
M. OKA
KODAI MATH. J.
12 (1989), 210-227

ON THE STRATIFICATION OF THE

DISCRIMINANT VARIETIES

BY MUTSUO OKA

Abstract

In this paper, we study the canonical stratification of the discriminant
varieties of Aif Bt and Dt. We prove that this stratification enjoys strong
geometric properties including the regularity.

§ 1. Introduction.

Let R be a reduced irreducible root system in Rι. Let M={Ha}(a^Λ) be
the corresponding arrangement of the hyperplanes. The Weyl group W is the
group generated by the reflections along {Ha; a^A}. It acts on Cι so that
the quotient space Cι/W is isomorphic to the affine space Cι whose affine
coordinate ring is the ring of the invariant polynomial C[ξu — , ζι\w (Chapter
6, [1]). Let |«#|=U«eΛ#« The action on the complement Cι— \3C\ is free
and \JC\ is W-invariant. We call the quotient space \M\fW the discriminant
variety of the root system and we denote it by 3). The discriminant variety
is a hyper surf ace in the quotient space Cι/W. There are many interesting
results by many authors about the topology of the arrangement \JC\ or Cι+1—
\JC\. See Orlik [6] and its references. The complement Cι—3) is known to
be a K(π, l)-space by [2] and [3]. Let S be a stratification of \SC\ which is
compatible with the W-action. For instance, we can take the minimal strati-
fication Smιn={H% ΞdΛ} where i/f=Παe£#«—Uαes^α For a given S, Q
inherits a canonical stratification S which is defined by the images of the strata
of S. The purpose of this paper is to show that the discriminant variety for
the arrangements of type Au Bt and Dt has canonical regular stratifications
which are constructed in the above way. Here the regularity means the b-
regularity in the sense of Whitney [7]. It is known that the 6-regularity
implies the α-regularity ([5]). For Ai+i and Bί+U we simply take S=Smιn
As the stratification £ for Di+ί, we take the restriction of Smin for Bι+ί to
DM.

Let 2* be an analytic stratification of an analytic variety V is an open set
U of Cn. Let (M, N) be a pair of strata of £Γ with MZDN and let q^N. Let
p(u) (0^w<l) be a real analytic curve such that p(ΰ)=q and p{u)^M for w>0.

Received October 14, 1988

210



DISCRIMINANT VARIETIES 211

Let T=limM_<JVtt)M. We say that the pair {M\ N) has a unique tangential
limit at q if this limit T depends only on q and M. If 2* enjoys this property
at any point q of ΛΓ for any pair (M; N), we say that £Γ has the unique tangential
limits property. Of course, the existence of a stratification with the unique
tangential limits property poses a strong geometric restriction on V.

We will show that the stratifications S for At+X and 5i+i-discriminants have
the unique tangential limits property. For A+i-discriminant variety, this does
not hold for certain pair of strata. However we will show that the limit of
tangent spaces is at most one dimensional. The author would like to thank
Professor P. Orlik and Professor K. Saito for the valuable informations and
discussions.

§ 2. /I r arrangement.

We first consider the ̂ -arrangement. As a root system, At is the restric-
tion of Bt+ί to the following hyperplane

(2.1) L: 6 + - + 6 + i = 0 .

The corresponding arrangement M consists of ( ~ J hyperplanes {ζχ—ζ3~0}

(/</) and the Weyl group W is the symmetric group Sι+1. The invariant ring
is generated by

(2.2) st

We refer to Chapter 6 of [1] for the basic results about the irreducible root
systems. We use the following symmetric polynomials for the calculation's
sake.

(2.3) r t =fi+ - +£ί+i (ί=l,

Note that {τu •••, Tt+1} is also a basis of the ring of invariant polynomials and

that s i = Γ i = 0 on L. We define the mapping Φ: Cί+1->Cι+1 by Φ(jζu •••, 6 + 0 =

(ri, •••, Γι+0. Let L be the hyperplane in the quotient space defined by Γi=0.

Let φL: L-+L and φ: \JC\-*£) be the respective restriction of Φ to L and \JC\.

We have the following commutative diagrams.

Cί+

(2.4)

Here the horizontal maps are the respective inclusion maps. It is well-known

that 3) is defined by Uι<j(ξi—ξj)2—0 which can be written in a weighted

homogeneous polynomial of \su •••, s i +i} or equivalently of {τu •••, r z+i}. This

is equal to the discriminant polynomial of xι+ι—s1x
lJr ••• + ( — l ) i + 1 s i + i = 0 in the
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usual sense ([4]).
Now we consider the stratification S=Smtn of \JC\. Let d be the set of

the non-maximal subdivisions of the set {1, •••, /+1}. Namely an element £F
of ft can be written as {Iu •••, Ik}w here IiΓ\Ij=Q for iφj and U*-iΛ=U» — >
/+1}. The maximal element c5K={{l}, •••, {/+1}} is excluded as M(JK)=
C i + 1—|Jf|. Note that the Weyl group W acts canonically on €x. Let C2 be
the set of the non-maximal partitions of the integer / + 1 . An element JC of
C2 is written as {mu •••, nιk) such that Σ J = i ^ = / + l with m,>0. For a subset
/ of {1, •••, /+1}, we denote its cardinality by | / | . Then there is a canonical
surjection from Cλ to C2 by EF —>| £Γ | where | ίF | = {| Zx], •••, |/* |} . For each
S—{Ilf •••, Ik) of ft, we define

3a {ί, /

It is clear that {M(^)}cF&Cl is equal to S—Smιn which is a regular stratification
of \M\. Let ST={Ilf •••, /*} and Q—{JU •••, /m} be elements of d . 3" is called
a subdivision of £ if for each i, there exists a / such that Iidjj. We define a
partial ordering in £ x (respectively in C2) by £F>5 if and only if ^ is a sub-
division of Q. (Respectively I ^ D H ^ I ^ I ^ I is a subpartition of \Q\.) The
canonical map SF —> J £F | is obviously order-preserving.

PROPOSITION (2.5).

(i) Λί(30^Λf(£F').

PROPOSITION (2.6).

valent.
( i ) φ(M($))=φ(M(
(iii) There exists an
(iv) IfflHffΊ mC

Lei 2", ff'eft.
(ii) M(£F)ΠM(:

Lei £F, ff'eft.

ff')). (ϋ) #(Λί
element g^W

T/ie

(I)

"(ff))r
such

following conditions are equivalent.
). (iii) SF^ff'.

T/ze following conditions are equi-

\^(M(2Γ/)):=0
ίAflί <§

p(M(2r))=M(£F/)

φ(M($')) if and only if \g\>\%'\.

Proof. Proposition (2.5) is immediate from the definition of M(β). We
prove Proposition (2.6). The equivalence (iii)Φ=Φ(iv) is obvious. The implications
(iii)=X i )=Φ(ϋ) are also trivial. Assume that φ(ξ)—φ(ξf) for some £eM(£F) and
ξr(=M(<3'). This implies that there exists a g^W such that #(£)=£'. As JC is
invariant by the action of W, we can write g(M(3))=M(ΰ) for some £ e f t .
As {M(2Γ)}cFGί:i are disjoint, this implies 3 r '=5 . Thus (ii)^(iii). As φ(M(%))=
φ(M(%)), the assertion (II) is an immediate consequence of (I) and Proposition
(2.5).

DEFINITION (2.7). For J(SEC2, we define V(JC)=φ(M(Ί)) where |£F|=JC.

We define an important vector-valued function X(x) by

(2.8) X(χ)=(χ, χ\ - , χι+1).
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Let X ' ( Λ ) = ( 1 , 2x, •••, (l+ΐ)xι) be the derivative of X{x). Then Φ(S)=Σ ιtίl*(£i)

and the tangential map dΦξ: TξC
ι+ι-^Tφ^Cι+1 satisfies dΦξ(-^z-)=Σ,jiijζ3~1-S-.

We identify the tangent space TφφCι+1 with Cι+Ϊ in a canonical way. Then
the above equality says

(2.9) d*

For any subset / of {1, •••, / + 1 } , we define

(2.10) J_=J_ Σ J_ f

Let SF = {/1, •••, /*} and let ξeM(£F). As ξj does not depend on j^It for ί being
fixed, we have ξj=ξit for any j I

PROPOSITION (2.11). Leί 9 r ={/i, •••, /*
( i ) TξM(^) is the (k-l)-dimensional vector space which is equal to

(ii) The restriction φ: M(£F)->V(| EF|) 2s α /zm'ite covering,
(iii) V( I £F I) zs non-singular and

Proof, ( i ) is obvious by the definition of M(£F). Thus

By the Vandermonde determinant formula, this image has dimension (k — 1).
Thus the restriction φ\M(β) is a submersion and the local image by φ is
smooth. Now assume that φ(ξ)-=φ(η) for ξ, 3yeM(5) with ξφη. Then there
exists a permutation g^Sι+1 so that g(ξ)=η. Then g(M($))=M($). Thus
the local images near £ and η by φ coincide. This proves that V( | £F |) is
smooth and the assertions (ii) and (iii) follow immediately.

Let us examine the order of the covering φ: M(β)-*V{\ S\) more explicitly.
Let {aίf •- , am} = {n: 3i, n=\Iι\\. Clearly we have m^k and {at} are mutu-
ally distinct. Let pt be the number of /'s such that |/ J | = α 1 ( z = l , •••, k).
We consider the subgroups

Then 7(2") is a normal subgroup of t^(£F) and the quotient group
acts freely on M(%) with the quotient space F( | £F |). More precisely let

Then for each s=l, —, m, g induces a permutation of



214 MUTSUO OKA

if/,; |/jl=α.}. Thus we have

P R O P O S I T I O N (2.12). There is a canonical isomorphism W(2)/I(3) = SPιX •••

XSPm. Thus the order of the above covering is pι\ ••• pm\.

Let f(x) be a vector valued rational function of one variable. We define

the rational functions fk(xi, •••, **) (k=l, •••, /+1) inductively by fι(xi)=f(xi)

and

( 2 . 1 3 ) f k { x u - , x k )

= {/*-i(*i, — , Xk-*> Xk-ι)—fk-i(Xi, '" , Xk-2> Xk)\/(Xk-ι — Xk)

We call fk(xu •••, **) the &-fold derived function of /(#).

PROPOSITION (2.14). We have the following formulae.

(i) /(**)=/(*i)+ Σ ( Π (Xk-xSlffau '" , xj)

(ϋ) fs+ι(xit '" f Xsf Xs+k)

k / 3-1 \
= / s + l( ̂ l> •" y Xs + l)~\~ Σ ( Π (^S+*~"^S + ft )fs + j(Xl> '" y X$+j)<

Proof. As (i) is a special case of (ii), we prove (ii) by the induction on

k. The assertion on &=1 is trivial. We assume the assertion for fe—1. By

the definition of the derived function, we have

fs+l\Xly '" y Xsy Xs+k) j8 + l\Xly '" y XSy Xs+l) = \Xs+k XS+l)f S + 2\Xίy '" y Xβ + ίy Xs+k)

— \Xs+k Xg+lJJ S+2\Xίy '" y XS + 2J

k / J-\ \
~\~\Xs+k Xs + ί) Σ ( Π \Xs+k Xs+l + h) )fs + l + j\Xly '" t Xs + l+j)

J=2 \ h=l /

k / J-l \
= Σ ( Π (χs+k-χs+h))fs+j(χiy •••, χ,+j).

3=2 \ h=l /

This completes the proof.

Now we consider the derived functions Xk(xi, •••, Xk) and X'k(xi, •••, Xk)

of X(x) and X'{x) respectively. T h e following Lemma plays an important role

throughout this paper.

L E M M A (2.15). Let aktJ and bkt3 be the j-th coordinate of Xk(xi, •••, Xk)

and Xί(xi, " , Xk) respectively. Then ak>J, bk,3 are symmetric polynomials of

xu •" , xk defined by

( i ) aktk+J= 2 x\ι-Xkk, bk,k+J=(k+j) Σ xp 'XΪ*

(ii) Xt(x, .. , x)=^<»-»(*)/(*-l)!, X't{x, - , x)



DISCRIMINANT VARIETIES 215

where Xa\x)=(-j—Yx(x).

Proof, (i) is immediate from the inductive calculation and the equality:
(xa-ya)/(x-y)=xa-1+xa-2y+ ••• +ya'K The assertion (ii) follows immediately
from (i).

L E M M A (2.16). Let ξ^M{<3) and let 2 = {IU •••, /*}. Then

Xl(£iσCι» ..ξiσCt>)eίTφφV(\Ί\) for any ί = 2 , •••, * and σ(ΞSt.

Proof. By Proposition (2.11), we have that

V(\2\) (iΦj).

This implies that X'2(ξii9 ζij)^TφφV(\ ζ£\) for iΦj. Now the assertion follows
by an easy inductive argument.

The following is a generalization of the Vandermonde determinant formula
and it plays a key role to show the linear independence of certain vectors in
the later arguments.

L E M M A (2.17). {Generalized Vandermonde formula) Let λu •••, λk be mutually
distinct complex numbers and let Jl—{vu •••, vk) be an element of C2. Then we
have the formula:

In particular, {Xa>(λt)}(j=l, •••, viy 2 = 1 , •••, k) are linearly independent.

Proof. Let Ψ(xu - , JcI+1)=det(tX'(jc1), •••, ιX\xι+ι)). Then it is easy to
see that

(2.18) ψ(xlf •••, x ϊ + 1 ) = ( / + l ) ! Π U , - ^ )

by the Vandermonde determinant formula. We consider the differential operators:

d- Y . . . ( 3 _ y 1 and D=Dί...Dk.

Let E={(j, h);vι+ - +^i-i+l^h<j^iv1+ - +vifi=l, - , k] and let € be

the ideal generated by {Xj—xh; (/, h)^E\. As Σ 5 S l y = ( o* ) ' i t : i s e a s y t 0 s e e

that

(2.19) DΨ=(l+l)\ Π (xj-xh)modulo£.

Thus the assertion follows immediately from
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det C X m - , Ή^tfO, - , ιX\λk\

Here the last equality is due to (2.19).

§ 3. Regularity and the limit of the tangent space.

Now we are ready to show the regularity of the stratification 5 of the
discriminant variety of ^4z+1-arrangement and the unique tangential limits
property. Let M(£F) and M(G) be stratum of S such that M(Ψ)IDM(U). Let q
be an arbitrary point of the stratum V( |£ |) and let p{u) and q(u) be real
analytic curves defined on the interval [0, 1] such that (i) p(0)—q(0)=q and
q{u)^V{\G\) for any M G [ 0 , 1]. (ii) j>(w)eF(| %\) for w>0. We also assume
that

(3.1) lim TpMV(I £F | ) = T , lim \_p{u), qW] =γ.
U-*0 U-*0

Here Zp(u), q(u)~] is the line spanned by p(u)—q(u). Changing the parameter
u by u1/m for some integer m if necessary, we may assume that there are
lifting real analytic curves p(u) and q{u) in M(£F) and M(G) respectively so that
p(u)=φ(p(u)) and q(u)=φ(q(u)) respectively. We may assume that p(0)=q(0)
and let η=p(0)^M{G). Let ύ={Ju — , Jm}. By Proposition (2.5), we can write
2r = {/t. J ; i=l, ••', ̂ , ί = l , — , ^} where /t,>C/t for / = 1 , •••, v<.

THEOREM (3.2). J /s α regular stratification with the unique tangential

limits property. Namely (i) T is generated by

ΣW'(^); Σλ

(ii) (Regularity) γ^T.

Proof. By Proposition (2.11), the vectors l 1 m 1

with ΣS=iλ=0 are contained in TPcu>V(\3\). Thus by taking the limit as
tt-»0, we see that Σ ^ i λ ^ ' ί ^ ^ ^ e T . This gives only a subspace of T of
dimension m—1. We still need v x + ••• +v m —m independent vectors to generate
T. For this purpose, we apply Lemma (2.15). We know that Xk(p(u)Jι>v ••«,
p(u)jtik)^TpCu)V(\%\)(2£k^Vi, l£i<m). We take the limits of these vectors
as M->0 and we apply Lemma (2.15) to obtain that Xa\ηj^T(2^j^viy

Now we apply Lemma (2.17) to see that the vectors {Xa\ηJt);
, l<Lj<ι>i} are linearly independent. This completes the proof of (i).

Now we consider the regularity (ii). Using the equality Σjii |/t,y| = |/tl,
we have
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(3.3) £(*)-?(*)= Σ Σ \Juj\(X(PWjttj)"X(q(u)ji)).

Using Proposition (2.14), we can write

(3.4) X{p{u)jι>3)-X(q{u)Jt)= ± aUJth(u)Xh+Muhif PWJtιl, - , p{u)jtfh)

where althh(u) is defined by

(3.5) α l i,,Λ(u)=(ί(M) / t i J-^(M) i r <)*Π (P(u)JtιJ-p(u)jltk), A=l, - , ! ; , .

Substituting (3.4) in (3.3), we obtain

m ^i

(3.6) p(u)-q(u)= 23 Σ Λ,.ft(u)-y»+,(ί(u)^

where ax>h{u)—^i)Lh\Jι,j\allhh{u). In particular, we have

(3.7) aUu)= Σ IΛ. K ^ ) ^ , , - ^ ) ^ ) .

We define a non-negative integer /3 by

(3.8) /5=min{order(α t,Λ(w)) ί = l , •••, m, Λ = l , •••, Vί}

and let α l ( 7 ι (M)=α: ι > Λ w i S +(higher terms). Then (3.6) and Lemma (2.15) imply that

Σ Σ^t .Λ^^^W/A 1 ) " + ( h i g h e r t e r m s ) *

By the Generalized Vandermonde formula (Lemma (2.17)), we can see easily that

(3.10) Σ Σ ι α..*^ < Λ ) (W/ A 1 ^° a n d 7=[J i ftΣα».Λ^CΛ)(W/A!]

Here [v] denotes the line generated by the vector v. Thus the assertion (ii)
of Theorem (3.2) follows immediately from (i) and (3.10) and the following.

771

ASSERTION (3.11). Σ « n = 0 .
1 = 1

Proof. By (3.7) we have

m m m vj m

Σαt.i(M)=Σα..i^+(higher terms)=Σ Σ I λ,j\P(u)jUJ- Σ I MgWj^O.

The last equality is derived from the fact that p(u) and q(u) are in the hyper-
plane L. Now the assertion is immediate from the above equality.
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§ 4. jBi+1-arrangement.

Let R be the root system of type Bt+ί in Rί+\ The corresponding arrange-

ment JC consists of 2( ) + / + l hyperplanes: {ξi±ξj=O} and {ξt=0}. The

Weyl group W is isomorphic to a semi-direct product of the symmetric group
Sι+1 and the abelian group (Z/2Z)ι+1 (Chapter 6, [1]). The invariant polynomial
ring is generated by

(4.1) t%= Σ fro •••£?«>, ι = l ,

We will use the following generators.

(4.2) ζ i = e r + - + f ϋ i ι = i , -

Let Φ : C I + 1 ^ C t + 1 / W = C l + 1 be the map defined by £->(&(£), •••, &+i(£)). We
take S^Srmn The stratification <S can be described as follows. Let €χ be the
set of the subdivisions of the non-empty subsets of {1, •••, /+1}. Namely an
element ί e ^ can be written as 3={IU •••, /*} where each It is non-empty
and ItΓ\Ij=Q for iΦj. Let S($)=\J\-Ji and £FC={1, •••, /+1}-S(£F). Let €2

be the set of the partitions of the integer m for ra=l, •••, / + 1 . There is a
canonical surjective mapping from βx to £2 by ff^lff^fl/il, •••, | /* | } . Let

; (i) ft=0<=>feffe, (ii) tf=φ*{i, j}£3J,}

We omit JK={{1}, •••, {/+1}} and \άd\ from βi and <?2 respectively as M(3ί)
and F( |J%|) are nothing but the complement Cί+1— \JC\ and Cι+ί—3). Let
α=Σi=il-ftl~fe Then M(ff) is a disjoint union of 2α connected components
corresponding th sign of ξi — ±ξj in the definition of M(%). But they are in
the same W-orbit. (Recall that the reflection along {£*=()} is the multiplication
by —1 in the i-th coordinate.) Thus each connected component is mapped by
φ onto the same stratum of 5. We define partial orderings in Si and βz as
follows. Let 9 = {Ii, -,/*} and 4 = { / i , - , / » } . %>G if and only if (i)
3CQUC, (ii) §>ύ in Ct. Here 3 is defined by {£FC, Λ, •••, /*}e^ . Similarly
we define | £ F | > | ^ | if and only if (i) | f f c | ^ | £ c | , (ii) | § | > | 5 | in (72. Now
the following propositions are completely parallel to Proposition (2.5) and Propo-
sition (2.6).

PROPOSITION (4.3). Let S, fiGft. The following conditions are equivalent.

(i) Λ 0 ) 2 M ( 5 ) . (ii) M(f)ΠM(^)^0. (iii)

PROPOSITION (4.4). Let £F, Q^β^ The following conditions are equivalent.
(i) φ(M(3))=φ(M(U)). (ii) 77ιeπ? sjαsfs α ^eT7 swc/z fAαf g(M(S))=M($). (iii)
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Thus for a JCe£ 2 we can define V(JC)=φ(M(S)) for any 3&€1 such that
|£F|=JC. Now we study the tangential map. Note that

(4.5) d

For each /C{1, •••, /+1}, we define m(7)=min{ί ;*e7}. Let £ = {7^ »,7Λ}Gέ?1

and let £GΞ£F. We define feM(ff) by

ffmc/p if
(4.6) £,=]

10 if

It is easy to see that ξ is in the TF-orbit of ξ. We also define

Σ (,ζj/ζτn<ilιy Λ*.

Note that ^/f m c/ i )=±l and 6J=6mc/<>=l/ί for each j e J t . It is easy to see that

•=f-€=7VI/(g) and dΦξ(-^-)=2ξJiX'(ξ2

Ji). Now Proposition (2.11) and Lemma

(2.15) can be translated into the following form.

PROPOSITION (4.7). Let 3={IU •••, h)^€ι. Then
->-

( i ) The dimension of TξM{Ί) is k and it is generated by j x r - ; i—1, •••, k\.
ι ° w t

 j

(ii) The restriction φ: M(£F)->V(|£F|) fs α ^zn/ίe covering.
(iii) F(|£F|) is non-singular and TΦΦV{\<3\) is generated by {J?'(|? t);

ι = l , . - , * } .

LEMMA (4.8). L^ί £F 6β as in Proposition (4.7). TTiβn

d 1 1 ) / o r s = l , - , * .

Let ^ > ^ and let £={/i, — ,/«}. We can write 3r={/ l l i,;/=0, — , m,
; = 1 , •••, î t} so that Jx.jC.J% where /o^^^ by definition. Let p(u), q(u), q, p(u),
q(u),η,T and γ be as §3. We consider the equality p(u)—q(u)=

ΣS.oΣϊiil/».>l(^(ί(M» t.p-^(«»<)). Then using Lemma (4.8), we do the
same argument as for the A+1-discrίminant to obtain

T H E O R E M (4.9). S is a regular stratification with the unique tangential limits
property. Namely ( i ) T is generated by {Xa^{η2j^\ i—^y •••, m, ; = 1 , •••, Vι}.
(ii) {Regularity) γ<=T.

§ 5. Disarrangement.

Let M be the arrangement corresponding to the root system of type Dί+1
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in Rι+i. M has i( ) hyperplanes {£±£,=0}. The Disarrangement is a

sub-arrangement of J3ί+1-arrangement. The Weyl group W is a semi-direct
product of the symmetric group Sι+ί and (Z/2Z)1 and it is a subgroup of the
Weyl group of Bι+ι. We denote the £ i+1-arrangement by JC(B), the Weyl
group of Bι+1 by W(B) and the stratification of Bι+1 by S(B) to distinguish
with those of Dι+1. A basis of the invariant polynomial rings is given by
Uu '" , U, t} where tt is defined by (4.1) and *=& »£ i + i (Chapter 6, [1]). We
use the basis B = {ζu •••, &, t} where

(5.1) C = f l * + - + ^ i ( ι = l , .» ,/) .

The existence of t makes the situation more difficult than the cases of Λι+ί or
5z+1-arrangements. In fact, the unique tangential limits property does not hold
in general for £ i+1-arrangement. We define Φ: Cι+1->Cι+1/W=Cι+1 by £->
(&(£),—,&(£),*(£)) and let φ be the restriction to \JC\. In this case, the
tangential map does not split into one variable functions. We have

(5.2) d

under the canonical identification TφφCι+1~Cι+\ In this section, we assume
that X(x)=(x, •••, χ ' J ε C 1 . Let £ t be as in §4 and let tf^ίgr^/Ί, •••, 7 * } ^ ^ ;

Let el be the image of β[ in <f2. Let M(3) be as in §4 for
Let S={M{$) EFe^ί}. Then S gives a regular stratification of\JC\ which

is the restriction of the stratification of \JC(B)\ to \JC\. Here is a difference
from the stratification of Bt+1: Let ξ, | ' eM(2 Γ ) such that ξϊ=ξί2 for ι = l , •••,
/ + 1 . Then ζ and ξ' are in the same W-orbit if and only if *(?)=*(£'). (See
§4.8 of Chapter 6, [1].) Thus if £FC=0, M(£F) has two ί7-orbits of strata.
(These strata are in the same W(B)-oτbit.) In particular, F ( | g | ) is the disjoint
union of two strata if 2ΓC=0. Understanding this difference, we use the same
notations as §4 for the convenience's sake. Note that this stratification is
finer than the stratification Smιn which is defined in § 1. The reason that we
consider the stratification S rather than Smιn is technical. S is compatible
with the W-action as W is a subgroup of W(B) and \JC\ is W(Z?)-invariant.
We use the same partial ordering>in €[ as in et for i—\y 2. Proposition (4.3)
and Proposition (4.4) are still true. Now we consider the situation of Proposition
(4.7) and Proposition (4.8). We first prepare a lemma. Let Y(x)=xX'(x),
Z(x)=X(x)/x=(l, x, - , x1-1) and W(x)=(Z(x), t/x). We consider their derived
func t ions Yk(xi, ••• , Xk), Zk(xlf ••• , xk) a n d Wk(xi, •••, Xk)- See (2.13) for t h e

definit ion.

LEMMA (5.3). We have the following recursive formulae.
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Xu '" > χk)

i , •••, x k ) , {—Vj^'H/Xi ••• xk)

( i i ) (Xk(xu •••, Xk), O ) = W * _ i ( x i , •••, Xk-J+XkWkixu •••, xk)

{Yk{x,-,x)=X^\
(iϋ)

Proof. The assertions in (i) are immediate by the definition and the in-
ductive argument. The assertion (ii) follows from (i). The assertion (iii) is a
corollary of (i) and Lemma (2.15).

PROPOSITION (5.4). Let 9r = {/i, —, Ik)^S[ and let £eM(20. Let ξ be as
in (4.6). Then

( 0 ) The restriction φ: M(2Γ)->F(| £F|) is a finite covering.
1i) Tφcξ)V(\3\) has dimension k and it is generated by

(ii) (Ys&ίf .- , |f s), 0)e7V*>V(| ff I) /or s=2, - , *.

(iii) (2-Y;^, ..., | j t ) , ( - l ) - 1 ^ ) / ^ - l y e T ^ ^ F d ff I), s = l , - . , fe.

Proof. The assertions (0) and (i) are immediate from (5.2). For (ii), we
consider the equality

= 2 ( ί f t - | f . χ F 2 ( f | i , If.), 0 ) e r # c e ) 7 ( | f f I).

As iί^ξjj for /^y, this implies our assertion for the case s=2. The rest of
the calculation is completely parallel to the case of Bt+1. For the assertion
(iii) we note that (2Z'(|?.), *(£)/!?.)<Ξ7Vf)F(| £F|) by (i). Then we consider the
derived functions of this expression. As the s-fold derived function of t(ξ)/x
is (—l)*~ιt(ξ)/xι "- xs by (i) of Lemma (5.3), the assertion follows immediately.

Now we consider the limit of the tangent spaces and the regularity problem.
Let p(u), q{u), p(u), q(u), %, Q, η, γ and T be as in §3. Let ^ — {Jx,j\ 0£i£m,
l^j^Vi} and S={Ju.»,JnK9,St=€i). We assume, as in §4, J%tjCjx for
0£i^m where J*—Qc.

Case A. Assume that 2 rc^0. This implies that t{p{u))/^p(u)jltj~Q for any
i^m and l^j^Vi. Thus the tangent space T? (M)F(| EF|) is generated by

(X'(p(u)2jt)J)> 0) for z=0, •••, m and / = 1 , •••, vt. By the same argument as for
the B,+rarrangement, we see that (XftpW^j, •••, P(u)z

Jlt), 0)^TpCu,V(\ £F|)
for l^j^Vi, 0<i^m. Taking the limit as w->0 and applying Lemma (2.15),
we see that ( Z 0 ' ^ 2 ^ ) , 0 ) G T for 0£i£m, 1 ^ / ^ . As
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and these vectors are linearly independent by the Generalized Vandermonde
formula (Lemma (2.17)), T is generated by {(Z o )(^.), 0); 0£i£m, 1^/^M
Thus T depends only on q and Vd^l). By the expression

ί(«)-?(u)=Σ Σ lAiKKίWl,.)-*)}^),

the regularity also reduces to the case of J3I+1.
Case B. Assume that £FC=0. We divide this case into two subcases.
Case B-l. Assume that GcΦ0 and £Fc=0.

This case is most complicated. Note that t(p(u))=±ΐlι>jp(u)!/t

ι

>^. We define
C ( ) by

(5.5) c=\u
u-

We claim that T is generated by the following basis:

(5.6) -ZBc—KX^iyji)} 0), O^i^nif l^j^Vi, (i,

Recall that rjjv—r]2j for any y e / t . In the case of c=oo, the last vector in Bc

is 0Z+1=(O, •••, 0, 1) by definition. If cφooy the assertion is easily obtained by
(iii) of Proposition (5.4) by taking the limit as w->0. Assume that c=oo. By
(iii) of Proposition (5.4), we can see that T contains et+i and (Xa\ηl), 0)
(0<z^m, l<:y<^) On the other hand, we apply (ii) of Proposition (5.4) and
(iii) of Lemma (5.3) to get (Z o ) (0), 0 ) G T for y = l , •••, vo—l. As these vectors
are linearly independent by the Generalized Vandermonde formula and dimM(%)
=ΣS=i^<, &c is a basis of T. Note that the last vector in <BC depends on the
choice of p(u) in general. See Remark (5.22) for detail. Now we consider the
regularity. We start from the expression

(5.7) p(u)-q(u)= Σ Σ (I J% AίxGWh )-X{qiu)j), 0)
1 = 1 j=l l ' J

+ ΣI/c ' ~~ ' '

Using Lemma (5.3) and Proposition (2.14), we can rewrite (5.7) as

(5.8) p(u)—q(u)— Σ Σ ot% j(u)(Xj+1(q(u)jif p(u)j , •••, p(u)2j. ,), 0 ) +
1 = 1 ; = 1 t > x τ > J

j=l \ 0 > 1 > °'"7 ' 7 l = l °'

where

Λ = l
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(I) Assume first that cφ<*>, 0. Let p=min{order(αlj<7(w); O^z^ra, l^/^v*}.
Let cti,j(u)=altjiι

p+(higher terms). Applying Lemma (2.15) and Lemma (5.3),
it is easy to see that

(5.10) lim ^ W 7 W Σ Il

+ Σ 1 « o , y ( I ( j ) ( O ) / i ! ) 0)+aQ,n(X^\0)/vQ\, c/\J0\).

Let υ be the vector defined by the right side of (5.10). As v is a linear com-
bination of the linearly independent vectors, γ=lvl. Here is a problem. The
last vector (Xcv°\0)/ι>0\, c/\J0\) in the linear combination of the right side of
(5.10) is not necessarily contained in T. In fact, by (5.6) we have

(5.11) ( I ( ^ ( 0 ) / W ! , c/l/ol)eT {=H/ol=2vo.

Thus we cannot conclude that γ^T so easily as before. The following assertion
solves the problem.

ASSERTION (5.12). Assume that \J0\φ2u0. Then a0>v0—0.

Assuming this assertion for a while, we conclude from (5.10) that y^T if
, 0.

Proof of (5.12). Assume that ao,voΦθ. Let /o/=min{order(^(w)3'0jp l^j^

and let p(u)2

Jo>3~ajUp> +(higher terms). Then by (5.9) we can write

oto,j(u)= Σ \hh\ah{ah~-aJ-ι)'" (ah-a^u^'-{-(higher terms).

As order(αo,vo(w))^o|0', t n e assumption that aQ,VoΦθ implies that p>vop' and

(5.13) S \Jo.h\ah(ah-a^1)'"(ah-a1)=O9 y = l , •••, v o - l .

By an inductive argument on /, we can easily see that (5.13) is equivalent to
the following:

(5.14) S l/o. f t |α*=O, y=l , - , i ; o - l .
7 l = l

Assume that α -̂̂ O, l^/^v 0 . This implies that order(p(u)jQ>J)=pf/2 for any j .
Thus we have

(5.15) order(f(/>(zO)/ Π # 0 0 ^ . A ) = - ^ -

As we have assumed that | y01 —2̂ -0 ^0, this implies that c=0 or co as J0—2v0

is positive or negative respectively. This is a contradiction to the assumption
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that cφO, oo. Thus by changing the ordering if necessary, we may assume
that there exist β(l£β<v0) such that alf — , aβφ0 and a3=0 for β<j£v0.
Thus (5.14) gives the following equlity

(5.16) Σ α i l / β . Λ | = 0 , ( ;=1, -,β).

This gives another contradiction to the following.

L E M M A (5.17). Let au •••, aβ be given non-zero complex numbers. Then the

equation

has no strictly positive solutions. Here t{nu •••, rtβ) is strictly positive iff n t >0,

ί = l , -,β.

Assuming Lemma (5.17) for a moment, we can conclude that αo.vO—0> c o m "
pleting the proof of Assertion (5.12) and the proof of the regularity in the case
(I).

Proof of Lemma (5.17). Assume that %nu •••, riβ) is a strictly positive
solution of (*).

Step 1. Assume that axφa3 if iΦj. Then (*) only has a trivial solution
H t=0(/=l, •••, β) by the Vandermonde determinant formula.

Step. 2. In general, we consider the subdivision όί — \Ku •••, Kτ\ of
{1, •••, j8} with the property that ax—a^3s\it j^Ks. Let aKχ—a3 for j
Then (*) implies that

(**)

where mι=Σij&κinJ. As m t >0 by this expression, this gives a contradiction,
by Step 1. This completes the proof of Lemma (5.17).

(II) Assume that c=0. Then T is generated by (Xa\fJi)f0)(0^i£mf

1 ^ / ^ i ) . In particular, T contains (ZCVo)(O), 0). We can see immediately from
(5.10) that γ^T.

(III) Assume that c—oo. In this case, we know that ^ + 1 e T . Let δ be
the integer defined by

(5.18) 0 1 ^ ^ ^

We first rewrite the second term in (5.8) using (ii) of Lemma (5.3) as follows.
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M π ίo
Λ l

Σ ao,j(u)(Zjίp(M2

Jθιl, ..., ^ 0 , , ) , (-l)'-Ww))/l/ol Π

^ + l OiJ), 0)

where K"):=(l/olΠ?=iί(w)/o)P/(-1)<5"lί(ί(w)) a n d {&0O} a r e rational functions.
By the assumption, limu^0(^(ί(M»βfl, - , p(ufjQ)d)b{u)}l)=(cfX^(ff)/5\, 1) for
some c'eC. Let

l l (, (M); 1^/^m, l^y^i/*, or 2=0, 1̂ 7<;<5—

2 = min order(β/w)), io

Let αι,<7 (M)=αι>; M'°+(higher terms) and βj(u)=βjup+(higher terms). Then by
(5.8) and (5.19), we obtain

(5.20) lim p w

 p

q w = Σ Σ a^X^ij^/i!, 0)+ Σ aUXll\0)/i!, 0)

' . 0).

By the Generalized Vandermonde formula, the right side of (5.20) is non-zero.
Thus we conclude by (5.6) that γ^T.

Case B-2. Assume that gc=ύc=0. First by (iii) of Proposition (5.4), T
contains the following vectors:

1

As they are linearly independent, & is a basis of T. Now we consider the
regularity. Direct calculations seem to be complicated. We take the following
viewpoints. We consider the mapping Ψ: Cί+1->Cι+1, (ζu •••, d . ίMCi, - , Cι, ίa).
As {ζi, •••, ζι, tι+1(=t2)} is a basis of the invariant polynomial ring of the Weyl
group W{B) of the 2^+i-arrangement, we may consider the composition Ψ°Φ
as the canonical quotient map of the i^+i-discriminant. Note that Ψ gives a
double covering on Cι+1— Uz+i^O}. For a given S—Cf

u we denote by V{\(3\) B)
the stratum of \M(B)\/W(B) which corresponds to £F. Then we have the
commutative diagram.
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V(\9\\B)

We have already shown the regularity for the pair (V(| ff| B), V(\G\ B)) in
§4. Here we use the fact that the regularity does not depend on the choice
of the coordinate functions ([7]). As Ψ is locally a holomorphic diffeomorphism
near p(0)=q, the regularity for (F|£F|), F( |£ | ) ) follows immediately. Thus we
have obtained

THEOREM (5.21). S is a regular stratification. The unique tangential limits
property holds for the pair (F(| 3Ί), V(\G\)) such that $CΦQ or £FC=£C=0.

Remark (5.22). Assume that £F and Q be as in Case B-l. We consider the
possible values of c in (5.5). If (i) \JQtj\^2 for each l^/^v 0 , we can see that

c=±lim(-l) 1 '»- 1 Π Π ί(M)/,-/ Π Pin)?*/-*

if 3 y , Ί Λ ; l > 2

Thus in this case, the unique tangential property holds. Assume that (ii)
\Jo,j\^2 for each l^j^v0 and | / O t i | = l for some j . Then c=oo. Thus there
is no problem for the unique tangential property. In particular, let V{ \ <3\) be
the stratum of the dimension /. We may assume that £F = {{1, 2}, {3}, •••,
{/+1}}. Then the condition (ii) is always satisfied for any V( |£ |) . Finally
assume that (iii) there exist a and b such that | / O ι α | = l and |/0 (&|>2. We
claim that

ASSERTION, C can take any complex number or oo.

Proof. We consider the curve p{u) such that

(i) PWjo,a=uL> ttu)jύ,b=zuM+δuM+\ pWj^^u + aμ*, jΦafb

P(u)k=p{u)jOt:f if fee/o,,

(ϋ) P(u)Jl>:f=rjjl+al,ju l^j^vt, l£i<m and p(u)k=(ηk/ηmvo)P(u)jttj

if k<Ξj%ί,

where δ, a3 and altJ are suitable complex numbers and the integer L and M

are so chosen that order(ί(ί(w))=order(Π52=iί(w)/0,p Then it is easy to see
that c = ± ( - l ) V β " 1 e l J β » l"2XΠΓ=i?^/ ί l. Thus c can take any complex number
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by moving ε. The case c=oo can be treated in a similar way by choosing

the integers L and M which satisfy order t{p(u))<θϊάev(ΐl)up(u)2

j(i>3).

Though we have treated only At+U BL+ί and A+i-arrangements in this

paper, it is highly expected that the regularity will hold for the other cases.

Acknowledgement. Professor C. T. C. Wall wrote the author that the regu-
larity assertion for the other classes of the discriminant varieties also holds.
In fact, his proof seems much general.
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