M. MOTOO
KODAI MATH. J.
13 (1990), 417—483

PERIODIC EXTENSIONS OF TWO-DIMENSIONAL
BROWNIAN MOTION ON THE HALF PLANE, II

By MINORU MOT00

This paper is a continuation of the one with the same title [2]. Notation
follow the previous paper. Theorems, propositions and formula in [2] are cited
by their numbers without special mention.

Main results of this paper are summarized as follows:

(1) For any B={o, p, k, p} in L, there exists a B-process P with B,=B,
which satisfies conditions [M] and [V]. (See theorem [19.16]. Uniqueness of
B-process for given B has already been proved in theorem [7.7] in the previous
paper [2].) _

(2) A B-process has continuous path functions in D if and only if ¢ and g
are positive for any open set. (See theorem [14.9] and theorem [19.16].)

(3) A process P in & has continuous path functions and is of Feller type
in D if and only if P is a B-process, such that ¢ and g are positive for any
open set and ¢ has no discrete mass. (See theorem [15.10] and theorem [19.16].)

IV. Characterization of the class ..
§12. Certain recurrence relations.

Throughout this section, we shall fix a process P in ¢, on which we shall
assume no additional condition.

Let o.(w) be the hitting time of da, and for any positive a and b with
a+b, we define p,=pn(a, b, w) and 7,=7,(a, b, w) by

(12.1) 00=0a,
Tn:pn“"o'b(epnw) s
Pn+1=fn+0'a(0rnw) s n=0, 1, 2, ---.

Since one-dimensional reflecting Brownian motion is recurrent, by [1.5] and
[1.6] and continuity of the process in D* we can easily see:

[12.1] p. and 7, (n=0, 1, 2, ---) are finite except on a set of P,-measure
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418 MINORU MOTOO
zero for any z in D, and lim p,=lim r,=co holds.
N-—>0 n-—sc0

Set, for t=0 and ~A>0,
(12.2) LGt 0) = 5| Teamn, asns(3(s, )
. all, W _2/1 0 [a—h,a+h]ys:w S,

where z(t, w)=(x(¢, w), y(t, w)) for z(t, w)eD and I, is the indicator of a set
A. Noting [1.6], the following results are well known in theory of Brownian
local time [1].

[12.2] For any z in D,
1) L., w):L’mol L, w) exists a.s. P,

(2) E(L., w)):}}m E(Lit, w)).
(3) L,(t, w) is continuous and increasing in ¢ and satisfies
(12.3) Lo(t+s, w)=La(t, w)+ La(s, 0,w)

for any s and ¢ a.s. P,.
(4) Lg(t, w) increases only on ¢ with z(¢, w)€d,, that is,

5) LaG, w):SZIaa(z(s, w)dLa(s, w)  a.s. P,.
(12.4) E(Lkt, w)),  E(La(t, wW)SCiW1,
(12.5) E(Lit, w)*), ELLq(t, wP)<Cit,

where C,; and C, are absolute constants.

[12.3] Let a and b are any positive numbers and z be a point in D.
(1) If ya<bor y=a>b,

E(Li(0p))=2|b—al.
(2) In general, it holds that

E(Lo(a0))<2|b—al

E(La(0p))=8(b—a)*.

[12.4] Let ¢ be a bounded continuous function defined on Dt¢-¢¢+¢l with
0<c¢<a, and A be a positive number. Then

lim E,(S:’e-“qxz(t))d Lﬁ):Ez(gje‘“qS(z(t))dLa).
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Proof.

1° Let ¢ be any positive number. By (12.3) and (12.4) we can choose T
such that

E(fe igeaniary), B e Ig@enldL)<e.

2° Choose positive ¢; such that (¢,C,+8]¢|ve,Co)vVT <e/2, where C, and
C, are constants appearing in (12.4) and (12.5). The function ¢ can be extended
to a function ¢ which is continuous in D with |¢]|=| 3|, and there exists a
positive integer N such that, for

U=WT, N, e)={w: sup N|95(Z(S))—5(Z(t))l <ei},

$,tsT,|1s~tI1s1/

P1)<e, and (A/N)|Civ/T<e/2 hold. Set

kT
te =N (k=0,1,2,---, N) and

L=Ef T e # (et O LAtew)— LEED}
In=E{Z e 1t X Latar)— Lata))}

Then by (12.4) and (12.5)

|E,(S:e-u¢(z(t>dm)—m

SA—e M ELLE)

+E(S e Bl d L)
<A BN ELLAT )+ esE (L LAT)+ 201 E Lue LETY
<(BT1614+) ELATY 211 PO ELACT Yy

T — — S
g(z‘ﬁ‘ "¢”+61)Cl'\/T+4\/2 ”¢”\/61C2T <e.
Similarly, by (12.4) and (12.5),

iE,(S:e'“qS(z(t))d La)—INI <e.
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3° On the other hand, by (12.3) and Markov property of the process, for
fixed N and T we have

lim Ij=lim E.{ 'S e §(e(t) Evcr (LA(3:))}

h-0

:Ez{:rg:e““ka(Z(tk))Ez(tk)(L“(jz\]))}

::IN.

By 1°, 2° and 3° proof of [12.4] is completed.

[12.5] Let a and ¢ be any positive numbers, then

(1) }’im sup Pz, oy(0,=20)=0,
(2) lm sup Pec, o(sup|2(s)—2(0)| >0, 03<0)=0,
- T §s0p

3) },im sup Pz, ay(0520)=0.

Proof. Noting Pz, 0)(0,=20)= Pz, 05(0020)+ Pz, 0)(6>0,20), [12.5] is ob-
vious by (p. 4) in [1.1]

[12.6] For ¢ in CH(R) and a>0

12.6) ZEﬁ,(S:oe"‘¢(x(t))dLa)_—_gznqi(x)mp(x, a)dx,
where Eﬁ,(-)=gﬁE,(-)mP(z)dz and D={z=(x, y)eD: 0<x<2x}.

Proof. Set ¢(z)=¢(x) for z=(x, y) in D, then by [8.20]

1Ea([ e 3 L) = o Galliaon, consOmol2)dz

1 (e+ 2z
=ﬁg :dyso o(x)mp(x, ¥)dx

a-

- S:n¢(x)mp(x, a)dx  (h—0).

On the other hand, since

|E.([ e gteenary)

oo
0

<1g185([} e-aLt)

=lgle~ 7o p([Te-2aLt)
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for a+h<c and y=¢, we have by [12.4], (4) in [12.2] and the dominated con-
vergence theorem we have

lim ,zE,h(S:e-“qi(z(t»d Ly)
:xEﬁ,(S:e-%(z(t»d L.)
:zEﬁ,(ge-*‘q}(x(t))dLa) .

[12.7] For any positive a and b with 0<|b—a|=<1, p, and 7, are defined
as in (12.1). Then, for any positive 4, it holds that

= Ey (e *%a)
2.7 B g e m)= 1= et
Especially,
(12.8) |b—a| E,( S e-2)< K(R) Min {e~VTFw=2, 1},

where K(R) is a constant independent of a, b and z.

Proof. If b<a, then we have by [1.5] and [1.6]
E (e 2pn)<E (e %)
=E (e 2°2E , (e %))
=E (e"*mEL (e 1Y)
=FE,(e~4#n)g-V2Aa-0
Similarly, if b>a, then
E (e Pri)<E, (e~ *Pn-APnt1-7m))
=E (e **mE ¢ (e 4%a))
=E (e~ nEf (e 17a))
=E (e~ *en)e-vEi0-a)
Therefore, in both cases we have by induction
(12.9) E(e-ten+)< E (e 4a)g-nVBl-al (=0, 1,2, )
and (12.7) is obvious. Since

E(e7?%a)=ER ¢ *7a)=¢VRW-®  if y>q,
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setting K (2)= sup we have (12.8).
0<ys1

N
1—e~-v22y ’

[12.8] THEOREM. For any positive a and b with a+#b, let p,=pa(a, b, w)
and t,=1,(a, b, w) (n=0, 1, 2, ---) be defined as in (12.1), §,=6,(w) and n,=n.(w)
(n=0, 1, 2, ---) be measurable functions on (W, B) with p,<&, 9.<7, and A be
any fixed positive number.

() If ¢ is a bounded uniformly continuous function on R, then we have

lim2/6—a| E.( 3} e‘“n¢(x(7],,))):E,<S:e‘“¢(x(t))dL,,).

(2) If ¢ is in Cp(R), then we have

lim2|6—a| Ea 5 - (x(r0) = | ptmetx, adx.

we set ¢(x(1))=0 if z(t)=0 and Ex(-) is defined in [12.6].

Proof. If (1) holds, then (2) follows from by (12.8), the dominated con-
vergence theorem and [12.6]. Now we shall prove (1).
1° Set ¢=|b—a| and define

d@)= sup 19(6)—g(x)|

for any positive 0,

e(t)=e(t, w)=°§g5 [@(x(s))—P(x(1))]

and
Pi(e)= sup E 2 oy {e(ax(w), w)}.

Then
pi(e)Zd(0)+2l@] sup P, “(osss‘i%, [ x(8)—x(0)] >0, 0:<0)

+2|éll sup P ay(0520) .

Therefore by [12.5] El_tgl Ppu(e)Ld(D).

Since ¢ is uniformly continuous, }’mol d(0)=0. We have
(12.10) lsmol p:(e)=0.

Set P2(5)=S‘%p E (s, o(1—e=%9%). Then
152(6)§25+S}clp P(x,a)(o'b>5)

for any positive 8. Therefore by [12.5]
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(12.11) 1ir£) Da(e)=0.

ZD

]1(5)_—;23{Ez(ze"lén¢(x(nn)))_—Ez(Ze"1Pn¢(x(‘0n)))} —>0 (5—’0) .
Proof of 2°.
(&) = LL(e)+Ix(e),
where
I(e)=2¢| || E(Z(e=Pn—e47n))

and

I(&)=2E.(Je"n sup | §(x(s)=¢(x(pa)).

Then by [1.5] and (12.8)
I(e)=2¢||QIlE. {2 e *nE,, ,(1—e= )}

S 2| K(R)pale)
and
12(8):2E;;{Se—‘xanz(pn)(e(olb))}

S2K()pi(e),
where K(R) is defined as in (12.8). Therefore by (12.10) and (12.11)
[Jie)| =1 (e)+ I (e) —> 0 (e—0).
30
F&)=2E{Ze-1e0g(x(0a)} —E{Zd(x(on)| " e Hd L} —>0 (s-0).
Proof of 3°. By (2) in [12.3]
2eE (Yo *ong(x(pa))}=E {Ze 4026 (x(04)) La(as)}
—_ _ipp tn
_.Ez{e e ¢(x(pn))§pndL.,}.
Hence
&) SE{Ze-2en g(aton)l | " (1—e-*)d L}
Pn
SIPIE[Ze-*onE,, s {(1—e 278 Ly(a,)}]
SIGIE.[Ze - PnE (o (1= 290)' 2 E ¢, 5(La(0p)®)'%]
Z|GIE(Ze20n)py(e) 24/8e?
SGIK AV pale)/?.
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Therefore by (12.11)
lim Ji(e)=0.

4

He=E{Z(x(on)| " e 4d Lo} —E([[ep(xtDdLa) — 0 (e-0)
Proof of 4°. Since La(p0)=0 and Lo(z,)=La(pn+:) by (4) in [12.2],

H&=E3] e 4gx(pm) = gx(eNd L}
|J(e) SEo(Ze2?n) sup E s, a>(e(95) La(0)
SE(Ze720)5up Ece, ax(e(00)) e, ax(La( 001

SAKDIPNM*pae) .

Therefore, by (12.10), 4° is proved. From 2°, 3° and 4° we can see that (1)
holds.

In the remainder of the section, we shall investigate properties of the last
hitting time.

[12.9] DEFINITION. Let a and b be any positive numbers with a=b. If
2(0, w)E0,, set

p=p(a, b, w)=inf{t: t<a, and z;&d, for any s€(, a;)}.

For general w, set
o=p(a, b, wy=o.+p(0s,w).

This is the last hitting time of d, before reaching 0,.

For ¢ with ¢<(a, b), set
(12.12) pe=pla, b, w)y=p+ac0;w).
The sequence
Pn=pala, ¢, w) and F,=t,(a,¢, w) (n=0,1,2, )

are as given in (12.1). Then we can easily see:

[12.10]

Q) p.lp as c—a.

(2) If 5n<0u+0b(0aaw)§ﬁn+1, then g.=7,.
(3) Especially, p and p, are B-measurable.
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[12.11] p and p. are finite except on a set of P,-measure zero for any
positive z in D.

Proof. By [1.6], t=0,+04(0,,w)<0 a.s. P,. On the other hand g, p<r.
[12.12) PROPOSITION. Let f and g be in By(R). For positive a and b with

a+b, set p=p(a, b, w) and t=0,+0y(0,,w). Then for any positive A it holds
that

(12.13) E{e 0 f(x(p)g(x())}
=|b—alE{e”** f(x(p)Q"*'g(x(p)},
where Q'”"“'g(x):Sq”‘“'(&——x)g(é)d& is defined in §0.8°.
Proof. It is sufficieient to prove (12.13) for f and g in Cx(R). For any ¢

with c=(a, b), p. is defined as in (12.12). Set p,=pa.(a, ¢, w) and T,=7,(a, ¢, w).
Then

g(x(f))lipn<r<n+1 ) =g(x(‘l'))[(?,,<r<pn+l)
=g(x(0x(0z,w), Oz, Wz ,<er [i0y07, w1<0 402,09 «

Therefore, noting (2) in [12.10] and [1.5], we have
E (e *fef(x(pe)g(x(7)))

=B 3 e fEDEE) i3 o)
=E2(n§;‘$ e H"f(x(fn))ftf-nqxEz(f,,)(g(x(ﬂb))lw,,<oa1 )

=E{ 3 e (2@ ieco I 8((ED)}
In the same way we get
B {e~3¢e {(x(p ) dTTE g (#(p )}
=E.{e~109) dTI2g(x( N (x(z)}
=E{ 3} e f(x(2) TR g Ea) e IR (2}

o I P LRLYICTCO | ETeTCm) e

Therefore
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(12.14) E(e=*tcf(x(pe)g(x(r)))
AL g(x(pe) )

=1b—al B~ e/ (o) 2
If ¢—a, then p.—p by (1) in [12.10]. Therefore f(x(4.))—f(x(p)) and
‘g—lgci_(%(l—ﬁ—“l)——»@‘“g(x(ﬁ)) boundedly as ¢—a, since we have assumed that f
and g are in Cg(R). By the bounded convergence theorem, (12.13) is obtained
from (12.14).

For positive a and b with a+b, set p=p(a, b, w), pr=pa(a, b, w) and 7,=
ta(a, b, w). We define p.=p.(a, b, w) by

(12.15) pr=patp0,,w) (n=0,1,2, ).
For any ¢ in (a, b), set pr=p(a, ¢, w) and T,=7x(a, ¢, w). We also define
(12.16) Pr.c=pnto0;,w).

Then as a generalization of [12.10], we have:

[12.13]

(1) Pa.cl bn as c—a.
(2) Ps<ta<pa+ for some n if and only if p,4+0,(07,w)<Prs1. In this

case, it holds that p.<pi, Pns1=Pr+1r Pn.c=Tr and T,=p,+0(0;,w)=
Trt+ou(0z,w).

[12.14] PROPOSITION. For any positive a and b with a+b, let p,=p.(a,b, w)
and t,=t.(a, b, w) be defined by (12.15) and by (12.1), respectively. Then for,
any positive A, it holds that:

1) for ¢, ¢ in By(R) and z in D

(12.17) 2B.{ 33 e 1#ng(x(px(ca)}

=B e *g(x)Q - gx)d L}

and
(2) for ¢ and ¢ in By(R)

(12.18) 2B4{ 3} e~ 4rg(x(pm)plx(ea)}

:%S:ngb(x)Q""“’(p(x)mp(x, a)dx .

Proof.
1° The both sides of (12.17) and those of (12.18) consist of integrations
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(and sumation) of ¢ and ¢ by positive measures and they are finite if ¢=¢=1.
Therefore, we may assume that ¢ and ¢ are in Cx(R) in (12.17) and in C,(R)
in (12.18), respectively.

2° If (12.17) holds for ¢ and ¢ in C,(R), then, integrating the both sides
of (12.7) by mp(z)dz over D, we immediately obtain (12.18) by [12.6].

3° Since by [1.5] and [12.12]

E{ 3 e ng(x(p)Px(@a)}

=B Ze 300y (e 0 g(x(PIPA()

=[b—a| B Ze= 0B (e P B(x(D)Q* XD}
=[b—a| E{ Ze=1#ng(x(.))Q" "' Plx(pn) -

If follows from 1°, 2° and 3°, that, in order to prove (12.17), it is sufficient to
show

(12.19) 26— o E{ 3 e *org(x(pa))}

=E,{S:e'“¢(x(t))dL“}
for ¢ which is bounded and uniformly continuous.
4° For any ¢ in (a, b), let p,=pa.(a, b, w), pr=pwla, ¢, w) and 7,=
zi(a, ¢, w) be defined by (12.1) and g, . be defined by (12.16). Then by (2) in
[12.13]

oo L -
n% e'l'o"'c¢(x(ﬁn.c))=k§0 e—1rk¢(x(fk))1(ﬁk+ab(0pkw)<ﬁk+1)

o0
=2 e R G(X(T )24 40 07, wr<P g -

Therefore, we have
(12.20) Ey( 5 emioncd(x(pn.)
=E{ 5 e (@) Pacep(0v< 00}

c—a

=E( 3 e rp(x()) o -

By theorem [12.8], the right side of (12.20) converges to

1

s BAJle 060l as e
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The left side of (12.20) converges to
[} -2 An . .
E( S e #ng(x(p)  as eoa,

since e™4n.cd(x(Pa,c)) e P rg(x(p,)) by (1) in [12.13], [e~*Pncg(x(fa. o)l =
e~*fn|$| and E,(ée'“’")<oo by [12.7]. Therefore (12.20) is proved.

§13. A sufficient condition for a process belonging to 2..

For p in M(R), we shall write
(13.1) oEM(R)
if and only if p(U)>0 for any open set U in R. Set
(13.2) d(p, )= iilf ol(x—e, x+¢).

[13.1] Remark. In [11.9], we have seen that, if p is in M, y(R), then p
is in My(R) if and only if d(p, ¢)>0 for any positive e.

[13.2] For p in M, y(R), set v(z)=Sn‘”($—x)p(d€). Then o(v(x, y)dx, &)
=0d(p, €) holds for any positive e.

Proof.

[ =]

1¢ ydn (z-n+e
=l ede)

=d(p, €.

In this section, we shall fix a process Pin @ which satisfies [M] and [V],
and Bp={0p, ttp, kp, ppr}, Sp, mp, up, Up etc. are as defined in chapter IIl. As
a corollary to [13.2], we immediately have:

[13.3]
up(x+e, y)—up(x—e, y)=0sp(x, y)dx, €)=0d(op, ¢).
[13.4] For any a, b, « and 8 with 0<b<a, 0<B and 0<a<nm,

8app(a)
6(#}” a)a(o'Py .8)2 ’

where pp(a)=Bp(up(-, a), up(-, @)) and Us(x)={§: [§—x[<6} in R.

(13.3) Hi(x, Uz(a+ﬂ)(x)c)§
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Proof. By (8.7) in [8.5], for any b<a
Bp(x, d§)=(P**+Q*"H§)(x, d§).
Noting ¢(x)=SQ“"’Hg(x, d&)(up&, a)—up(x, a)) is in Cp, we have by [13.3],

T+2
T

2ps@z | matt, vt Qe a7 Hin, deXus€, )—ustt, @)

r+2a+
zgj”“mpa, a)dtSan~b<t, dp)HE(y, [x+2a-+28, )d(ap, BY.

We have H(y, [x+2a+28, )= Hi(x, [x+2a+28, o)) if x<n by [M] (See
also [9.2]), and for x<t¢

[rae, amz{ g man= 5.
Using [13.2]
2pp(arz X0 N B prg( 11t 9atap, o).
In a similar way, we can show that
2peta)z 20 0000 By (—co, 5—2a—28).
Therefore (13.3) is proved.

By (3) in [10.15] pp(a) decreases as a decreases. Hence as a corollary to [13.4],
the following holds.

[13.5] For positive a and e, set
Ci(a, &)= sup Hi(x, Ux)").
z,b0<a
If p and pp are in M;(R), then linol Cy(a, &)=0.

In the following, ¢, (a>0) denotes the hitting time of d,. For 6>0, &R
and >0, set

(13.4) D, b, e)={z=(x, y); y=b and [x—§|=4e}
and let 7(§)=7(§, b, ¢, w) be the hitting time of D(&, b, ¢).
[13.6] For positive @ and e, set

Cula, &)= sup | "m(x, 20)dx[Q*(x, dOPe.(e(6, b, VS 010,
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If P satisfies [L] and ¢p and gp are in M(R), then
Ll{rol Cy(a, €)=0.
Proof. Set t=1(§, b, ¢) and 6=0,,. Take a,so small that C,(2a, 2¢)<1/2
for a<a,. Since |x(o)—&|=2¢ if both 7=¢ and | x(¢)—x(z)| <2¢ hold, by [1.5]
P, ax(t=0)S P, ax(t <0, | x(0)—x(7)| Z2¢)
+P¢ (=0, [x(0)—x(r)| <2)
SE¢wi{r=0, Hfo(x(0), Us(x(2))}
+ P ([ x(0)—E§ [ 22e)

=Ci(2a, 26)Pe, ay(t=0)+HZ(E, U,(£)).
Therefore, for a<a,
P(é. a)(T:_<_ a)§2H§“(E, U25(5)6> .

Now
[z, 20)d2[@2(x, d9)Pe axe=0)
<2 'mix, 200dxQe(x, 4| . Hi(@, dn)
=2AI(a)+1xa)),
where
L@={"m(x, 20dx{ @z, g
and
I@)={"m(x, 20)dx(Q(x, dg)| o HoE )

I 1(a)=27rgI Elzsq“(é)dg*: t—ﬂ(l—tanh 3—2)

and lim I;,(a)=0. Moreover, by (8.7) in [8.5] B¥(x, d9)=Q*H%(x, dy) and

s mx, 20 B, dn)

1§-z|
< inf ! Bg(u; ¢)
Tip-zize (up(§, 2a)—ulx,2a)) ’
L Bsu:e),

=8(0p, ¢/2)
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where BE(u ; ¢€) is given in [11.4] and the condition [ L] implies that lirrg Bi(u ; €)
=0. Thus [13.6] is proved.

For positive a, let p,=p.(2¢a, a, w) and 7,=7,(2a, a, w) be defined as in
(12.1) (n=0, 1, 2, --). For any b with 0<b<a and any positive e, let #(&)=
(&, b, ¢, w) be defined as in (13.4). Set

(13.5) Fa=Ta+7(x(7s), 011,w)) (n=0,1, 2, -)
and for positive T

(13.6) Wa, b, e, T)={w: there exist 7, with 7,<T and s in [z,, pr+]
such that both y,=b and |x(s)—x(r,)|=4e hold}

={w: there exists n such that z,<7T and #,<p,+, hold.}.
[13.7] Set

1
Cya, &)= TigbriaTPﬁ(u(a, b, e, T),

where Pﬁ(.)=§ﬁp,(.>mp(z)dz and D={zeD;0<x<2r}. If P satisfies [L] and
op and pp are in M;(R), then

}lin;l Cya, &)=0.

Proof. For positive A
Pa(W(a, b, &, TNE 3 Pa(En=pnn, Ta=T)

§e”Em(Ze'h"I(;n<ppﬂ))
=eTEp{Ze "2 P, 5(#(x(0))< 044)}.

Let p=p(2a, a, w) be the last exist time to 0,, before reaching 9, defined in
[12.9]. Set pn=pn+p(0,,w) and ¢(x)=Pz, 0;(F(x)<03q2). Since §,<r, and ¢
is in B,(R) by (p.5), we have, by (12.18) in [12.14],

Pa(W(a, b, ¢, TH=e T En(Ze *Png(x(r,)

elT 2n
=g§° Qe(x)mp(x, 2a)dx

“eZT

—ggmm}a(x, 2a)deQ“(x, d&)Pe 0)(7(8)< 014)

0

T

e
<
= 22 Cz(a; 6),
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where Ca(a, ¢) is defined as in [13.6]. Put A=1/T. Then
1
7 Pa(l(e, b, &, T) S5 Cu(a, o).
[13.7] is a consequence of [13.6].

[13.8] PROPOSITION. If P satisfies [M1, [V] and [L], and pp and op are
iu M(R), then P is in 2.

Proof. 1° By [13.7], we can choose a positive sequence {a,} such that
Up1<0n, 2a,<o and YCya,, 1/2")<co. Then, for fixed T

Set W(T)=Iim W(ax, @n+1, 1/2, T). Then, by Borel-Cantelli’s theorem for ¢-
n-oo
finite measure Pz, we have P;(T))=0. Set

u=N®u<N>, WT)TU (T 1), and PrOl)=0.

2° If z(0, wyeD'*= and 0<b<a, then wel(N) implies ¢,,w=(N). For,
06<020,=p00(20n, ay) if 2a,<b. Conversely, if ,,w(N) and M>g,(w), then
weW(N+M). Therefore, well if and only if 6,,wcll for w with 2(0, w)
eD®=_ PM) is harmonic and therefore continuous in D. Noting that P,(l)
is in C,(D), by 1° we have P,)=0 for any z in D.

3° Set px(n)=0r2an, an, W), T(N)=74(2an, @r, w) and Wo={w: 20, w)e
D@en} (=0, 1, 2, ---, n=1, 2, --). Define

(pra(n)—=1)2(to(n)+E—7(n)2(0 5 +:1(n))
Pk+1(fl)—1'k(n)

if te(re(n), pra(n))  (k=0,1,2, )

gn(t: w)=

=z(t, w) if otherwise.

Then, for weW,, £,(, w) is a continuous mapping of ¢ in [0, o) into Dtfen.=,

4° Let n, and N be any fixed positive integers. For any fixed w in
Wa W), we shall show that Z,(, w) converges uniformly in ¢t=[0, N] by
the topology of D.

Proof of 41. For a fixed weW, NWWN)’, there exists a positive integer
n,=n,(w)=n, such that w&EW(a,, a1, 1/2%, N) for n=n,.
Take any n=n,.
i I & &b)(n(n), Pr+:(n), then z(t, w)e Dt~ and té& \/ (@u(n 1),
01+:1(n+1)). Therefore
Z.t)=2(t)=2n ().
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(ii) If t=N, t€(te(n), prai(n)) for some k2 and z(t)cDten+1=>  then |x(t)—
x(tx(n))| <4/2", since weEW(ay,, anvy, 1/2"%, N). Especially

| Ko = 2(ean)| Sy and | BnO—r(es()] > o5

(i) If =N, t&(rs(n), pari(n)) for some & and t¢V) (zi(n+1), prm(n+1),
then %,.,(¢)=z@¢)s Drten+1>> Therefore by (ii) | %.+.@)—%.()] <8/2".

(iv) If t=N and t&(t(n), pra(m)N(T(n+1), prs(n+1)) for some £ and !,
then z&(ry(n+1)) and z(pi4(n+1)) are in Dten+1=> Therefore, by (ii) we also
have

| s 52| <.

(v) If t=<N and t€(t4(n), pr+1(n)) for some %, then 2,() and £,.,(¢) are in
D*n and |§Fp4.(t)—F2(t)|=2a,. In this case, by (iii) and (iv) we have seen
| %) — %) £8/27, and therefore |Z,.,#)—Z.(t)| <8/2"+4a,.

Since X(8/2"+4a,)<co, 4° is proved by (i) and (V).

5° Set Wo=UW,={w; 2(0, w)e D} and W,=W.NU° Noting 2° and [1.2],
we have P,(W,)=1 for any z in D. Let wsW, be given. Then, for any posi-
tive integer N, there exists n such that weW,N\WWN). Therefore %,(, w)
converges uniformly in t=[0, N] for any N. Set 2(f, w)==lim Z,(, w). Then
2, w) is a continuous function of 1=[0, o) into D. Define a mapping ¢ from
W, into W by

2@, pw)=2¢, w)  (0=t<0).

Measurability of the mapping ¢ is obvious by definition. Therefore, by pro-
position [1.11], we can see that P is in ¢, Proposition [13.8] is proved.

§14. Necessity of the conditions given in §13.

In the following, we shall use the ide_r_l_tical notation ¢, (¢=0) for the hit-
ting time of 0, for paths in W and in W. Here o, (w) for w in W denotes
the hitting time of 9. For 0=<a, b and a+b,

ona, by=pa(a, b, w) or p.(a,d, )
ta(a, b)=t(a, b, w) or t,(a,b, )
are definen as in (12.1), and
p(a, b)=p(a, b, w) or p(a,b, W)

as in [12.9] also far paths in W or W.
Note that g.=p.(a, b) and

(a, b)=ta, b)=0.+0,-0,, .
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Then if holds that

(14.1) { 0(W)=0,(t), pla, b, W)=pu(a,b, (),

ta(a, b, W)=t,(a, b, cw) and p(a, b, W)=p(a, b, (W)

where ¢ is the injection defined by (1.6).

[14.1] Let P be in @ and P be in &.
(1) Set
W.={weW; z(r, w)=D for any rational r}
and N N
W.={weW; z(r, w)e D for any rational r}.

Then P,(W,)=1 and P,(W,)=1 for any z in D.

(2) Let 7 be any random time and o¥ (6>>0) be the hitting time to D>,
Set 7,=7+0#-0,. Then 7,17 as b0 a.s. P, (or a.s. P,) for any z in D.

(3) It holds that a,=p(0, b)<z(0, b) for b>0, and

70,5} o, asblOa.s P, (ora.s. P,)

for any z in D.
(4) Fix b>0. If 7(0, b)<co, then there exists a,=a,(b, w) or a,(b, W) such
that p(0, b)<p(a, b) for a=<a,, and

(14.2) lim 5(a, &)=4(0, b).

Proof. (1) is a consequence of (p.2) in [1.1] (or (p.2) in [1.8]). (2) and (3)
follow from (1). If p(a,, b)<p(0, b) holds for some sequence {a,} with a, |0,
then g, = o(an, b)<r(a,, b)<a, and 6., 1 0o, which contradict the continuity
of z(t). The first part of (4) is proved. For a with 0<a<min{a,, b}, ¢,<
000, b)<p(a, b)<7(0, b) and p(a, b) decreases as a decreases. Therefore
z(l(ilrf}) o(a, b))=Li£rol z(p(a, b))=0 (or €4d,), which implies that (14.2) holds.

In the remainder of this section, we shall fix a process P in ¢ which
satisfies [V] and [M].

[14.2] Assume op((c;, ¢2))=0 for some ¢, and ¢, with ¢,<c¢,, and ¢=H?f
for f in B,(R). Then the boundary function of ¢ on d, is constant on (c,, ¢s),
that is, for {=(&, 0) with & in (cy, ¢,)

(14.3) lim g(2)=F .

Proof. Let J be a closed interval contained in (ci, ¢,). Then sp(z)=
Sﬂ.’y<§—x)0'p(d§)—>0 as z—(&, 0) uniformly in é=/. Therefore, by (3) in [9.9],
@:(2)—0 as z—(£, 0) uniformly in §&J, and (14.3) is easily proved.
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[14.3] PROPOSITION. If P in @, satisfies [M] and [V], then op is in M (R).

Proof. Since Pis in @, P=¢P for some P in &. Assuming o((c;, ¢5))=0
for some ¢, and ¢, with ¢;<c,, we shall show a contradiction.

1° Let J be a fixed non-empty open interval with JC(c, ¢c;). For any
positive a, set @.(z)=H*I;(z), where I, is the indicator of J. Then by [14.2]
Ou(2)—ko=ka(]) as z—(§, 0) for & in (c,, ¢,). Since 0=<k,<1, we can choose a
sequence {a,} such that a,—0 and k,,—k as n—o. Set ¢,=¢.,, kr=k,,
and 7,=7(0, a,).

2° Let K be another non-empty open interval with KC(cy, ¢,). Then by
[1.5], for any m and n with m<n, and z(t)=(x(t), y(t)),

(14.4) P(x(r))EK, x(tn)e )=Px(t)EK, x(tn)E])
=EA¢nzTD]zccpeky)
=E(¢pn(ze) e -

Set K=] in (14.4). Since 7, 0, as n—co by (3) in [14.1], we have, for path’s
in W,
{x(e)eJ}C lim lim {x(z.)E], x(Tn)=]}

and
kmllx(ao)e7) = 1»“2 ¢m(z(rn))llx(rn)eh .

Therefore
PZ(X(GO)E])é }% lnl.Tn; Ez{¢m(z(7n))[(z(rn)eJl}

< lim knP(x(a)= J)

=kP,(x(d0)=]).
By (p.4) in [1.8]
P(z(a0)€ J)=PE*z(c,)= ])>0
and
P(z(a0)e [)=PE*(z(a))= J)=P2z(d0)E]).

Hence we have k=1. o .
3° Take a non-empty K with /NK=@. Then, for paths in W

d={x(a)eJNK}D im lim {x(z,)= K, x(tx)E ]}

M—=00 N—>00

and

km[(.z(vo)EK)g }Tlr"% ¢m(2(7n)>[(x(rn)EK) .

By (14.4), we have
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0=kP,(x(c)=K).

Since P(x(g,)=K)=PB¥x(c,)=K)>0, we have k=0, which is a contradiction.
[14.4] PROPOSITION. If P in @, satisfies [V], then pp is in M(R).

Proof. Let P=(P for P in &. Assume pp is not in M;(R). Then there
exist ¢, and ¢, with 0<¢,<c,<2z such that pgp((c,, cz))=0._ We shall shovv~ a
contradiction. Take a non-empty open interval J with JC(c,, ¢;). Set J=

nf) (J4+2nx) and for 0<a<b
F(a, b, T)=Pu(d.<T, x(z(a, B)E]).
Then by [12.14] for a fixed positive 2

F(a, b, T)SeTEn{ 3 em1ne? Ly(x(za(a, b}

24T on
=§2~§0 me(x, Q)Q*L(x)dx .

Since ¢, 1 00, Q*?15(x)—Q"I;(x) uniformly in x and mp(x, a)dx—pup(dx) weakly
as a—0. By
7(a, b)=1(0, b) if a<b and p(0, b)<p(a, b),
and by (4) in [14.1], we have
F(b, T)=P3(c,<T, x(z(0, b))e=J)
< }ll_l:l(’)l F(a, b, T)

Prae
=] Qs x)

n.eXT
A

where e=inf{|x—§&]|: fo, £=(0, 2r)—(cy, ¢5}). Therefore, by (2) in [14.1],

= Q¥0, U.(0)9,
Piu(0o£T, x(a)e )< lbir% Fb, T)=0.
On the other hand, for T>0
Piu(0,<T, x(a0)€ )=PE0,<T, x(60)=])>0,
which is a contradiction.

[14.5] Let f be in By(R) and a be a positive number. Then for a fixed
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positive ¢

S Hg(x, d6)f(8) _
16~z 128 a—b -

where the left side converges boundedly in x.

lim [......B8x dOF®

Proof. By (h.3) in [2.2] and (8.7) in [8.5], we can easily see for a fixed ¢
with 0<c<b<a

1
a—>b

=t | RS OV NN

... HE(x, dOF©

+Slf—x|zs a_cnb_c(n)dng?(nr d&)f(&)

is bounded in b and x for b=[a-+c¢/2, a), and converges to Sle_zm Bg(x, d§)f(&)

as b1a.
For any positive ¢, set

(14.5) r(w)=inf{t: | x(¢t)—x(0)| >¢ and z@t)eD}
for w in W with z(0, w)eD, and
(14.6) v(w)=inf{t: | x(t)—x(0)| >¢}
for w in W. Then, by (1) in [14.1] it is easily seen that for any z in D
14.7) r(@=r(w) a.s. P,.

[14.6] Let P in &, satisfy [V] and [M]. Set y=7.+s for positive a and
¢ with 0<e<zm. Then, there exists a positive constant g,=a.(¢, P) such that

2n —_— Pz(r< O'a) ZpP(a)
(14.8) So m(x, a)lim == — y d"éa(ap, a)?

for any a=<a,.

Proof. By proposition [14.3] and [14.4], we have seen that op and pp are
in M;(R) and therefore d(ap, €), 0(¢p, €) and d(ap, @) are positive. Set

i J0ap, €)%0(pp, €)
““’Mm{ 169 (1) ’1}

and for 0<b<a 7y=7+0df0,, where o is the hitting time of D, Then

Pz(7b<0'a)§]1+fz+f3
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where
Ji=P(1:<00, | x(0)— x| <a, | 2(Ys)—x| Za+4e),

J=P(1v<0a, |x(d)—x|<a, | x(1)— x| <a+de),
Js=Pu1v<0q, | x(0a)— x| 2a).
Since ppa)<pp(l) if a<a,<1 by (2) in [10.15], for a<a, by [1.5] and [13.4]
J=Pv<0q, | 2(0a)—x(1)| 24e)

=E,(HSqp(x({Ts), U4e(x(Tb))c)[(rb<aa))

8apr(a)

1
S/ - N2/ ..\ < .
=5(0‘P, 5)25(‘”}’, G) Pz(rb<0'a)__= 2 Pl(rb<0-a),

and
L=P(|x(0.)—x1 Za)=H%z, Ua(x)°).
Therefore,
P(1<0)=2+2H%z, Ua(x)).
Since 7,17 as b1 0 by (2) in [14.1] and
| x(y, 0)—x(0, W) =a-+5e if Y(w)<o for w in W,

LEP(x(rp)—x| <a+de, 1p<oo)

and . _
loifro‘ L2P(lx(N—x|Sa+tde, y<0)=0,

where P=¢P for P in &#. Therefore we have for ¢<a,
Pz(7’<0‘a)=1bir? P(ry<a.)=2H%z, Uq(x)°).

and by [14.5]

=— Py <o)

[Fmetx, oiim HeG, U |
0 yta a—y a—

dx gZSznmp(x, a)lim
0 yta

éZS:"mP(x, a)B(x, Ua(x))dx

Since |up(§, a)—up(x, a)| =0(op, a) if |E—x|=a by [13.3], we have for a=<a,

S:zmp(x, a)lim de

vte a—y

éa—(—&j—mggznmp(x, a)gB%(x, a)Xup§, a)—up(x, a)}?

_ 2pr(a)

—B(GP’ (1)2 ’
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which completes the proof.

[14.71 Let P in 2, satisfy [V] and [M]. Then for any positive a and ¢
with 0<eZn,

2n a c M_,_
(14.9) [ ez, BaCe, Usasse)dxs g 20 s

for a<a,, where q, is the constant given in [14.6] and U (x)={é€R ; |E—x| <0}.

Proof. Let P=(P for Pin @. Set r=7ass and 7,=r+o¥-0, where Iuss
is defined by (14.5) and ¢, is the hitti_n_g time to D= (b>0). Since |x(7, W)—
x(0, W) =a+5¢ if y(iw)<oo for w in W, by [13.4]

H%z, Usgsse(x)*=P(| x(02)— x| Z3a+8¢)
SP(r<calx(o.)—x(1)| =Z2a+3¢)

A

lim P(1y<0q, | x(02)—x(1s)| Z2a+¢))

il

}i_foll Ez{Hg/'(rb)(x(Tb)y Usca+ex(x(7o))) ] iy g1}

8app(a) R
= e, )o(op, af i Pire<oa)

___8apx(a)
5(.”}’, 6)5(0‘}’1 a)2

Therefore, by [14.5] and [14.6], for a<aq,

pz(r<0a)o

on
[mex, 0)B8E, Usasaalaydx

H%z, Usqis:(x)%) dx
a

27
=S mp(x, a)lim
0 yta -y

16app(a)
5(#?: 8)5(0'P: a)4 ’

which completes the proof.

IA

[14.8] PROPOSITION. Let P in @, satisfy [V] and [M], then P satisfies [ L*]
and therefore [L].

Proof. By [11.10] it is sufficient to prove [L*]. Take e=zn and a=N=n
in (14.9). Then d(u#p, #)=27 and d(¢p, Nx)=2Nr and

< app(a)
= 2N‘*rb

2n
[Tmetx, )B8Cx, Um0
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for a<a, with positive a,. Therefore

S:ﬂmp(x, a)dxg B#(x, d§)  (§—x)

1é-zizliz

Sapp(a)2 = (11x+48Nn)?
= 2x° 4= N* ’

Take a=¢ and d=¢ in (14.9), for a<ayle)

g:"mpu, a)de Bi(x, d&)&—x)?

11r>1é-xi1z1le

< 16(11x ) app(a)®
= o(up, €)o(op, e

Therefore, for a fixed positive ¢ and a=<a(¢)

Bg1e)={"me(x, x| Ba(x, deXe—xr=Kapnay.

1§-z121
Since pp(a) decreases as a decreases by (3) in [10.15], we have
lin‘;n B&(11e)=0.

[14.8] is proved, for ¢ is arbitrary.

From propositions [13.8], [14.3], [14.4] and [14.8], we have the following
theorem.

[14.9] THEOREM. Let P in @ satisfy [V] and [M]. Then P is in P, if
and only if P satisfies [L] and pp and op are in My(R).

Combining theorem [14.9] with theorem [11.7], we also have:

[14.10] COROLLARY. Let P in @, satisfy [V] and [M], then P is Bp-process
with pp and op in M(R).

§15. Processes which satisfy the condition [H.C].

[15.1] Let P in @ satisfy [V] and [M]. Set

M(a, b=sup SHg(x, dEXE~x),

m(a, b)=int SH,?(x, deXE—x)

for 0<b<a. Then
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M(a, b)<2m(a, b)+24xn".

Proof. For fixed a and b with 0<b<a, set

Mr)=|_ Hix, deXe—xr  and

M-(x)=|_ Hi(x, dexe—r.

Then M(a, b)::sgp{M*(x)-}—M‘(x)} and m(a, b):ir;f{M*(xH»M‘(x)}.
By [M], ¢(t)=LgIHg(t, d&)(é—x)? is nondecreasing int. For x<y<x+2r,

M= Hx, dexe—xr+{ _ Hie—xxe—x»
dzy y>ézz

<ol Hs(x, dexe—yy+2]_ Hitx, deXy—xy+@ay
&zy &2Y
<2MH(y)+12z%.
By (p.5) in [1.1], M*(x) is periodic with period 2z. Therefore
MH(x)L2M*(y)+12n%

for any x and y. Similarly we have for any x and y

M- (x)S2M-(y)+127%.
We have
sup (MH(x)+M~(x)=2 igf (M*H(x)+M~(x)+24=>.

[15.2] Let P in @ satisfy [V] and [M] and ¢ be a fixed positive number.
Then for any a and b with 0<b<a=c, M(a, b)<K, where K=K(c) is a con-
stant independent of a and b.

Proof. By §0, 8°, we can see for 0<s<r

S'n*(x)xzdﬂchr2 s

where Czig———lf————du is an absolute constant. For be(-f- c) by (%, 3)
2n®Jcosh u—1 ’ 2°7) ’
in [2.2]
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Me, <sup |° TIiCx, dexe—xy

+ZS:/2 §%(x, dp)HS(y, dO{(E—n) +(p—=x)?}

<c(3 Y+2m(e, % )+zc(2) =C,.

For (0, ¢/2), again by (4.3)

2M (e, ) Z2{sTRux, dmH5Cr, deXg—)
= (stute, dmHin, dO1E—nr—2n—x¥)

= m(c b)—2C(c—b).

NI

Therefore by [15.1]
M(e, b)<2m(c, b)+24x*

_£_8M(c, —;—)+8Ccz+247r2=C2.
For 0<b<a<c, by (h.2) in [2.2]

2M(e, b);ZSH?(x, dn)H(y, dEXE—x)?

gSHg(x, dn)H(y, d&){(n—x\—2A&—n)}

>m(a, b)—2M(c, a).
By [15.1]
M(a, b)=4M(c, b)+M(c, a))+24xn®
<8Max {C,, C,}+24r*=K,

whicn completes the proof.

[15.3] PROPOSITION. Let P in @ satisfy [V] and [M]. Then P satisfies
[H.C] if and only if ap has no discrete mass.

1SWap(d$), up has a continuous
boundary function on @, in D if and only if ¢p has no discrete mass. Assume
that P satisfies [H.C]. For a>0, set

d
Proof. Since E—;up(z) sp(z)=
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up(N, a) if x=N,
fa(x)={ up(x, a) if |x|<N,

up(—N, a) if x<—N
and @y(z)=H*fn(z) for z in D* (N=1, 2, ---). By t_he assumption, ¢x(z) can
be extended to a continuous function in Dt%%=pD% On the other hand,

lup(x, a)—up(§, a)<C+|x—&|. Therefore, for z in D¢={0<y<a, |x|Zr}
and N>r

lura)— gu@I=| | Hix, dO)luste, -7 w@) 6

< C+2N
= (N—=r)

C+2NK

frrscr, dexe—r = it
by [15.2]. The function up(z) can be approximated by @y(z) uniformly in Dg.
Since r is arbitrary, up can be extended to a continuous function on D% Con-
versely, assume that ¢p has no discrete mass. Let f be any function in Cx(R)
and e be any positive number. Set ¢(z)=H*f(z) for z in D® Then, by (3)
in [9.9], for a fixed b<a and z in D?

(15.1) |92(2)| £ Ksp(z).

Therefore, ¢(z) has a continuous boundary function ¢0(x)=¢0(0)+5:g(t)ap(dt) on

d, with ||g|£K. Thus (1) in the condition [H.C] in [3.3] is proved. Note
that by (2) in [9.8], the constant K appearing in (15.1) can be taken so as

_ | @(x, b)) _
K—sgpmécllqﬁu—cllﬂl s
where C=C(P, a, b) is a constant independent of ¢. Let fy (N=1, 2, ---) be in
Cx(R) with fy 11 as N—oo, and set gy=H*fy. We may assume that ¢y is
continuous in D*=D%, Then, by the above remark, the boundary functions
of ¢x’s (N=1,2, ---) on d, and on 9, are equicontinuous. They are also equi-
continuous in D° Since ¢ny(2)11 for z in D, we have @y(x, 0)11 (N—co).
Hence (2) in the condition [H.C] is proved.

Let P be in F, and P=¢P for P in &, and P satisfy the condition [H.C].
For f in Cy(R), set ¢=H*f (a>0). Then by [H.C]and [3.5] we may assume
that ¢ is in Cy(D?). Set A(B)={z=D*; ¢>>B} for any real § and

5.2) { ps(w)=inf {t: 2(t)c A(B)ND} for weW,
(15. _
ps(w)=inf {t: z2(t)c A(B)} for weW.

Then, by (1) in [14.1], for any z in D
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pos(@)=ps¢w) a.s. P,.
For any open set U in R, define 1 in B by
(15.3) U={w: Ll_l:l;l x(6,)€U and x(0)= D},
where ¢, is the hitting time of 0, (¢=0). Then U is in B,, and
M={w: x(o,)=U and x(0)eD}.

[15.4] Under the above assumptions and notations, set To=0¢+04°0,, If
there exists an open set U such that ¢(x, 0)<a for any x in U, then, for any
B>a and z in D,

P{x(a,)€U, ¢(2(s)<B for any s&(ao, 74)}>0.

Proof. Set p=0,+pp°0,, Where pg is defined in (15.2). Assuming
PAx(ao)EU, ¢(2(s)<B  for any s&(ao, Ta)}
=P(x(0)€Upzr)=0,

we shall show a contradiction. For b<a set

po=p+0°0,
and
T3 =00+0v°0,,,

where ¢, is the hitting time of Dt>=>. By (2), (3) in [14.1] ps! p and 7, g
as bl0.

1° Using [1.5], we have
Ez(f(x(fa))lu(ao)em)
=Ez<f(x(fa))1(z(ao)EU. p<ra))

=lbi§1 Ez(f(x(ra))l(pb<ta,I(ﬂo)EU))
:1}_{1} EzEz(pb)(f(x(Ta)))I(Pb<ta'”u))
=l}£1;1 E2(¢(Z(pc))1(pb<ra, z(ao)EUl)

=Ez(¢(z([0))][z(ag)éy. ﬂ<ra))
> BP(2(0)EU) .

2° Similarly, we obtain
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E(f(x(ta)izcopem)
=E(f(x(ta))In)
=1}£I‘} E (¢(z(zs)1u)
=1}gl E ¢z N 2o pen)

:Ez(¢(z(00))l(z(ao)€Ul)
<aP,(z(a,)cU).

Since P/z(c,)U)=PE*z(a,)<U)>0, by 1° and 2° we have a contradiction.

[15.5] Remark. Replacing ¢ by —¢ in [15.4], we also obtain: If there
exists an open set U such that ¢(x, 0)>a for any x in U, then, for any f<a
and z in D,

P{z(0,)EU, ¢(z(s))=p for any s&(ao, 74)}>0.
[15.6] PROPOSITION. Let P in @, satisfy [H.C], then P satisfies [M].

Proof. Let f in Cy(R) be any nondecreasing function and set ¢=H*f
(a>0). We may assume that ¢ is in Cy(D*) by [H.C]. Assume that there
exist x; and x, in R such that ¢(x;, 0)>¢(x,, 0) and x;<x.. Then there exist
open intervals J; and J, with Jiex, (:=1, 2) and /;NJ,=@ and a and B with
a<f such that ¢(x, 0)>f8 for x in J; and ¢(x, 0)<a for x in J,. Take @ and
B such that a<a<jf<p. Then by [15.4] and [15.5]

A={w: 2(00)= i, ¢(2(s))= B for any s&(ao, Ta)}
and
Ay={w: 2(00)E J;, ¢(2(s))=a for any s&(ao, Ta)}

have positive probabilities (P,, z&D). Especially they are non-empty sets. Take
i, from A, and @, from A,. Then curves

Ci={z(s, W,): 0o(W,)Ss=Ta(W1)}

and
Co={2(s, Ws): 0o(W2)<SZTa(Ws)}

in D® both start from 9, and end on @, and they can not intersect. On the
other hand, by construction of J; and J,,

x(o(,), W) <x(0Ws), W) and x(ta(W,), W1)>x(Ta(Ws), W),

since
f(x(fa(wl); W)= E>d§f(x(7a(wz); W) .

This is impossible. Therefore ¢(x, 0) is nondecreasing. Then
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&(2)=8I1%f(x)+8II156(-, 0Xx)

is also nondecreasing, which completes the proof.

[15.7] Let P in @ satisfy the condition [M]. Then for any fixed positive a

(15.3) lim sup H%z, Uq(x)9)=0,

a- 26D

where Uy (x)={é<R: |f—x|<a} and z=(x, y).

Proof. Set H(z, a)=H%z, [a, «)), then H(z, a)is increasing in x by [M]
and H(-, a) is bounded harmonic in D® with 0=<H(z, @)<1. Therefore H(-, a)
has a monotone bounded boundary function Hy(x, a)=H((x, 0), @) such that

(15.5) H(, ), )=§TI5(x, [a, <)+ | TI)(x, dOH(E ‘@).

We may assume that Hy(x, a) is right continuous in x. Since H(z, a) (0£y<a)
is increasing in x, decreasing in a and H(z+2x, a+2x)=H(z, a), we have
(15.6) H((O, y), a+2x)<H((x, ), x+a)<H(0, y), a—2r).
Also, by (15.5), lim Hy0, a)=0 holds, for lim H(z, a)=0 holds for zeD®. By
(15.5) and (15.6)
a a
H(O, 3), @SSTIO, [a, < )+SII(0, [ 5, ))+H(5, a)
< S“’ _de
ajzcosh (n&/a)—1

and lim k(a)=0. Therefore, by using (15.6) again, we have

a0

+Ho(0, §~2z)=k(a)

0<lim sup H(z, @)<lim sup H((0, y), a—2x)

a-co 2€D% a-x 0<y<La

<lim k(a—27)=0.

aA-»00

In a similar way we can show

lim sup H%z, (—o, —a))=0.

a-o00 2D

[15.8] Let P in @, satisfy the condition [H.C]. Set
7«(W)=inf {t: | x(t)—x(0)| Za}.

Then lim sup Py7+<04)=0.

a- 2D

Proof. Set Ta,p=Ta+0¥-0,, where of is the hitting time of D= (b<a).
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P(ta<00SP(1100)—x1 2 5)+P(Ta<as |(a0)—x1<5).

Since |x(74)—x(0)|=a if 7a<co in W, noting 7..»l7. as b0, we have by
[1.5]

P(r.<0e, |3(00)—x1<7)

<lit P(7a0<00, 15(00)= 51 <5, |6(Ta)—x1 > 2a)

°la

im Po(7e.0<00, 1%(00)—5(a)| Z5)

IIA
la

=tim Eu{ 17, 1001 Prcra, | 50— 2(0)| 25 )}

-0

< sup H%z, Uax)°).

zeDe
Therefore
P14<04)<2 sup H¥z, Uas(x)).
2eD%

[15.8] follows from [15.7], for P satisfies condition [M].

[15.9] PROPOSITION. Let P in @, satisfy [H.C]. Then P satisfies [V,]
(r=1, 2, --).

Proof. Define 7. and 7., as in [15.8]. By [15.8] we can take a so large
that sup P,(7e<0,)<1/2. Then, by [1.5],
zepa
Pz(rz(n+1)a<oa)
gli_rn.Pz{rzna,b<Tz(n+1)a<aa; lx(rzna,b)’—x | <(2n+l)a}

b0

<lim P_z{rzna.b<72na,b+ra° 072na:b<a“}

b-0

=1bill;l Ez{l(rm,,,Kaa)Pz(rma,b)(7a<0'a>}

.15
§11_U01 ’2_Pz(72na,b<0'a)

-

1=
_Pz(r2na<6a) .

By induction we have
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sup Pz(nna<oa)<2i,,.
Since
P x2(00)— x| >2na) S P(122a<04),
we have

SS&SH “(z, dENE—x)" = 20{2<n+1>a}“21—7.<w .

Combining [15.3], [15.6] and [15.9] with theorem [14.9], we have proved the
following theorem.

[15.10] THEOREM. Let P be in @. Then, P is in P, and satisfies [H.C] if
and only if P satisfies [M], [V] and [L], pup and op are in M(R) and op has
no discrete mass. In this case, P is a Bp-process.

By theorem [3.12] and [4.10], we also have:

[15.11] PROPOSITION. If P in @ is a Feller process on D with continuous
path functions in the sense that P is in P, and satisfies [C], then P is Bp-process
for which pp and op are in M(R) and op has no discrete mass.

YV Construction of B-processes.
§16. Construction of processes P, g

We begin by giving several notations and lemmas. Set

Cr:{fe C(R): sup 1‘_{(1);)”, <oo},
* — - 3 f(x) —
C"{fcc“ Mmoo —0}

and set llf,]]zsgp ll—lj—((ljjc)lt (r=0,1, 2, ---). Then C, and C} are Banach spaces

with || ||--norm.
[16.1] C:‘CCTCC;F'FI)
Cx(R) is dense in C¥,
1
Co=Cy(R) and | =71 1-

By an operator A on C, (or C¥), we shall mean a linear operator A from
C, into C, (or from C¥ into C¥). Set
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i _
1All,= Sup = TP and [A[|=[Al,.

We shall say:
A is monotone if Af is nondecreasing for any nondecreasing f.
A is positive if Af is nonnegative for any nonnegative f.
A is periodic (with period 2x) if Af..(x+2n)=f(x), where f..(x)=f(x—2r).
[16.2] Let Q(x, d€) be a positive kernel on R X B(R) with ||Q|=sup Q(x, R)
<o, If supSQ(x, dé)|E—x|"=k<co for rz=1, then Qf(x)ng(x, d&)f(§) is
well-defined for f in C, and |Qf||-=2"-'(|Q|+A)lIf]l- holds. Moreover Q is
an operator on C%.
Proof. 1If f is in C,

+I€1"
I+|x|"

I+|x["+[é—x]"
1+x7

|Qf(x)
LB i, dorg

<2771, {Qex, dg)

271 RQI+RI S - -
If f is in C¥%, then

QA=A Qx, do+ sup 17@1IQI

< 1A1JQx, de)e—x17+ sup 1/@IIQ

and llm  [Qf(0)] =

is in C*.

NTu flISQ(x, d€)|é—x|". Since r=1 and N is arbitrary, Qf

[16.3] For »=0, let A be an operator on C, with [|Al,<co. If Af=0
for any nonnegative f in Cx(R), then there exists a unique positive kernel
Q(x, d&) on RXB(R) for which

(16.1) Afx)=(Q(x, dof®

for f in C¥ If, moreover, A is periodic, then @ is periodic (that is,
Q(x+2r, dé+21)=Q(x, d§)),

jsup @z, d§)16—x17 <2 (1477 Al

and A is an operator on CF%.



450 MINORU MOTOO

Proof. It is obvious that there exists a unique positive kernel Q(x, d§)
with |Qll=sup Q(x, R)<oo for which (16.1) holds for f in C¥. Set ¢y(x)=

%_%)-. Then ¢y is in C¥ and
(16.2) foc, aga+1g1=tim [ocx, do)pn(®

= lim Agw(x)

SA+1xINDNAll<eo.

Therefore, approximating any function in C¥ by functions in C¥ in || ||,-norm,
we can see that (16.1) holds for any f in C¥*. If A is periodic, then @ is ob-
viously periodic and by (16.2)

sup [Q(x, d)le—x1"= sup (Qex, dg)1e—x1"

<27 sup |Qex, dex(g17+2")
=27 a7 (14m ") All - -
By [16.2] A is an operator on C%.
[16.4] Let Q and S be positive kernels on R xXB(R) with ||Q|=sup Q(x, R)
<co and ||S||=sup S(x, R)<co. If
sup [Qx, d)lg—x1"=kq<o and sup [S(x, d8)|g—x|"=ks<co

for some »=1, then

(16.3) [osr, dgie—x17 2kl SI+RsIQD)
and
(164 Jorcx, done—sx1msnr kol

Proof. We have

Jos, aoe—xim=2r [, dnst, dexin—x1"+16=21")

=27 Y kolISI+RsQ1D
and
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Q"(x, d§)|é—x|"

C ey

<17 {Q(x, d8)QE, d8) -+ Qeas, 483 18 —Ea-ul")

Sa"tenkelQt (Go=x).
For f in C(R), set
(16.5) 1flloycr=_sup [f(E)I,
§eU p(2>

where Up(x)={E€R: |E—x|<p}.

[16,5] Let A and B be bounded operators on C,. For given x=R and
e>0, assume that

"Af”tlp(méh”fllUp+5<x>+5A]|f“
and
“Bf”t/p(z)éTB”f“Upﬂ(z)‘i‘asllf”

for any »>0 and f in C,. Then,

(16.6) IABfllypcor ST fllw pieecer OIS,
where ¥=747z and 6=7405+04| Bl, and
(16.7) 1A" fllo o> STall fllp pinecar+0all £

where 7,=7% and
On=% 72 Al+ - +7al A"+ A" 1)04 .

Proof. Since
IABfllopco> STall Bf llgyiecor+0ull BSI
<145l f oy szecar+05l £ ID+04I BIIf
STa7l fllv iz + (V405 +04I BDIFI
(16.6) is proved. (16.7) is obtained by induction.

[16.6] Let f be in C*R). Then for any K+0

£ 1S e 30, | FO1 + 51 _sup_1776@),

z, 2+K] &

where [x, x+ K] is replaced by [x+ K, x] if K<O0.

Proof. Since f(x+K)=f(x)+Kf"(x)+(1/2)K?f"(&) for some é=[x, x+ K],
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[16.6] is obvious.

In the following, C.’s (k=I, 2, ---) stand for absolute positive constants
and C,(x)’s for positive functions which depend only on x. Set for a>0

(-] l N
~a — —tja_ = -z gy -vZjalz|
(16.8) F(x) Soe Spme M di=v/a]Ze .
By §0, 8 and (16.8), we can easily obtain:
[16.7]

L S“ﬂ”(x)lxl"dxécl(r)a’ (0<b<a, 0=7),

@ Sq“(x)fxf’dxgcl(r)ar" (0<a, 0<7),

@ [prlsrarscinar 0<e, 220,

@ [gmixrds=cmarm 0<a, 00,
For positive &

®) sze“fr*’(x)dxg(;z(e, a) (0<b<a),

® | st 0<a),

@ | prowdrsCie, 0 0<0),

® | zdzscds ) 0<a),

where lim =0 for any s>0.

a-0

For positive a and xR set

Cye, a)
as

(16.9) Gern=\a2e— 0 @dg=E2([Te-ter(xtar),

where (P£!, x(2)) is the one-dimensional Brownian motion starting at x. P%f
and Q®f are defined as in (8.3) and (8.4).

[16.8] For f in C,
(L) IR SN, NSTIE SIS Colr)XA+aN f1+ 0<b<a, 07),
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@ 1l SCI—tanlfl,  (0<a, 057),

@) P fIl-=Cyr)al+anlf"ll,  (0<a, 0=r, f7€C,),
@ 1Gefl.=Cyral+a™®|fll,  (0<a, 0<r).
For f in C, and positive p and ¢

) 18T vy 13T f o yr S Call flloucmrt Cile, DIFI (0<b<a),
©) 10 Floyco= +(Cillflgyuucort Cle, DS (@>0),

D) NP flloyer=a(Call f"luyser+Cole, I F"I)  (a>0, f7€C0),

® 16fllyyrSa(Cull FlloyyucartCole, NS (a>0),

C5(6, a)
as

where lixrol =0 for any s>0.
a—

Proof. We shall prove (3) and (7). The rest are easy to prove. By (3) in
[16.7], we have

1Pefl =7 PeCx, deXS@—F(x)— (=) ()
a ” (x—f)z
=[Pecx, ao) sup 1770015

<ol Pee, a9 ES (11174161

SC N CL2)a(1+ x| ")+ Colr+2)a™ H f7 -
Similarly by (3) and (7) in [16.7]

1P oy S 17 oo |PoCr, a0 E 1| po)S a

1z

<a(CI Moy cot+ Cle, DISN).

[16.9]
(1) For f in C, and 0<b<a
(16.10) Q f=QIIsf .

(2) For f in C¥R) with f”€C, and 0<b<a

(16.11) Pef =P+ QST +(5— 3 )f -
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Proof. By [16.1] and (2) and (3) in [16.8], it is sufficient to prove (16.10)
for f in Cg(R) and (16.11) for f in C%(R). (16.10) is a consequence of the
relation

af[e=TT12¢TI¢  for 0<c<b<a.
For f in C%(R) and 0<c<b<a

fermecs, dexs@— sy

=41 (x)— 5 f(x)

a—c¢
a

=0TI8f (2)+3T12 §T15/ (x)— f(x)

=oIm2 (x, deXS@— FENHIR S+ (S~ 5) 7).
Therefore

Pe ()= lim —(§TT2 x, dEX/ @ (x)

=Pf(0)+ QI )+ (5 — ) (2.

In the following assume that functions a(x)and §(x) in C3(R) with a(x)>0
are given and fixed. Set a*=sup a(x) and ax(x)=inf a(x). Then a4 is positive.
x x
Hereafter K,’s (=1, 2, ---) stand for positive constants which depend only on
a*, ax and ||Bll, and K (x)'s (j=1, 2, ---) for positive functions of x which
depend only on a*, ay and |B]. Define for a>0

e ds )
+ 2a(x(5) bt ]

(16.12) Gafu):Eg-l[Soexp {—S
Then by Kac’s theorem we immediately have:

[16.10] For f in C, and positive a, G*f is in C¥(R)NC, and it holds that

1 4
(16.13) (z—a piee

)Gaf=f.

[16.11] For any r=0 and f in C,, G*f is in CXR)NC, and for 0<a<l
@O G flr=aKiMIfl+,

@2 WGt Y=V aK@fl-,

@ WGl =KMIf -
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For any f in C,, any »>0, ¢>0 and 0<a<1,
@ NG flluyo=aksl flly, e+ Kile, Al fI,
G) MG fY vy =V a Kl flly s ecart+Kile, alf1,
6) G fY llvpeor =Kol fllvyecor+ Kile, @IISfI,

where linolKS(TiQ:O for any s>0.

Proof. Since
(16.14) ]G“f(x)l<G"lfl(x)S G‘“‘*lfi(x),

G°f is well-defined for f in C. and (1) holds for 0<a=<1 by (4) in [16.8]. If
f is in C,, then by (16.13)

(16.15) (G fY (x| < (——]G“f(x)l +|f(x>|)

and (3) is an immediate consequence of (1). Taking K=+/a¢ in [16.6], we get

(1616)  1(GY(NIS g s GO+ sup 1GHE).

éerz, z+val

Hence (2) follows to (1) and (3). For f in C,, take a sequence {f,} in C, such
that f,—f in C,4;. Replacing » by »+1 in the above argument, we can see
that G%f,—G%f in C.4, and {(G*f,)'} and {(G*f,)"} converge in C,;,. There-
fore G°f is in C*R) and (16.15) and (16.16) hold for f in C.. (2) and (3) can
be easily proved for f in C,. (4) is a consequence of (16.14) and (8) in [16.8].
(6) is proved by (4) and (16.15). For f in C,and a=<(e/2)* we have by (16.16),

WG £Y g yerr < = \/f 1G% F oy eracar+ Vo “/" IG1) 5115 -

Therefore (5) is obtained from (4) and (6).

[16.12] Remark. In a way similar to the proof of [16.11], we can show
(16.13) also holds for f in C,.

[16.13] Set F*=P*+pB(x)Xd/dx). Then for 0<a=1, r=0 and f in C,
1) [F*Gfll, <va KIf]-

For 0<a<l, »p>0, >0 and f in C,
@) IF*G*flly =V a K& f v+ Kile, DIfI.

Proof. (1) is a consequence of (3) in [16.3] and (2) and (3) in [16.11].
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Applying [16.5], we have, by (7) in [16.8] and (6) in [16.11],
PG fllypcer = aCuell fllvpiecas

+(aC.K(5, a)+a°Co( 5, ) KO)ISI -
Combining this with (5) in [16.11] we can prove (2).
[16.14] For any »=0, there exists Kg(») such that for 0<a< Ky(r)

(16.17) i |FeGe|r< oo .

Set L“f:né (FeG®)»f for f in C, and 0<a<Ky). Then

D) ILefl KU f I

@) IGeLefll-=aK®)l Sl

@) G Lo Sy =aKileX flly precr+ a1 F1D.
(4) GeLef is in C(R)NC, and satisfies

(16.18) (o fos e P Dgorep=—y .

Proof. Take Ky r)=Min(l, 1/2K(r)*). By (1)in [16.13], (16.17) and (1) are
obvious. (2) is a consequence of (1) and (1) in [16.11]. By [16.5], [16.11] and
[16.13], for f in C,

2
HG“L“fIIU,,mgngo IGHFGY fllypcor+IGHFGP LS|
éaKzl]fllva(z)-l-as’ZKzKe(s)Hvapmm
+aszKe(€)2]|f|lvp+ss<z>-l-(K’(s, a)+a* 2K (0) K0 KON f 1l »
where lirrg (K'(e, a)/a®)=0 for any s>0. Thus (3) is proved. Since L¢f is in

C., G*L%f is in C¥R) and by remark [16.12]

(_1__ai)GaLaszafzf_FFaGaLaf
2 dx?

=f+PUGoLef )+ B(GLof).
(16.18) is proved.

By construction it is easily seen:
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[16.15] G©%L* is periodic as an operator on C, (=0, a< Ky(r)).

[16.16] For any positive a there exists a positive kernel H%(x, d&) on
R xXB(R) with the following properties:

(1) H¢ is a periodic probability kernel.
(2) H¢ is monotone.

@) sup (Hi(x, dO)lg—x17<eo (=12, ).
(4) H¢ maps C, into C, (=0, 1, 2, ---) and C¥ into C%.
(5) For f in C,, ¢=HEf is in C*R) and satisfies
(16.19) a(x)¢”(x)+}9(x)¢’(x)+P“¢(x)+Q“f(x)—%gﬁ(x):o.

(6) For any positive ¢
S\E-zl> H(x, d§)<a**Ki(e).

Moreover,
(7) A kernel H%(x, d€) is uuiquely determined by the properties that H¢
maps C¥ into C¥NC*R) and ¢=H{¢f satisfies (16.19).

Proof. 1° Unigqueness Suppose that there exist two kernels H§ (=1, 2)
satisfying conditions in (7). For f in C¥%, set ¢=H&f—H&f. Then ¢ is in
C¥N\C¥R) and satisfies

(16.20) ayr+5+ P §=0.

Therefore, ¢ can not take positive maximum nor negative minimum, and hence
¢=0. (7) is proved.
2° For any given r (r=0, 1, 2, ---) take K’(r)=31§/li?1](8(s), where Ky(s) is

given in [16.14]. ~For a<K'(r)set Hf=G*L*Q%f. Then, by (2) in [16.8] and
(2) in [16.14], [|HfIIs=K"()|f|s for f in C; (s=0, 1,2, ---, r+1). Moreover,
by (4) in [16.14] Af is in CXR) and satisfies (16.19) for f in C,; and by

[16.15] H is periodic as an operator on C,,,. If f is in C’ C, v(R)CC, and
N=1

nonnegative, then ¢=I-7 f is in \U C,p, » and satisfies
N=1

1
ap”+pg'+Prg——p=—Qf=0.
Therefore ¢ can not take negative minimum and Hf>0. Since any function in

Cx(R) can be approximated by functions in OC,,, ~ in C¥,-topology (r=0),
N=1
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we have Hf >0 if f is in Cx(R). Now, applying [16.3] to H (where_r is re-
placed by r+1), we see that there exists a positive periodic kernel H%(x, d§)
such that

Hf(x)=H3f(x) for feC,CC¥,,
(16.21) sup |A5(x, do)lg—x17 <K )

and H§=H maps C¥ into C} by [16.2]. The function ¢=H§l—1 is a solution
of (16.20) and in C,(R). Therefore by maximum principle H%1=1, or H¢ is a
probability kernel~. Now for K'(0)=K'(1)= --- ZK'(r)= --- >0 we have con-
tructed kernels H%(x, d§) (0<a<K'(r)) which satisfy (1), (3), (4) and (5) for
fixed ». By (7) they are independent of » if defined.
3° Using [16.5], we have, by (2) and (6) in [16.8] and (3) in [16.14],
”ﬁ%f"tfp(x):”GaLaQaf”Up(x)
SKi(eNCull fllopsse crH(Co(e’, @)+2a°CONNf 11}
for any f in C,. Take p=¢’, e=4¢’ and f in C, with
{ 0 in Us.(x),

f= )
1 in UJ(x)°.

Then
Sle_meﬁ%(x, dE) XK ®(e)a*® (a<K'(0)).

Thus (6) is proved.
4° We shall prove (2) for small a. _Let f be in C¥R) and nondecreasing.
For a fixed a with 0<a<K'(1), set g=H¢f. We shall show thatllim ¢’ (x)=0.

There exists p= Lllrolo f(x) and e
po—pls| A, AU @-pl 201 H, dO).

Therefore, for any positive K
— 1(x
lim | ¢ — <201 5 A0, d9)16—x1,

and lim ¢(x)=p. Similarly we have lit_n o(x)= 1ir_n f(x). Noting (3) in [16.11],

we have

l¢” =G LeQ /)" I < KON LM QNN Il <oo

and [¢'(x)—1/e(d(x+e)—@(x))| Zellg”]|l. Therefore, IE@wqu'(x)lés!lgﬁ”ll for any
positive ¢, and .L‘,m ¢’(x)=0. Since by (16.19).
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1,1
¢'=— (79— —P9-Q"f),
¢ is in C*(R). Differentiating (16.19), we also have
a¢lll+(ﬁ+al)¢ll+(ﬁ1_%)¢I+Pa¢l:_QafI§0.

Take a<Min {K'(1), (1/(1+]p’)}, then ¢’ can not take negative minimum..
Since we have seen that ¢’ is in C¥, ¢’=0 or ¢ is nondecreasing, (2) is proved
for

0<a§1%=Min{K'(1), ﬁh}

5° Let a be any positive number. For a fixed »r (=1, 2, ---) take b so
small as b<Min{ea, K, K'(r)}, and set

Hi= 3 (A STI A3 $11¢ .

Since H? ¢TI¥x, R)=(a—b/a)<1 and it eT1¢(x, R)=b/a, H? is well-defined as
a periodic probability kernel. Using [16.4], we have by (1) in [16.7] and (16.21)

sup [He(r, d@)lg—x]7<oo.

Noting [16.2], we see that H¢ satisfies (1), (3) and (4). (2) is obvious, since
Hj, TI) and ¢II¢ are monotone. Set ¢=HEf for j: in C,. Then ¢=
HYSTI3¢+9T1¢f). Since we have already seen that H} satisfies (16.19), ¢
satisfies

1
ag”+ '+ P+ Q (AIIg+¢ gf)—*b—¢:0
and by [16.9] ¢ itself satisfies (16.19). Hegce (5) is proved. By uniqueness, we
see that H¢ is independent of b and H¢=H? if the right side is defined. (6)
is trivial, since it holds for ¢<K’(0) by 3° and H¢(x, R)=1 for any a.
[16.17] Remark. By (16.21) it holds that for 0<a< Ky, (»)

sup [Hi(x, d)le—x1"<Kr),

where the right side is independent of a.

By the explicit form of "#%(x) in §0.8° and the definitions of P and Q7 in
(8.3) and (8.4), we can easily show:

[16.18] Let f bein C, and g be in C.NC*R). Set u(z)=34I15f(x)+I1jg(x)
for z in D% Then u is well-defined and harmonic in D* and %, #,, u., and
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u, are in C(D'*). Moreover, u(x, 0)=g(x), uz(x, 0)=g"(x), uz(x, 0)=g"(x)
and

1
uy(x, 0)=P“g—;g+Q“f-

[16.19] THEOREM. Let a and B in Ci(R) with a>0 be given, and HY be
the kenel given in [16.16]. For any positive a and b with 0<b<a set

(16.22) Hy=4¢TI5 4+ ST  H§
and
(16.23) H%(z, d§)=H(x, d§) for z in D°.

Then H={H%(x, d€)} belongs to 4. P=P(H) satisfies [M], [V.] (r=
1,2, ---) and [L*] (and therefore [L]). Moreover H satisfies:

(1) For any f in C, (r=1, 2, --) set u(z):H“f(z):SH“(z, d8&)f(&). Then

U, Uy, Uzr and u, are in C(D™*) and u satisfies

(16.24) a(xX)uz(x, 0)4B(x)u(x, 0)+u,(x, 0)=0

on ao.
H in 4 is uniquely determined if (1) is satisfied for any f in Cu(R).

Proof.

1° Let H satisfy (1) for f in Cy(R). For f in C, x(R), u=H®f is har-
monic in D?® and C, y(R) (N=1, 2, ---). Since u=f on 0, and u satisfies (16.24),
we can easily show, by maximum principle of harmonic function, that u is
uniquely determined. Probability kernels H%z, d€)'s (a>0, z€D?®) are also
determined, since f is arbitrary in %}Cp.N(R).

2° In the following, let H={H%z, d§)} be defined by (16.23). Then by
definition and [16.16], H satisfies (h.1), (h.3) and (h.4) in [2.1]. For f in C%,
set w=Hf, ¢=H4f, d=H'H{f and ¢=H{H{f=H{GI¢+5II8S) (6> a).
Then u and # are harmonic in D°, u(x, b)=H*f(x, b)=1i(x, b) on 9, and u=¢
and #=¢ on d,. By (5) in [16.16] & and ¢ satisfy

(16.25) ad"+p¢'+P'¢+Q (§IIsp+35 gf)—-z—¢7=0-
(16.26) a¢”+,@¢’+P“¢—|—Q“f—%¢=0.

By [16.9], (16.26) is transformed into

(16.27) ag"+ B4+ P+ QLI+ ST1E ) 1 $=0

By (16.25) and (16.27)
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o~ 1~
a(¢”—@")+ B¢’ — ')+ P (p—@)— ?(¢-¢)=0 .
Since ¢—g§§ is in C¥ by (4) in [16.16], we can show ¢=$ by maximum principle.
Therefore u=# and H*=H°H*® in D*. Hence (h.2) is proved.
3° For fin C, set u=H*f and ¢=H{}f. Then u(z)=4T1%f(x)+3T150(x).
By (4) and (5) in [16.16] ¢ is in C*(R)NC, and satisfies (16.19). On the other
hand, by [16.18], u, u,, u, and u, are in C(D™**) and u=¢, u,=¢’, U.=¢"
and u,=P%%+Q*f—(1/a)p on 0,. (16.24) is a consequence of (16.19).
4° Since H¢E, ¢T1¢ and ¢TI are monotone, H satisfies [M]. Using [16.4],
we can see by (1) in [16.7] and (3) in [16.16] that H satisfies [V,] (r=1, 2---).
Especially by [16.17], we have
(16.28) sup SH“(x, 48)|e—x|"SK.(r)  for 0<a<Ku(r).
On the other hand, by (5) in [16.7] and (6) in [16.16]

S 2aT?a(x, d&)< Cyle, 2a),

1§-z12¢

Slé—xlzszgng(x’ dﬂ)Hga(ﬂ» d&')
g(Slﬂ-xlze/2+Slé-m;s/z)z%l—[g(x, dﬂ)H%a(m de)

<Ci(5, 20)+Ku(5 )@ar”,

where ¢ is a fixed positive number and lin}(Cz(e, a)/a®)=0 for any s>0. There-
a->
fore we have

Sw- 12 H2%x, d&)<K'(e)a®?.
For a=K.x(9)

Sle—mzs H%'a(x’ d’f)(&-*x)z

g(Sa-1/6>1£—z|zs_l-Slé-x|2a—1/6>H3a(x’ dS)(S_x)2

ga*/“/sK’(e)+a”‘*SHi"(x, dE E—xYy
< a"“(K’(e)-l-Km(?’)) .

Hence Lmol sup %SH?.“(x, déXé—x)Y=0. By proposition [11.11] H satisfies [ L*].
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[16.20] DEFINITION. Let « and B be in Ci(R) with a>0. P. s is the
process such that He. g=H(P.,p) satisfies condition (1) in [16.19]. Combining
theorem [16.19] with theorem [11.7], we have:

[16.21] COROLLARY. P, s is a Bp-process.

§17. Existence of B-process (1): Smooth case.

Let ¢ and g be in My(R) with g(dx)=s((x)dx and p(dx)=mx)dx. We
shall assume s, and m, are C3(R) and positive. For any constant k, set for
zin D

2n

mia)= " Rmo@ds,

1)={ Eemie)de—t,
(17.1) \

s@=|, hgs@e,

()= E@su@ds+

Then, they are in C<(D), and m, and s, are boundary functions of m and s on
00, respectively. Let /, and ¢, be boundary functions of / and ¢ on d,, respec-
tively. Since {o, ¢} satisfies the condition [P] in [5.11], there exists a non-
negative minimum solution U=U" in D of

U.=mt+ls,
(17.2) {
Uy,=ms—It.
Set, po=p«0, ¢, k), that is,
(17.3) Zﬁpozgan“(x, 0)so(x)d x= inf SU°(x, 9)s(x, ¥)dx.
0 y>0

Take any positive p with p>p,. Then by definition [4.19] B={a, g, &k, p} is
in B. In this section we shall construct B-process for this B.
Set Ug=p—po+U°. Then Uy is a solution of (17.2) with

2 p= inf SHUB(x, ¥)s(x, y)dx
y>0 Jo

Obviously, U is in C;‘;(ﬁ) by (17.2) and Uz>0 in D for p>p,. Define @ and B
in C3(R) by
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1
a(x)=——so(x)mo(x)UB(x, 0),
(17.4) 1
B(x)=——<(to(x)—a(x)sy(x)).

So(x)

Then a and B are in C3(R) with a>0. By theorem [16.18] we can construct
P=P, 5. Since P satisfies [M], [V] and [L], Bp={0p up ke pp} is well-
defined and belongs to B. Moreover P is Bp-process (c.f. [16.217). In this
section, we shall show that B=Bp. Set H=H(P, p)={H%z, d§)}.

[17.1] For f in C(R), set ¢=H°f. Then ¢, ¢., ¢.. and ¢, are in C(R)
and it holds that

(17.5) (a my @z)ztmepy—Lipo=0  on d,.
Proof. By theorem [16.19] ¢, ¢., ¢., and ¢, are in C*R) and

(176) a¢xz+,8¢x+¢y:()
holds on d,. By (17.2) and (17.4)

(amoso)’ =Up, (%, 0)=moto+1ose
and
as¢+Bso—1,=0.
Eliminating #,, we have

(17.7) (amo)," Bmo_lozo .
Eliminating 8 from (17.6) and (17.7), we have (17.5).

[17.2]
p=pp k=kp m=mp and [=lp,

Proof. For f in CYR) set ¢=H*f. By [8.7], Green’s formula and [17.1]

“Om(x, QB8 (0)+i(x, a)f (x)dx

ey

:S:"(—m(x, Q) (x, a)+i(x, a)ps(x, a))dx
=S:n(_m°(x)¢y(x’ 0)+lo(x)¢x(x, O)dx

=S:”<am.,¢x<x, 0))2dx=0.

Therefore by (3) in [8.17], we can see
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m=mp and l:lp,

and therefore p=pp and k=*kp.

[17.3]

6=0p, S=Sp and i=tp.

Proof. Define u by u.=s, u,=—t and #(0, 1)=0. Then u is harmonic in

D, u(x+2x, v)—ulx, y)—_—S:"su, y)dx=2r and u,=s>0 in D. By (17.4)

auzo(x, 0)+Bus(x, 0)+u,(x, 0)
=asi+Bso—t,=0.
Set v=H®u(-, a). Since v(+, a) is in Cy, v, v, Uz, and v, is in C(D) and
avzo(x, 0)+Bv.(x, 0)4v,(x, 0)=0

holhs by theorem [16.19]. Since w=wu—v is harmonic in D% and belongs to
Cp(D*) and w=0 on 9,, we have w=0 or u=v by maximum principle. That
is, u is in H,, We have u=up by theorem [9.5]. Therefore s=sp, t=1p and
G=0p.

[17.4] :
UBZUP and p=>pbpr.

Proof. Since Up is a solution of (17.2), we have
Up=Up+C
for some constant C. Therefore Up is in C3(D) and
Up(x, 0)=am,s,+C.
Set g=Hf for f in C,(R), and let V be any solution of
Ve=—m@,+Id:,
{ Vy=md,+ig,.
Then V is in CY(D), and by [17.1]

(17.8)

Va(x, 0)=—mep,(x, 0)+Lp(x, 0)
=(amep(x, 0))z .
Therefore, for some constant C,

Vix, O)=amp.(x, 0)+C;.
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Since P is Bp-process, choosing a suitable constant C,, we have by (7.1)
V(x, 0su(x)=Uslx, 0)g.(x, 0)
or
(17.9) Cis(x)=Cga(x, 0).
Integrating the both sides from 0 to 2z, we have
2rC,=0 and Cég.(x, 0)=0.

If ¢.(x,0)=0, then by (16.24) in theorem [16.19] &,(x, 0)=0 and ¢ is a con-
stant function. Therefore, choosing nonconstant f in C,(R), we may assume
&.(x,, 0)#0 for some point x,. Then C=0. Therefore we have

UBZUP and Dp=>ppr.

By [17.2], [17.3] and [17.4] we have proved B=Bp. Therefore we have
the following theorem.

[17.5] THEOREM. Let B={a, p, k, p} in B with the following properties be
given: a(dx)=sx)dx and y(dx) mo(x)dx, s, and my are in C3(R) and positive
and p>poo, g, k), where po(a, u, k) is given by (4.14). Then, there exists a
unique B-process P. Moreover P=P, g, where a and B are defined by (17.4).

[17.6] COROLLARY. The B-process given in theorem [17.5] is in P, and
satisfies [M], [V,] (r=1, 2, ---), [L] and [C].

Proof. By theorem [16.19], P=P, g satisfies [M], [V.] (r=1, 2, ---) and

[L]. Since B=Bp o and g are in M(R) and ¢ has no discrete mass, we see
that P is in @, and satisfies [C] (and [H. C]) by theorem [15.10].

§18. Existance of B-process (2): Case when ¢ and g are in M(R).
For P in &, set

(18.1) M(a, by=sup |H5(x, de)Xg—xy

as in §15. The following lemma gives another bound for M(a, b) (cf. [15.2]).
[18.1] Let P in @ satisfy [M] and [V]. Then fore 0<b<a

M(a, )< Ci(a)pp(a)+Caa),

where C,(a) and C,(a) are constants depending only on @ and pp(a) is given
in [10.14].
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Proof.

1 (2= sinh a
se(x, a)= 27:80 cosh a—cos (— x)aP(ds)_ tanha

and
|up(§, a)—up(x. a)| =tanh a|é—x].

By [8.5] and theorem [10.12]
2ﬂpP<a):Bg‘(u(') a)y u(') a))

ggj"mpu, 0)dx(Q 2 Hi(x, dEXu(E, a)—ulx, &)
= (tanh a)2S mp(x, a)deQ“ "Hi(x, d§)(E—x)*

>

NN

(tanh a)ZS:nmp(x, a)deQ“’b(x, dq)Hg(y, d&)

X{%(é—n)z—(ﬂ—x)z}

2 g attanh o} { )~ Ci(a—b)},

where m(a, b)= ir;f SHg(x, dé)&—=x)* and C, is an absolute constant given in
[16.7], (2). Therefore
m(a, b)<a(coth a)*(4pp(a)+Cya).
By [15.1], [18.1] is proved.
[18.2] Let Py (n=1,2, ) in P satisfy [M] and [V]. Assume that
pray(a)< k(a)<oo for each a>0. Then there exist a subsequence {P(n’)} and
P in @ such that P(n’)—P (n’—). Moreover P satisfies [M] and [V].

Proof. Set "H=H(P(n)). By [18.1], for 0<b<a
"HY(x: |§— xI>N)_N’ M(a, b)SNz(Cl(a)k(a)-i-Cz(a))

Therefore, by proposition [2.8] we can find a subsequence {P(n’)} which con-
verges to some P in @. By definition of convergence in @, P obviously satisfies
[M7]. Since

[#550x, doMin(E—xr, K}< Iim [~ Hitx, dgxe—n)?

< Cya)k(a)+Cya)
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for any positive K, P also satisfies [V].

As a corollary to [18.2], we have:

[18.3] Let P(n) (n=1,2, ---) in @ satisfy [M] and [V] with ppn(a)<
k(a)<oo. If P(n)—P, then P satisfies [M] and [V].

[18.4] Let P(n) (n=1, 2, ---) and P be in @, and assume P(n)—P (n— o).
Set
nBa(x’ dE)z-Bg(n)(x’ dE) and Ba(x) dE)ZB?S(x, d&)

(cf. definition [8.12]).
(1) For ¢gx, &) in Cy(RXR) with |¢(x, &)| <K(E—x),

(182) [*Bex, dorg(x, & —> [Bo(x, d0)p(x, & (n—re0)

boundedly in x for any fixed a>0.
(2) For f in C¥R)

(18.3) "Bef(x) —> B*f(x)  (n—o)
boundedly in x for any fixed a>0.

(38) The measures "B%x, d¢) (n=1, 2, ---) converge to B%x, d&) weakly on
R—{x}.

Proof. For ¢ in Cy(RXR) with |¢(x, §)| <K(E—x)?, by (8.7) in [8.5]

[Betx, do)lg(x, 1 =K [Pe=x, dexe—rr+Ig1Qe-x, R)
<K(a, ¢)<oo
where ¢ is some constant less than a. Therefore
[rBex, d9r9(r, & (=12, )

are well-defined and bounded in n» and x. Using (8.7) again, we have

|Bo(x, doyg(x, ©-|Be(x, do)gix, &

=Qu=tx, dm|CHeCr, do)—HE(r, de)g(x, ©),
where "H=H(P(n)) and H=H(P). Since P(n)—-P,

[rHen, dogix, & — [He(r, dge, & (noeo)
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boundedly in #. Hence (18.2) is proved. (18.3) can be proved in a similar way.
(3) is obvious by (8.7).

Now, we shall define convergence in the space .L of boundary conditions
defined in §4.

[18.5] DEFINITION. Let B(n)={c,, ptn, kn, pu} (n=0,1,2, ---)bein B. We
shall write
B(n)—> B(0) (n—o)
iffand only if:
(1) op—0, and p,—, in the weak sense as measures on the torus R/(2x).
(2) kao—ke, pa—po and pula)—poa) for any a>0, where

pul@)=p(BmY @)= UBOXx, a) s(Bn)x, a)dx -

[18.6] If B(n)—»B (n—»co), then
s(B(n)) —> s(B), «B(n))—>#B), UB(n))—>«B),
m(B(n)) —> m(B) and wu(B(n)) — u(B)  (n—o0)

uniformly in D21 for any 0<b<a.
Proof. Noting that s(B(n)), t(B(n)), {(B(n)) and m(B(n)) (n=1, 2, ) are
harmonic functions in C,(D), and u(B(n)) (n=1, 2, ---) are harmonic functions

in CyD) with w(B(n))z+2x)—u(B(n))z)=2rx, we can easily show [18. ] by
definitions.

[18.7] Let P in @ satisfy [M] and [V]. Then
(18.4) §:”mp<x, a)deB%(x, dEXE—xY <4(coth a)pela).

Moreover, if P is in @, for any M>1lxn

Capp(a)

(185) [Tmetx, dx|  Bsx, done—xp ==,

§-z12

where C is an absolute constant.

Proof. Since sp(x, a)=Min hx, a)=(17/2) tanh a,

Ccmy

“m, a)deB"(x, dEXE—x)

1
Min sp(x, a)?

A

It

Sj”mp<x, a)deBau, d&Xup(€, a)—up(x, a))

<4(coth a)?pp(a).
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If Pis in 2., set e=x and a=Nr in [14.7]. Then

S:nmp(x, a)dxs Bi(x, d&)= app(a)

1&-zI2@BN+8)T 275Nt T
Therefore, for GN+8)n<M=BN-+11)xr (N=1, 2, --)

(mete, x|, BaGx, doXe—vrs Crapray g CEEIT

REN
C” C
=7 apP(a)ZgA—lapp(a)z-

[18.8] Let P(n) (n=1,2, ) in @, satisfy [M] and [V]. Set m,=mpwu)
and "B%x, d§)=B%u(x, d§). Assume that P(n)—Pin @, m,—mp and {ppamr(a)}
converges (n—). If ¢ in C(RXR), which is not necessarily bounded, satisfies

(18.6) |§(x, O =K(E—x),

then for a>0 it holds that

a87) ["matx, ods(rBocx, dopx, & —

[Vmex, a)ix(Bacx, d0)p(x, & (neo).

Proof. If ¢ is bounded, then (18.7) is obvious by [18.4], since m,(x, a)—
mp(x, a) uniformly in x for fixed a. For general ¢, we may assume ¢ is non-
negative. Set

éx=Min {KM?, ¢}
for positive M with M>11z. By (18.6), we can see

Oulx, E)=¢(x,§) if |§—x|=M.
Therefore by [18.7]

S:ﬂmn(x, a)dxg"B“(x, déNP—Pu)x, &)

<K | max, a)ds|  Bex, de)e—x)

-z

KC.k(a)
M 2

where k(a)=sup p,»(a) is finite since {p,>(a)} converges. Therefore

I\
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mgmnu, a)denB%x, d&)du(x, &
=Smp(x, a)deBﬂ(x, A& u(x, &)

<lim Smn(x, a)de"B“(x, de)(x, &)

N —»0c0

< fim o, a)de”B“(x, dE)d(x, &)

KC.k(a)
M

Since we can take M arbitrarily large, [18.8] is proved.

glimgmn(x, a)de"B“(x, d&)Pu(x, &)+

N>

[18.9] Under the same assumption as in [18.8], let f, and g. (n=0,1,2,--)
in CY(R) satisfy

(18.8) 121K,  lgulsK
and
(18.9) Ifo—=fil —0, lgri—gll —0 (n—x)

Then B&(fa, 82)—>B&(fo, &) (n—0) (See notation [10.2]).

Proof. Set pa(@)=ppm(a), Ma=mpcny, "BUx, d§)=Bpwm(x, d€) and
Bu(x, ©=p1,, 0,05, O=\ g10t{ Fils)ds
Then
|6a(x, Oz, O1 5 54— Sl +H18h—8HIE—x)

Therefore, by (18.4) in [18.7]
IB%m)(fm Z2)—Biw(fo, 80l

2n
0

:] S ma(x, a)de”B“(x, &) —Bo)(x, &)

<2K(| fa—foll+llgn—gill(coth @) pala) .

Since {p.(a)} converges, the right side of the above inequality converges to
zero. On the other hand, since |@o(x, &) <(K?/2)§—x)?, by [18.8]
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27
lim Bgco(fo, go=lim | “ma(x, a)dx(*Be(x, d&)gu(x,

=("mex, o) Batx, d9)putx, &

=B&(fo, o) -
Hence [18.9] is proved.

[18.10] LEMMA. Let P(n) (n=1, 2, ---) in P, satisfy [M] and [V]. Assume
Bpcny—B in @ and P(n)—P in ¢. Then B=Bp.

Proof. Since pn(a)=ppwm(a)—ps(a), it holds that k(a)= sup p(a)<co.
Therefore by [8.3] P satisfies [M] and [V].
1° Set "H=H(P(n)), H=H(P), ur=upuy and u=u(B). Since by [18.1]

[rHs(x, dexe—sr=ciar@tchar<e
for 0<b<a and by [18.6] {u,(x, a)} converges to u(x, a) uniformly in x,

u(x, b)y=lm u,(x, b)=lim "Hgu,(-, a)x)=Hgu(-, a)x).

It is obviou that u(0, 1)=0 and u(z+2x)—u(z)=2z. By theorem [9.5] we have
u=up. Therefore s(B)=sp, t(B)=tp, 6p=0cp and kp=Fp also hold by definition.
2° Set my=mpuy and m=m(B). By [8.12] for any f in C3(R)

Sznmn(x, a)(P—|—"Ba)f(x)dx=0 ,

where "B%(x, d&)=Bgu(x, d&). Since by [18.6] {m,(x, a)} converges to m(x, a)
uniformly in x and by [18.4] {"B%f(x)} converges to Bgf(x) boundedly in x,
we have

S:”m(x, a)(P+B2)f(x)dx=0.

It is clear that S:nm(x, a)dx=2z. By [18.12] we have mp=mp and pp=pp.

3° Set s,=Ssp and s=s(B).

l4-, a)l=lsaC, a>n§§1;§
sinh a

~cosha—1"

2z sinh @

o cosh a—177»(@%)

and by [18.6]
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lun(-, @)—u'(-, DI=lsa(-, @)—s(-, A} —>0  (n—o0).
Therefore, by [18.9]
pa(a)=lim p,(a)=lim Bicn(un(-, a), ua(-, a))
=Bgu(-, a), u(-, a))=pxa)
and pp= ‘IEI>1§ pe(a)= ;Cifo pe(a)=pp. By 1°, 2° and 3° we have proved that B=Bp.
[18.11] PrROPOSITION. Let P(n) (n=1,2, ) in P, satisfy [M] and [V].
Assume that Bpg,—B (n—o) for some B={a, p, kb, p} in B with ¢ and p in

M(R). Then P(n)—P (n—x) for some P in @. P is a B-process and B=Bp.
P satisfies [M], [V] and [L].

Proof. 1° Since pula)=ppm(a)—psla) (n—oo), it holds that k(a)=
sup pa(a)<oco. Therefore, by [8.2], for any subsequence of {P(n)}, we can

choose a subsequence {P(n.)} such that P(n,)—Pas r—oo for some P in @ and
P satisfies [M] and [V]. By [18.10], B=Bp. In abbreviation, we shall write
P(r)=P(n;), 6:=0pr), fr=Mpr)y M,=Mpcry m=mp, "B*(x, d§)=Bg(x, db),
B*(x, d§)=B&x, d§) and p.(a)=pprc(a).

2° For p in My(R), set &(p, s):sgp p((x—e, x+¢)). Since ¢ and p are in

M(R) and p,—p and o.—0¢ weakly, we have for any >0

. €

IT(Trga<ﬂT: 5)25<0” -2—)>0
and

. €

171—%15(0“ 5)25(0, §)>0.
Therefore we may assume

0(ar, €), O(pr, €)200=00()>0.

Therefore by [14.7]

b

. 2
S: m,(x, a)" BYx, Ufle(x))dxé%(_a)‘
0

and by (3) in [18.4]
lim " B(x, Usi(x))2 BE(x, Usun(x)).

“m(x, BEx, Ussx)dx

—

<lim S:”mxx, ) B(x, Usi(x)<

7

16app(a)’
a3
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for pp(a)=p(B)a)=lim p,(a). Since pp(a) is an increasing function in a, we
have

Lir{)l S:nm(x, a)By(x, Ufs(x))=0.
On the other hand, by [18.8] for M>12x

[me, v BeCx, dexe—xy

-

<lim gj”m,u, a)dxg *Ba(x, dE)E—x).

T 00 1§~z 12M -7

Since P(») (r=1, 2, ---) are in L., by [18.7]

Sj"mr(x, a)cixSI LB, d&)(&—x)zg%%a—)z

E-zi2M
and therefore

Cappla)

a —el < BN

B, dexe—xy < PR

and the right side converges to 0 as a—0. Finally we have

S:ﬂm(x, (z)dxsI

-z

lim g:”mu, a)S Ba(x, d&)E—x)=0

16-x1212¢

for any positive ¢ and P satisfies [L*].

3° Since P satisfies [M], [V] and [L] and moreover B—Bp holds, P is
B-process by theorem [11.7]. Therefore by uniqueness of B-process (cf. theorem
[7.7]) P is independent of the subsequence {P(r)}={P(n,)}. Hence

P(n)y—> P (n—o0).
Proposition [18.11] is proved.
[18.12] THEOREM. Let B={o, p, k, p} in B be given. If g and p are in

M«(R), there exists a unique B-process P such that P satisfies [M], [V] and [L]
and B=Bp. Moreover P is in P,.

Proof. Set s=s(B), t=B), m=m(B), [=I(B) and U=U(B). Define o,(dx)
=s(x, a)dx, po(dx)=m(x, a)dx, ko=Fk and

1‘JQ=71,{S2”S(JC, a)U(x, a)dx=py(a).

0
Then, Uq(z)=U(x, y+a) is a positive solution of
{ (Ua)z=mata+1a3a

(Ua)y::mu.sa"lata

(18.10)
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in D, where

ma@y=mz, y+a)= | hepads),

Lo

L=l y+a)=| | Elua(d—k,

o

s@)=s(x, y+a)=|  F@oads),

£o.2

t@=tx, y+a)=| = E@oder+k,

o,

Noting p.,(b):zig“sa(x, DU o(x, b)dx=ps(a+b) for 6>0 and pa= inf pa(b), We
T Jo >0

can see B,={0Gq4, tta, #a, Do} is in B. By representation of U in [5.9] and
[5.10] we have limU(z)=co, therefore lész Uy2)=infU(x, a)>0 and U, is
Y00 2 y=a

greater than the minimum nonnegative solution of (18.10) or po>p(dq, ta, ka).
Hence B, satisfies the conditions in theorem [17.5] and there exists a process
P, with Bp,=B,. By [17.6] P, satisfies [M] and [V] and is in &.. Noting
Pr(b)=Dpa(b)=psz(a+b), we can easily show B,—B as a—0. Therefore, by
proposition [18.11], we can show existence of B-process P which satisfies [M],
[V] and [L], since g and ¢ are in M(R). Uniqueness is obvious by theorem
[7.7]. By theorem [14.9] we can see P is in @&,.

§19. Existence of B-process (3): General case.

Let g; and p; (4, 7=0, 1) be in My(R) and %k be a constant. Assume that
B,={0., t;, k, ps} is in L. Set, for 0521,

ﬂ] =(1—'z)ﬂ0+2p1 1) g2 =(1~—l)0‘0+20‘1 »

si={ . f@oxds),
t =j Fe(2)aa(d&)+E
£0,27)

mi={ | F@p(de)
and
=l Fom e+
Set
(19.1) UA=UQ: Bo)=(1— AUt A= AN+ Uso)+ 20 s
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where U,,=U(B,,). Then U? is a nonnegative solution of

Ul=mat,+11s2,
(19.2)

U%ngsl—lzh .
Therefore
(19.3) B*=B(4; B,,)={0g2, pa, k, pa}

is in .£ (0<2£1), where p;:irg SU‘(x, a)s;(x, a)dx, and U*=U(B?*).
In the following, we shall choose r<[0, 2x) so that

(19.4) o({rh=p({rHh=0 @, j=0,1).

Set I(r)=[r, r+2x] and

(19.5) Fix, =], Fex, Oa(dg)

(19.6) Fia, = Flx, Oadnp(de)

for locally bounded signed measures « and 8 on R, where F(x, §) is defined by
(56.3). Since

SEW)F (x, €>p<d§)—§ ook 10 EF1)0(dE)=p([0, 7))

r,r+

for any periodic measure p, the representation of U?# given in [5.13] and [5.14]
has the following form;

(19.7) Uia)={ h@Uiede+1+ 0y,

where
Ulz)=—Tx, 01, p2)+kF.(x, p2—a)+Cr2,

(19.8) 1 To(x, 02, ﬂx)=S1(T)2T’6‘(x, & na(d&ualdy),
THx, &, n)={ Tox, & n) if &+9,
0 if &=y

and T(x, &, p) is given by (5) in [5.5]. Noting [5.14], T(x, a,, #,) and
F.(x, pj—0,) are bounded in x (7, j=1, 2). Therefore we can easily see:

[19'1] To(x, G2, ”l) -_—> To(x; 0o, ﬂﬂ) ’
Fi(x, a2, 1) —> F:(x, 00, tto),
Ui(x) —> U§(x)=(U s0)o(x)
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as A—0 uniformly in x.

We shall note the following elementary lemma without proof.

[19.2] LEMMA. Let K be a compact space in R and let a and a, be bounded
measures on K, and B and B, be signed measures on K with d|B.|=Cda, (n=
1,2, ). Assume that a,—a and B,—f in the weak sense, then d|fB|<Cda.
Moreover, let A be a closed subset of K with 0(A)=0 and g be a bounded mea-
surable function on K which is continuous except at point in A. Then

Sgdpn — Sgd.o (n—o0).

[19.3] Let a;, B2 and 72 (0=2<1) be signed periodic measures on R with
laal(dx), |B1l(dx)SKe;(dx) and |721(dx)SKpi(dx) (0<K<oo). Assume that
a;—a,, B1—pB, and 7;—7, in the weak sense as A—0. Then, for any f in
Cy(R),

) Tof-ar, B, T)+To(fBa, az, 72) —>
To(f -0, Bo, 7o)+ To(f - Bo, @0, 7o),
2) Frlaz, 12) —> F(ao, 1),
@) F(f-ax, BO)+F(f B, a2) —> Fe(f a0, Bo)+Fr(f* Bo, @)

as a—0. Where

Tua, 8, 1= Ti(x, & ma(dn)BdNdr),

z,€, 7€r0,27)

Fi(a, p=|| F(x, §a(d)B(de).

z,§€[7, T+27)

Proof. Set
To(x, & n)=T¥x, & D+THE, x, 7).
T¥(x, & n)=Min{N, T¥(x, & 9},
T¥(x, & n=Min{N, Tu(x, & )}
Then, by definition (cf. [5.3] and [5.5]), it holds that for x, & % in (r, r+2x)

(i) T¥(x, &, 5) is bounded and continuous except {x=&}U{x=7}, and

Gi) T¥(x, &, ) is bounded and continuous except {x=7x}\U{é=7n}.
Set I(r)=[r, r+2z] and pi(dx, d§, dp)=a:(dx)B(dE)r:(dn). Since T(x, &, %)
is periodic in x, & and %, by (19.4)
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Ja=Tofaz, Ba, T)+Tof B2, az, 72)

:Sm)jo(x, § ﬂ)f(f)derSI(r)aTo(x, & D) f(x)—F@E)dpa=J¥+C¥
where api=a(dx)B(dE)r(dn)
7=, e pi@deat|, | T & U m—1@des

and

)3

cr=|, F—T0x & nr©dps

+S,<,)3<T0—Té” Xx, & D (x)—f(E)dp .

By assumption and condition [P] in [5.11] 7; has no common mass with a;
and Bi. Therefore by (i) and (ii), using [19.2], we have

Jy—J¥ as 2-0.
On the other hand by assumption
[Cy(D A fIIKT =T X0, 01, pt2)
and therefore by [19.1]
ﬁlCN(2)§4llfIIK“’(To~Té”2)(Uo, o, fho) -

Since T¥/21T,, we have proved (1). For x and & in (r, r+2x) it holds that
(iii) F(x, &) is bounded and continuous except {x=£&}.
(iv) F(x, &)+F(¢, x)=1.

Then

Fr(f'a); ‘Bl)+Fr<f',Bl, al)
=, S@Enpid

+ PG QU= FE)axdnade).
In a way similar to (1), we can easily show (2) and (3).

To proceed from [19.5] to [19.10], we shall impose the following temporary
assumption.

[19.4] AssuMPTION. For a positive sequence 4, with 4,—0, f in C, y(R)
and a positive constant a, assume:

(1) For each n, Bj-solution ¢;, for f in D® exists.
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@) lgz,I =K and lim ¢, (2)=¢i(2) exists.
@) lag, 1(0)=Ke0;,(dx).

Here K, and K, are positive constants independent of n and g4 i is the boundary

measures of ¢,, defined in [4.15].
We shall write B"=B?r, ¢,=01,, fta=p21,, U'=U%», ¢,=¢,, and etc.
Noting l,=l;,—l, and m,=m; —m, (n—o0), we can easily have:

[19.5] Under [19.4], @y(z) in (2) belongs to D% n(B°) which is defined in
[4.13]. The boundary measure a4, of @ (z) satisfies that o4,—a4, (n—0) in
the weak sense and |o4,/(dx)SKyo(dx).

[19.6] Let f be in Cp(R) and assume [19.4] for N=1. As in [5.17], set

GuD)=(@(@)+| | FdD)0s,d0)  (n=1,2, )

ro,2

and

$u2=@ @+ | Fe2)as(de).

o,2
Let ¢% (n=1, 2, ---) and ¢§ be their boundary functions on 0o. Then
¢3(x) —> ¢i(x) nuiformly in x.
Proof. lim ¢u(2)=¢y(z) in D*. Set
GuD=(@n)ae)— | | @0, (d8).

Lo, 2

Then g, is a harmonic conjugate of ¢, and can be extended to the harmonic
function g, on {z=(x, y): —a<y<a}. Moreover g,(z) also converges in D*
and g, (n=1, 2, ---) are uniformly bounded in {z=(x, y): —b>y<b} for any
fixed b with 0<b<a. Noting ¢.(2) is periodic in x, we can easily show [19.6].

[19.7] Under the same assumption as in [19.6], it holds that, for any g in
Cy(R),

(1) Tog-0n, 04, tta) —> To(g- 00, 04, o)
(2) Fi(g+0n, kog, 3 ptn) —> Fr(g- 00, kog,+i- o)  (n—0)
Proof. By [19.1], it is easily shown that

(19.9) To(g: 04, On, ttn) —> To(g- g, G0, ),

(19.10) F.(g-04,, 0,) —> Fr(g 04y, 00)) (n—00).

On the other hand by [19.3]
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(19.11) T804, Ony tn)+T (g 0n, 04, ttn)

—> To(g'0¢0, G, #o)‘i‘To(g'O'o; T o),

(19.12) F.(g-04,, 0,)+F(g 04, 04,)
—> F(g-04,, 00)+F:(g-00, 04,
and
(19.13) Fo(g-on, g3 pa) —> Fr(g- 00, 3-te)  (n—>00).

Now (1) is proved by (19.9) and (19.11). (2) is proved by (19.10), (19.12) and
(19.13).

[19.8] REMARK. Let f be in C,(R) and a be positive. Assume that a
function ¢, defined on D° satisfies (1) and (2) in definition [4.16]. Then noting
[5.19], [5.20] and lemma [6.1], we can see that ¢; is B?*-solution for f in D®
if and only if
(19.14) Ui(g)x)o1(dx)=Ul(x)a4,(dx),
where U is given by (19.8), and U,(¢;) is represented by
(19.15) Uip)=—T(x, 04, p2)—Fr(x, kag,+¢3- u2)+C(a)

with some constant C(g,).

[19.9] Under the same assumption as in [19.6], ¢, defined by [19.4] is a
B°-solution for f in D@

Proof. By (19.14) and (19.15)
[, Us0os,@dn=] Ui )waudx)

=_T0(an’ 0¢n’ ,un)_Fr(an’ ka¢n+¢g'#n)+2ﬂc(¢n) .

By (3) in [19.1] and [19.7], {C(¢.)} converges. Set C=C(¢,)=lim C(¢,). By
(19.14) and (19.15), it also holds that for g in C,(R)

L(T)g<x>Uz<x>o¢,,<dx>=Slmg<x>Us<¢n><x>an<dx>

=—Tg-n, 4, )= Fr(g0n, kg, + k) +C(@n)||  g(x)n(d)

Using (3) in [19.1] and [19.7] again, we can show that
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[ . B0 ()
[r,r+2x)

=—Tyg+ 00, Gy, tte)—F:(g- 0y, k“¢o+¢3‘#o)+CS“”g(’C)"o(d’f)-
Noting [19.8] again, we obtain [19.9].

[19.10] Let {4}, f in C, »(R) and a>0 satisfy the assumption [19.4].
Then ¢, in (2) of [19.4] is a By-solution for f in D,

Proof. Define o,y and pu,y (¢, =0, 1) by (7.2). Then by [7.4] B¥,=
{5, o, B, pi;/N} is in 8. As in (19.3) set B**=B(1, B¥,), then

B ={a; o pti vk, p—]\i}

Since ¢, is a B%=B2r-solution for f in D¢, O n(2)=(1/N)pn(Nz) is a B*"=
B**n.golution for fy(x)=(1/N)f(Nx) in D*¥ by [7.5]. Since {4z}, fx in Cp(R)
and a/N satisfy [19.4], ¢o, y=1im ¢, y is a B*°-solution by [19.9]. Using [7.5]

again, we can see that ¢, is a BY-solution for f in D®.
[19.117 ProOPOSITION. Let B =B(A, B, ,) (0<SA<1) be given by (19.3). If
P* (0<2Z1) in @, is B*-process with B*=B,, and satisfies [M] and [V]. Then

P*—P (2-0) in P, where P is a B°-process with B°=Bp and satisfies [M] and
(vl

Proof. Since g;—a0, pa—po and U*—U® (A—0) by definition, it holds that
B*—B°® (A—0) and sup ppa(a)<k(a)<oo for any a>0. Therefore, by [18.2] for

any sequence {4,} which converges to 0, we can choose a subsequence {1}
such that A,—0 and P*m—P (m—o) in @. Set P™=P*™ By [18.3] and
[18.10] P satisfies [M] and [V] and B°=Bp. Let any function f be in C, x(R)
and a>0 be given. Set ¢n=Hpgnf. Then by definition

On(z) —> Go(2)=HEf(2).

Since ¢, is harmonic in D® with |[¢n|=Z|f],

[@w:(-, 5)|[=K@is]

[ 5)|
”sm 7)“

Therefore, by [9.8], o4, |(dx)=K(a, f)da;,, and {in}, f and a satisfy the

and

<K(@)|f] coth 5=K(a, f)<eo.
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assumption [19.4]. Therefore by [19.10] ¢,=Hgf is a By-solution for f in D°.
Thus P is a B°process. By the uniqueness of B°-process (cf. [7.6]) P is inde-
pendent of choice of subsequence {1,}. Therefore P;—P (Ai—0) also holds.

Let o be M,(R) with S o(dx)=2x and & be any constant. Set

0,2

(19.16) s@)=|, , Fe@a@e), ta=|  k@odo+k
and

= () — 2 S ()= — 2 _t—
(19.17) M@)=1+k) G g UD=—1+E) 5.

[19.12] Let s, ¢, m and [ be defined by (19.16) and (19.17). Then it holds

that :
(1) m is positive, periodic and harmonic in D with lim 7i(z)=1. [ is a

Yoo

harmonic conjugate of % with lim [(z)=—%.

Yoo

(2) Let g be the boundary measure of 7 on 0,, that is,
a@= _Fade.
Then {0, i} satisfies condition [P] in [5.11].
Proof. Since lim s(z)=1, lim#(z)=+/ and
Yoo Yoo

14+ k2
s(z)+it(z)’

(1) is obvious. Set U=(1+%*y. Then U is a nonnegative solution of

m(z)+il(z)=

U,=mt+is=0,
(19.18)

U,=s—lt=1+F>.
By [5.11] and [4.6] {o, } satisfies [P].

[19.13] DEFINITION. For ¢ in Mp(R) with S:o \ )o‘(dx)=27: and a constant

k, set gj=F,o, where g is defined by (19.17) and [19.12] (2).

[19.14] Remark. (1) F-,-F,=Identity.
(2) Since U=(1+k%y is a solution of (19.18), {o, F,0, k, 0} is in 4.

[19.15] Let g=Fio.
1) If o([a, b])=0 for a<b, then g has at most one point mass in (a, b).
(2) If ¢ is in M(R), then f is in M,(R).
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Proof. Since ¢+0, we can assume [a, b]C(c, c+2x). Set I=[c, c+2x).
Then for £é=(a, b)

1 sinh y _
s()=lim s(z)=lim ZESI comioshy eoa (= "=
and
1@ =lim 1) =lim 5| SIn(0—%)___ gy h
ST e 2-¢ 21 J1-ra,b3c0sh y—cos (—x)
_1 n—§
ae I G LS
Therefore
1 1
2 &)= —_4(d®)<0,
Let®=—3:0, .. a9 (d8)

and #,(§)#0 for £€<(a, b) except at most one point. For §=(a, b) with #,(§)#0,
(1+k%s

st T
which shows that g(dé) has no mass in (a, b) except at most one point. Hence

(1) is proved. To prove (2), assume f([a, b])=0 for some a<b. Then by (1)
o=F_,fi can not belong to M, (R). Thus (2) is proved.

lim 7i(z)=Ilim
Z-»e l->€

[19.16] THEOREM. For any B={a, p, k, p} in B, there exists a unique B-
process P with B=Bp and P satisfies [M] and [V].

Proof. Set o(dx)=dx (Lebesque measure on R) and ¢*=(1/2)(¢+p), fi=
Fyo* and 6=F_,((1/2)(g+@). Then by (2) in [19.15], # and & are in My(R),
since ¢* is in M;(R). By (2) in [19.12], {(1/2)Xe+p), £}, and {&, (1/2)p+ @)}
satisfy condition [P]. Therefore, {o, g}, {5, ¢} and {4, g} satisfy condition
[P:I Therefore: BM:{J’ ﬂ: k’ Pox}, Bw:{&: ﬂ: k; Pw} and Bu:{a: ﬁ’ k, Pu},
are in @B for sufficiently large poi, pio and py;.  Set Bow=B={o, p, k, p} and
B*=B(4, B,,) (0£A<1) asin (19.3). Since ¢;=(1—A)a+2é and p,=1—Dp+iE
are in My(R) for 2>0, by theorem [18.12] there exists a B?-process P? with
B,;=B*, and P? is in &, and satisfies [M] and [V]. Therefore by proposi-
tion [19.11], P*—P (1—0) and P is B=B’-process with Bp=B which also
satisfies [M] and [V]. The uniqueness is proved in theorem [7.7].

[19.17] DerFINITION. For B in @, let Pp be the unique B-process. Set
Pp={Py: B€ B}.

If Pis B-process, then by theorem [19.16] B=Bp therefore B is uniquely
determined by P. So we have:
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[19.18] COROLLARY. The mapping B— Py is a bijection between B and Pp.

Combining theorem [19.16] with the(_)_rems [3.12], [15.10] and [18.12], we
can characterize Feller type processes in ) with continuods path functions in
the class of B-processes Pp.

[19.19] THEOREM. There exists one-to-one correspondence between P in P,
with condition C and B={a, p, k, p} such that o and p are in MyR) and ¢ has
no discrete mass. The correspondence is given by P=Psj.
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