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QUOTIENTS OF SMOOTH FUNCTIONS

BY HENRI JORIS AND EMMANUEL PREISSMANN

1. Introduction.

The following theorem was proved in [J] : (*) if /: R-^R is such that /2

and /3 are of class C°°, then so is /. The proof used elementary, but rather
complicated equations relating the derivatives of / and of its powers. We
thought it possible to imagine another proof based on the fact that / is the
quotient of two smooth functions /3 and /2, or rather that the product of / by
the smooth function f2 is itself smooth. Of course a function g as well as the
product fg may be smooth even if / is not, so we had to look for additional
conditions which are sufficient to imply the smoothness of /.

Here is one possible answer to that problem: ///, g: R-+C, m^N and a>0
are such that g, fg and fm are smooth and \f\^\g\a, f is smooth (Theorem 1).
(*) follows immediately from this theorem if one sets g=f2, m=2, a=l/2.

Remark. An elegant and simple proof of (*), based on ring theory, has
recently been given in [AM].

Theorem 1 will be used to study a family of smooth maps called pseudo-
immersions (cf. [JP1]), and of which the curve ί ->(f2, ί3) appearing in (*) is but
a simple example:

A C-^application h : N->M, M and N being C^-manifolds, is a pseudo-immersion
if for each continuous application f of a C™-manifold P to N, h°f<^C°° implies
/e=C".

By the condition that / is continuous, each immersion is a pseudo-immersion.
(If in the above definition C°° is replaced by Cr, for some re TV, then immer-
sions and pseudo-immersions become the same thing.) The same condition im-
plies that the pseudo-immersivity of a smooth map is a local property. Hence,
it's enough to study maps Rn-*Rm, or even germs of smooth maps (Rn, 0)->
(Rm, 0). As it was proved in [J], the pseudo-immersivity follows if the condi-
tion of the definition is checked for P~R thus, by (*), the non-immersive map
f>—>(f2, t z ) is a pseudo-immersion.

In [JP1] the pseudo-immersions N-+MfordimN=l, were completely described
(by determining the pseudo-immersive germs (R, 0)-»CRm, 0)). For dim7V^2,
the task appears to be much more difficult, except in the case where dimM—
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dim N (then any pseudo-immersion is an immersion, that is, a local diffeomorphism)
or in the case where dimJV>dimM (then there are no pseudo-immersions) (cf.
[JP2]). However, Theorem 1 enables us to find some new families of pseudo-
immersions (Theorems 2' et 3).

In part 4 we give some examples and counterexamples, disproving or con-
firming a few guesses inspired by the study of the cases dimΛ^l and άimN=
dimM.

In the hypothesis of Theorem 1, all four conditions are necessary: if any of
them is omitted the conclusion is no more valid. This is quite obvious except
for the condition /weC°°; if it is omitted, a counterexample is given in the fifh
part, where the following is proved: If f, g: R-^C and α>0 are such that g
and fg are smooth, and \f\^\g\a, then /eCcα]; // moreover f is real, then /e
Cc2ί°. These conclusions are best possible.

Acknowledgements: In the third part, where we use some results of algebraic
geometry, Prof. M. Ojanguren's suggestions were very precious for us. We are
indebted to the Fonds national suisse de la recherche scientifique for financial
support.

Notations: 0 is not a natural number, so N={1, 2, 3, •••}. If / is a real
interval, its length is denoted by |/|. A smooth mapping is a C°°-mapping. A
mapping /: Rn^Cm is called flat at x0 if for any s^N one has \\f(x)—/(*0)||<
\\x—XQ\\S as X-+XQ', if / is smooth, this implies that all the derivatives of / at xϋ

vanish. By g. c. d. we refer to the greatest common divisor and by [ ] to the
integral part. Q. E. D. denotes the end of the proof.

2. Smoothness of quotients of smooth functions.

Our main concern in this section is with the proof of the following theorem.

THEOREM 1. Let f, g : R->C be two functions, m a natural integer, and let
C, a be two positive constants such that

a) g,fg,fm^C~(R, C);
b) \f(x)\^C\g(x)\a for every real x.

Then f^C°°(R, C).

In section 3 we shall apply this theorem to prove the pseudo-immersivity of
certain families of germs. Here we deduce just one easy consequence.

COROLLARY, (see [J] for /rea l ; [DKP], [JP1] [AM] for / complex) //
/: R-+C and r, s^N are such that g.c.d. (r, s)=l, /reC°°, /seC°°, then

Proof of the corollary. It is easy to show, [J], that frs and frs+1 are smooth.
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The conclusion then follows by Theorem 1 with m—rs, g=frs, C=l, a=l/rs.
Q.E.D.

We begin the proof of Theorem 1 by three simple lemmas:

LEMMA 1. Let f, g: R-+C be functions. Suppose that g and fg are smooth,
that g is not flat at b and that f is bounded near b. Then f is smooth near b.

Proof. By Taylor's theorem and by the hypothesis we may find a natural
number n, such that g(x)=(x— b)nγ(x), γ smooth, γ(b)Φθ, and (fg)(x) =(x—b)nψ(x\ φ
smooth hence f=φ/T is smooth near b. Q. E. D.

LEMMA 2. // f£LCn-\R, C) is flat at b, and if fw(b) is defined, then f(b)
=/'(«= -=/?w=0.

Proof. The conclusion follows from Peano's rarely used version of Taylor's
Theorem (cf . [F], p. 228) :

/(*)= Σ - τp-U-&)*+o(|x-&|n). Q.E.D.
*=o k \

LEMMA 3. For each n^N there is a constant Kn>0 such that

sup \f(x)\^Kn(b-aY inf |/<»>(*)l
a^x^b a^x^b

for all f^Cn(\_a, 6], K).

Proof. We proceed by induction. Without loss of generality we may sup-
pose that α=-ft, /cn)^l in [-6, b~], and /'"-"(O^O. Then f^-^b/Z in
[6/2, b~\. By the hypothesis of induction one has

sup |/|^ sup \f\^Kn
[-6,6] [6/2,6] \ Z / Z

and the lemma is proved, because KQ—l is obvious. Q.E.D.

Remark. It is possible to prove that the best constant is Kn=(n\ 22 n~1)~1.

LEMMA 4. Let /: R—>C be a continuous function such that fm is smooth for
some m^N. Let I^R be a bounded interval. Then for each ct>>0 there is a
constant kω such that

for any x^I and any p such that f is flat at p. (Uniform flatness.)

Proof. The points of flatness of / and of fm are the same, therefore it
suffices to prove the lemma for fm. We may suppose that \x—p\<^l anάω^N.
Set h=fm; if h is flat at p, then h(pϊ=h'(p)= ••• =Λ<ω-1>(/))=0. Then Taylor's
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formula gives for x^I, x^p:

For x<Zp the proof is essentially the same. Q. E. D.

For the following lemmas we introduce the spaces

F=C~([0, 1], C), £

J£ being an indeterminate. We endow F with the topology of the uniform con-
vergence for each derivative. For polynomials of bounded (say bounded by N)
degree this topology is the same as the topology given by the norm ||P|| =
sup0;S;psι|-P(*)|. For the coefficients α0, ••• , Q>N of P are obtained linearly from
the values P(j/N), j=Q, ••• , N, by means of the inverse of Vandermonde's matrix
((//#)*),,*=<>,....*; on the other hand Pcn)=0, if n>N, and \P<k\x)\£(N+l)\
max I α* I if k^N, OfJ^l. (We could also have used the following general
I

theorem : two topological vector spaces which are Hausdorff and have the same
finite dimension are topologically isomorphic (see [W], p. 5-6, cor. 1 of th. 1).)

The topology in E is the topology of the convergence of each coefficient:
an=Σan,jX

J tends to a=*ΣajXJ, if and only if anιj^aj} /=0, 1,2, ••• . Generally,
if #— "ΣajX*, it is not possible to replace X by a complex variable. However,
we may define α(0)=α0, and so αc*)(0)=^! ak, by formal derivation.

As well in F as in E, we write #— »0 for a sequence which converges to 0,
but the same expression also means that a belongs to arbitrary small neighbour-
hoods of 0 (0-filter). We denote such a sequence (or filter) by 0(1).

For any f&F we denote its Taylor series at 0 by Tf. The mapping T: F
->E is continuous, and /C*)(0)=(T/)C*)(0). A polynomial / will be identified with
its Taylor series : /= Tf.

If MeTVor M=0, an identity (equality, limit, etc.) (mod XM) will mean that
we take into account only the coefficients of X°, X1, ••• , XM~l. If we derive a
relation (mod^) we get a relation

LEMMA 5.
a) Let u^C°°(R, C) be flat at 0, weJVU{0}, ι>0; and let Λ = [0*, ft*], k =

1, 2, 3, ••• , ft# α sequence of intervals, ak<bk, α*->0, ft^-^0, SMC/Z

(1) sup |w c

•^fe

Then there is an integer m, n^m<n+i, such that (for an appropriate subsequence)
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1 k
(2)

and for any ί>m

(3)

Also there is a sequence of polynomials Uk, degUk<i+n,
has (in F) :

such that one

b) // the sequence Ik is as above, if u^C°°(R, C) is flat at 0, and if s>0,
then there is a sequence of polynomials U k, deg£7 k<s, such that we have in F

\Ik\-su(bk-\Ik\x)=Uk(x)+o(l).

Proof, a) We choose m to be the greatest integer having the property

$up\u
1 k

Then (3) is an immediate consequence. By (1) and the flatness of u at 0 we
have m^n and m<njri. Replacing the sequence Ik by a suitable subsequence
we obtain

(4)

Therefore (using (3)),

sup|w c m ) |> |/,1 k

Ik Ik Ik

and (2) is implied by this and by (4). Set

We then have

By (3), we find that FΓ+1)~>0 in F. If we set Uk(x)=TmVk(x) (which is the
mtfl Taylor polynomial of V k at 0) then by Taylor's formula

1

 x ι (X(x-t)n-rVίn+1\t)dt if r^ra,
ΐ—rjl Jo

if r>m.

But we know that

(m-

V(

k

r\x)

in F, thus Vk-Uk-^Q in F, and eventually, by (4):
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sup lί/ΓΊS: sup |Fr»l+0(D»l
O S r Sl O S X S 1

Therefore ||£/Λ||>1, and the proof of a) is complete. The proof of b) is similar
and even easier, so we omit it. Q. E. D.

LEMMA 6. Let Ft G be complex fixed polynomials, G^O, and let
Suppose that

(G+rXF+φ)=GF+o(l),

hold in E=CIX] with γ-+Q. Then φ-*Q.

Proof. We may write G(X)=X'Γ(X\ Γ(0)=£0, seJVU{0}. Then Γ is a
unit in E, and o(l}Γ~l— 0(1), so we may suppose G(x)— Zs. By induction on s
we shall prove the following sharpening of Lemma 6 :

(As) // M^N, N—Mms, and if the assumptions of Lemma 6 are verified (mod XN\
with G—XS, then its conclusion holds (modXM).

By (1+0(1))-1=1+0(1) (moάXM\ we see that (A0) is true. To prove (Ax) we
suppose

(5) (X+rXF+φ)=XF+o(ΐ) (modXMm),

(6)

and γ-*Q. We have to show that <p->0 (modJ^). We shall see that if
(moάXL\ O^L<M, then y>^0 (modZL+1); this will complete the proof of
since everything is trivial (mod^°). So suppose that

(7) φ=o(Γ)+XLv (moάXMm)ι

we shall prove that v(Q)— >0.
By (5) and (7) we find

(X+γ)vXL — > 0 (modXMm),

and therefore

(8) (X+ϊ)v — > 0 (mod XMm~L) .

We set X-\-7= w. Differentiating (8) we obtain

(9) w'v+wvf — > 0 (mod XMm~^) .

From (β) and (7) it follows that

wn-\F+o(l)+vXLΓ=(X-^o(l))m'~1(Fn+.o(iy) (mod XMm) .

Expanding products and powers and using (8), we obtain
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(10) wm~lvm — >0

and, differentiating (10),

wm-2vm'\m(wfv+wvf)~wfv) — >0

By (9) and because wf— l+γ'= 1+0(1), we obtain

(11) wm~2(vm+ vmo(D+vm-lo(l}) — > 0 (mod χ*™-t>*-i) .

Similarly, it can be shown that

(12) ~(wavbo(l)(mQaXT+l)}^wa-\vbo(l)^rvb-lo(l))
dX

if α, b^N. Differentiating (11) and using (12), we obtain

wm-\vm+vmo(l)+vm-1o(l')+vm-2o(l)) — > 0

and so on; after (m—1) differentiations we eventually get

But this implies v(0)->0, because Mm— Lm-m+1— (M— L— l)m+l^l. This
ends the proof of

Now suppose that (A0), (AO, ••• , (A s_0 hold, with s^2. We are going to
prove (As). The lemma is obvious if m=l, so we may suppose m^2 which
implies N—Mms^2s>s. Let p—^~la3X

j be the polynomial which is defined
in a unique way by the conditions άegp<N and γ—p (moάXN). Set

By the hypothesis we have ί->0, and therefore /1-»0; thus we may suppose
1. Let z be a complex variable. Then IX^OI^A if |z|gl, and |^(z)|g

Γ if |z|^l. It follows that

\z\s>\p(z}\ if A^^leKA1^-^.

We deduce, by Rouche's theorem (cf. [N], p. 106), that zs+p(z) has s roots
r\, r2, "- , rs with |r^ |^A1/s, while the remaining roots pl} ••• , pσ satisfy \PJ\^

. here O^σrgΛΓ-l-s. Hence n, - , rs, p~,\ •- , ̂ ^0, so

— ) - (l-—
PI' \ iOα
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where β->0. By the hypothesis of (A,), we have

From (A,.0 we get

(13) (X+δ)(F+φ)=XF+o(l)

and therefore (by (AO)

ψ — >0 (mod**).

This completes the proof of (As) and Lemma β. Q. E. D.

LEMMA 7.
a) Let f : R->C be a function, flat on the closed set P and smooth on R\P

(and therefore continuous). If fm^C°° and f(^Cn~1\Cn, for some natural numbers
m and ny then there is a p^P and a sequence of intervals Ik — [0*, &*] with p<
dk<bk (or [bk, a*] with bk<ak<p), IkdR\P, bk->p, and two positive constants c
ana K, such that

(14) l/ ( n )(&*)l^,

(15) supl/ |=/f |/* | n ,1 k

(16) lim- <le
*-~ sup/J/l

b) Moreover suppose that g : R-+C is a smooth function such that fg is smooth.
Then one has for all s,

(17) sup1 k

Remark. (14) follows without the hypothesis

Proof, a) Let us first prove the existence of a sequence bk verifying (14),
b k f P We consider two possibilities, supposing first that /(7° exists everywhere.
f < £ C n , so /(7υ is non-continuous at some p^P. By Lemma 2, fw(p)—Q, thus
limsupo;-.ol/C 7 0MI>0, which proves the existence of the sequence bk (bkφP
follows from Lemma 2). Next we suppose that /(7° is not defined at a
say p=0. Because of /^-15(0)=0 one has

so there is a sequence x
k
— >0, say x^>0, such that \f

<in
~

Ό
(x

k
)\'^2cXk. If ξk is
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defined by f*=sup(Pn[0, #*]), we have £*eP and, by Lemma 2, Q^ξk<Xk>
/^""^(fjO^O Replacing the sequence by a subsequence and multiplying / by an
appropriate constant if necessary, we may suppose that $ϊf^n~ι:>(Xk)^cXk, where
3ϊ stands for "real part of". Then there is bk, ζk<bk<%k, such that

which implies (14). To prove (15), we shall suppose for simplicity that p=Q,
bk>Q, c=4= and that Sft/(n)(6*)^2. The continuity of /(7l) in the open set R\P,
implies that there is dk, 0<dk<bk, such that [dΛ, bk~]c:R\P, 3fl/cn)(*)^l in
Ed*, &*], and hence

sup ^ sup
ldk,bk] ldk,bki

where J^>0 is the constant Kn of Lemrna 3. Set ξk— sup(Pn[0, &*]); by
Lemma 4 there is a positive constant C, independent of k, such that |/(Λ:)|^
C(x-ξk)

n+1^Cbk(bk-ξkΓ^K/2(bk-ξkΓ, for £*^*^ft* and k large enough.
The function M, defined for ξk<y<bk by

A/00- sup |/U)|(64-^)-n,
2 / έ x ^ δ ^

is continuous and satisfies the inequalities M(dk)^K, M(ξk)<*K/2, thus M(ak)
—K for an ak with ξk<dk^dk'ί this ends the proof of (15).

In order to prove (16), we set

(18) ΦM=\Ik\-nf(bk~\Ik\x},

and use Lemma 5 on fm:

(19) ΦrW=\Ik\'nmfn(bk-\IkM

in F, with degP^<nm; we have \\Pk\\—Kmjro(l\ from (15). By compactness
we may then suppose that the sequence Pk is convergent, so that

(20) 0p(*)=P(*)+0(l) in F,

with a fixed polynomial P, degP<nra, ||P||— /ίm. Now suppose that (16) does
not hold for any subsequence of the Ik. Then infc0,dΦ*|=-fiH-0(l), hence
infco. iDl^ l^supco. iπ lPI, |PU)| is constant, and so P(x\ being a polynomial, is
constant too. Therefore we have in F:

*"" φf-1 ~ φf-1 ~~ φf-1 '
From this we deduce, by iterated differentiations, that Φ(

k

s^-
1,2,3, — ; in particular /(n)(6*)=±Φ*n)(0)->0, which contradicts (14). This
proves (16).
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b) Suppose that (17) is not true. Then there are integers s, Λ^O and real
£ι>0 such that

taking again a subsequence if necessary. As g, fg and /m are smooth (and /
is not smooth at p) g and fg are flat at p, by Lemma 1. Let us apply Lemma
5 to the functions g and g f :

(21) \I

(22) \I

in F, where Gk and Hk are polynomials, άegGk<s+λ, degHk

>1. From fmgm=(fg)m and (20) we infer

/ Cr t.(23)
this implies ||/fJ|/||G*||<l. Taking again a subsequence, we find polynomials
G and H such that G^O, degG<s-M, degH<n + s+λ, and such that G*/| |G A | | |
G+o(l), Hk/\\Gk\\=H+o(l) in F; then (G+^(l))m(P+^l))=(^+^(l))m, and
hence PGm=Hm. There is a polynomial F such that P=Fm, H=FG,
dQgF=(l/m)degP<n. Set

By (21) and (22), we have

and by (20)

Taking Taylor series', one has in E: (G+o(l))(F+Tφk)=GF+o(l) and (F+Tφk}
m

=Fm+0(l). By Lemma 6 we obtain Tφk^Q in £, and then 9>in)(0)=(T^n>)(0)
->0. But ±/cre)(^ft)=ΦΓ)(0)=F(n)(0)+^Γ)(0)^^Γ)-^0 (because degF<w); this
contradicts (14). Thus Lemma 7 is proved. Q. E. D.

Proof of Theorem 1. If P is the set of flatness of g then (by Lemma 1) /
is smooth on JB\jP, and by \f\<c\g\α, f is flat on P. Thus / is continuous.
If / is not smooth, there is a n^N such that /eCn~1\Cn. We apply Lemma
7, with s=0, λ^n/α. Then

supi/ ι>ι/*r ,
Ik

sup|*|=»(l/*l" / β),
•Γ*

which is inconsistent with |/|^£|g1α«< Q. E. D.
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3. Pseudo-immersions.

In this section we shall use Theorem 1 to deduce sufficient conditions for
the smoothness of n functions /Ί, ••• , fn.

THEOREM 2. // mι,mz, ~ ,mn and s ί f s 2 f ••-,$» are natural numbers such that

g. c. d. (mjt 2sj)=l , y=l, •-• , n ,

and if Λ, •••,/»: R-+R are such that

(25) /ΓV»,/

then

Using the definition of pseudo-immersions we may write Theorem 2 in the
following way:

THEOREM 2'. // mlf - ,mn and sίf - ,sn are natural numbers such that

(26) g.c.d.(m,,2s,)=l, y=l,2,-,n.

Then the map

A : Λ n — >JB n + 1 , (*!,-,*„)'

is 0 pseudo-immersion.

Condition (26) is clearly necessary because if, say, g.c.d. (m1.2sι)~ί>l, we
may choose /2= — =/„=(), /ι(ί)=|ί| if ί is even, and /!(ί)=ί1/p if ί is odd.
Then /^C°°, but /io/eC°°. Essential tools for the proof of Theorem 2 are
rational representations

' OU?1, — , χ?n, Σ? ^ΓO '

where roots of the denominator are well controlled. We set

X=(X19 - , Xn), U=(U19 -,Un £/β)

for indeterminates. A substitution by real or complex numbers is given by cor-
responding small letters. We shall write Xm for (Xf1, — ,X%») and ΣX2S for
ΣϊXj'3> with analogous abbreviations for substitutions.

LEMMA 8.
a) The ring of polynomials C[Z] is an integral extension of the subrmg

C[.Xn,ΣX2'], finitely generated as a module over C[Xm, ΣX2S].
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b) The kernel of the ring homomorphism

H: CTC7] — * £7[*] , p(U) i — > p(Xm, ΣXZS)

is a principal prime ideal (N) generated by an irreducible polynomial N(U)& C'[7/],
and

(27) gradN(xm,Σx*')*Q if

Proof.
a) This follows from the fact that the generators Xlf ,Xn of C[_X~\ are

integral over ClXm, ΣX2S~] (see [ZS], p. 254).
b) We have

(28) C(X)=C(Xm,ΣX2S),

for the degree of X, on C(Xm) is m;, so the degree of C(X) over C(Xm) is at
most m^mz-'-nin. On the other hand, the field C(X) admits the group Γ of
mwz mn automorphisms over C(Xm)

x^ζx, c=(Cι, ,c»)
i.e. AΊ^d^Ί, •••, Xn^ζnXn) where ζ; is a mJΛ root of unity. The identity cor-
responds to (1, •• ,1)=1. Thus C(X) is a Galois extension of C(Xm\ with the
Galois group Γ. Because of (26), (tjXy = X?> if C^=l, ^(ζ^)25^^^25 if
By Galois theory (see [ZS], p. 80) this implies C(X)=C(Xm, ΣX2S).

The monic irreducible polynomial of ΣX2S over C(Xm) is given by

; £70]

with

We have

If X/7)€ΞC[ί7] and χxm,^^")=0, then p(Xm;U0) is a multiple of N(Xm;U0)
in C[Zm][/70] because Λ^ is monic (for £/„); thus Λ^ generates the kernel of /ί.
But the image of H is an integral domain, the kernel (N) is prime, and N is
irreducible. For the last assertion of the lemma, we observe that

We replace X by real non-zero variables x^ ' i X n If C=£l, say d^l, we have
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by (26); hence Σx2'-Σ(ζxγ**Q. This proves (27). Q.E.D.

We shall write

Consider the algebraic set

V is irreducible and its ring of regular functions is
The points (xm,Σx2s) are in V and (27) shows that if x<=Ω, then (xn,Σx29) is a
regular point of V (see [S], p. 71-78). This implies that the local ring of V at
(xm,Σx2*) is integrally closed ([S], p. 109-110). This local ring is the ring of
all quotients

P(Xm,ΣX2')
Q(Xm, Σ X 2 S )

where P and Q are polynomials with Q(xm, Σx2s)^0.

LEMMA 9 (see [ZS], p. 260). Let A be an integral domain, K its field of
fractions, and A' the integral closure of A in K. We suppose that A' is a finite
A-module. Set

(C is the conductor of A in A'). The following equivalence holds If Sd.A is a
multiplicatively closed set, the ring of fractions As :— {a/s\a^A, seS} is integr-
ally closed in K if and only if CΓ\S is non-empty.

We apply this lemma to A=C\_Xm , Σ X2*], A'=C\_X~], K=C(X). The as-
sumptions concerning A and A' are satisfied by Lemma 8(a) and by the fact
that CPΠ is integrally closed (cf. [ZS], p. 261, ex. 1). For χξ=Ω, set

Sx = {Q<=CtXm,ΣX2s~] I Q(xm, 2VS)^0}.

ASχ is the local ring of V at (x™, Σx2s). We have already remarked that it is
integrally closed, thus SXΓ\C in not empty. For each x^Ω, we choose QXCΞ
SXΓ^C, and we write / for the ideal generated in A by all the Qx,x(ΞΩ. As C
is an ideal in A one has 7cC, thus lA'dA. A is noetherian, / is therefore
generated by finitely many polynomials Pl9 ,Pk. As QX^I for all x(ΞΩ, one
of the Pj does not vanish at x. Therefore the polynomial Δ, defined by

(the bar means that each coefficient is replaced by its complex conjugate) does
not vanish at Ω, and AA'dA. The coefficients of Δ being real, we finally obtain

(29) A(Xm

tΣX29)RlX']c:RlXm

ίΣX2^f A(xm,Σx2s)^Q Ί f x ^ Ω .
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The next result is due to S. Lojasiewicz ([L], p. 124; see also [M], p. 59, for a
proof) :

LEMMA 10. Let φ : U-+R be a real-analytical function on the open set UaRn,
and set Z— φ'1^). For each compact KdU there exist positive numbers C—CK,
a—aK such that

\φ(x)\ϊ>cd(x, ZY , for all x£ΞK,

where d(x, Z) stands for the distance from x to Z.

We apply this lemma to φ(x)=Δ(xm, Σx2s). We have ZCL{x\x1X2"- xn— 0}
since φ(x)ΦQ for χ(=Ω. If \Xj\<*M, j=l,2, — ,n then

d(x, Z)^min ( \ X ί \ , .-., | X n | ) ^ l » .

Therefore

(30) \Δ(xm

yΣxzs)\>\xί'"Xn\
a

f

for x bounded.

LEMMA 11. // the assumptions are as in Theorem 2, and if a ί f •••, an^N,
then

Proof. By (29) we have

Xf i - Xa

n*Δ(Xm, ΣX2s)=P(Xm, ΣX2S).

where P is a real polynomial. Thus

, Σf»)=P(fm, Σfzs),

where Δ(/m, Σ f 2 s ) and P(fm, Σ f 2 s ) are smooth functions. The f, are continuous
and therefore locally bounded. By (30) we thus obtain

.../M^, J8=α/infα,,

in bounded intervals. Then /^ — /^eC°° follows from Theorem 1. Q.E.D.

of Theorem 2. The theorem is true for n— 1, by the corollary to
Theorem 1. We shall proceed by induction. By the assumptions of the theorem,
we have

By Lemma 11, we may drop the first product, therefore
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Since

we may use the induction hypthesis with s2=~-=sn=l to obtain

(31) /}>(Am« • • • /?»)€= C-, ;=2,-,n.

Put S— maxSj, M=maxmι7. We shall show that if &2, ••• , bn>SM+(n— 1)M2 then

(32) /i8-/»6»eC-.

and therefore, by the corollary to Theorem 1,

(33) /S2/S8 /SneCββ, if fl2,-,αn^l.

Since s,, m^ are coprime, one can find v/eJV, 0^^^m;— 1, such that

SjUj^bj (modra;), — 2, - ,n.

By (31) we obtain

The contribution of /2 to this product is

fs&z ^m2(V2+> +v7i)._. /5
J 2 J 2 J 2

where q=bz (modm2), and ^^SM+(n— 1)M2<£2 Therefore, if we multiply by
an appropriate power of f f 2, /2 will have the desired exponent bz. We proceed
in the same way with the other fr This proves (32), and thus (33).

We start the whole thing all over again, noting that

and therefore

by (33). After several repetitions, we eventually find /^Sri+2m«eC°° and (because
/?»sC-) fn^C-. Q.E.D.

Let us change the assumptions in Theorem 2.

, g.c.d.(m,,s,)=l, y=l,2,-,n.

The exponents in the sum may be odd. It is easy to prove a lemma analogous
to Lemma 8, except for (27), which is wrong in general. However, let us
consider a special case:
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72—2, 51—52=1, g.c.d.(wι, m2)=l.

In order to prove (27), we have to show that if x, y are real numbers, ζ; a
mrth root of unity, /=!, 2, (d, ζ2)=£(l, 1), and if *-f;y=Ci%+C2;y, then z^=0.
If d=l, then ζz^l and thus 3>=0; we have the same result if d=l. Now, let
us suppose that d=£l, ζ2^l, and set ζ1=exp(2π/fl/mι), 0<α<mι, ζ2=exp(2πft/wι8),
Q<b<mz. We obtain the following linear system

*(l-d)+Xl-C.)=0

*(l-Cι)+Xl-C.)=0

which must be singular if there were to be a solution such that

1 ζi 1 ζ2

1-ζι " 1-Cs '

and by an easy calculation

exp(2πi—)=exp(2πi—).
\ mj \ ra2/

This is not possible under our assumptions. Now we can go on as in the proof
of Theorem 2 and show that fl and /2 are smooth. Somewhat more generally
we get:

THEOREM 3. Let m, n, r, s be natural numbers such that

(34) g.c.d.(ra, n)=g.c.d.(7n, r)=g.c.d.(n, s)=l ,

and let f , g : R-+R be functions such that

fr+gs, fm,

Then f ,

Proof. We just did the proof in the special case r=s=l. By the hypothesis,
(/ r)m> (gsϊn and fr-\-gs are smooth, therefore fr and gs too are smooth, and so
are / and g by the corollary to Theorem 1.

The conditions g.c.d.(m, r)=g.c.d.(w, s)=l are necessary, as is shown by
the counterexamples given just after Theorem 2'. If r or s is odd, the condi-
tion g.c.d.(m, n)=l is necessary too. In fact, if q=g.o,A.(m, n)>l, then we
define /(f)=UI', g(0=-UΓ if q is even, and /(ί)=ί*/β, £(0=-fr'« if ^ is odd
and s is odd, say. Combining these remarks with Theorem 3 and Theorem 2',
we obtain :

THEOREM 3'. The map

R2—>R*, (x, y) i - > (xr +y , xm, yn) ,

is a pseudo-immersion if and only if
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a) g.c.d.(r, τw)=g.c.d.(s, w)=l
b) r, s are even or g.c.d.(m, n)=l.

4. Examples and counterexampls.

Pseudo-immersivity being a local property, we shall consider smooth germs

A : (Λn, 0) —> (ΛTO, 0).

The family of all such germs will be denoted by ΓTO.n, AeΓw > 7 l is pseudo-
immersive if h is represented by a pseudo-immersion. We shall write φm,n for
the family of all pseudo-immersive h^Γm>n. In this section we shall answer
some questions that arise quite naturally in studying pseudo-immersions.

a) In [JP1] we have determined all the germs h^φmΛ, and proved that the
pseudo-immersivity of AeΓm,ι, depends only on the Taylor series TA. 7s this still
true for Γm>n with an arbitrary n? The (negative) answer is provided by the
following example. Set

g(χ, 3θ=(*8, χ*> y)

g is the cartesian product of the (pseudo-immersive) identity and the map x^
(xz, r5) which is pseudo-immersive by the corollary to Theorem 1 hence
Let ω: R->R be defined by

ω(;y)=exp(-2r2)sin2(l/:y), if y^Q,

ω(0)=0.

With this we now define a germ

h(x, y)=(χ2, xs-xω(y), y)

which has the same Taylor expansion as g but is not pseudo-immersive.

Indeed, Th=Tg follows from the flatness of ω at 0. And if /(ί)=(Vω(0,0=
(exp(-r2)|sin(l/ί)l, t\ then / is continuous, f£Cl, but Ao/(ί)=(ω(ί), 0, t\ and
therefore h°f^C°°. Thus we have proved

THEOREM 4. There exist g, h^Γm,n such that Tg=Th, gζΞφmn, h$Ξψm,n.

In our counterexample, h is neither analytic not injective, which leads us
to ask the following questions:

Let g, h<=Γm,n, g^ψm,n, Tg—Th. Does any of the three conditions listed
below imply that A is pseudo-immersive ?

( i ) A is a polynomial
( i i ) A is analytic;
(iii) A is injective.

Obviously (i) implies (ii). Also (ii) implies (iii), under our assumptions, but this
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is much less obvious.
b) In [JP2] we have shown that a pseudo-immersive germ is almost injective

i.e. if Xp, ;yp->0, h(xp)=h(yp\ then \\(xp-yp)\\<\\xp\\°+\\yp\\" for all α>0. But a
pseudo-immersive germ may be non-injective as is shown in the following
theorem.

THEOREM 5. Set

h(χ, 3θ=(x2, xz-xe-1/}y>, y) if yΦQ,

h(x, 0)=(*2, x\ 0) .

Then h represents a pseudo-immersive non-injective germ. The non-inj 'ectivity
follows from λ(<Γ1 / 2 | t l, ί)=Λ(-*~1 / 2 | t l, 0-

Proof, h is immersive except at (0, 0) we omit the proof which is straight-
forward. Let / : R^R2 be a continuous function such that Λ°/ is smooth and
set f(t)=(x(t), y(t)). Then obviously yeC00. By the immersivity of h (except
at the origin), we know that / is smooth except possibly at the zeros of y.
Define ω by ω(w)=exp(— l / \ u \ ) for uφQ, ω(0)=0. If X^o)— 0, then ω y is flat
at £o. If x is not flat at ί0, then x2—ω°y is not flat either and x is smooth at
ί0 by Lemma 1, because x2— ω°y, x(x2—ω°y\ x2 are smooth. Thus / can be non-
smooth only at the points of flatness of x. We now apply Lemma 7, with x
for /, and g=xz-ω°y, s=0, λ=2n, m=2. If fς=Cn-l\Cn, we have by (15), (16)
and (17):

sup(ω°y)~K2\Ik\
2n, for k-*oo ,

Ik

Therefore there are two constants J3>^4>0 and sequences tk, sk^Ik with ω(y(tk))
=B\Ik\

2n, |ω(Xs A )) l=^l/*l 2 n , and ;y(s*)>0, XίA)>0, say. Then

(272 lθg | /, | )~2 log - ,

because (0(3;)= exp(— 1/ y) for 3;>0. On the other hand, since y is smooth and
tk, sk(Ξlk, we have y(tk)— y(sk)< \ I k \ . But u=o((log u)~2) for w->0, so there is
a contradiction. Q. E. D.

c) If both mappings hl: R
p~^Rr and h2:Rq-*Rs are pseudo-immersions,

then the cartesian product hίXh2: Rp+q ̂ Rr+s is a pseudo-immersion too, and
similarly for the germs. We call the cartesian product of two germs reducible.
More generally, we say that h^Γm,n is reducible if we can find hι^Γptr, /z2e
Γq,s, with m=p-i-q, n—r+s, p} q, r, s^l, and germs of diffeomorphisms S, T
such that the diagram
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h
(R\ 0) - > (Λ*, 0)

(35) o t I τ
* I (Ai, A.) I 1

(Rr, Q)X(RS, 0) - > (Rp, 0)X(Λ«, 0)

is commutative; A is pseudo-immersive if and only if hi and Λ 2 are pseudo-
immersive. If h^φntn> n^>2, then A is diffeomorphic, and therefore equivalent
to the identity on (Rn, 0) and, consequently, reducible; if n>m, then ψm>n is
empty (cf. [JP2]). But for other dimensions irreducible pseud-immersive germs
do exist:

THEOREM 6. // n<m, there is an irreducible germ in ψm,n

Proof. For fe^l set

φ*(xι, — > **)=(*ι> ••• > Ay Σ x

By Theorem 2', φk is a pseudo-immersion. Thus h(κ)—φm^^φm.^ ••• °φn is a
pseudo-immersion too. It is evident that

?>*(*)= W((0, -,o,
as %->0, and therefore

where Q=2m~n, β=(0, •••, 0, l)e/2m. Suppose now that h is reducible, as in
the diagram (35), and that T'(Q)=L. Then

as M->0. Thus

In the same way

Le=(0,lim
ϋ-*0

Therefore L^— 0, which contradicts the inversibility of L. Q. E. D.

5. Differentiability of quotients of smooth functions.

It is easy to see that in Theorem 1 none of the conditions geC00, fg^ C00,
I / 1 <; I g I a may be omitted without adequate replacement. That the condition
/msC°° cannot be suppressed either is part of the following theorem.

THEOREM 7. Let f , g : R-*C be two functions and a a positive constant suppose
that
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(a) g^
(b) I /(*) I ̂  I g(x) I a for all real x.

Then

/<ΞCC 2" ], if f is real,
and

, if f is complex.

This result is best possible: there are real functions f , g satisfying (a) and (b),
with /<£Cc2α]+1; there are complex functions /, g satisfying (a) and (b), with

Proof, (i) Let us show first that if / is real, then (a) and (b) imply /eCc2α].
Denote by P the (closed) set of flatness of g. Then / is flat on P (by (b)) and
smooth on R\P (by Lemma 1). In particular / is continuous. Suppose that
/eC71-1 and pt=P. Then

+ ( * — ̂  as

that is, by Leibniz' formula,

n+2\
\g"(x}fw(x}

2 /

»-ι/n+2
Σ

But g<n+*-»(x)fU\x)-+Q if j<n-l, by Lemma 2. Let

φ(x)=f™(x) for xφP,

Then

fn+2
(36)

2

as p^P, x->p, x£P. Suppose now that

(37) n<2a, /eC

We shall prove that this is inconsistent with (36).

LEMMA 12. // the function f : \_q, a~\-^R is flat at q and m-times differentiate
for x>q, then l iminf^ e |/

c m )W|=0.

Proof. We may suppose that #=0. By Lemma 3 and the flatness of / at
0, we get for 0<s^α/2:

inf \ftm\x)\< inf |/c m )(%)| <s~m sup
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This proves the lemma. Q. E.D.

LEMMA 13. Let P be a closed set in R, and let f : R-+R be a real function,
smooth on R\P and flat on P. Suppose that f^Cn~1\Cn for some natural number
n. Then there exist p^P, and a sequence of intervals Ik — Lβk> b^dR^P with
ak<bk, dk—^P, bk~*P, and a sequence of numbers ck^Ik, such that

(38) sup I/I » |7, »;
Ik

(39) s u p | / < n ) | > l ;
Ik

(40) supl/^M-l/^^^l^^l/J^supl/^l ;
I k £ I k

(41) /(n+2)(^)-0;

(42) s u p l / ^ l ^ l / a l - ' s u p l / ' ^ l .
Ik Ik

Proof. By the remark which follows Lemma 7, we may find p<=P and a
sequence of numbers ykφP, yk~*P, such that (with φ~fw as above),

(Henceforth, we shall replace sequences by subsequences if necessary, without
mentioning it each time.) We may suppose ί=0, jy*>0, φ(yk):>2. There are
Uk, Q<uk<yk, such that [uk, yk^\ClR\P and

(43) φ(uk)=l, φW^l in luk, yk] .

This follows from Lemma 12 with #=sup(Pπ[0, yk~\}, a=yk, n=m. We may
suppose yk<uk-ι. Then, there is a sequence of numbers zkί yk<Zkί^uk_l such
that lyk, £,]CJR\P,

(44) φ(Zk)—l, φ(x)^l in \_yk, zk~] .

This follows from (43) and from φ(uk-ι)=l if [3 ,̂ w*_i]C/2\P, and again from
Lemma 12 in the opposite case. Now we choose bk such that uk<^bk^zk and

(45) φ(bk)= max
tuk,zkl

Set Jk = Luk, bk~]. Then φ^l in Jk by (43) and (44); by Lemma 3 we then obtain

(46) sup / | » | /* r .
Jk

If \φ'\ has a maximum on Jk at a point ck where φ" vanishes, we set ak — uk,
Ik —Jk then (40) follows from

(47) sup |y> |^2 inf \φ\ ,
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and (42) in a similar way. In the opposite case, | φ' \ has its maximum in Jk at
uk, and φr(Uk}l^\Jk\~l, for (43) implies φ'(uk)^Q. Using Lemma 12 once more
we find a point ak, Q<ak<uk, \_ak, M*]C/ZvP, such that

(48) for

Set /* = [α*, bk~\ and ck = ak. The estimates (39)-(42) follow as above. In order
to prove (38), we distinguish two cases uk — ak<.bk — uk and uk — ak*^bk — uk.
In the first case we have |/* |^2 |/ f t | , and (38) is a consequence of (46). In the
second case, we obtain (using Lemma 3 with (48)):

sup

thus proving (38). Q. E. D.

Let us go back to the proof of Theorem 7. We suppose that (37) is true.
By (38) and the hypothesis (b), we obtain

1 k

We apply Lemma 5 with ι = n/a^2, the n of the lemma being 0. Thus there
is a number m<n/a such that

(49) inf \g^\y\Ik\
nla~m

and

(50) sup I £ c ί> I =o(| 7* I »>«-') for ί>m.

Since n/a<2, one has m—0 or m=l.
In the first case (m=0) we obtain from (39), (40), (42), (49) and (50) (setting

sup—sup/^, i n f = i n f / Λ for simplicity):

sup
(n+2\

gφ*+(n+2)g'φ' + l \gffφ

\φ"\ inf \g\ -(w+2)2(sup \ψ'\ sup \ g ' \ +sup \φ\ sup |

|- /, \o(\I> \ »'*-*)- \Ik \*o(\Ik \ »/«-«))

which is inconsistent with (36). If m—l, we have

n+2
gφ'+(n+2)g'φ' + [ ] g " φ ] ( c k )

z

n+Z
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which is again inconsistent with (36). This time, (41) was used instead of (42).
This completes the proof of /eCC2"].

(i i) If / is complex, then by hypothesis geC00, therefore l g | 2 — gg^C00

and /|£|2=(/£)£eC~, thus Sί/I^ΓeC00. Condition (b) becomes \ V i f \ ^ ( \ g \ 2 ) a / 2 ,
it follows (by the real case) that Vϊf(ΞCLZa/^=Cw. Similarly, 3/eC^, and
finally /eC:α] (S stands for "imaginary part of").

It is possible to give a direct proof, similar to (i). We can obtain an
analogous of Lemma 13, but without (41) which we needed to treat the case
m— 1; to exclude this case we have to suppose n/a<l, that is to say n^[α].

(iii) We choose a function /fe C°°(/2, R) having the properties

(51) Orgtfrgl, /fbO=0 for \y\^l;

(52) #-1 is flat at 3^=0.

We then choose a non-constant (real or complex) polynomial p of degree TV with
the property

(53) I £001^1 for y real.

I//) is not a polynomial because /> is not constant. Therefore we may suppose
that

Finally we choose two sequences cl>c2>c3> ••• >0, Cjfe->0, and DI, D2, DB, ••• with
0<jD*^l/2c*, £*+!+£*+!<<:*-£>*, and set rfft=exp(~l/
The /Λ are disjoint and accumulate towards 0. With

we define /, g: R-+C by

g(x)=dr

kp((x-ck)/dk)H((x-ck)/Dk) in

, H°((x-Ck)/Dk)— -
/>((* — ck)/dk)

ιn

f(x)=g(x)=0 if % is not in the union of the Ik, in particular /(0)=<g (0)=0.
From l ί l^l , |/ί|^l and α<α> we obtain

for x&Ik, and hence for all x^R; thus condition (b) of the theorem holds.
Because Y>N and dk<Dj for arbitrary S>0, we have
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» / n \
#<»>(*)= Σ }dl-mp<m>((x-ck)/dk)DΓnH(n-m>((x-cl<VDl!)

i n C r a , N)

Σ
m=o

if *CΞ/Λ, for n=0, 1, 2, ••• , M>0, with constants depending on n and M. Since
x^Dk for ze/ f e, we can easily deduce that geC00 and that g is flat at x— 0
(/ is therefore also flat at 0). Similarly, one shows that fg^C00. On the other
hand we get

by (52) and (54) and therefore /c^(c*)>l. Since / is flat at 0, we deduce that
f£C? = σNaW. As a particular case let us choose N=2, p(y)=l+(y-sY,
where s^R is such as to satisfy (54). Then / and g are also real and fφ.
C[2α]+iφ if we choose N=l, X;y)=l+ί(;y — s), then / and g are complex and
f£Cw+1. This completes the proof. Q.E.D.
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