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ON THE EXISTENCE OF LIMIT CYCLES OF THE EQUATION

x'=h(y)-F(x), y=-g(x) *

BY KE WANG

1. Introduction.

Owing to their theoretical and practical importance, the Lienard equations
have attracted much attention in recent years, in particular, for theory of
periodic solutions, see [1-7].

In this paper, we consider the existence of limit cycles of the system

' = h(y)-F(x)
(1)

/ = - * ( * ) ,

which is little more general than the Lienard equation. We assume that F, G,
h: R-+R are continuous functions and satisfy the property of uniqueness for
the solutions to the Cauchy problems associated to the system (1), and xg(x)>0
for every xΦO, yh(y)>0 for every yΦO. Without loss of generality, we also
assume F(0)=0. We obtained some new results. The theorems of this paper
generalized some results in [5] and [7].

Let Y+, Y-, C+, C- denote the sets {(*, y): y^O, x=0}, {(*, y): y^O, x=0},
{(*, y): h(y)=F(x), x>0} and {(*, y): h(y)=F(x), x<0], respectively.

2. Technical Preliminaries.

LEMMA 1. If we assume

( i ) lim ft(;y)= + oo, and lim h(y) = — oo.

then the sufficient and necessary condition that there exists a point N^Y~ such
that the negative half-trajectory L~^ passing through point N does not intersect
C+ is

(ii)a there exists a continuously differentiable function kι(x) defined on (0, oo)
with positive derivative such that

^ for x>0.
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Proof. If the condition (ii)a holds, let us consider the system

(2)

v'=—g(x).

It is easy to see that y=-kι(x) is a solution of (2). From the comparison the-
orem, it follows that the solution of (1) passing through the point iV=(0, &i(0))
is under the curve y=ki(x), so it will not cross C+.

If there exists a point N^Y~ such that L~N does not intersect C+. We can
suppose the equation of L~N is y=k1(x). It is easy to see that kλ(x) is continu-
ously differentiate and its derivative is positive. We have

k&x) '

Thus the Lemma is proved.

By Lemma 1, we can give concrete conditions on h(y), F(x) and g{x), so
long as a concrete function kχ(x) is given. For example, if we set kι(x)=

J x
g(s)ds, C, M>0, x>0, then we can prove the follow-

o

ing corollary.

COROLLARY 1. Suppose that there exist constants C, M>0 such that

F(x)>h(CG(x)-M)+±- for x^O,

then there exists a point N^Y~ such that L~N does not cross C+.

LEMMA 2. // condition (i) is satisfied, and if we assume
(ii)b h(y) is strictly increasing, and there exists a continuous non-increasing

function ki(x) such that

F{x)>h(-kx{x))
and

g(s)ds
for x^O,

where M is a positive constant, then there exists a point N^Y~ such that L~N

does not cross C+.

Proof. Let y^M+k^O). Since F(x)>h(-k1(x)), so WO oO, and
Set point iV=(0, —yo) Suppose that the equation of the section of the curve
L~N under C+ is y—y(x). If L~N intersects C+, because on C+F(x)=h(y) and
3,(0)= —;yo< — ̂ 1(0)<F(0)=0, so there must exist jce(0, oo) such that y(x)=
— kxix), and yixX — kάx), O^x^x. This implies that
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g(s)ds
Jo F(s)-h(y(s))

Thus we have,
g(s)ds

o F(s)-h(y(s))

g(s)ds

o F(s)-A(-*!(s))

This is a contradiction, and the Lemma is proved.

Remark. If h(y) is strictly increasing, then the condition (ii)b in Lemma 2
is necessary as well.

By Lemma 2, we can give concrete conditions on h(y), F(x) and g(x), so
long as a concrete function kx(x) is given. For example, if we set kt(x)=
— h~\—C), where C is a positive constant, then we can prove the following
corollary.

COROLLARY 2. // there exist constants M,C>0 such that

F(x)+C>0
and

\lτS+cds=M for x*°>
then there exists a point N^Y" such that L~N does not intersect C+.

Suppose that there exists a strictly increasing function hx(y) which satisfies
the following condition

y) for y^y^O. (3)

Let e(x)=hT\F(x))t and
e(x) for

e+(x)=\
for e(x)<yι.

Let E+ denote the set {(x, y): x^O, y>e+(x)}.

LEMMA 3. C~nE+—0.

Proof. Let point A(x, y)(=E+. If F{x)^hι{yι)f since y>e+(x)=hϊ\F(x))
^ylf so hi(y)>F(x) and hence Ky)^hι(y)>F(x)f thus ΛeC".

If FixXh^yJ, then /IΓ1(/Γ(Λ:))<3Ί and e+(x)=ylf since y > ^ , so
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), and τ4e=C".

LEMMA 4. // lim h(y)= + °of Hm F(x)— — a, where α>0 is a constant, then

there exist constants blf b2y bz>0 such that

Eι{(x, y): x<—bu y>-t

E2{(xy ,

Proof. There exist numbers bu b2>0 such that F(x)< — a, for x<—b1 and
h(y)> — a for y>—b2. Let a point A U i , yi)^Ei{(x, y): x<—blf y>—b2},
then h(yι)> — a>F(x1), so Ax(xu y^C".

There exists a number bz>0 such that

h(y)> max F(x) for y>bz.

If the point A2(x2t y2)^E2, then h(y2)> max F{x)^F{x2), so ^42efC"\

LEMMA 5. // the point N^E+, then the positive half-trajectory L+N passing
through N must intersect Y+.

Proof. From Lemma 3 it is clear that E+ is above C~ and that E+ is a
connected set. Let the equation of L^ on the left plane is (x(t), y(t)). Since
y(t) strictly increases at t increases, and x(t) is strictly increases when LJ- is
in E+, we assert that L~χ will not escape from the set {(x, y): xN^x^0, yN^y],
and that L+

N must reach the set E*{(x, y): xN£x^0, y*^y, where y*= inf e(x)}.

Onece L^ enters E*, it will not leave E* unless it cross Y+. Because in E*
x(t) and y(t) are strictly increasing, so if L+

N does not cross Y+, we can prove
that x(f)-»α*<^0 and y(t)-++oo as ί->+o°. But from the given conditions we
have

dy __ —g(x)
dx ~ h(y)-F(x) "

Since XJV^X^O along LJr, we have

lim
dx lim

This is a contradiction.

LEMMA 6. ί/nίier condition (i), //
(iii)a ί/ẑ rβ βx/sίs α function hx(y) satisfying (3) α̂ d/ ί/ẑ r̂  exist a number

xo^O αncί a continuously differ entiable function k2(x) with negative derivative such
that

^f for
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lim *,
£ • 0 0 X - » 0 O

TΛew fAβ positive half-trajectory L^ passing through N(0, —jy0), 0 > — yo^k2(xo)f

must cross C~ and next cross Y+.

Proof. If L+

N does not cross the line x=x0, it must cross C~ and Y+. If
L% cross the line X~XQ at the point P, then yP>k2(x0). It is easy to see that
y = k2(χ) is a solution of the system

From the comparison theorem, we can prove that L+

N must be located above
the curve y = k2(x) for x<Lx0. Since

L^ must enter in E+ when ί is sufficiently large. By Lemma 5, we can prove
this Lemma.

By Lemma 6, we can give concrete conditions on h(y), F(x) and g(x), so
long as concrete functions kt(x) and hx(y) are given. For example, if we set
h!(y)=y/X and k2(x)=CG(x)-M for x^O with M>0 and C = - l / A ( - M ) , we
can prove the following corollary.

COROLLARY 3. // h(y)^y/λ, y^O, G(—oo)= + oo and there exists a numbar
M>0 such that

(^^)h(-M) for x^O,

then the positive half-trajectory L^ passing through N(0, x0), O>yo>—M, must
cross C~ and Y+.

LEMMA 7. / /

(iii)b lim F(x)= — a<0, where a>0 is a constant and lim A(;y)= + oo, then
y-*-oo y-*+oo

the positive half-trajectory L\ passing through the point N(0, y0), —b^yo<O,
must intersect Y+, where b=—sup{h(y)= — a}.

Proof. From Lemma 4, there exist sets

EΛ(x, y):x<-bu y>-b2),
and

E2{{x, y): -bi^xKO, y>bz},
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such that {Eι\jE2)Γ\C~ — 0. It is easy to see from the proof of Lemma 4 that
—b2>—b. L+

N will not cross the line y ——b2 and x = —bu If L^ does not
enter in Ez it must cross Y+. If L% enters in E2, it will not escape from E2

before it cross F + , and from Lemma 5, it must cross Y+.

LEMMA 8. Suppose that the condition ( i ) holds, and one of the conditions

(ii)a and (ii)b holds. If

(iv) Πm.(G(x)+F(x))= + oo,

then the positive half-trajectory L% passing through N^Y+ must cross C+ and
Y-.

Proof. Suppose condition (i) and (ii)a hold. It follows from (ii)a that
F(x)^A, A- inf h{y). Let point M=(0, fei(0)). Since L~NΛ is located above

the line y = kx(ff) and under the curve y = kx(x) for x>0, so L+

N must located
under the line y—yN and above the line y = kι(0) before it escape from the
right half plane.

Let the equation of L% be (x(t), y(t)) with *(0)=0, y(0)=yN. If ίlm F(x)

= + oo, then there exists a number x*>0 such that

F(x*)> max h(y).

Thus, L+

N must be located on the left of the line x = x*, because x'(t)=
h(y(t))-F(x(t)). If L+

N does not leave the region R:0<x<x*, k1(O)<y<yNf

there must exist a singular point of (1) and this is impossible, so L^ must cross
C+ and Y" to leave the region R.

If tim F(x)< + oo, then G(+oo)= + oo. Let us consider the equation

x'=h{y)-A,
(4)

y' = -g(χ).

Let L* denote the positive half-trajectory of (4) passing through the point N,
and let (x*(t), y*(t)) be the solution of ZΛ By the comparison theorem, it is
easy to see that L% is located on the left of ZΛ If L* crosses C+ and Y~,
then so does L%. If L* does not cross Y~ and jc*(/) is bounded for x>0, then
L̂ r would stay in the region i?*: O^x^x**, ^1(0)^3/^3;^, where x**>0 is a
upper bound of jc*(f), which implies that (1) has singular points in R*. This
is impossible.

If L* does not cross Y" and x*(t) is unbounded for x>0, then there are
points Pk, k—\>2> •••, in L* such that %p.—>+oo. Since

' ^
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4 ^ "g{ίί x. Λ defb*g(x)9 x>0,
dx — max h(y)+A = &

and it follows that

Γ° dv . . . . ~, N

.)->+oo, as k-

This is a contradiction.
If the condition (i) and (ii)b hold, the proof is similar.

3. The Main Results.

T H E O R E M 1. Suppose that conditions ( i ) , (iv), one of ( i i ) a , ( i i ) b and one of

(iii)a, (iii)b hold. If
(v) xF(x)<0, for 0 < U | « l ;
(vi) &2(*o)^^i(O) when condition (iii)a holds, or k2(xo)<—b when condition

(iii)b holds; then (1) has at least one limit cycle.

Proof. The method of proof is to construct Poincare-Bendixson annular

S y
h(s)ds. It is obvious

o

that V(x, y) is definite positive in a sufficiently small neighberhood of (0, 0),
and we have

V'ω(x, y)=-g(x)F(x)>0.

Thus, for sufficiently small c, the trajectory of (1) starting from the point on
closed curve So: V(x, y)~c go out of the interior region of So at t increases.
So we can take So as the interior boundary.

Next, let us construct the exterior boundary. Take point A=(0, k2(x0)).
From Lemma 1, 2, it follows that L~A does not cross C+ and Y+, and LJ must
cross C", and then cross Y+ at point B. It is clear that yB>0 By Lemma 6,
Li must cross C+, and then cross Y~ at point C. According to the uniqueness

of trajectory of (1), we have yc>yA- We can take the closed curve ABQjCΛ
as the exterior boundary. The theorem is proved.

THEOREM 2. / /

1°. xg(x)>0, xΦO, yh(y)>0, yΦO, xF(x)<0 for 0 < | * | « l ;

2°. F(x)^h(CG(x)-M)+^r for x£xo<O and x^O, C, M>0;

3°. JWL^l$yφ09 χ>θf G(-oo)= + oo, \jm(CG(x)-F(x))>M;
y A χ--oo

4°. Πm(G
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then (1) has at least one limit cycle.

This theorem follows from Corollary 1, 2 and Theorem 1 immediately.
Suppose the strictly increasing function h2{y) satisfies the condition

h(y)^h2(y) for O^y^y. (5)

Let the function y=Q2(x) be the inverse function of

ί y
h2(s)ds, where α>0 is a parameter.

0

It is easy to see that

Q,,
(6)

LEMMA 9. // h2{y) satisfies the condition (5), and

F{x)^(l+a-ι)hlQ2{G{x)) for x ^ x ^ O , (7)

then there exists a point N<^ Y~ such that the negative half-trajectory L~N of (1)
passing through N does not intersect C+.

Proof. From (6) (7) we have

Since lim h(y)=+ oof so lim h2(y)= + °°. There exists a number M>0 such
y-4+oo y-*+oo

that
h2(y)>: max h(y) for y^M.

o^yύy1

Now we will prove

h2(Q2(G(x)mh(Q2(G(x))-M). (9)
If QΛ(G(x))-M£0, then h2(Q2(G(x)))>0^h(Q2(G(x))-M). If Q2(G(x))-M

^yu then

If 0<(?,(G(x))-M<<y1> M<Q2(G(x))<M+yu

max

Thus, (9) holds. From (8) and (9) we have
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g(χ)

By Lemma 1 we can compleat the proof.

COROLLARY 4. // condition ( i ) holds and there exist positive constants alf

βu Xi, yi such that

where

for y^

x) for x ^

then there exists a point iV<Ξ Y~ such that the negative half-trajectory L~N does
not intersect C+.

Proof. Taking h2(y)—a1y
βl, α=ττ, it is easy to verify that

Pi

and

Hence, the corollary is proved from Lemma 9.
Suppose the strictly increasing function hx{y) satisfies the condition (3) and

/z1(+oo)= + (X). Let the function y—Qι(x) be the inverse function of

ί y
hι(s)ds. It is easy to see that

0

LEMMA 10. // ht(,y) satisfies the condition (3), and

FWZa+a-WQJtGίx))) for

tim(-F(x)+G(x))= + oo,

then the positive half-trajectory L\ with N<^Y~ must cross C~ and Y+.
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Proof. If ί ίmF(x)=-oo, the Lemma can be proved by Lemma 7. If
X-*-co

\ϊmF(x)=c> — oo, then G(—oo)— + 00 and for any M>0 there exists a xo<*o

such that

*(*)

for

Taking k2(x)=Q1(G(x))-M, we have

so from Lemma 6, this Lemma is proved.

COROLLARY 5. Under condition (i), if Πm (—F(x)+G(x))=-f oo
X-»-oo

exist constants a2, β2, yi, *2>0 such that

for y>y,>0f

hKx) for x^-x2^Q,
where

then the positive half-trajectory L# passing through any point AΓGF" must cross
C- and Y\

The following Theorem follows from Lemma 8, 9 and 10.

THEOREM 3. / /

1°. xg(x)>0, xΦθf yh(y)>0, yφO, xF(x)<0 for 0 < | J C | < 1 ;

2°. there exist strictly increasing function h1(y)} h2(y) such that

hάyfeKyfehάy) for O^y^y;

3°. JF(x)^(l+αr1)/ii«?i(G(x))) for x^x^O,

F(x)^(l+ai-1)/z2«?2(G(x))) for x^x2^0 ;

4°. \ϊ

then (1) has at least one limit cycle.
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COROLLARY 6. / /

1°. xg(x)>0, xΦO, yh(y)>0, yφO, xF(x)<0 for 0 < U | « l ;

2°. U

3°. there exist positive constants au a2, βu β2,, 3>i, Xi, Xi such that

for y^yi^O,

for 0£Xl<x,

for 0^-x2^x,

where

then (1) has at least one limit cycle.
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