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§ 0. Introduction.

In [1] A. Hinkkanen proposed the following problem :

2.65. Since the knowledge of the zeros of an entire function / leaves an
unknown factor, eh say, in the Hadamard product for /, one can ask if / is
determined by the zeros of / and its first few derivatives. Does there exist an
integer &^>2 such that, if / and g are entire and /(7%gC7° is entire and non-
vanishing for 0<^n^k, then f / g is constant unless

f(z)=eat+\ g(z)=ecz+d or f(z}=A(eaz-b\ g(z}=B(e~az-b-^

The proposer has shown (unpublished) that &— 2 will do in certain cases; for
example, when / and g have finite order. The example

shows that one sometimes needs £—3.
One can ask a similar question for meromorphic functions, with the ad-

ditional possibility that

for any non-constant entire function h.

On this problem G. G. Gundersen [3] gave some information about the con-
nection between the unknown factor and the zeros. In this paper we shall
investigate this problem when k—2 under the restriction on the order p of h, that
is, p<2. Then we can see that the answer to this problem is yes when &=4,
and if £—3, there is only one possibility in addition.

We assume familiarity with Nevanlinna's theory and with its standard nota-
tions (see, [4]).

§ 1. Results.

THEOREM. Suppose that two meromorphic functions f and g of hyper-order
less than 2 satisfy the condition that f<n>/g< n> is entire and non-vanishing for 0^
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^2. Then f / g reduces to a constant unless

(1) /(*)=*β*+ft, g(z)

( 2 )

( 3 )

for any nonconstant entire function h of order<2;

( 4 ) f(z)=Aexp{c(eaz+b-az)},

( 5 ) f(z}=A(eaz+b-l)

with an integer k and

(7) /(*)
-c)(aζ+b+2kπi)

\

with an integer k and

(8) /(2)=^

[ ΓZ f

-)oH(ζ)-'{H'

an integer m(^2) αnJ c^l, provided that H and L are entire functions of
order at most 1, vanishing only at zeros of em^az+b:) — c and of eaz+b—l, respec-
tively, and satisfy

^

\ L>z '\z)

or possibly,

( 9 ) f(z)=H(z)L(z)k exp(M^)), g(z)=H(z)L(z)k

where entire functions H and L are given by
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Further H vanishes only at one-points of eaz+ί> excepting those of ecz+d, and L
vanishes at all the one-points common to eaz+b and ecz+d. Also M and N are entire
functions satisfying

,„ 1-H'L-kHL' . _ _ , eaz+b-H'L-kHL'
M' = TFT and N' = -

HL WM* " ~ HL

Here HL is not zero-free, and if L has never a zero we may chose it the constant
1. While otherwise, k is an integer different from 0, ±1, —2 and —3, and then
—a/c is a rational number equal to (k — ϊ)/(k+ϊ) but a positive integer.

In any case, A, B, a, b, c and d are constants with A-B-a-c^Q.

COROLLARY. In the above theorem, if we suppose additionally that f" I g"'
is also entire and non-vanishing, then the possible pairs are those of (1), (2), (3)
as in the theorem and

(10) f(z)=A exp(ea2+δ), g(z)=

The pair (10) is obtained from the possibility (8) by setting L(z)=eaz+b— 1,
c— — 1 and m— 2. Also the example given by Hinkkanen is contained in (8)
with α=l, eb=i, c= — l, m=2 and L(z)=l, thus

H(z)=i(e2z-l)e~z.

The author, however, do not know whether there indeed exist entire functions
H and L as in (9).

In this theorem it is sufficient for our proof that f/g=ea say, has hyper-
order less than 2, that is, the order of a is less than 2. On the restriction we
can say slightly more that Theorem still holds when it is of order 2 and minimal
type. Then the function h in (3) should be so. Without this restriction our
method, Lemma 1, does not work in the case where

limsup m(r> g* ) + m ' βk}

f /&' f" I g"for eh———^\ and ek=-^/ ^L

τ^l. In this section E denotes a set of finite
J o J o

linear measure, which is not always the same. Then we can see

limsu Mr, g)+N(r, l/g)+ff(r, l/g')+N.(r9 l/g'}+N«(r, l/g»} <co

r^oo m(r, a')
(r*E) ^ ' '

Here in NQ(r, l/φf) only zeros of ψ'(z} not corresponding to the multiple zeros
of φ(z) are to be considered. The following is such a pair satisfying the assump-
tions of our theorem apart from the restriction on the order of a,

and g(z)
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where G is any entire function. In fact, then ehw=ekw=eGw and

therefore m(r, α')^(2+0(l))m(r, e°)(r&E), unless G is a constant.

§ 2. Preliminaries.

To obtain our results we shall make proper use of two tools according to
the order of the function a'=f'/f—g'/g. One is the so-called BoreΓs unicity
theorem, or impossibility of BoreΓs identity, which is expressed as in Lemmas
1 and 2. The other is an elementary fact in the theory of Ordinary differential
equations : for functions /Ί and /2 holomorphic in a simply connected domain
D, the solution of Riccati's equation

is given by

w(z)=w(z; z0, I/Co)

where z0^D and CQ is a nonzero constant (see, for instance [5]).

LEMMA 1 (Hiromi and Ozawa [6]). Let a0(z\ dι(z\ ••• , an(z) be meromorphic
functions and let gι(z\ ••• , gn(z) be entire functions. Further suppose that

(2.1) T(r, a^o Σ m(r, ̂ , ;=0, 1, - , n
I v=ι )

holds outside a set of finite linear measure. If an identity

holds, then we have an identity

where the constants cv, v=l, ••• , n, are not all zero.

LEMMA 2 (Gross [2; p. 108, Lemma 5.1]). Let aι(z) be entire of finite order
^p. Let gi(z) be entire, and let gi(z)—gj(z)(iφj) be a transcendental function or
polynomial of degree greater than p. Then

holds only when
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Also we need the following unicity lemma :

LEMMA 3 (Osgood and Yang [7]). Let P(z), Q(z) be two nonconstant poly-
nomials of the same degree. If

is entire then

P(z)=m(Q(z))+2nπi,

where m, n are integers.

§3. Proof of Theorem and Corollary.

By the assumption let us set

(3.0.1) f(z)=g(z)eaw

(3.0.2) f(z)=gr(z)e^g\ and

(3.0.3) f"(z)=g"(z)erw,

where a, β and γ are entire functions of order less than 2.
There is nothing to prove if a is a constant. Also if β is a constant, then

f(z)=Cg(z)+D with constants C=eβ and D. Suppose that ZMO. Then this
together with (3.0.1) gives

D . f f N D
fj(7\ ?)ΠΠ Γ ( 7 )
Q\<>} /v f »> κ-i 0.1J.VJ. I V < , y 1 _, _ Λ , / . _ x ,

where a is a nonconstant entire function. This is found in (3) of our theorem.
Now we suppose that neither a' nor β' vanishes identically. Then differ-

entiation gives

(3.0.4)

and

(3.0.5) g"(z}

g>(2) 0rco-0c*>_ι

from (3.0.1), (3.0.2) and (3.0.3). Further differentiation and substitution of (3.0.4)
and (3.0.5) give the initial identity

(3.0.6) (α*+α'8)ίΓα+2^Hα*-α'(j^

Now we shall show that functions β—a and β—γ must be linear.
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§3.1. Linearity of β— a and β—γ.

Case 1 : β— a is not linear.
Let β—a be denoted by h. Then (3.0.6) becomes

(3.1.1) (Λ^+α/VΛ+α"r-(α^-AV>Λ-(α^+AV> f t+α-ϊ'==α/8--αΛ'.

We note that neither «"-fα'2 nor a"— a'2 vanishes identically for our function
a is nonconstant entire. Also we have two estimates

(3.1.2) m(r, α')=S(r, eh) and m(r, h')=S(r, eh)

by our assumption on the order of a and the theorem on logarithmic derivatives
(see, [4]).

If α'-A'α'ΞO, then (3.1.1) becomes

and while α* + A'α'==0,

(3.1.3) (a"+a' 2)e2h+a-r-2a"eh=a'2-a" .

Due to (3.1.2) Lemma 1 leads then each identity to

C(α*+α'2)eft=2α* and (α"+α'VΛ+α~r

for a nonzero constant C, respectively. The former gives a contradiction by
(3.1.2). For the latter equation, by substituting it into (3.1.3) we have

2(C-l)a"eh=a'2-a",

which is also a contradiction.
An application of the lemma to (3.1.1) gives an identity

(3.1.4) C1(aff+af^eh+a

where the constants Cv are not all zero. Then Cι=Q implies Cz CzΦ§ and

On substituting this into (3.1.1) we obtain

Here a simple analysis shows C + 1^0. Thus a further application of the lemma
leads this to the result

(aff+a'*)eh=D(a"+h'ar)

with a nonzero constant D. The estimation
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m(r, eh)^m(r, e2h+a~

makes this possible. The result is however impossible due to (3.1.2). Also
C3=0 gives d d^O and

(a"-h'a/)eh=C(a"+a'2)e2h+a-r, C=-d/d

Again by substituting this into (3.1.1) we have

Then we must take C=l and thus

(a"+h'a')eh+a-r=a"-a'2 and (a"+a'2}eh+a-r=a"-h'a' .

Hence we arrive at the results a.' — hf and (eh+a~r—ΐ)a" ——(eh+a~r+l)a'2, since
h'+a'=βf^Q. Then the property of exponential functions and entireness of
α'(^O) permit only to get eh+a~r=Ξ — 1 and α"Ξθ, which is however impossible
now. Thus we may apply Lemma 1 to (3.1.4) and get a contradiction again.

Case 2: -a+β is of the form Az+B, A and B<=C, with eAg+B^l.
Then our initial identity (3.0.6) becomes

(3.1.5) (α^+α'V*+^^-r-(α^-^α0^ί+s-(α^+-Aα/)«^"ϊ'=α'2-αΛr.

Now we suppose that β— γ is a non-linear entire function. Then the esti-
mates

m(r, a')=S(r, e^r) and m(r, ^*+*)=S(r, e^'O

reduce (3.1.5) to the result

Then we have α r Ξ±Λ and A2eAz+B=±A2. This is impossible since α^O.
Hence we need only to discuss Identity (3.1.5) when β— γ is also of the

form Cz+D, C, D(=Ξ€, with eCg+D=£l. Then our identity is

(3.1.6) (a"+a'^eu+c>'+<B+»-(aff-Aa')eAg+B-te^

There is a difference in methods according to the growth of a'. Therefore we
distinguish the cases whether a' is of order less than one, or not.

§3.2. The case where the order of a' is less than one.

Then the method that we make use of is BoreΓs unicity theorem represented
as Lemma 2. To do this we have four possibilities to be considered in (3.1.6).
The first one is that ^0. Then (3.1.6) becomes
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It now follows either C— 0 or

from the present assumption. The latter result gives eB— 1. This is however
outside our observation. While C=0 gives the identity

(eB--ϊ)(eD-ϊ)a"+(eB+D-ϊ)a'*=Q .

The entireness of a' shows that eB+D=l and a' is a constant. Then the equa-
tions (3.0.4) and (3.0.1) imply the result (1).

Next we suppose that A^O and C=0. Then

and the assumption leads this to the result

Hence we have af = A and eD= — l. Then (3.0.4) and (3.0.1) give the pair~(2).
In the third possibility, A+C=Q and AΦQ, the identity (3.1.6) becomes

An application of Lemma 2 leads us to the conclusion

which is evidently impossible.
Finally if A=C^Q, then

which implies by the lemma

This is again impossible. Therefore the application of Lemma 2 to (3.1.6)
shows that the identity is impossible due to the similar reason. The observa-
tion is now completed on the present assumption.

§3.3. The case where a' is of order p for

Here we regard Equation (3.1.6) as

(3.3.1) (eAz+B-l)(eCt+D-l)a" + (eA*+Bec*+D-l)a'*+

that is, we consider that a' is an entire solution of Riccati's equation

(pAz + BpCz + D _ 1\ (pAz+B _ pCz+D\

W=Q'
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Hence by the fact mentioned in §2, a solution of (3.3.2) is given by

(3.3.3) w(z)=w(z; *β, I/Co)

= C°eXp

f Γ » eAξ+B_ecξ+D ]

Uc (eA*+B-ΐ)(ec*+D-ΐ) ξ\ ζ

possibly apart from zeros of eAz+B— 1 and of e°z+D—l. In the strict sense, the
zeros of eAz+B— 1 and of 0C*+Z)— 1 are all joined to the point at infinity by cuts
which have no finite points in common, and as our domain D we take the
complex plane less the cuts. And let z0^D and also choose C0(^0) arbitrarily.
We note that we shall take suitable branches as the occasion demands.

There are three cases to be separated in our observation, that is, (i) A=Q,
(ii) C— 0 and AΦQ, and (iii) otherwise. In the case (i), (3.3.3) becomes

with eBΦl. A simple analysis shows that this does not represent any non-
constant entire function. While the assumption (ii) leads to

(3.3.4) w(z)=Ad(d-l)(eAz+B-l){C1e^Az+^-d2eAz+B+(d-l)2}-1

for d=eD/(eD— 1) and a constant C1 depending on z0, C0 and d. We require
that every zero of the denominator should be cancelled by that of the numerator,
since w(z) must be entire. Easily we see that Cj^O. Hence we obtain Ci—
(2d — I)e2mdπl for some integer m. Then we can show by Lemma 3 that d
must be a rational number, even so w(z) in (3.3.4) represents no entire function.

In the general case, a calculation gives

(3.3.5)

with an integer / and the constant

C1=Co«2n3eW/<7)V0+Λ-l)(ec'*0+1)-l)-^/c, n an integer.

Suppose that ,4+ C==0, then

M;(s) = -β-<^+*>(^*+*^

If e

B+D— 1, d^O and we have the entire function

thus by (3.0.4)
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Hence we can get the pair (4). Calculation shows that this pair does not satisfy
the further condition required in Corollary.

While if eB+D is different from one, the constant Q—(eB + D— I)z0 must be
equal to either of

(2kπi+B)(eB+D-l)/A and (2kπi-D)(eB+D-ΐ)/A

for an integer k. Then the function w(z) represents our function a'(z),

(l-eB+D)(Az+B+2kπi) and (l-eB+D){Az+B-(B+D)+2kπi} '

respectively. By (3.0.4) and (3.0.1) the former case implies the result (7) with
the help of (3.0.5). And for the latter we have the result (6) similarly by (3.0.4)
and (3.0.1). In each case their third order derivatives do not have the property
required in Corollary.

Next we put A=C. Then we can see that eB+eD=0 and

for some constant C2. Evidently this can not be any entire function. Hence
we shall proceed to the general case that is the main part of this proof.

§ 3.4. Discussion about the monodromy of the function w(z).

Recall that we consider an entire function a satisfying the equation (3.3.1)
and note that for a zero of eAz+B—l, zl say,

and for a zero zl of eCz+D—l,

Now we require that one of the solutions given by (3.3.5) in D should be
the α', a single-valued and regular function in the whole plane. In fact the
one-points of eAz+B are regular points of them. For our purpose therefore it is
sufficient to impose the following monodromy condition on the w(z) : Let z' be
any point in a neighbourhood of a one-point Zι of eCz+D and Γ=Γ(zf Zι) any
sufficiently small circular loop at z' with center zlt Then the value w(z') at
the initial point of Γ should coincide with the value w*(zf) at the terminal point.

Evidently as z describes Γ, eCz+D—l winds the origin once with the same
(positive) direction. Hence we have
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w*(z')=

Z0 JΓ

The condition w(z')=w*(zf) is thus equivalent to the representation

(3.4.1) ( (eA^Bec^D-l)(ec^D-

Suppose e-**<Alc»Φl. Then

)Γ

and we shall discuss the "value" w(z^.
Firstly suppose eAz^+B—l as well as e°Zl+D=l. Then we can see that for

zf near zlt

f

C -I- An ^~^ι

C — .A
and

for some integer n with θ— Arg(z'— Zι) and /o=|2 '— ̂ ι|. Hence

thus w;(^)=yle2Z7rU/C)l(C-^)/(C+Λ)^0. Secondly suppose eA'^BΦL Then an
analogous observation shows w(zι)=—AezlπlA/c^ϋ. There indeed exists such a
point Zι, since if the function (eAz+B— l}/(eCz+D— 1) is entire then A/C must be
an integer due to Lemma 3. The first remark of this section shows e

zlπlA/c= i f

which indicates our choice of branches ZA/C in (3.3.5). Eventually, when e~ZπίA/c

=£1, w (z) is different from zero at any zero of eCz+D—l. It is also true for a
negative (^—2) integer — A/C notwithstanding e-

2πlA/c— l in (3.4.1). Hence
w(z) may assume the value zero at a zero Zi of e°z+D— 1 only if — A/C=m is a
positive (^2) integer. Now we put
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which is the finite definite value depending only on points zl and ZQ. Also if

f , _ ί - 1w(z)= - —; - { - - - , near *=

Thus I(Zl; z0)=0 implies w(zJ=(m+ΐ)AC/(A+C)*Q. And if I(z,;

ACm

w(z)= ° (z-Zl)
m+1{l+0(z-Zl)} near 2=2,,

l(Zι } ZQ)

so that w(z) has the zero of multiplicity m+1 at Zi. On the other hand if

eA*ι+B=£lf then we can discuss similarly to see that w(z1)—mC=— AΦO for
I(*ι', Zo)=Q and that w(z) has the zero of multiplicity m at Zj. for I(zι\ Zo)^0.

There is another possibility of its zeros only at zeros of eAz+B— 1 excepting
those of eCz+D— 1. In any case, at such a zero, z2 say,

z8)} if
and

that is, w(z) has a simple zero otherwise.
Under the above observations we shall distinguish sections according to the

value of —A/C to get the representations for / and g. The remaining two
sections are devoted to this without further investigation of w(z).

§3.5. The case where —A/C is an integer at least 2.

Put p =—A/C and then

(3.5.0) a'(z)=-

J z

*o

by (3.3.5). By our discussion in the previous section it is known that the
denominator, F(z) say, can have only a simple zero and zero of multiplicity p
possibly at a zero of ep<Ci+D>— eB+pD and of eCz+D— 1, respectively. Then we put

F(z}=H(z}L(zY,

provided that H and L are entire functions assuming the value zero only at
zeros of ep<c'+D>—eB+pD and of eCz+D-l satisfying I(z\ zQ)=Q with same multi-
plicity 1, respectively. We may say that these two functions are of order at
most 1. Differentiating this, we have

(3.5.1) H'(z)L(z)+pH(z)L'(z)=(
\
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There is a difference in our discussion about the constant b=eB+pD.

Subcase; bφl.
In this case H and L have no common zero, and

_

(3.5.2) a'(z)= „,.
//(z) \ L(z)

By the equation (3.0.4) we have

(353) £'(2)- 1 ( eCZ+D~1 V
( } ^ΰ)-— ffΰΛ £(*) '

Now we suppose that H(z) has at least a zero, α say. In a neighborhood of a,

&'(?} 1 — C^^a+^—nPfg=^-H(W. ιl+0"-"
and (3.5.1) gives

Hf(a}L(aY ~ *

Hence the residue of g'/g is equal to 1 at any zero of H, so that g(z) is given by

Here M(z) is an entire function satisfying

nCz+D_

In the concrete, we have

ecζ+D_ιL

The desired representations for / and g are

It is easy to show that these are also valid if H(z) is different from zero, by
taking H(z)=l, for example.

Then the following calculation implies

§"'(*} K(z)H2(z)+J(z) >

with
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and

In fact, by (3.0.3) we now have

^(z)^bg/f(z)e-^+l^Cz+D^eaw .

Differentiating this, we obtain the following equation :

(3.5.4) /^/W=6e-cp+1>^I+^eβw[^/U)+{-(p + l)C+

While (3.5.3) together with F(z)=H(z)L(z)p gives

F(z)

By differentiation we have from this equation,

g"(z)=G(z}g'(z),
where

+D F'(z} (ec

Further we have

(3.5.6)

Therefore (3.5.4) and (3.5.6) imply the equation

(3.5.7) /"W

Consequently we can obtain the desired representation from (3.5.7), when we
take account of the equation

and use (3.5.5) and (3.5.2).
Under the assumption of Corollary we may put
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K(z)H2(z)+ J(z)

for some constants r and s. Note that erz+s=l implies that a' is a constant by
(3.5.2) and it is now excluded. Then

(3.5.8) e^-l

and
\ χp

k(z)

with

and

(2-6e-CP-lX^+Z>)_^-pCC^^^

Suppose that (eCz+D— ΐ)/L(z) has a zero, 2* say. Then J(z) has a zero of
order at least p + 1 there and so does H1(z)—erz+sH2(z) since K(z*)φQ. Then
ft(2*)=(l-/>)(l-e"*+ )=0 so that er"+'=l. This means that H1(z)-erg+8H2(z)
has a zero of multiplicity at least />+2 there. Since k(z*)=2(l-b)(l-erz*+s)=Q
and H(z*)ΦQ,

Now we have

h'(z)=CeCz+D-erz+s{r-p(r+C)eCz+D},

h"(z)=C2eCz+D-erz+s{r*-p(r+CYeCz+D], and

If ί^3, then r=0 and e™=l, so we have />=2 and er*+*=e-wz+D)9 Then by

(3.5.0)

for a constant C2. Substituting this into (3.5.8), we obtain a contradiction even
if δ=-l.

Next suppose that (0C'2+Z)— ΐ)/L(z) is different from zero. Then we may
choose L(z)=eCz+D-l. Hence by (3.5.0)

#(*)== -̂ ^=(β**+*-̂-LU)^ Uzi

for some point ^t with eCzι+D=l. It follows immediately p—2m, a positive
integer wz and 6= — 1. If m=l, /i(z)=C"1e"cC'4+z>) and the result (10). For the
case where m>l it is shown that the function represented by integration always
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assumes a zero at the point where we never expect. It needs to be a zero of
either e^+^+l or eCz+D-l with /(*; *0)=0.

Subcase; b=l.
Now we choose H and L as

that is, #(2) vanishes only at zeros of ^-^c^+^π ----- \-eCt+D+l. Of course, H
and L do not have any common zero. Then we have the following equation
corresponding to (3.5.1)

(3.5.9) H'(z)L

After the manner of the previous case we shall investigate the behavior of the
logarithmic derivative of g at the zeros of H and L. If either of them is
different from zero, then let it be equal to one identically. Since (3.0.4) gives

-1 / eCz+D— 1 \P
)L(z] ( L(z] ) 'g(z) H(z)L(z) \ L(z)

that is of the expansion

z-a ^Γ/(α)L(α)??+1

near a zero of H, a, and

1 -Cp

near a zero of L, b. The equation (3.5.9) implies

-c«+»- ->

H'(a)L(ay+1

Unless L(Z)Ξ!, (/> + !)/(/? — l)=l+2(/> — I)'1 must be a positive integer, so that
p=2 or p=3.

Firstly suppose that L(^)=l, then

~l)p^

A simple analysis shows p=2m+l, m a positive integer. It is however im-
possible that this function vanishes only at zeros of £C7)~ lκCf2+Γ>)H ----- [_βc2+D_μ^

Next suppose that L(z)^l and p=2. Then
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which has infinitely many zeros. However it follows from this form that L(z)
can have only one zero b and H(z) has no zero. This is a contradiction.

Let p be equal to 3. Then we have

so that it follows that H(z)=l and

thus a'(z)=2Ce-<Cz+D\eWz+I»+eCz+D+l). Hence we can write

/(*)=£(*)-' exp(tf(*)) and

by the previous observation and

L(z)

Finally we have the pair in (5), which has no influence on Corollary.

§3.6. The case where — A/C is not an integer greater than —1.

In this case we know that a'(z) does not have any zero common to eCz+D— 1.
Put a'(z)=(eAz+B— l)/G(z) for an entire function G of order at most one, which
assumes the value zero possibly at the one-points of eAz+B with the simple
multiplicity. Then (3.3.1) gives

(3.6.1) G'(z)(eCz+D-l)-AeCz+DG(z)=eAz+BeCz+D-l .

Here if G(z) is zero-free, it is denoted by erz+s and then (3.6.1) leads however
to a contradiction by using Lemma 2. Hence G has indeed a zero. The func-
tion G is represented by a product of the following two entire functions H and
L. They are of order at most one, H assumes the value zero only at one-
points of eAz+B but those of eCz+D, and L does at all their common one-points.
Of course, all the multiplicities are simple, and there is no zero common to H
and L.

At a zero of H, a say, (3.0.4) and (3.6.1) give the expansion

lτ = r r , , rf . z- = -g(z) H'(a)L(a) z—a z—a

At a zero of L, b say, we have also
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Hence then (C-A)/(C+A)=(l-A/C)/(l+A/Q must be some integer k different
from 0, ±1, —2, and —3, since —A/C=(k — ΐ)/(k + ΐ) is a rational number
different from an integer ^ — 1. Thus —A/C is not an integer.

These observations imply the pair

(3.6.2)

for entire functions M and N satisfying

(3.6.3) MΉL = l-H'L-kHL' and

Calculation gives

(3.6.4)

=eAz+B-H' L-kHL' .

and, noting (3.6.3) and (3.6.1) with G=#L,

(3.6.5)

with

fit'(~\ — n>ι(Z) L'(Z) e

1 V '~ H(z)\e°>+D-l)*

8 (Z}~ H(zY(ec^D-iγ

These are valid even if L(z) is zero-free by taking it as the constant 1, for example.
In the case the number — A/C may be complex and H(z) has indeed a zero

Supposing that f" /g"'—ed for entire δ, we have

g" e-*-l

by the assumption (3.0.3). Since β— a—Az-\-B and β—γ^Cz+D, we have

Now (3.6.4) and (3.6.5) give
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ref" If
S &2

g"

therefore

(a'+A-C) K2

KJKt-1 H2L\A+a')(eCz+D-l) '

Hence, noting HL=G=(eAz+B-l)/a', we put K1/K2=erz+S^l and we obtain

^

Then we have the following quadratic equation in a' ',

(3.6.6) a^a'W+a^a'W+a^z^Q,

with

At+B^

+(2A-C)(eAz+B-l)(eCz+D-l),

and

α0(2)=4{(*r'+'-l)(Λ0σ*+*+C)^

If the coefficient β2 vanishes identically, Lemma 2 shows that the only possi-
bility is that ec +D=e-*<A'+B> and erg+'=-eΛ'+B. Then the equation (3.6.6) has
no desired solution a' . Consequently the function a2— 4a2a0 needs to be the
square of a meromorphic function. Since it is equal to

C\eAz+B-l)\e°z+D-l)2-2b1(zXeAz+B-iXeCz+D-l)(erz+s-

with

+A(2A-C)eCz+D-(2A2-2AC+C2),

-2A(2A-C}eCz+D+C(C-4,A),

to do this we require that W^)2— C2b0(z) should vanish identically. Then
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z)2-C2«z)}=^

-C2e
c*+D+Clt

with C1=A2-2AC+2C2, C2=(A-C)(2A-C) and C,=AZ-AC-C\ It follows
from Lemma 2 that BoreΓs identity b^z)2— C2b0(z)=Q is impossible in the present
situation.

This completes our proof.
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