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RELAXATION OF INFINITE DIMENSIONAL VARIATIONAL
AND CONTROL PROBLEMS WITH STATE CONSTRAINTS

By NIKOLAOS S. PAPAGEORGIOU*

Abstract

In this work we examine the question of relaxability of infinite dimensional varia-
tional problems with state constraints. We consider systems governed by multivalued
evolution equations (“trajectory problem”). We start with a new, general existence
result for such inclusions with nonconvex valued orientor field. Then we prove a
relaxation result. Next we introduce a cost functional, which we want to minimize
over the trajectories, first of the original system and then over those of the relaxed
one. Using perturbed and penalized versions of the original variational problem, we
show that relaxability for the system is equivalent to a well-posedness notion that
we call “strong calmness”. The same analysis is also carried on for semilinear sys-
tems. Now the hypotheses on the orientor field are weaker. We then show that the
control problem is a special case of our trajectory problem. Finally we work an ex-
ample of a distributed parameter control system.

1. Introduction

To establish the existence of optimal solutions in an optimal control problem,
we need some kind of convexity hypothesis (recall for example the popular
property (Q) of Cesari [4]). This partly motivates the introduction of relaxed
optimal control problems, wherein the original governing equation is replaced
by its convexified analog. The nice thing about relaxed systems, is.that under
fairly mild hypotheses, a relaxed trajectory can be approximated arbitrarily well
by an original trajectory. This, together with the facts that the relaxed
problems, under very general conditions, admit optimal solutions and their value
is equal to the value of the original problem, make clear the importance of the
study of relaxed systems. More specifically in this paper we will study if and
when the relaxation of a system introduces new better solution(s) or leaves an
original optimal solution, optimal to the relaxed system (relaxability). So in
some sense relaxability can be viewed as a necessary condition itself.

Since a relaxed trajectory only can be approximated arbitrarily well by an
original trajectory, it is important—in particular when terminal constraints are
present—to have a precise mathematical way to express the fact that the
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original problem is well-posed. By well-posedness, we mean that arbitrarily
small perturbations of the data of the original problem, do not change drastically
the minimum value of the cost functional. The first person that introduced a
mathematical framework to address those questions was Clarke [6], who for
this purpose defined the notion of calmness.

In this paper we investigate the relation that exists between the problem
of relaxability of infinite dimensional variational problems and the property of
calmness of the system. For this purpose we introduce a new, stronger version
of calmness, which allows us to consider also problems with state constraints
(something that is not covered by the work of Clarke [6], which deals only
with finite dimensional systems). It turns out, that this stronger version of
calmness, is in fact equivalent to the relaxability of the system.

To achieve a higher level of generality, we consider systems with dynamics
described by differential inclusions, which include control systems, since through
the “deparametrization technique”, we can transform a control equation to a
differential inclusion. Following Clarke’s terminology (see [6]), we call this
more general problem “the trajectory problem”. An additional level of generality
is added to our presentation, with the introduction of pointwise state constraints,
something that Clarke didn’t have in his problem. Finally, our systems are
infinite dimensional, while Clarke [6] restricted himself to R™. So our work
is a twofold generalization of the original work of Clarke [6]. On the one
hand we allow the presence of state constraints and on the other hand we deal
with infinite dimensional systems.

2. Preliminaries

Let (2, X) be a measurable space and X a separable Banach space. Through-
out this work we will be using the following notations:

P y(X)={A<S X: nonempty, closed, (convex)}

and Py X)={AS X: nonempty, (w—) compact, (convex)}.

A multifunction F: 2—P,(X) is said to be measurable, if for every x< X,
w—d(x, Flw))=inf{||x—z| : z&F(w)} is measurable. When there is a o¢-finite
measure g(-), with respect to which X is complete, then the above definition
of measurability is equivalent to saying that GrF={(w, x)=2XX: x=F(w)}
=3 X B(X), B(X) being the Borel o-field of X (graph measurability). By S%
(1£p=< ), we will denote the set of measurable selectors of F(-) that belong
in the Lebesgue-Bochner space L?(X) i.e. Sk={feL?X): f(w)eF(w)p-a.e.}.
This set may be empty. It is nonempty if and only if w—inf{|z|: zE F(w)} = L.
In particular this is the case if w—|F(w)|=sup{l|z]: zEF(w)}L?%, in which
case F(-) is said to be LP”-integrably bounded.

Let Y, Z be Hausdorff topological spaces and G: Y —2%\{@} a multifunction.
We say that G(-) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous
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(I.s.c.), if for all VEZ open, we have that G*(V)={y€Y : G(y)SV} (resp.
G-(M)={yeY:Gy)NV=+@}) is open in Y. Also if Z is a completely regular
space on the space M(Z) of bounded Radon measures on Z we can define the
narrow topology to be the weak topology w(M(Z), C,(Z)), where Cy(Z) are the
bounded continuous functions on Z.

Finally if 2=T=[0, b] and f€ LX), the weak norm of f(.) is defined as
follows :

||f||,,,:sup{HSZ'f(s>dsH 1, 1eT}.

Convergence of a sequence in this norm, implies weak convergence in
LY(X). For the converse additional hypotheses are needed.

3. A relaxation result.

Let T=[0, b], H a separable Hilbert space and X a subspace of H carrying
the structure of a separable, reflexive Banach space and continuously and
densely embedded into H (i.e. Xc,H). Having H as our pivot space, we have
Xc, Ho, X* and we assume that the embeddings are also compact. By |||
(resp. ||, II*llx), we will denote the norm of X (resp. of H, X*). Also by
{+,-> we will denote the duality brackets for the pair (X, X*) and by (-,-) the
inner product in H. The two are compatible in the sense that <, >| x.z=(+,).

We consider the following two multivalued systems:

The “original system”:

{ 2B+ AE, x@)EFE, x(t) a.e.} (*)
X(O)—:XO

and the “relaxed system”:

{ ()4 A, x(t))=conv F(t, x(t)) a.e.} (o)
x(0)="x,

Our goal in this section, is to establish a relation between the sets of
trajectories of the above two multivalued systems.

We will achieve this, by first establishing the existence of strong solutions
for problem (*). This result is of independent interest and extends earlier
existence results for differential inclusions obtained by Kisielewicz [11], Pavel-
Vrabie [19] and Papageorgiou [14]. The interesting feature of our existence
result is the nonconvexity of the orientor field F(:,-). To prove this general
existence theorem, we need the following set of hypotheses. Here X, denotes
the space X with the weak topology.
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H(A): A:TXxXX—X* is an operator s.t.
(1) t—A(, x) is measurable,
(2) x—A(t, x) is sequentially continuous from X, into X} and monotone,
3) <A, x), x>=ci]x]|? a.e., with ¢,>0 and 1<p<oo,
4) JAG, «=h@®)+c)|x]|?~* a.e., with A(-)eL? 1/p+1/¢g=1 and ¢,>0.
H(F): F:TXX-P;(X*) is a multifunction s.t.
(1) (&, x)—F(, x)is graph measurable and | F(¢, x)|<a(t) a.e. with a(-)e LY,
(2) x—F(, x) is I.s.c. from X, into X*.

By a solution of (*) we understand an absolutely continuous function
x: T-X* s t. 2@O)+A¢, x@)=f) a.e. (in X*) x(0)=x, with f(-)ESFc., 2.
By W(T) we will denote the following Banach space: W(T)={x(-)eL?(X):
2(-)e LY(X*)}. Recall that W(T)S C(T, H) (see Lions [12]).

THEOREM 3.1. If hypotheses H(A) and H(F) hold and x,= X, then (*) admits
a solution belonging in W(T).

Proof. Consider K< C(T, H) defined by:
K={yeC(T, H): y(O)+A¢, yt)=g() a.e.
in X* 30)=x,, |lg®)lx=a(t) a.e.}.

From theorem 4.2, p. 166 of Barbu [2], we know that @+ KSW(T).

We will show that K is a compact, metrizable subset of C(T, X,).

First we will determine an a priori bound for the elements in K. So for
xe K, we have:

@), x@D=C(—A@, x@)), x)>+<&®), x()> a.e.

=5 <xlD), XOY=2—Al, 2(0), HOHgO), 5D a.e.

But recall that {x(t), x(#)>=(x(), x(t)). So we get:
(), M= | XD =2~ ALt %0, HO>+2E0), 5(0).

Because of hypotheses H(A) (1) and (2), we see that for every yeX,
(t, x)—<A(t, x), y> is a Caratheodory function (i.e. measurable in ¢, continuous
in x)=(, x)—<A{, x), ¥) is jointly measurable=t—<{ A, x(@)), x(?)) is measurable
and because of hypothesis H(A) (4), is integrable. So integrating both sides of
the last equality above we get that:

%0 17— |zl +2[ <AGs, (50, 2(0ds=2{ <e(s), x(s)ds.

Using the coercivity hypothesis H(A) (3) and Holder’s inequality, we get:
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i/p

2@ +2e, Iaolrds< el +2( [ Telads) ([ 1acsyeds)
From Cauchy’s inequality, we have:
(gons) ™ (Visomeas) " sween( laeizds +e2 ) fxs)irds.

Take e=(pc,/2)"?. Then for all tT we have:

2O +al I17ds< 1 xOP+(2/a(F5E))  lalg=M (1)

Having this estimate we can now get the relative sequential compactness
of K in C(T, X,). To this end consider Z< LY X*) defined by :

Z={yeL‘l(X*): SAy(s)dseX for all AST Lebesgue measurable}.

Clearly Z is a linear subspace of L%(X*). Let {y,}.2:S7Z s.t. yn—s>y in
L X*). Then for every x& X, we have:

[, yaopds — (o), nds
=<x, SAyn(S)d3> —(x, SAy(s)d8>.
Since X, HC, X*, with all embeddings continuous and dense, we deduce that:
SAy,L(s)ds LN SAy(s)ds in X.

Because X is reflexive, is weakly sequentially complete. So SAy(s)dseX

for all AST Lebesgue measurable = y=Z=27 is closed in LA X*)=Z is a
separable, reflexive Banach space for the relative L4 X*)-norm topology.

Now let AST be Lebesgue measurable and consider the linear operator
K(A): Z— X defined by:

K= 100t

For every x*e X* y—<{x*, K(A)(y)) is a continuous linear functional on Z.
So there exists g(x*)(-)eL?(X) s.t.

<xt, KA ={ <g(x#)(s), 3(s)>ds

=(] hexmxsrds) -yl
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On the other hand, we have that:
t+h
x(t+h)—x(t)=gt #(s)ds

So fer x*= X*, we have:

t+
t

<, wt+m—xeys (| enirds) .

We claim that there exists M,>0 s.t. for all x€K, |[#[,=<M, To this
end, let v&L?(X). Then for xK, we have:

(i, vepdr={<—at, xe)+aw), vopdt
= 014¢, st lg@l- lwdt. (2)
Applying Holder’s and Minkowski’s inequalities and using hypothesis H(A)

4), we get:
[ae, x@ltlg@no- ol

=[[04a, xels+lg@iide] " o,
<[ (e, xamg) +([nswns) -t
= [(Sz(h(t)-i—cgllx(t)||p—1)p/p—1dt)”q+”g”q]. Ioll,.

But from estimate (1) above, we know that |x|[E<M/c,. Hence from (2)
we get:
(2, VIS[IANgHco(M/ e+ gl vl

where ((-,-)) denotes the duality brackets for the pair <L?(X), LY X*)=(L?(X))*>.
Therefore finally we have:

sup{((%, v)): vl =1} =2, =M,

for all xeK and with M,=|hl|34c,(M/c,)"?+]lgll, and so the claim about the
L% X*)-boundedness of {%(-): x=K} follows.
So now we have:
t+h 1/p
<, et —xep=(] " lgnszds) My
= K is weakly equicontinuous.

Furthermore, once again from estimate (1) and recalling that in a reflexive
Banach space, bounded sets are relatively w-compact, we deduce that for all



398 NIKOLAOS S. PAPAGEORGIOU

teT, {x(): xeK}ePyu(X).

Invoking the Arzela-Ascoli theorem, we deduce that K is relatively sequenti-
ally compact in C(T', X,).

Next we will show that K is sequentially closed in C(T, X,). From the
Dunford-Pettis compactness criterion and by passing to a subsequence if neces-

sary, we may assume that g,ﬁ»g in LY X*). Using the dominated convergence
theorem, we get that:

S:A(s, xn(s))ds —2> S:A(s, x(s))ds
while we also have S:g(s)ds SN S:g(s)ds. Therefore in the limit we get:

x<t>=xo—§:A<s, x(s))ds+§:g<s>ds

= 2()+AE, x@)=g@) a.e., x(0)=x,
=x=K.

So indeed K is sequentially closed, hence sequentially compact in C(T, X).
It is also metrizable since KS C(T', B(0, M,),,), with Mlzstu;) lx@®| and B0, M),
(S

is the M;-ball in X with the weak topology. SinceI%’IzO, M), is compact,
metrizable, then so is the compact-open topology on C(T, B(0, M,),).

Let K=conv K. This is still compact in C(T, X,). Consider the multi-
function L: K—2'*® defined by :

L(x)=S¥c. zc»-

Using hypothesis H(F) (2) and theorem 4.1 of [16], we get that L(.) is
l.s.c.. Apply Fryszkowski’s selection theorem [9], to get p: K—LY(X*) con-

tinuous s.t. p(x)eL(x) for all x&K. Then consider the evolution equation
{ JO+AE, yO)=p(x)t) a. e.} (*y
y(0)=1x,

Again from Barbu [2], we know that this has a unique solution in W(T).
Let ¢: K—K be the map that to each x&K assigns the unique solution of (*)".
We claim that this map is continuous for the relative C(T', X,,)-topology on K.
So let x,—x in K. Then by setting v,=¢(x,)€K and by passing to a sub-
sequence if necessary, we may assume that y,—y in K. So we have:

4G, watonds 2> [ As, wiods

and S:,D(xn)(s)ds . S:p(x)(sws
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= y0y=x—{ Als, sDds+{ ptxxs)ds,

= y=4q(x)
=¢(-) is continuous on K with the C(T, X,)-topology.

Apply Tichonoff’s fixed point theorem, to get x=K s.t. x=¢(x). This is
the desired solution of (*). Q.E.D.

Now we are ready to compare the solution sets of (*) and (**). To achieve

. this we need the following stronger set of hypotheses:

H(A),: A:TxX—X*is an operator s.t.
(1) t—A(t, x) is measurable,
(2) x—A(t, x) is sequentially weakly continuous and monotone,
3) <A, x), x>=ci|lx||? a.e., with ¢,>0, 1<p<oco,
@ AE, Ol«=h®)+c.lxlIP~, with h(-)eL, 1/p+1/g=1, ¢,>0.
H(F),: F:TXH—-P;(H) is a multifunction s.t. F(, x)=p(, x, U(t)), where:
(1) p: TXHXZ—H with Z a separable Banach space and:
i) t—p(, x, z) is measurable,
i) |p@, x, 2)—p@, x', 2)| k@) x—x'| a.e. with k(-)eL},
iii) (x, 2)—p(, x, z) is continuous from HX Z, into H,,
iv) |p(t, x, 2)|=a(t) a.e. with a(-)eL"
(2) U:T—P;(Z) is an integrably bounded multifunction s.t. UH)EW a.e.,
with We Py (Z).

Note that F(t, x)=p(t, x, UP)EP,:(H) and so from the Krein-Smulian
theorem, we have that conv F(¢, x)E Py (H).

We will denote the solution set of (*) by P(x,) and the solution set of (**)
by P,(x,). We have the following result relating those two sets.

THEOREM 3.2. If hypotheses H(A), and H(F), hold and x.,=X, then P,(x,)

is nonempty, sequentially compact in C(T, X,) and P(x,)=P.(x,), the closure
taken in C(T, Xy).

Proof. 'The nonemptiness of P.(x,) follows from theorem 3.1.

Let M(Z) be the set of bounded Borel measures on Z and denote by Mi(Z)
the probability measures on Z. Define 2@#)={2eML.(Z): AU))=1}. From
theorem V-2 of Castaing-Valadier [4], we know that X(.) is measurable. Set

F.(, x)={SWp(t, x, 2)A(dz): 22 (t)}. We claim that F,(t, x)=conv F(t, x). First
note that F.(¢, x) is convex. Also if x,€F.(¢, x), n=1 and x,—x we have

xnzgwp(t, %, 2)Aa(dz), €@, But S()S MLOW ) and the latter is a compact.
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Polish space with the narrow (weak)-topology since W, is compact, Polish. So
we may assume that 1,—~1€3(@) (since lim ALU)=1=Z2U®)). So for every

veH, @, x)=| @, 8¢, 5 Dald2-] @, pt, %, DAD=, | e, 7, Did2)
A€2(@), for all veH= x=SWp(t, x, 2)A(dz), 2&€Zt)=xEF.(, x)=F.({, x) is

closed. Also note that F(x, ))SF.(t, x) (just take A=d,, usU()). Hence
conv F(t, x)SF.(t, x). On the other hand given A2 (¢), from a well known

Nap
property of probability measures, we can find A,= kZ_‘,lakﬁuk where a,=0,

Nn w w
kE_Jlak=1 and u,€U@®), s.t. 2,—4. So SWp(t, x, z)ln(dz)égwp(t, x, 2)A(dz). But

Nan
Swp(t, %, 2a(d2)= B pt, x, up)Sconv Ft, ). So Fy(t, x)STonV Ft, x) = Fy(t, 2)
=conv F(¢, x) as claimed.
From the definition of F(¢, x) we have:
GrF={(t, x, y) €T XHXH: yeF({, x)}
={@¢, x, ETXHXH: y=p(t, x, u), ucU(t)}

Set 9, x, y, u)=y—p@, x, u) and O(t, u)=d(u, U(t)). Then we have:
GrF=projraxul(t, x, y, w): 9, x, y, w=0, 0@, u)=0].

Note that both % and 6 are B(T)X B(H)X B(H)X B(W)-measurable mappings.
Also from corollary 2.4 of Edgar [8], we know that B(Z)=B(Z,)= BW)=
B(ZY"\W=B(Z ,) "\W=BW,) (where W,, denotes the set W with the weak
topology). But recall that W,, is compact, Polish. So from the Arsenin-Novikov
theorem (see Saint-Beuve [21]), we get that:

GrFe B(T)X B(H)X B(H).

Hence F(-,-) 1s graph measurable and so we can apply theorem 2 of
Chuong [7] and get that S};'(.,x(.)) is dense SlmF(.,x(.))zsivr(.,z(.)) for the weak
norm | -|,. So if x(:)eP,(x,) and n=1 we can find f,ESkc,zc» S.t. |fo—Fllw
—0, where f(-)ESk, c.ccn=S"wmwrc.zcn S.t. 2O)+AE, x@)=f() a.e.

Consider the multifunction L,: T—2%\{@}, n=1, defined by:

L.O)={ucU@®): fa®)=pC, 2, w)}.

Clearly L,(t)+@ for all t€T. Let {xn}ms: be dense in X and define
ho(t, w)=(Xm, fo(&)—D(, x@), u)). From hypothesis H(F),, it is easy to see
that (¢, u)—h3(t, u) is a Caratheodory function, hence jointly measurable. So
for every m=1 {(¢, )T XZ: h%(t, u)=0}=B(T)X B(Z). Observe that:
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Ganzﬂl{(t, u): ha(t, w)=0}NGrU
GrL,=B(T)XB(Z).

So we can apply Aumann’s selection theorem (see Saint-Beuve [20], theorem
3) and get u,: T—Z measurable s.t. u,({)=L,(t) a.e. So we have: f,({)=
P, x(t), u,(t)) a.e., with u,(-)=S}.

Let y,(-) be the unique strong solution of the original system corresponding
to the forcing term p(f, ¥.(t), un(t)). So y.(-)eP(x,) and since from the proof
of theorem 3.1 we have that P(x,) is relatively sequentially compact in C(T, X,),
by passing to a subsequence if necessary, we may assume that y,—y in
C(T, X,). Then for all n=1, we have:

5O aO =25 320, 5= 740

=U—Al, xO)+fO+AE, ya)—pE, ya@), unt), xH)—ya(@)) a.e.
S2(f()—p(t, yat), ua(d), x@)—ya(t)> a.e.
(since A(t,-) is monotone)

=2(FO— B, 50, U+ p(E, %(O), UnE)=(E, 7a0), us®), 2O= 720>
=1 50= 9201 2= a0, 25)=ya(sNds+] k() 28— 3a(s)]%ds

Since y,—y in C(T, Xw)=>yn(t)—+y(t) 1n X and since XC. H compactly

y,,(t)—>y(t) in H. Furthermore recall that f,,——> f and so fn—> f in L*(H). Thus
in the limit we get:

2=y = [ B 25— 3(5) 7.

Invoking Gronwall’s inequality we conclude that x=y = x= P(x,)= P,(x,)
=P(x,) the closure in C(T, X,). Q.E.D.

Remark. From the above proof it is easy to see that instead of the Lipschitz
hypothesis on p(¢, -, u) we could have made a dissipativity hypothesis. In general
from the theory of differential inclusions (see Aubin-Cellina [1]), we know that
simple continuity of the orientor field is not enough to have a relaxation result.
In the context of control systems, the relaxation result just proved, tells us that
essentially (i.e. within closure), we can have the same attainable set by econo-
mizing in the controls.

4. Relaxability of variational problems and calmness

In this section we impose state constraints and we introduce a cost functional,
which we try to minimize first over the set of trajectories of the original system
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and then over the set of trajectories of the relaxed one. Our goal is to derive
necessary and sufficient conditions for the two variational problems to have the
same value. In this process, we also introduce our stronger version of the
notion of calmness due to Clarke [6].

So let f: C(T, H >R and k: HXH—R be two continuous functions. The

cost functional is:

J(x)=f(x)+ k(x(0), x(b)).

We want to minimize J(-), first over the trajectories of

{ )+ AR, xE)EFE, x@) a.e. } (%)
x()e K@) !

and then over the trajectories of

{ i)+ A, x@))=conv F(¢, x(t)) a.e.

x()E K@) } e

Denote by m the value of the first optimization problem and by m, the
value of the second one. We want to compare them (“relaxability problem?”).

We will need the following hypothesis concerning the state constraint
multifunction.

H(K): K:T—P;(H) is measurable and K(0)SX is bounded.

Given the a priori bounds for the trajectories of (*), and (**),, there is no
loss of generality in assuming that K(-) is integrably bounded.

We will approach the relaxability problem by considering perturbed and
penalized versions of the original variational problem and examining the behavior
of the values of those problems as the perturbation and penalization respectively
go to zero. So the perturbed problem has the following form:

f(x)+ R(x(0), x(b))—inf
s.t. 2+ AG, x@)eF(¢, x@)) a.e. (%),

[[antzr, K@)t=e, xOK©) |
while the penalized problem is the following one:

{ FCe)+ R(x(0), 2()+(1/8)] (), K®)dt—int } (*y;
s.t. x()+AG, x@)=F(t, x(t)) a.e. x(0)=K(0)

b
0

Here d (-, K()) denotes the distance fnnction in H from the set K({)SH.
We will denote the value of (*). by m(e) and the value of (*); by m’(e). We
will assume that they are finite and set m(0)=m'(0)=m. Throughout this section
we will assume that (*), (hence (**), too) admits solutions. Nagumo type con-
ditions that will guarantee this for particular cases can be found in Pavel [18]
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(semilinear systems) and Papageorgiou-Avgerinos [17] (nonlinear autonomous
systems).

THEOREM 4.1. If hypotheses H(A), H(F) and H(K) hold then m(-) is right
continuous at 0 if and only if m’(-) is right continuous at 0.

Proof. ll: Let{x,}.::SC(T, H) be trajectories of the evolution inclusion
X+ AR, x,()EF({, x,(t)) a.e. and s.t.
b
f(xn)4 k(x(0), xn(b)>+nSOdH(xn(t), K@®)dt<m'(1/n)+1/n.
From the above inequality we get that { nSZd a(x,(@), K())dt},-, is bounded.

So there exists M>0 s.t.

nSZdH(xn(t), K@)dt<M for all n=1

= dutea), KO)I=M/n

=mM/n)<m’(1/n)+1/n
= lim m(M/n)=m(O)=m’(0)_£_Lim m'(1/n).

Since m'(1/n)<m’(0) for all n=1, we conclude that m’(-) is right continuous

at zero.
T: Again let {x,}0::SC(T, H) be s.t. %,()+AGE, x.(O)EF({, x,()) a.e.,

S:d}l(xn(t); K)dt=1/n* and f(x.)+k(x.(0), x,(b))=m(1/n*)+1/n, n=1. Then
nS:dH(xn(t), K@))dt<1/n and so we have:
F o)+ kxa(0), aO) 1 daCea(®), KO)AZm(L/n)+2/n
=>m'(1/n)<m(l/n*)+2/n
=>£i£nm’(l/n)zm’(O)zm(O)§Li_ﬁrr_1m(l/nz).

Recall that for all n=1, m(1/n*)<m(0). So m(-) is right continuous at zero.
Q.E.D.

Now we are ready to introduce our stronger version of Clarke’s notion of
calmness. Let V={r: R,—»R,=R,U{+} s.t. r(-) is nondecreasing and
li?gr(s)zr(O):O}.

DEFINITION. The problem of minimizing J(-) over the trajectories of (*),
(the “trajectory problem”) is said to be “strongly calm” if and only if there
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m(e)—m(0)
r(e)

Remark. Clarke [6] defined calmness using r(e)=e.

exists r(-)EV s.t. linol >—
el

Our next result shows that our notion of calmness is in fact equivalent to
the well posedness of (*)., in the sense of right continuity at zero of m(-).

THEOREM 4.2. If hypotheses H(A), H(F) and H(K) hold, them m(-) is right
continuous at zero if and only if the trajectory problem is strongly calm.

Proof. | : Let r(¢)=m(0)—m(e)=0. Since by hypothesis m(-) is right
continuous at zero, we see that »(-)&V. Observe that ﬂ(%—;;"(ﬁ____l_ So
the trajectory problem is strongly calm.

T: Let »(-)V be the function postulated from the definition of strong

calmness. We have:
m(e)—m(0) i

m(e)—m(0)= 0 r(e)
= limon(e)—m@)=lig[ "L 1 (6)]
. m(e)—m(0) . _
g(%mi r(e) >(151£r°1 r(s))_O
since l_slw—"—lg%é;@ >—oco (the problem being by hypothesis strongly calm).

Hence we have l'_lIr_glm(e)gm(O).

On the other hand recall that m(e)<m(0) for all e=0. So Ti::?:lm(e)gm(O):)
l'xir.} m(e)=m(0)=m(-) is right continuous at 0. Q.E.D.

Combining theorems 4.1 and 4.2 we get:

THEOREM 4.3. If hypotheses H(A), H(F) and H(K) hold, then m'(-) is right
continuous at zero if and only if the trajectry problem is strongly calm.

The next result will be useful in relating calmness and relaxability (i.e.
m=m,)of the trajectory problem. Let »(-)=eV and set R(r)=inf{f(x)+ k(x(0), x(b))

b
+r(SodH(x(t), K@)dt): z(0)+A¢, x@)eFE, x(t) a.e.}.

THEOREM 4.4. If hypotheses H(A), H(F) and H(K) hold, then m(-) is right
continuous at zero if and only if there exist r(-)EV s.t. m(0)=R(®).

Proof. | : Let x(-)eC(T, H) be a trajectory of (*), (recall that we have
assumed that (*); admits trajectories). Note that
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([ duCx(t), K©)dt)= f(0)+ R(x(0), x(B)=Jx)
= mO) Jo)+mO)—m( [ du(xt), Ke)at)

Set 7(e)=m(0)—m(e). Due to the right continuity of m(-) at zero, »(.)eV.
Since the last inequality above is true for any trajectory x(-) of x(t)+A(, x(t)
eF(t, x(t)) a.e., we get that

mO)ZR(r).

On the other hand, directly from the definitions we see that:
R(r)=m(0)
=>m0)=R(r).

T: Given ¢>0, 6>0, let x(-) be a trajectory of £(t)+A(t, x()EF({, x()) a.e.
s. t. S:d(x(t), K(t))dt<e and J(x)<m(e)+d. By hypothesis there exists r(-)&V s.t.

m©O)=ROSJo)+7({ duCe®), Ke)dt)Sm(e1+5+7(e)
= m(O)élsigl m(e)+0.

Since 6>0 was arbitrary, we deduce that:

m(O)éli_Tn;nm(s).

On the other hand, recall that we always have m(s)<m(0), ¢=0. So
lifr,,l m(e)=m(0)
=m(-) is right continuous at zero. Q.E.D.

Now we are ready for the main result of this section, which relates the
concepts of well-posedness and relaxability (i.e. m=m.). By C(T, X,) we will
denote the space of weakly continuous X-valued functions defined on T.

THEOREM 4.5. If hypotheses H(A),, H(F),, H(K) hold and f: C(T, X,,)—»R
is continuous and bounded below by 7, and k: XX X—R continuous and bounded
below by 7,, then m(-) is right continuous at zero if and only if the trajectory
problem is relaxable (i.e. m=m.).

Proof. |l : Suppose that this implication was false. Then 0<d=m—m,
and so we can find x(+) a trajectory of the relaxed system (**); s.t.

J(x)=m(0)—a/2.
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Since by hypothesis (*), has solutions and J(-) is continuous we can find an
original trajectory (i.e. trajectory of (*),), z(-)eC(T, X,) s.t.

| J(x)—J(z)| =0/6

and since XC, H compactly we can also have:
b
r(SodH(z(t), K(t))dt)<0/6.

where r(-)€V and R(r)=m(0) (see theorem 4.4).
Hence we have:

J@+r(][dula), KO)t) J(x)+3/6+8/6=J(x)+0/3
=m(0)—0/2+d/3=m(0)—0/6.
But then

=R J)+(| dutz®), K)dt)Sm©)—3/6

which is absurd. So the implication is true.
T : Again we proceed by contradiction. So suppose that l_i%m(e)<m(0).
Let ¢,10 s.t. m(en)eﬁLrolm(s). Set =m(0)—limm(e)>0. Then there exists
el el

no=1 s.t. for n=n, we have:
m(e,)<m(0)—a/2.

So we can find x,(-)eW(T)S C(T, H) satisfying x,)+ A, x.()eF({, x.1))
a.e., xn(0)EK(0) and S:dg(xn(t), Kt)dt<e, s.t.

J(x2)=m(0)—4d/3
= f(x0)+ R(x,(0), x.(5))=m(0)—0/3.

Since {xn(o)?’ngng(O) is w-compact in X, as in the proof of theorem 3.1 we
have that K,={y(-)eC(T, H): y@)+AE, y@)=hr@), yO)C, |h®I|=Za(t) a.e.}
is sequentially compact in C(T, X,). Since {x,},2:S K,, by passing to a sub-
sequence if necessary, we may assume that x,—x in C(T, X,). Also as in the
proof of theorem 3.1, we can get that || 4,[,<M,= | £.],<M; and thus from the
Dunford-Pettis weak compactness criterion and by passing to an appropriate
subsequence if necessary, we may assume that #,—z in L}(X*). It is clear that
x=z. Using theorem 3.1 of [16], we have that:

i@)econv w—Im{%,#)}»s: a.e.
=i+ A, x@)sconV w—lm{x,)} wzi+w—lm{ A, xa))} s

cconv w—Iim F(, x.())Sconv F{, @) a.e.
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b
Also iodH(xn(t), K(#))dt—0 as n—o. Applying Fatou’s lemma we get that:

S:um du(xa(®), K®)dt<lim S:dy(x(t), K(t))dt=0

=>SZdH(x(t), K(£)dt=0
S dg(x(), K1)=0 a.e.

= x(-) is a relaxed viable trajectory.

Finally note that since relaxability holds, we have:
m,=m=m(0)< J(x),
and since J(x,)—J(x) and J(x,)<m(0)—d/3, we have
J(x)=m(0)—4/3
=m(0)<m(0)—4/3
which is absurd. So the implication holds. Q.E.D.

Combining the results of this section we can have the following complete
characterization of relaxability.

THEOREM 4.6. If the hypotheses of theorem 4.5 hold, then the following are
equivalent :

(1) the trajectory problem is relaxable,

2) m(-) is right continuous at zero,

(3) m'(-) is right continuous at zero,

(4) the trajectory problem is strongly calm.

Remark. We could have defined strong calmness by requiring that
lim m’(e)—m’(0)
€0 7’(5)
obtained using this definition. However the definition using m(-) is more
directly related to the notion of calmness of Clarke [6], which was defined
through perturbations in the state constraints. By the way, note that Clarke
[6], has only initial and terminal state constraints (i.e. for t=0 and t=b).
Here the situation is more general in that respect.

>-—oo for some #(-)€V. The same results could have been

5. Relaxation of semilinear evolution inclusions.

In this section, we concentrate our attention to a particular subclass of
inclusions (*), namely the semilinear ones. This allows us to improve the
hypotheses on the orientor field F(¢, x).
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So the multivalued Cauchy problem under consideration is:

{ O+ ADx@)EF(E, x(@) a.e. } (*)
20)=x,cH ?

with the following hypothese concerning the data of the problem:

H(A),: A:TxX—X*is a map s.t.
(1) t—A(t)x is measurable,
(2) x—A(@)x is linear, monotone
3) NABx—AW)x|«=k|t—t"] || x]
4) <A@®)x, x>=cllx|®* a.e. ¢>0 (i.e. A{)(-) is a.e. strongly monotone),
BG) 1A®x|IZc |xllc’>0 (i.e. A@®)-) is continuous).

For the orientor field F(t, x), we will assume the following:
H(F),: F:TxXH—P;(H) is a multifunction s.t.
(1) (¢, x)—F(t, x) is graph measurable,
(2) x—F(, x) is I.s.c. from H into H,
(3) |F, x)|p=sup{|y|: yEF{E, x)}<at)+b{t)| x| a.e., with a(-), b(-)eL".

Because of hypothesis H(A), we know (see for example Tanabe [22], section
5.4), that the family {—A®): t= T} of linear operators, generates a strongly
continuous evolution operator S:A={(, s): 0<s<i<b}—L(H). We will make
the following hypothesis concerning this operator.

H,: S, s) is compact for t—s>0.

THEOREM 5.1. If hypotheses H(A),, H(F), and H, hold, then (*). admits a
solution belonging in W(T)S C(T, H).

Proof. As in the proof of theorem 3.1, we will start by obtaining an a
priori bound for the solutions of (*),. So let x(-) be such a solution. From
proposition 5.5.1 of Tanabe [21], we know that:

%)=, Oxo+ | S, )f(5)ds, €T, fESke,ze
= Ix(t)léM,Ixol+M,S:(a(s)+b(s)|x(s)])ds (IS¢, s)i=M,)
=5 12| S M| 5ol +llalli+ M, b0 x(5) ds.
Applying Gronwall’s inequality, we get that:
|x(t)| < M exp(My- [bll)=M,
where My=M.(|x,|+]all,).
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Now consider the multifunction F': TX H—P,(H) defined by :

F, x) if |x|<M

P, 0= F(z,%‘f"T if x| >M.

Clearly then F(t, x)=F(@, pu(x)), where pz(:) is the M-radial retraction in
H. Recall that pgz(-) is Lipschitz continuous. So x—F(, x) is L.s.c.. We will
also show that (¢, x)—F(¢, x) is graph measurable. Let n: TXHXH—-TXHXH
be defined by 5(t, x, 2)=(t, pu(x), z). Clearly this map is B(T)X B(H)X B(H)
measurable. Now note that:

GrF={(t, x,2)@TXHXH: zeF(t, x)=F@, pa(x))}
={{, x, 2)&ETXHXH: y(t, x, 2)=GrF}.

But by hypothesis GrF& B(T)X B(H)X B(H) and we saw that %(-,-,-) is
measurable. Hence GrF e B(T)X B(H)XB(H) i.e. F(-,-) is graph measurable.
Also we will show that if x: T—H is measurable, then Skc. zcyn#@. Now let
h: TXH-TXHXH be defined by h(t, 2)=(, x(t), z). Clearly this map is
(B(T)x B(H), B(T)X B(H)X B(H))-measurable. Then we have:

GrE(-, x(:\)={¢t, 2ET X X: ht, 2)EGrF}.

Since A(-,-) is measurable and GrFeB(T)X B(H)X B(H), we deduce that
GrF(., x())&€ B(T)X B(H)=t—F(t, x(t)) is B(T)-measurable, where B(T) is the
Lebesgue completion of the Borel ¢-field B(T). Finally note that:

|F@, x)| a<¢t)=a(t)+Mb(t) a.e., ¢(-)E L%, 0 Shc.zc#D-

Having established all these properties about F(-,-), we now proceed as
follows. Consider VS LY(H) defined by :

V={geL'(H): |g@®)|=¢() a.e.}.

Since H is a Hilbert space, through the Dunford-Pettis compactness criterion,
it is easy to check that V is sequentially weakly compact in L(H). Let g(-)eV
and consider the following single valued evolution equation :

AW+ ABx()=g@) a.e. «
{ e, b ()

From Barbu [2] (p.166), we know that (*),(g) has a unique solution
u(g)()eW(T). Let K={u(g)(-)eW(T)SC(T, H): geV}. We claim that K is
compact in C(T, II). To this end, let x(-)EK, t, ' T, t<t’. We have:
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|2t~ 2O SIS, 0xy—S(, Ol +1] S, 9g()ds—{ S, gs)ds]
IS, 0)o—S(t, 0ol + (] 1, )+ 1g(5) s+ {15, )=, 9)I- 1g(s)1ds
<1, 0= S, el +M{” g(9)ds+ {15, =S¢, 9)1-gs)ds.

Because of the strong continuity of the evolution operator S(:,:), given
>0, there exists §,>0 s.t. for |t'—t|<d; we have |S(#’, 0)x,—S(t, 0)x,| <e&/3.

Also let §,>0 s.t. if |'—t|<d,, then M1S21¢(s)ds<e/3. Finally since S(, s) is

compact for t—s>0 (hypothesis H.), from proposition 2.1 of [15], we know
that t—S(#, s) is continuous in the operator norm, uniformly in s for f—s
bounded away from zero. So let &' >0 and 0,>0 be such that if |#'—t|<Js,
then

t
[ 15w, 9=sa, 9l-gs1ds=2m|_ gs)ds<e/6
t-g'
and [ s, 9-s¢, 9-gs)as<es6
Combining all the above estimates, we get that for |t/ —t| <d=min(d,, J,, 05)
and for all x(-) K, we have:
[x(@)—x@®)| <e
= KS C(T, H) is equicontinuous.

Also since S(¢, s) is compact for t—s>0, using the Ridstrom embedding
theorem (see for example Hiai-Umegaki [10]), we have that:

{S:S(t, s)g(s)ds: gEV}EPk(H)=>cl{x(t): x(eKreP/(H), teT.

Finally we will show that K is closed in C(T, H). To this end let x,—x
in C(T, H), x,(-)€K. We have:

xa()=S(t, 0)x0+S:S(t, $)gn(s)ds, gn()EV.

By passing to a subsequence if necessary, we may assume that gnigeV

in L'(H). Then S:S(t, s)gn<s)dsﬂ>55(t, $)g(s)ds in H. So in the limit we have:

x(t)=S(, O)xo—i—S:S(t, $)a(s)ds

= x=u(g)
=x&€K and so K is closed in C(T, H).
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Therefore, invoking the Arzela-Ascoli theorem, we conclude that K is
compact in C(T, H). Then by Mazur’s theorem K=convX is compact in
C(T, H).

Next let R: K—2L'UD pe defined by R(x)=S3c. zcy. In the beginning of
the proof we saw that F(-, x(-))is measurable and L!-bounded by ¢(+). Hence
R(x)#+@ for all x&K. In fact R(x)eP,(L*(H)). Also using hypothesis H(F),
(2) and theorem 4.1 of [16], we get that R(-) is a l.s.c. multifunction. Apply
Fryszkowski’s selection theorem [9], to get r: K—L'H) continuous s.t.
r(x)eR(x) for all x=K.

Now consider the following evolution equation:

{ F(O+ADxO)=r(y)t) a.e.

s b

where yeK. Let x(¥)(-)=q(y)(-) be the unique solution of (*).(y). Clearly
¢: E—K and it is easy to check that it is continuous. Apply Schauder’s fixed
point theorem to find £=K s.t. £=¢(£). Clearly £(-) solves (*), for the
orientor field F(¢, x). As in the beginning of the proof, through Gronwall’s
inequality, we get that |£(@)|<M = F(t, 2@)=F(t, 2@)= £2(-)eW(T)SC(T, H)
is the desired solution of (*),. Q.E.D.

This leads to the following relaxation result for (*),.

So we introduce the relaxed inclusion:

{ )+ At)x(@t)econv F(t, x(@)) a.e.

Oz, b,

Denote the solution set of (*), by Q(x,) and the solution set of (**), by
Q+(x0).

THEOREM 5.2. If hypotheses H(A),, H(F), and H, hold, then @+ Q(x,)=
Q.(x,), the closure taken in C(T, H).

Proof. Let y=Q.(x,) and let ¢>0. Pick 6>0 s.t. for AST Lebesque
measurable with A(A)<d, we have:

[ 1FGs, (501 nds<e/am,

where [S(, s)[<M,; for all 0<s=<t<bh. Let 0=t,<t;< --- <t,=b be an equi-
partition of T=[0, b] s.t. t,—t,-1<d for k{1, 2, ---, n}. By definition we
have:

Y(Ehe S, O)xo+S:lS(t1, s)Conv F(s, y(s))ds
= y(t)=S(t1, 0)xo+q1(t))
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where ql(tl)eS:‘sal, §)TomV F(s, y(s))ds. From theorem 4.2 of [13], we know
that for 0<5'<(s"/ }ﬁ_}l M}) (¢'=mine/2, ¢/2M,), e can find f,&She.ye S-t.

lat)—{.'St, )7i(s)ds] <a"

For t<[0, t,], set x,(t)=S(, O)xo—I—S:S(t, s)fi(s)ds. Then clearly we have:
L4t —¥(E) 1 <",

Next we pass to the second subinterval [, #,]. Again we have:
V(E)=S(ts, ) y(t1)+ga(ts)

where qz(tz)eSZZS(tz, s)conv F(s, y(s))ds. Let fo&Skc, 4wy be s.t.
1

lautt) =" Stta, 9)fi(s)ds| <.
Set x,(t)=S(t, t,)x,(tl)-l-gi S(t, s)f.(s)ds, for t<[ty, t.]. Then we have:

[ xo(t)—Y(t2) | =1 S(t,, tl)xl(tx)“l"SZS(tZy $)fo(s)ds—S(ts, 1) y(t)—qa(t:)|
Mo’ +6"=0"(M,+1).

Continuing this way, we get f.=Skc.,c» and define for tE[ts-1, te],
kell, 2, -, 0}, x0)=SG, tk_1>xk-1(tk-l>+§j S, s)fu(s)ds, for which we
k-1
have: .
ka(tk)—y(tk)]<5'T§MI“-

If we set f= éxuk_l,tk](-)fk(-), we see that /&€ Sk, ¢y and x(#)=S(t, 0)x,
—|—S:S(t, s) f(s)ds is a solution of (*),. Furthermore from our construction we
have |x(tz)— ()| <&’ for all k{1, 2, -, n} (recall 5'§_(e’/éM’f“)).

Next let t& T be arbitrary. Then t<[ts, tr+:] for some k{0, 1, -, n—1}.
So if g&S'wavrc. vy generates the relaxed trajectory y(-), we have

| x(H)—y(t)) Emin M;(e/2, ¢/2M,)+¢/2
Slx=ylea. m<e
= Q(x,)=0Q,(x,) the closure in C(T, H). Q.E.D.
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6. Relaxability and calmness of semilinear systems.
As before we introduce a cost criterion of the following form:
J(x)=f(x)+ k(x(0), x(b))

where f: C(T, H—>R and k: HXH—R are both continuous. Again we intro-
duce a state constraint in the form of a time varying set K(¢). For this
multifunction we will make the following hypothesis:

H(K),: K:T—P;H) is measurable and K(0)SH is compact.

As in the nonlinear case, knowing the a priori bounds for the trajectories
of (*),, there is no loss of generality in assuming that K(-) is integrably bounded.

We will consider the following variational problem (“trajectory problem”
with state constraints):

inf{f(x)+k(x, (0), x(0)): x(-)=C(T, H), x(t)
+ADOxOEFE, x(1) a.e., xEKED)}.

We will assume that there exist feasible (viable) trajectories and that the
value of the problem is finite. Note that since K(0)< P,(H), the set of feasible
trajectories is compact in C(T, H) and the infimum is attained (hence the value
of the problem is finite).

As in the nonlinear case we introduce two new problems. One with the
state constraints perturbed and the other with the state constraints absorbed in
the cost functional (penalized problem). So we have:

m(a)=inf{Jx): 40O+ ADXOEFE, x1) a. e.S:dH(x, (1), Kt)dt=a}
and  m'(a)=int{ ](x)—]—l/aS:dH(x(t)), K®)dt: x)+AOxOEFE, x0) a.e}.
Again m(0)=m’(0)=m=the value of the minimization of J(-) over the
trajectories of x()+A@)x(t)EF(@, x(t)) a.e., x¢)=K(). Similarly m, will be
the value of the minimization of J(-) over the trajectories of x(t)+ A(t)x(t)
econv F(t, x(t)) a.e., x(t)eK(t) (“relaxed variational problem”). We will say
that the state constrained system is “relaxable” if and only if m=m,.

As for nonlinear systems (see section 4), we have the following complete
characterization of relaxability :

THEOREM 6.1. If H(A),, HF),, HK), hold and [ : C(T, H)»R, k: HXH—-R
are continuous and bounded below, then the following are equivalent -

(1) the trajectory problem is relaxable,

(2) m(-) is right continuous at zero,

(3) m’(:) is right continuous at zero,

(4) the trajectry problem is strongly calm.
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7. Control problems.

To see that the trajectory problem studied in the previous sections, subsumes
the optimal control problem, consider the following nonlinear, infinite dimensional
control system, with time varying control constraints:

{ O+ ADRO=£(, %), u(t)) a.e. e

x0)=x,€H, ut)cU() a.e., u(-)=measurable

Here T, X, H, X* are as before, while Y is a separable Banach space,
modelling the control space.
We will need the following hypotheses concerning f(:,-,-) and U(-).

H(f): F: TxXHXY—H is a map s.t.
(1) t—f(, x, y) is measurable,
(2) x—f({, x, y) is continuous from H into H,
@) y—f, x, v) is continuous from Y, into H,,
@) 1fi, x, MIZa@®)+bE)| x| a.e., with a(-), b(-)e L.

HU) : U: T-P;(Y) is measurable and U{#)S K a.e. with K& P,;(Y).

Set F(t, x)= \U f(t, x, u) and consider the following evolution inclusions:
uel(t)
{ O+ AWx)EFE, x(t)) a.e. } (e,
x(0)=x,=H
PROPOSITION 7.1. If H(A),, H(f) and H(U) hold, then (***) and (***), are
equivalent systems.

Proof. Let x(-) be a trajectory of (***) corresponding to the control
function wu(-). Since f(t, x(), u@t))F(, x()), we only need to show that
t—f(t, x(t), u(t)) is measurable from T into H. To see this fix xH and for
heH, consider the map (¢, u)—(h, f(t, x, u)). This map is measurable in ¢,
continuous in u (i.e. is a Caratheodory map), hence is jointly measurable. Then,
t, x, u)y—(h, f(t, x, u)) is Caratheodory too (measurable in (¢, u), continuous in
x). Thus it is jointly measurable. So t—(h, f(t, x(¢), u(t)) is measurable and
since heH was arbitrary, t— f(t, x(t), u(t)) is Pettis (weakly) measurable. But
recall that H is separable. So from the Pettis measurability theorem, we deduce
that t—f(t, x(t), u(¥)) is strongly measurable = f(-, x(-), u(-)ESkc. 2= x(+)
solves (¥*%¥),

Next let x(-) be a solution of (***),, Then we have:

x©)=S(, %ot | S, )g(s)ds, tET, g€ She.zen-

Let R@)={ucU®): git)=f({, x&), u)}. Take {h,}nz:1 be dense in H. Recall
that for each n=1, the map (¢, u)—k,(¢, u)=(h,, g@)—f(, x(), u)) is measurable.
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Then rewrite R(-) as follows:
R(t):an {ucsU(t): k., u)=0}
:-)GrR:nQ1 {¢, weGrU: ky(t, u)=0}eB(T)XB(Y),

since GrU< B(T)X B(Y Y(U(-) being by hypothesis measurable). Apply Aumann’s
selection theorem (see Saint-Beuve [19], theorem 3), to get u: T—Y measurable
s.t. u@)eU(@) a.e.= gt)=r1{, x(t), u®®)) a.e., usS)= x(-) solves (***),

Q.E.D.

Remark. A careful look on the proof, can convince the reader that the
hypotheses of the above proposition can be weakened considerably, without
affecting the conclusion. However, since we will need them in the next, main
result of this section, for the sake of uniformity in the exposition, we introduced
them from the beginning.

THEOREM 7.1. If H(A),, H(f) and HU) hold, then F(t, x) satisfies H(F),
and so the contool problem 1s a special case of the trajectory problem.

Proof. First we will show that F(-,-) has closed values. Let z,—z,
z,€F(t, x). Then by definition z,=f(, x, u,), u,€U{)SK. By passing to a
subsequence if necessary, we may assume that u,—ucU(¢). Then because of
H(f) (3), f(t, x, un)if(t, x, W=z=[({, x, uy=>zF{¢, x)=F{, x)=P;(H).

Next we will show that F(-,-) satisfies H(F), (1). By definition we have:

GrF={(, x, 2)ETXHXH: z€F(t, x)}
={{, x, 2) ETXHXH: z=f(, x, u), ucU@®)}.

Let A, x, z, w)=z—f(, x, u), p(t, wy=dy(u, U(t)). Then
GrF=projrwuxu{l, x, z, W) TXHXHXK: A, x, z, u)=0, p, u)=0}.

Since 4 and p are both measurable and K& P,,:(Y), then as in the proof of
theorem 3.2, through the Arsenin-Novikov theorem (see Saint-Beuve [21]), we
get that GrF< B(T)X B(H)X B(H).

Next we will show that H(F), (2) holds. We need to show that given CSH
nonempty, closed we have that F*(t, C)={x=H: F(, x)SC} is closed too. Let
2.€F*(t, C) s.t. z,—z in H. Then F(t, 2,)SC= f(¢t, zn, w)SC for all ucU().
Because of H(f) (2), in the limit we get that f(t, z, u)eC for all ucU(t)=
E@i, 2)SC=zeF+(, C).

Finally note that |F(t, x)|z=|f¢, x, UD)| a<a@)+b®)| x| a.e., with a(.),
b(-)eLl. So H(F) (4) is satisfied. Hence F(¢, x) satisfies H(F) and so the
control problem is a special case of the trajectory problem studied in the previous
sections. Q.E.D.
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Having this theorem and assuming that H. holds, we can conclude that the
given control system is relaxable.

8. An example.

We will illustrate the applicability of our work, with an example of a
distributed parameter control system with state constraints.

So let T=[0, b] and W a bounded domain in R"™ with smooth boundary
I'=0W. We will consider a nonlinear control system governed by the following
nonlinear, parabolic partial differential equation defined on TXW :

a—"(atz’—z)—Axa, D=1, z, x(t, 2)) ut, 2)

x@, 2)=0 on TXI (FHHK)
u(-,)eM
g(t, z, x(t, 2))<0 a.e. on TXW
1x(0, 2)| <6(z) a.e. 6(-)=L}

We are also given the following integral cost functional :

S:SWh(t, z, x(t, z), u(t, z))dzdt.

We have to minimize the above integral functional over all admissible
“state-control” pairs of system (¥¥**),
We will make the following hypotheses :

A: f:TXWXR—R™

1) @, 2)—f(t, z, r) is measurable,

(2) r—f(t, z, ) is continuous,

@) 1f@¢, z, ul=a(t, 2)+b(, z)|r| a.e. for all ue R™, with ac LA TXW)
b(-,-) jointly measurable, b(t,-)eL=(W) and t—|b(t, )|rea> is an
L%-function.

B: M is a weakly compact subset of L TXW).
C: g: TXWXR—R is a function s.t.

1) @, z2)—g(t, z, r) is measurable,

(2) r—g(, z, r) is continuous,

(3) for every t=T and every x(-)= LXW), g(t,-, x(-))e LXW)

D: h: TXWXRXR™R is a function s.t.

1) @,z r, w—hQ, z, r, u) is measurable,

@) (r, w—h(, z, r, u) is l.s.c. -and convex in u,

(3) there exists A LA TXW) s.t. for all (x, u)es RXR™, A, 2)<h(, z, x, u)
a.e.

E: System (****) has solutions.

Let X=HYW), H=LXW) and Y=L*W, R™). The operator A: X—X* is



RELAXATION OF VARIATIONAL PROBLEMS 417

defined by the Dirichlet form a(g, ¢)=SWV¢(2)-V¢(z)dz, for all ¢, g=X. So

a(p, P)=<A@, ¢>. So it is easy to check that it satisfies H(A),. Also it generates
a linear contractions semigroup S(¢): L*(W)— L2%W), which from theorem 5.2 of
Pavel [18], we know that it is compact for ¢1>>0. So hypothesis H, is satisfied.

Next let w: TXHXY—H be defined by w(t, x, u)=f(,-, x(-))u(-). Hypo-
thesis A(3) and Krasnoselski’s theorem, tell us that t—w(t, x, u) is measurable,
while x—w(¢, x, u) is continuous. Furthermore w(, x,-) is linear, hence wu—
w(t, x, u) is weakly continuous. Finally |w(t, x, u)| g=r2ary = a@)+b®)| x|y a.e.,
where a(t)=|la(t, ) rew> and dt)=|b@&, ) zocw>. Thus w(-,-,-) satisfies hypothesis
H(f).

Note that in this example the control constraint set is globally and not
pointwise defined.

Next let g: TXH—H be defined by:

&(t, x)(-)=g(t, -, x(+))
Clearly then (¢, x)—g(f, x) is measurable. Set

K)={xsH: g, x)(2)<0 a.e.}={x=H: g, z, x(z))<0 a.e.}.

It is clear that K(-) is closed valued, and since (f, x)—g(¢, x) is measurable,
K(-) is a measurable multifunction. Thus it satisfies hypothesis H(K);.
Now rewrite system (****) as the following evolution equation:

{x(t)—l-Ax(t)=w(t, x(t), u(®)) a.e.

1K@, ueM } (FFF5),

Also let h: TXHXY—R be defined by:
ht, %, w={_het, 2, 2(2), uz)dz

FI;om hypothesis (D) and theorem 2.1, p. 243 of Ekeland-Teman [7] we see
that A(t,-,-) is l.s.c. on HXY ,, while clearly A(-,-,-) is jointly measurable.
Rewrite the cost functional as follows:

K, m={Ra, 50, aw)de

where £(@)(-)=x(t,-) and a(®)=u(t,-).

Our claim is that for this optimal control problem, the value function m(-)
is right continuous at zero. So let ¢, |0 and let (x,, u,) be admissible pairs
for the corresponding perturbed optimal control problems s.t.

J(xn, un)=m(en)+1/n.
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But we know that {(x,, un)}.s: IS relatively sequentially compact in
C(T, HYX LXT, H),,. So by passing to a subsequence if necessary, we may
assume that x,—x in C(T, H) and u,—ucM in L%(T). We claim that (x, u)
is an admissible pair. To this end note that for all <1, we have:

$a)=SOx0+ | St—)u(s, xa(s), un(Nds.

From the properties of w(-,-,-), its linearity in u and through the monotone
convergence theorem, in the limit as n—co, we get:

x(t)=S(t)xo+S:S(t—s)w(s, x(s), u(s))ds, x@t)eKt)

=(x, u) is an admissible pair.

Finally from the properties of ﬁ(-,-,-) and since MeP,,,(L*(W)), we have

m(0)< J(x, w)=lim J(x,, uz)<limm(e,).

Since m(e,)<m(0)= m(e,)—m(0)=m(-) is right continuous at 0= the system
is strongly calmand relaxable.
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