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THE SINGULAR DIRICHLET PROBLEM FOR THE COMPLEX

MONGE-AMPERE OPERATOR ON COMPLEX MANIFOLDS

BY MAKOTO SUZUKI

1. Introduction.

Let M be a connected paracompact complex manifold of dimension n with
a fixed volume form dV, and Ω a relatively compact, strictly pseudoconvex
open subset of M. Bedford and Taylor [3] showed that

(ddcu)n:=Anddcu

is well defined as a positive Radon measure for a locally bounded, plurisubhar-
monic function u on Ω, where <i c=V : = :I (5—3). We call the assignment w->
(ddcu)n the complex Monge-Ampere operator. In this paper we study the non-
linear (n>l) Dirichlet problem for the complex Monge-Ampere operator:

u is plurisubharmonic on Ω,

\im u(z)=φ on dΩ, (1.1)
z-*dΩ

(ddcu)n=F(u, z)dV on Ω,

where φ is a real-valued function on dΩ and F a non-negative function on Ω.
Many results on the existence and the regularity of the solution of (1.1) were
obtained in [1], [3], [4], [5], [7], [8], [9], [11], [12], [13], etc. In the case of
singular boundary data (i.e., 0 = + oo), however, the singular Dirichlet problem
seems to be unknown except for some special cases (for example, [5], [10], [14]),
some of which are treated in the context of the existence of the complete Kahler-
Einstein metric. We will show the existence of generalized solution of the
equation (1.1) for the singular boundary data on Stein manifold, and extend
Theorem 5 in Bedford and Taylor [5], which states that if Ω is a bounded
strictly pseudoconvex set in C2, F^C(RxΩ), F^>0, t-+F(t, z) increasing in t>
t-*[F(t, z)Ύ12 a convex function of t, and F has an upper barrier, then M(Z):=
sup{v(z):v^P(Ω)Γ\LTJiΩ)f Φ(v)^lF(t, <r)]1/2} is a solution of (1.1) with 0 = + oo.
As a result we will establish

THEOREM. Let M be an n-dimensional Stein manifold with volume form dV
and Ω a relatively compact, C° strictly pseudoconvex domain in M. Let
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COMPLEX MONGE-AMPERE OPERATOR 117

(RxΩ) be a positive function such that F(t, z)}>ekt on RxΩ for some constant
k>0, F(t9 z) is bounded on Ω for each t^R fixed, and continuous, nondecreasing
in t for every fixed zef l . Then the upper envelope

(Ω), (ddcv)n^F(v, z)dV)

is a maximal solution of the Dirichlet problem:

limsup u(z)= + co for

(ddcu)n=F(u, z)dV on Ω.

In §2, we construct the solution of (1.1) on Stein manifolds in the case that
. In § 3, we consider the singular Dirichlet problem (Theorem).

The author would like to express his sincere gratitude to Professor J. No-
guchi for his encouragement and many suggestions and to Professor E. Bedford
for valuable advice.

Definitions and notation. The class of plurisubharmonic functions on M is
denoted by P(M). A plurisubharmonic function u defined on M is called strictly
plurisubharmonic, if u is plurisubharmonic on M and if for an arbitrary complex
local coordinate system z—{zι, ••• , zn), there exists some constant δ>0 such that
u—δ\\z\\2 is also plurisubharmonic on the chart where \\z\\ denotes the usual
Euclidean norm in Cn^R2n.

An open set Ω in a complex manifold is said to be Ck strictly pseudoconvex
(k^O is some integer) if for each ζ^dΩ there exist a neighborhood N of ζ and
a Ck strictly plurisubharmonic function p on N such that

p(z)<0}, NΓ\dΩ=

and in case of k^l dpφQ on NίλdΩ.

2. Existence of generalized solutions for nonsingular case.

Let M be an n-dimensional complex manifold equipped with a hermitian
metric and a volume form d V, and let Ω be an open subset in M. For a real-
valued function φ on dΩ and a (Lebesgue) measurable function / on Ω (the
closure of Ω), we define the following Perron family

L(φ, f):={vP(Ω)Γ\LZc(Ω); \imsu

and (ddcv)n>fdV on Ω}.

We denote by w* the upper regularization of u:\.e., w*Cε)=lim sup u(x). By

making use of L(φ, f) as in Bremermann [7; Theorem 4.1] and Bedford-Taylor
[3; Theorem 6.2], we have the following
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PROPOSITION 2.1. Let φ^CidΩ), /eL°°(β) with / ^ 0 . Suppose that Ω is C°
strictly pseudoconvex and L(φ, f) is not empty. Then the upper envelope

u(z) :=sup{v(z) V<B L(φ, /)},

satisfies that lim u(z)—φ{ζ) for ζ e d β , and u^L(φ, / ) .
£?3z-*ζ

Remark. If there exists a C° strictly plurisubharmonic function on Ω, then
the above L(φ, f) is not empty and we can consider Ω to be a C° strictly
pseudoconvex domain in a Stein manifold by Grauert's theorem.

Proposition 2.1 shows that the upper envelope is necessarily continuous at
the boundary of Ω if the boundary data φ is continuous. The argument due to
Walsh [16] is useful to show the continuity of the upper envelope in the whole
of Ω. Applying the argument as in Bedford-Taylor [3; Theorem 6.2], Bedford
[2] and Asaba [1] (see also Kaneko [13]), we obtain

THEOREM 2.2 Let M be an n-dimensional Stein manifold with a fixed volume
form dV, and Ω be a C° strictly pseudoconvex, relatively compact domain in M.
If φ^C(dΩ), and /eC(42) is a bounded nonnegative function, then the upper
envelope

u(z) :=sup{v(z) VΪΞL{φ, /)}, zefl

is continuous on Ω and is extended continuously to Ω.

Now we will construct the generalized solutions for the Dirichlet problem
on complex manifold. In the case that M—Cn with the usual Kahler metric,
Cegrell [11 Lemma 2] showed that if Ω is a strictly pseudoconvex domain in
Cn, φ^C{dΩ) and /eL°°(β), / ^ 0 , then the Dirichlet problem for the complex
Monge-Ampere operator:

lim u(z)=φ(ζ) for ζ^dΩ, (2.1)

(ddcu)n=fdV on Ω,

has a unique solution, where dV is 2n-dimensional Lebesgue measure. Thus
Proposition 2.1 and the minimum principle in Bedford and Taylor [6; Corollary
4.4] (see also Lemma 3.2 below) yield

THEOREM 2.3. Let Ω be as above. Let φ^CidΩ) and /eL°°(β) with / ^ 0 .
Then the upper envelope u of L{φ, f) is a unique solution of the Dirichlet problem
(2.1).

This was also proved by Fukushima [11; Corollary 1], using the method of
spherical modification with the extended versions of the minimum principle [11
Theorem 4 and 5], which were obtained by the stochastic method. The method
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in Fukushima is valid in our case on general complex manifolds. We shall ob-
tain the following lemma employing the method, but without Theorem 4 and 5
in [11]. For the sake of completeness, we present here an elementary proof.

LEMMA 2.4. Let M be an n-dimensional complex manifold equipped with a
volume form dV, and Ω be an open subset in M. Suppose that φ is a real-valued
{admitting values ±00) function on dΩ, and f^L™oc{Ω) with / ^ 0 . // L{φ, f)
is not empty and if the upper envelope

u{z):=sup{v{z);v^L{φ, /)}, z^Ω

is locally bounded, then (ddcu*)n=fdV on Ω.

Proof. We first show that for each z^Ω, there exists a neighborhood NdΩ
such that for any v^L{φ, f) there exists a plurisubharmonic function v^L(φ, F)
satisfying the following conditions:

(1) v^v on Ω,
(2) v=v of Ω\N,
(3) {ddcv)n=fdV on N.

Further, if vu v2^L{φ, f) and v1<v2, then Vi<v2 where v3 is the above modifica-
tion of Vj, y = l , 2. Let B and N be two neighborhoods of z in one same local
chart around z with Ω^)B^)N, and N be biholomorphic to a ball in Cn. Let
Vj<^L{φ, /) , y = l , 2 with Vί<v2 and for ε>0, vjε=Vj*Xε be the smoothing of v3

on B, where Xε is a usual smoothing kernel. Then v3ε is a smooth plurisubhar-
monic function in a neighborhood of JV, vlε^v2ε on N for ε>0 and vjε-*v3 on N
decreasingly as ε—>0. By Theorem 2.3, for each j and ε>0 there exists a
plurisubharmonic function w3ε on N such that {ddcw3ε)

n—fdV on N and w3ε—v3ε

on dN. It follows from the minimum principle (cf. Bedford-Taylor [6 Corollary
4.4]) that wlε^w2ε on N and w3ε decreases as ε-^0 for ; = 1 , 2. Since ^ G
L{vjε\dN, /) , we have v3^w3ε on N. Thus the function w3{z) :=\im w3ε{z) {z^N)

ε

is bounded plurisubharmonic on N for ; = 1 , 2 and we have wx<w2 on N. Put

Wj{z)

. V,(*)

Then v3^P{Ω)Γ\LT0C{Ω) for y = l , 2 and v^v2 on £?. Since {ddcv3)
n=fdV on N

and the volume of dB is zero, we have {ddcv3)
n^fdV on £?. Since v3—v3 near

9β, v3^L{φ, f) and # ; satisfies conditions (1), (2) and (3). By Choque's Lemma
we can choose a sequence {u3}(zL{φ, f) with u^u2^ ••• and u3—>w* almost
everywhere (dF) in β (see Lelong [15; p 26]). Since the result is local, it is
sufficient to prove in a neighborhood of each z^Ω. Let Z<ΞΩ be fixed. Take
a neighborhood N as above and let u3 be the modification of u3 on N as above
for each j , i.e., ύ3^L{φ, / ) , u3^u3 on i3, ύ3—u3 on ί?\iV and {ddcu3)

n~fdV
on Λf. Then from the above fact, if j<k, we have u3^uk on i2. On the other
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hand, since Uj^Uj^u^u* on Ω, we have lim uj(z)—u*(z) almost everywhere on
j

Ω. If u is locally bounded, so is u*, it then follows from the continuity of the
operator (ddc)n (cf. Bedford-Taylor [6; Proposition 5.2]) that (ddcu*)n=\im(ddcuj)n

=fdV on N. Q.E.D.

From the above proposition and Proposition 2.1, we obtain

THEOREM 2.5. Let M be an n-dimensional complex mam fold with a volume
form dV and Ω a C° strictly pseudoconvex, relatively compact domain in M. Let
φ(=C(dΩ) and / e L % β ) with / ^ 0 . Then if L(φ, f) is not empty, the upper
envelope of L(φ, f)

is a solution of the Dinchlet problem:

lim u(z)=φ(ζ) for ζ^dΩ, (2.2)

(ddcu)n=fdV on Ω.

Moreover, if there exists a locally bounded strictly pluri sub harmonic function on
Ω, the above u is in fact, the unique solution of the Dirichlet problem (2.2).

3. Singular Dirichlet Problem.

We consider the following singular Dirichlet problem

limκ(z)= + oo for ζ e δ β , (3.1)

(ddcu)n=F(u, z)dV on Ω,

where F(t, z)^L™oc(RxΩ) be a nonnegative function. By using the continuous
dependence of the solution on the domain and the data, we are able to obtain
the solutions of equation (3.1) under additional assumptions on F. In order to
utilize the continuous dependence of the solution on the data, we first solve the
Dirichlet problem (3.1) for the continuous boundary data. By combining the
same technique as used in Cegrell [9] with our result of Theorem 2.5, we obtain

THEOREM 3.1. Let M be an n-dimensional Stein manifold with a volume form
dV, and Ω a C° strictly pseudoconvex, relatively compact domain in M. Let φ^
C{dΩ), F e L ° ° ( ( - c o , m a x ^ ] χ β ) with F^O, and F{t,z) be continuous in t for
every fixed zGfl. Then there exists a solution of the Dirichlet problem
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ueΞP(Ω)r\L°°(Ω),

Jim u(z)=φ(Q for ζ^dΩ, (3.2)

(ddcu)n=F(u,z)dV on Ω.

In general, the solution of (3.2) is not unique (see Cegrell [9]). Assuming
an aditional condition, we have the uniqueness by the following minimum
principle:

LEMMA 3.2. Let M be an n-dimensional complex manifold, and Ω be a rela-
tively compact open subset in M with a globally defined, locally bounded strictly
plunsubharmonic function. Let F(t, z) be a nonnegative function on RxΩ such
that F(t, z) is nondecreasing in t for every fixed z e β . // ulf u2^P(Ω)Γ\Lco{Ω)
satisfy

for
ΩBz-ζ

(ddcu1)
n<F(uuz)dV on Ω,

(ddcu2)
n^F{u2, z)dV on Ω,

then Uι>,u2 on Ω.

The proof is carried out by only miner modifications of the proof of
Corollary 4.4 in Bedford and Taylor [6] by using the comparison theorem,
Theorem 4.3 of Bedford [2].

By the above lemma, we see that if t-+F(t, z) is nondecreasing for every
fixed z^Ω in Theorem 3.1, the solution of the problem (3.2) is unique; then the
solution is the upper envelope of L(φ, F) := {ve^P(Ω)Γ\L?0C(Ω) (ddcv)n^F(v, z)dV,
\imsupv(z)<φ(Q for ζ^dΩ}.

We need the following notion due to Bedford and Taylor [5; p. 47].

DEFINITION. A function β{z) locally bounded from above on Ω is said to be
an upper barrier for F(t, z\ if β^v on Ω for all VΪΞP(Ω)Γ\L?0C{Ω) with (ddcv)n

^F(v, z)dV on Ω.
We give a weak criterion for the existence of the upper barrier for given

F, which implies the singular Dirichlet problem (3.1) is solvable if it is locally
solvable. Using Lemma 3.2 we have

LEMMA 3.3. Let M be an n-dimensional complex manifold with a volume form
dV, Ω a relatively compact open subset in M, and F(t, z)^L\oc(RxΩ) a nonnega-
tive function. If for each z^Ω, there exist a neighborhood N of z in Ω and an
upper barrier for F on N, then F has an upper barrier on Ω. In particular, if
for each z^Ω there exists a strictly pseudoconvex, relatively compact neighborhood
N of z in Ω and a function βe.P(N)Γ\L?oc(N) such that β(z)-+ + oo as NΞ>Z->3N
and (ddcβ)n<F(β, z)dV on N, then F has an upper barrier on Ω.
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We now state the main theorem.

THEOREM 3.4. Let M be an n-dimensional Stein manifold with a volume
form dV and Ω a relatively compact, C° strictly pseudoconvex domain M. Let
FGLΓoC(i2χβ) with F^O such that F(t, z) is bounded on Ω for all fixed fejβ,
and continuous and nondecreasing in t for every fixed z^Ω. If there exists an
upper barrier for F on Ω, then

u(z):=sup{v(z); v^P{Ω)Γ\LToc(Ω)f (ddcv)n^F(v, z)dV)

is a solution of the Dirichlet problem (3.1).

Proof. Let {φj} be a sequence of continuous functions on dΩ with φ^φ2^ •••
and Iim0/2r)= + oo for z^dΩ. From the hypothesis about F, we see that the

restriction of the function F(t, z) to the set (-co, m a x ^ J x β is bounded for
each /, so that by Theorem 3.1 there exists a unique solution u3 to the Dirichlet
problem for the data φ3 and F for each /, i.e.,

lim uj(z)=φj(ζ) for ζ e d β and

{ddcu3)
n=F(u3,z)dV on Ω.

Since φ3<φk for j<k, it follows from Lemma 3.2 that u3^uk on Ω. Put

M(z):=(limtt/z))* for ZΪΞΩ.
j

Clearly, w5jw* on Ω, lim fi(z)= + oo for every ζ<=dΩ and the existence of the
£?32-ζ

upper barrier implies that u and w* are locally bounded plurisubharmonic func-
tions on Ω. Since u3{z) increases to u(z) almost everywhere in Ω, it holds from
the continuity of t-+F(t, z) on R that (ddcu)n=\im (ddcuj)n=\ϊm F(uJf z)dV—

j J

F(u, z)dV. Therefore, ϊί^u on Ω, and u is a solution of (3.1). Now, we can
construct a solution, using the continuous dependence on the domain. Since Ω
is strictly pseudoconvex, there exists an increasing sequence {Ωk} of strictly
pseudoconvex domains such that Ω1mΩ2^ ••• <^Ω and \JΩk=Ω. Then from the

way as above, we have a function ύk^P(Ωk)ΓλL^0C(Ωk) which satisfies

(ddcuk)
n=F(uk>z)dV on Ωk and

lim ΐίk(z)= + °°
z-*dΩk

for each k. Since uk+ί is bounded in Ωk, it follows from Lemma 3.2 that
Uk+i^uk on Ωk for each k. From the same reason, we also havevt^ΐίk on Ωk

for every v(=P(Ω)r\L?oc{Ω) with (ddcv)n^F(v, z)dV on Ω and each k. Thus if
we put ϋ(z):=\imUk(z) for z<=Ω, it is clear that v^P{Ω)Γ\LZc{Ω) and u£v on
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Ω. Moreover, we see

(ddcv)n=\im(ddciίk)
n=\imF(uk, z)dV

=F(v,z)dV on 42.

Hence, v<u on Ω, so that v—u. Since u^u on Ω, limw(z)=-h°°, therefore u
z-*dΩ

is a solution of the Dirichlet problem (3.1). Q. E. D.

Proof of Theorem in % 1. Let F be the function in Theorem 3.4 which
satisfies F(t, z)^ekt on RxΩ for some constant k>0. Then by Lemma 3.3, F
has an upper barrier on Ω. In fact, on the ball Ω{έ)\ — {z^Cn: | |z | |<e},

β(z):=l-(n+l)log{l-(\\z\\/ε)2}+n\og(n+l)/kε2+log4nn\yk

is the solution of problem (3.1) with M=Cn, Ω=B(e), and F(t)-ekt. Thus by
Theorem 3.4 if Ω is a strictly pseudoconvex, relatively compact domain in a
Stein manifold, for the function F as above we have a solution of problem (3.1).

Q. E. D.
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