_0(f \cdot \beta_\lambda, \alpha_\lambda, \gamma_\lambda) \longrightarrow$$

 $T_0(f \cdot \alpha_0, \beta_0, \gamma_0) + T_0(f \cdot \beta_0, \alpha_0, \gamma_0),$
(2) $F_r(\alpha_\lambda, \gamma_\lambda) \longrightarrow F_r(\alpha_0, \gamma_0).$

$$(2) \quad 1 \neq (\alpha, \gamma, \gamma, \gamma) \quad \gamma \quad 1 \neq (\alpha, 0, \gamma, 0),$$

(3)
$$F_r(f \cdot \alpha_{\lambda}, \beta_{\lambda}) + F_r(f \cdot \beta_{\lambda}, \alpha_{\lambda}) \longrightarrow F_r(f \cdot \alpha_0, \beta_0) + F_r(f \cdot \beta_0, \alpha_0)$$

as $\alpha \rightarrow 0$. Where

$$T_{0}(\alpha, \beta, \gamma) = \iiint_{x, \xi, \eta \in [0, 2\pi)} T_{0}^{*}(x, \xi, \eta) \alpha(dx) \beta(d\xi) \gamma(d\eta),$$

$$F_{r}(\alpha, \beta) = \iint_{x, \xi \in [r, r+2\pi)} F(x, \xi) \alpha(dx) \beta(d\xi).$$

Proof. Set

$$\begin{split} \widetilde{T}_{0}(x, \xi, \eta) &\coloneqq T^{*}_{0}(x, \xi, \eta) + T^{*}_{0}(\xi, x, \eta) \,. \\ T^{N}_{0}(x, \xi, \eta) &= \operatorname{Min}\{N, T^{*}_{0}(x, \xi, \eta)\}, \\ \widetilde{T}^{N}_{0}(x, \xi, \eta) &= \operatorname{Min}\{N, \widetilde{T}_{0}(x, \xi, \eta)\}. \end{split}$$

Then, by definition (cf. [5.3] and [5.5]), it holds that for x, ξ , η in $(r, r+2\pi)$

(i) $T_0^N(x, \xi, \eta)$ is bounded and continuous except $\{x = \xi\} \cup \{x = \eta\}$, and

(ii) $\widetilde{T}_0^N(x, \xi, \eta)$ is bounded and continuous except $\{x=\eta\} \cup \{\xi=\eta\}$. Set $I(r)=[r, r+2\pi]$ and $\rho_\lambda(dx, d\xi, d\eta)=\alpha_\lambda(dx)\beta_\lambda(d\xi)\gamma_\lambda(d\eta)$. Since $T_0(x, \xi, \eta)$ is periodic in x, ξ and η , by (19.4)

$$J_{\lambda} = T_{0}(f \cdot \alpha_{\lambda}, \beta_{\lambda}, \gamma_{\lambda}) + T_{0}(f \cdot \beta_{\lambda}, \alpha_{\lambda}, \gamma_{\lambda})$$

= $\int_{I(r)^{3}} \tilde{T}_{0}(x, \xi, \eta) f(\xi) d\rho_{\lambda} + \int_{I(r)^{3}} T_{0}(x, \xi, \eta) (f(x) - f(\xi)) d\rho_{\lambda} = J_{\lambda}^{N} + C_{\lambda}^{N}$

where $\alpha \rho_{\lambda} = \alpha_{\lambda}(dx)\beta_{\lambda}(d\xi)\gamma_{\lambda}(d\eta)$

$$J_{\lambda}^{N} = \int_{I(r)^{3}} \widetilde{T}_{0}^{N}(x, \xi, \eta) f(\xi) d\rho_{\lambda} + \int_{I(r)^{3}} T_{0}^{N}(x, \xi, \eta) (f(x) - f(\xi)) d\rho_{\lambda}$$

and

$$C_{\lambda}^{N} = \int_{I(\tau)^{3}} (\tilde{T}_{0} - \tilde{T}_{0}^{N})(x, \xi, \eta) f(\xi) d\rho_{\lambda}$$
$$+ \int_{I(\tau)^{3}} (T_{0} - T_{0}^{N})(x, \xi, \eta) (f(x) - f(\xi)) d\rho_{\lambda}$$

By assumption and condition [P] in [5.11] γ_{λ} has no common mass with α_{λ} and β_{λ} . Therefore by (i) and (ii), using [19.2], we have

 $J^N_{\lambda} \longrightarrow J^N_0$ as $\lambda \rightarrow 0$.

On the other hand by assumption

$$|C_N(\lambda)| \leq 4 ||f|| K^3 (T_0 - T_0^{N/2}) (\sigma_\lambda, \sigma_\lambda, \mu_\lambda)$$

and therefore by [19.1]

$$\overline{\lim_{\lambda \to 0}} | C_N(\lambda) \leq 4 \| f \| K^3(T_0 - T_0^{N/2})(\sigma_0, \sigma_0, \mu_0) .$$

Since $T_0^{N/2} \uparrow T_0$, we have proved (1). For x and ξ in $(r, r+2\pi)$ it holds that (iii) $F(x, \xi)$ is bounded and continuous except $\{x=\xi\}$.

(iv) $F(x, \xi) + F(\xi, x) = 1$.

Then

$$\begin{split} F_{\tau}(f \cdot \alpha_{\lambda}, \beta_{\lambda}) + F_{\tau}(f \cdot \beta_{\lambda}, \alpha_{\lambda}) \\ = & \int_{I(\tau)^{2}} f(\xi) \alpha_{\lambda}(dx) \beta_{\lambda}(d\xi) \\ & + \int_{I(\tau)^{2}} F(x, \xi) (f(x) - f(\xi)) \alpha_{\lambda}(dx) \beta_{\lambda}(d\xi) \end{split}$$

In a way similar to (1), we can easily show (2) and (3).

To proceed from [19.5] to [19.10], we shall impose the following temporary assumption.

[19.4] ASSUMPTION. For a positive sequence λ_n with $\lambda_n \rightarrow 0$, f in $C_{p,N}(R)$ and a positive constant a, assume:

(1) For each *n*, $B_N^{\lambda n}$ -solution ϕ_{λ_n} for *f* in D^a exists.

- (2) $\|\phi_{\lambda_n}\| \leq K_1$ and $\lim_{n \to \infty} \phi_{\lambda_n}(z) = \phi_0(z)$ exists.
- (3) $|\sigma_{\phi_{\lambda_n}}|(x) \leq K_2 \sigma_{\lambda_n}(dx).$

Here K_1 and K_2 are positive constants independent of *n* and $\sigma_{\phi_{\lambda_n}}$ is the boundary measures of ϕ_{λ_n} defined in [4.15].

We shall write $B^n = B^{\lambda_n}$, $\sigma_n = \sigma_{\lambda_n}$, $\mu_n = \mu_{\lambda_n}$, $U^n = U^{\lambda_n}$, $\phi_n = \phi_{\lambda_n}$ and etc. Noting $l_n = l_{\lambda_n} \rightarrow l_0$ and $m_n = m_{\lambda_n} \rightarrow m_0$ $(n \rightarrow \infty)$, we can easily have:

[19.5] Under [19.4], $\phi_0(z)$ in (2) belongs to $D_{p,N}^a(B^0)$ which is defined in [4.13]. The boundary measure σ_{ϕ_0} of $\phi_0(z)$ satisfies that $\sigma_{\phi_n} \rightarrow \sigma_{\phi_0} (n \rightarrow \infty)$ in the weak sense and $|\sigma_{\phi_0}|(dx) \leq K_2 \sigma_0(dx)$.

[19.6] Let f be in $C_p(R)$ and assume [19.4] for N=1. As in [5.17], set

$$\phi_n(z) = (\phi_n)_y(z) + \int_{[0,2\pi)} \tilde{k}_{\xi}(z) \sigma_{\phi_n}(d\xi) \qquad (n=1, 2, \cdots)$$

and

$$\psi_0(z) = (\phi_0)_y(z) + \int_{[0, 2\pi)} \tilde{k}_{\xi}(z) \sigma_{\phi_0}(d\xi)$$

Let ψ_n^0 $(n=1, 2, \dots)$ and ψ_0^0 be their boundary functions on ∂_0 . Then

$$\psi_n^0(x) \longrightarrow \varphi_0^0(x)$$
 nuiformly in x.

Proof. $\lim_{n\to\infty} \psi_n(z) = \psi_0(z)$ in D^a . Set

$$g_n(z) = (\phi_n)_x(z) - \int_{[0,2\pi)} \tilde{h}_{\xi}(z) \sigma_{\phi_n}(d\xi) .$$

Then g_n is a harmonic conjugate of ϕ_n and can be extended to the harmonic function \tilde{g}_n on $\{z=(x, y): -a < y < a\}$. Moreover $g_n(z)$ also converges in D^a and \tilde{g}_n $(n=1, 2, \cdots)$ are uniformly bounded in $\{z=(x, y): -b > y < b\}$ for any fixed b with 0 < b < a. Noting $\phi_n(z)$ is periodic in x, we can easily show [19.6].

[19.7] Under the same assumption as in [19.6], it holds that, for any g in $C_p(R)$,

(1) $T_0(g \cdot \sigma_n, \sigma_{\phi_n}, \mu_n) \longrightarrow T_0(g \cdot \sigma_0, \sigma_{\phi_0}, \mu_0)$

(2)
$$F_r(g \cdot \sigma_n, k \sigma_{\phi_n} + \psi_n^0 \cdot \mu_n) \longrightarrow F_r(g \cdot \sigma_0, k \sigma_{\phi_0} + \psi_0^0 \cdot \mu_0) \quad (n \to \infty)$$

Proof. By [19.1], it is easily shown that

(19.9)
$$T_0(g \cdot \sigma_{\phi_n}, \sigma_n, \mu_n) \longrightarrow T_0(g \cdot \sigma_{\phi_0}, \sigma_0, \mu_0),$$

(19.10)
$$F_r(g \cdot \sigma_{\phi_n}, \sigma_n) \longrightarrow F_r(g \cdot \sigma_{\phi_0}, \sigma_0) \qquad (n \to \infty) \,.$$

On the other hand by [19.3]

TWO-DIMENSIONAL BROWNIAN MOTION

(19.11)
$$T_{0}(g \cdot \sigma_{\phi_{n}}, \sigma_{n}, \mu_{n}) + T_{0}(g \cdot \sigma_{n}, \sigma_{\phi_{n}}, \mu_{n})$$
$$\longrightarrow T_{0}(g \cdot \sigma_{\phi_{0}}, \sigma_{0}, \mu_{0}) + T_{0}(g \cdot \sigma_{0}, \sigma_{\phi_{0}}, \mu_{0}),$$

(19.12)
$$F_r(g \cdot \sigma_{\phi_n}, \sigma_n) + F_r(g \cdot \sigma_n, \sigma_{\phi_n})$$

$$\longrightarrow F_r(g \cdot \sigma_{\phi_0}, \sigma_0) + F_r(g \cdot \sigma_0, \sigma_{\phi_0})$$

and

(19.13)
$$F_r(g \cdot \sigma_n, \phi_n^0 \cdot \mu_n) \longrightarrow F_r(g \cdot \sigma_0, \phi_0^0 \cdot \mu_0) \quad (n \to \infty).$$

Now (1) is proved by (19.9) and (19.11). (2) is proved by (19.10), (19.12) and (19.13).

[19.8] REMARK. Let f be in $C_p(R)$ and a be positive. Assume that a function ϕ_{λ} defined on D^a satisfies (1) and (2) in definition [4.16]. Then noting [5.19], [5.20] and lemma [6.1], we can see that ϕ_{λ} is B^{λ} -solution for f in D^a if and only if

(19.14)
$$U_0^{\lambda}(\phi)(x)\sigma_{\lambda}(dx) = U_0^{\lambda}(x)\sigma_{\phi_{\lambda}}(dx),$$

where U_0^{λ} is given by (19.8), and $U_0(\phi_{\lambda})$ is represented by

(19.15)
$$U_0^{\lambda}(\phi_{\lambda}) = -T_0(x, \sigma_{\phi_{\lambda}}, \mu_{\lambda}) - F_r(x, k\sigma_{\phi_{\lambda}} + \phi_{\lambda}^0, \mu_{\lambda}) + C(\phi_{\lambda})$$

with some constant $C(\phi_{\lambda})$.

[19.9] Under the same assumption as in [19.6], ϕ_0 defined by [19.4] is a B^0 -solution for f in D^a .

Proof. By (19.14) and (19.15)

$$\begin{split} &\int_{I(r)} U_0^n(x)\sigma_{\phi_n}(dx) = \int_{I(r)} U_0^n(\phi_n)(x)\sigma_n(dx) \\ &= -T_0(\sigma_n, \sigma_{\phi_n}, \mu_n) - F_r(\sigma_n, k\sigma_{\phi_n} + \psi_n^0 \cdot \mu_n) + 2\pi C(\phi_n) \end{split}$$

By (3) in [19.1] and [19.7], $\{C(\phi_n)\}$ converges. Set $C = C(\phi_0) = \lim_{n \to \infty} C(\phi_n)$. By (19.14) and (19.15), it also holds that for g in $C_p(R)$

$$\begin{split} &\int_{I(r)} g(x)U_0^n(x)\sigma_{\phi_n}(dx) = \int_{I(r)} g(x)U_0^n(\phi_n)(x)\sigma_n(dx) \\ &= -T_0(g\cdot\sigma_n, \ \sigma_{\phi_n}, \ \mu_n) - F_\tau(g\cdot\sigma_n, \ k\sigma_{\phi_n} + \phi_n^0\cdot\mu_n) + C(\phi_n) \int_{I(r)} g(x)\sigma_n(dx). \end{split}$$

Using (3) in [19.1] and [19.7] again, we can show that

$$\int_{[r, r+2\pi)} g(x) U_0^0(x) \sigma_{\phi_0}(dx)$$

= $-T_0(g \cdot \sigma_0, \sigma_{\phi_0}, \mu_0) - F_r(g \cdot \sigma_0, k \sigma_{\phi_0} + \psi_0^0 \cdot \mu_0) + C \int_{I(r)} g(x) \sigma_0(dx).$

Noting [19.8] again, we obtain [19.9].

[19.10] Let $\{\lambda_n\}$, f in $C_{p,N}(R)$ and a>0 satisfy the assumption [19.4]. Then ϕ_0 in (2) of [19.4] is a B_N^0 -solution for f in D^a .

Proof. Define $\sigma_{i,N}$ and $\mu_{j,N}$ (i, j=0, 1) by (7.2). Then by [7.4] $B_{i,j}^* = \{\sigma_{i,N}, \mu_{j,N}, k, p_{i,j}/N\}$ is in \mathcal{B} . As in (19.3) set $B^{*\lambda} = B(\lambda, B_{i,j}^*)$, then

$$B^{*\lambda} = \left\{ \sigma_{\lambda, N'} \mu_{\lambda, N'} k, \frac{p_{\lambda}}{N} \right\}.$$

Since ϕ_n is a $B_N^n = B_N^{\lambda n}$ -solution for f in D^a , $\phi_{n,N}(z) = (1/N)\phi_n(Nz)$ is a $B^{*n} = B^{*\lambda_n}$ -solution for $f_N(x) = (1/N)f(Nx)$ in $D^{a/N}$ by [7.5]. Since $\{\lambda_n\}$, f_N in $C_p(R)$ and a/N satisfy [19.4], $\phi_{0,N} = \lim_{n \to \infty} \phi_{n,N}$ is a $B^{*,0}$ -solution by [19.9]. Using [7.5] again, we can see that ϕ_0 is a B_N^o -solution for f in D^a .

[19.11] PROPOSITION. Let $B^{\lambda} = B(\lambda, B_{i,j})$ $(0 \le \lambda \le 1)$ be given by (19.3). If P^{λ} $(0 < \lambda \le 1)$ in \mathcal{P}_{c} is B^{λ} -process with $B^{\lambda} = B_{P^{\lambda}}$ and satisfies [M] and [V]. Then $P^{\lambda} \rightarrow P(\lambda \rightarrow 0)$ in \mathcal{P} , where P is a B⁰-process with $B^{0} = B_{P}$ and satisfies [M] and [V].

Proof. Since $\sigma_{\lambda} \to \sigma_0$, $\mu_{\lambda} \to \mu_0$ and $U^{\lambda} \to U^0$ $(\lambda \to 0)$ by definition, it holds that $B^{\lambda} \to B^0$ $(\lambda \to 0)$ and $\sup_{\lambda} p_{B^{\lambda}}(a) \leq k(a) < \infty$ for any a > 0. Therefore, by [18.2] for any sequence $\{\lambda_n\}$ which converges to 0, we can choose a subsequence $\{\lambda_m\}$ such that $\lambda_m \to 0$ and $P^{\lambda_m} \to P$ $(m \to \infty)$ in \mathcal{P} . Set $P^m = P^{\lambda^m}$. By [18.3] and [18.10] P satisfies [M] and [V] and $B^0 = B_P$. Let any function f be in $C_{p,N}(R)$ and a > 0 be given. Set $\phi_m = H_{Pm}^a f$. Then by definition

$$\phi_m(z) \longrightarrow \phi_0(z) = H_P^a f(z) \,.$$

Since ϕ_m is harmonic in D^a with $\|\phi_m\| \leq \|f\|$,

$$\left\| (\phi_m)_x \left(\cdot, \frac{a}{2} \right) \right\| \leq K(a) \| f \|$$

and

$$\frac{\left\|(\phi_m)_x\left(\cdot,\frac{a}{2}\right)\right\|}{\left\|s_m\left(\cdot,\frac{a}{2}\right)\right\|} \leq K(a)\|f\| \coth \frac{a}{2} = K(a, f) < \infty.$$

Therefore, by [9.8], $|\sigma_{\phi_m}|(dx) \leq K(a, f) d\sigma_{\lambda_m}$, and $\{\lambda_m\}$, f and a satisfy the

assumption [19.4]. Therefore by [19.10] $\phi_0 = H_P^a f$ is a B_N^o -solution for f in D^a . Thus P is a B^o -process. By the uniqueness of B^o -process (cf. [7.6]) P is independent of choice of subsequence $\{\lambda_n\}$. Therefore $P_{\lambda} \rightarrow P$ ($\lambda \rightarrow 0$) also holds.

Let σ be $M_p(R)$ with $\int_{(0,2\pi)} \sigma(dx) = 2\pi$ and k be any constant. Set

(19.16)
$$s(z) = \int_{[0,2\pi)} \tilde{h}_{\xi}(z) \sigma(d\xi), \quad t(z) = \int_{[0,2\pi)} \tilde{k}_{\xi}(z) \sigma(d\xi) + k$$

and

(19.17)
$$\overline{m}(z) = (1+k^2)\frac{s}{s^2+t^2}, \quad \overline{l}(z) = -(1+k^2)\frac{t}{s^2+t^2}.$$

[19.12] Let s, t, \overline{m} and \overline{l} be defined by (19.16) and (19.17). Then it holds that:

(1) \overline{m} is positive, periodic and harmonic in D with $\lim_{y\to\infty} \overline{m}(z)=1$. \overline{l} is a harmonic conjugate of \overline{m} with $\lim_{y\to\infty} \overline{l}(z)=-k$.

(2) Let $\bar{\mu}$ be the boundary measure of \bar{m} on ∂_0 , that is,

$$\bar{m}(z) = \int_{[0,2\pi)} \tilde{h}_{\xi}(z) \bar{\mu}(d\xi).$$

Then $\{\sigma, \overline{\mu}\}$ satisfies condition [P] in [5.11].

Proof. Since $\lim_{y\to\infty} s(z)=1$, $\lim_{y\to\infty} t(z)=k$ and

$$\overline{m}(z)+i\overline{l}(z)=\frac{1+k^2}{s(z)+it(z)},$$

(1) is obvious. Set $U = (1+k^2)y$. Then U is a nonnegative solution of

(19.18)
$$\begin{cases} U_x = \bar{m}t + \bar{l}s = 0, \\ U_y = \bar{m}s - \bar{l}t = 1 + k^2. \end{cases}$$

By [5.11] and [4.6] $\{\sigma, \overline{\mu}\}$ satisfies [P].

[19.13] DEFINITION. For σ in $M_p(R)$ with $\int_{[0,2\pi)} \sigma(dx) = 2\pi$ and a constant k, set $\bar{\mu} = F_k \sigma$, where $\bar{\mu}$ is defined by (19.17) and [19.12] (2).

[19.14] Remark. (1) $F_{-k} \cdot F_k$ =Identity. (2) Since $U = (1+k^2)y$ is a solution of (19.18), $\{\sigma, F_k\sigma, k, 0\}$ is in \mathcal{B} .

- [19.15] Let $\bar{\mu} = F_k \sigma$.
- (1) If $\sigma([a, b])=0$ for a < b, then $\overline{\mu}$ has at most one point mass in (a, b).
- (2) If σ is in $M_i(R)$, then $\bar{\mu}$ is in $M_i(R)$.

Proof. Since $\sigma \neq 0$, we can assume $[a, b] \subset (c, c+2\pi)$. Set $I = [c, c+2\pi)$. Then for $\xi \in (a, b)$

$$s_0(\xi) = \lim_{z \to \xi} s(z) = \lim_{z \to \xi} \frac{1}{2\pi} \int_{I - \lfloor a, b \rfloor} \frac{\sinh y}{\cosh y - \cos(\eta - x)} \sigma(d\eta) = 0$$

and

$$t_{0}(\boldsymbol{\xi}) = \lim_{z \to \boldsymbol{\xi}} t(z) = \lim_{z \to \boldsymbol{\xi}} \frac{1}{2\pi} \int_{I - [a, b]} \frac{\sin(\eta - x)}{\cosh y - \cos(\eta - x)} \sigma(d\eta) + k$$
$$= \frac{1}{2\pi} \int_{I - [a, b]} \cot\left(\frac{\eta - \boldsymbol{\xi}}{2}\right) \sigma(d\eta) + k ,$$

Therefore

$$rac{d}{d\xi}t_{\scriptscriptstyle 0}(\xi) = -rac{1}{2\pi} \int_{I-[a,b]} rac{1}{2\sin^2\left(rac{\eta-\xi}{2}
ight)} \sigma(d\xi) < 0$$
 ,

and $t_0(\xi) \neq 0$ for $\xi \in (a, b)$ except at most one point. For $\xi \in (a, b)$ with $t_0(\xi) \neq 0$,

$$\lim_{z \to \xi} \bar{m}(z) = \lim_{z \to \xi} \frac{(1+k^2)s}{s^2+t^2} = 0,$$

which shows that $\bar{\mu}(d\xi)$ has no mass in (a, b) except at most one point. Hence (1) is proved. To prove (2), assume $\bar{\mu}([a, b])=0$ for some a < b. Then by (1) $\sigma = F_{-k}\bar{\mu}$ can not belong to $M_i(R)$. Thus (2) is proved.

[19.16] THEOREM. For any $B = \{\sigma, \mu, k, p\}$ in \mathcal{B} , there exists a unique B-process P with $B = B_P$ and P satisfies [M] and [V].

Proof. Set $\rho(dx)=dx$ (Lebesque measure on *R*) and $\sigma^*=(1/2)(\sigma+\rho)$, $\bar{\mu}=F_k\sigma^*$ and $\bar{\sigma}=F_{-k}((1/2)(\mu+\bar{\mu}))$. Then by (2) in [19.15], $\bar{\mu}$ and $\bar{\sigma}$ are in $M_i(R)$, since σ^* is in $M_i(R)$. By (2) in [19.12], $\{(1/2)(\sigma+\rho), \bar{\mu}\}$, and $\{\bar{\sigma}, (1/2)(\mu+\bar{\mu})\}$ satisfy condition [*P*]. Therefore, $\{\sigma, \bar{\mu}\}, \{\bar{\sigma}, \mu\}$ and $\{\bar{\sigma}, \bar{\mu}\}$ and $\{\bar{\sigma}, (1/2)(\mu+\bar{\mu})\}$ satisfy condition [*P*]. Therefore, $\{\sigma, \bar{\mu}, k, p_{10}\}$ and $\{\bar{\sigma}, \bar{\mu}\}$ satisfy condition [*P*]. Therefore, $B_{01}=\{\sigma, \bar{\mu}, k, p_{01}\}, B_{10}=\{\bar{\sigma}, \mu, k, p_{10}\}$ and $B_{11}=\{\bar{\sigma}, \bar{\mu}, k, p_{11}\}$, are in \mathcal{B} for sufficiently large p_{01}, p_{10} and p_{11} . Set $B_{00}=B=\{\sigma, \mu, k, p\}$ and $B^{\lambda}=B(\lambda, B_{1j})$ ($0\leq\lambda\leq1$) as in (19.3). Since $\sigma_{\lambda}=(1-\lambda)\sigma+\lambda\bar{\sigma}$ and $\mu_{\lambda}=(1-\lambda)\mu+\lambda\bar{\mu}$ are in $M_i(R)$ for $\lambda>0$, by theorem [18.12] there exists a B^{λ} -process P^{λ} with $B_{P\lambda}=B^{\lambda}$, and P^{λ} is in \mathcal{L}_c and satisfies [*M*] and [*V*]. Therefore by proposition [19.11], $P^{\lambda} \rightarrow P$ ($\lambda \rightarrow 0$) and *P* is $B=B^0$ -process with $B_P=B$ which also satisfies [*M*] and [*V*]. The uniqueness is proved in theorem [7.7].

[19.17] DEFINITION. For B in \mathcal{B} , let P_B be the unique B-process. Set $\mathcal{D}_B = \{P_B : B \in \mathcal{B}\}.$

If P is B-process, then by theorem [19.16] $B=B_P$ therefore B is uniquely determined by P. So we have:

[19.18] COROLLARY. The mapping $B \rightarrow P_B$ is a bijection between \mathcal{B} and \mathcal{P}_B .

Combining theorem [19.16] with theorems [3.12], [15.10] and [18.12], we can characterize Feller type processes in \overline{D} with continuods path functions in the class of *B*-processes \mathcal{P}_{B} .

[19.19] THEOREM. There exists one-to-one correspondence between P in \mathcal{P}_c with condition C and $B = \{\sigma, \mu, k, p\}$ such that σ and μ are in $M_i(R)$ and σ has no discrete mass. The correspondence is given by $P = P_B$.

References

- [1] K. ITO AND H.P. MCKEAN, Diffusion processes and their sample paths. Springer-Verlag, 1965.
- [2] M. MOTOO, Periodic extensions of two dimensional Brownian motion on the halfplane, Kodai Math. J. vol. 12, pp. 132-209, 1989.

Department of Information Sciences Tokyo Denki University