ON THE EXISTENCE OF LIMIT CYCLES OF THE EQUATION

$$
\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{y})-\boldsymbol{F}(\boldsymbol{x}), \boldsymbol{y}^{\prime}=-\boldsymbol{g}(\boldsymbol{x}) *
$$

By Ke Wang

1. Introduction.

Owing to their theoretical and practical importance, the Liénard equations have attracted much attention in recent years, in particular, for theory of periodic solutions, see [1-7].

In this paper, we consider the existence of limit cycles of the system

$$
\left\{\begin{array}{l}
x^{\prime}=h(y)-F(x) \tag{1}\\
y^{\prime}=-g(x),
\end{array}\right.
$$

which is little more general than the Liénard equation. We assume that F, G, $h: \boldsymbol{R} \rightarrow \boldsymbol{R}$ are continuous functions and satisfy the property of uniqueness for the solutions to the Cauchy problems associated to the system (1), and $x g(x)>0$ for every $x \neq 0, y h(y)>0$ for every $y \neq 0$. Without loss of generality, we also assume $F(0)=0$. We obtained some new results. The theorems of this paper generalized some results in [5] and [7].

Let $Y^{+}, Y^{-}, C^{+}, C^{-}$denote the sets $\{(x, y): y \geqq 0, x=0\},\{(x, y): y \leqq 0, x=0\}$, $\{(x, y): h(y)=F(x), x>0\}$ and $\{(x, y): h(y)=F(x), x<0\}$, respectively.

2. Technical Preliminaries.

Lemma 1. If we assume
then the sufficient and necessary condition that there exists a point $N \in Y^{-}$such that the negative half-trajectory $L_{\bar{N}}$ passing through point N does not intersect C^{+}is
(ii) $)_{\mathrm{a}}$ there exists a continuously differentiable function $k_{1}(x)$ defined on $(0, \infty)$ with positive derivative such that

$$
F(x) \geqq h\left(k_{1}(x)\right)+\frac{g(x)}{k_{1}^{\prime}(x)} \quad \text { for } \quad x>0
$$

[^0]Proof. If the condition (ii) ${ }_{\mathrm{a}}$ holds, let us consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=h(y)-\left(h\left(k_{1}(x)\right)+\frac{g(x)}{k_{1}^{\prime}(x)}\right) \tag{2}\\
y^{\prime}=-g(x)
\end{array}\right.
$$

It is easy to see that $y=k_{1}(x)$ is a solution of (2). From the comparison theorem, it follows that the solution of (1) passing through the point $N=\left(0, k_{1}(0)\right)$ is under the curve $y=k_{1}(x)$, so it will not cross C^{+}.

If there exists a point $N \in Y^{-}$such that L_{N}^{-}does not intersect C^{+}. We can suppose the equation of L_{N}^{-}is $y=k_{1}(x)$. It is easy to see that $k_{1}(x)$ is continuously differentiable and its derivative is positive. We have

$$
F(x)=h\left(k_{1}(x)\right)+\frac{g(x)}{k_{1}^{\prime}(x)} .
$$

Thus the Lemma is proved.
By Lemma 1, we can give concrete conditions on $h(y), F(x)$ and $g(x)$, so long as a concrete function $k_{1}(x)$ is given. For example, if we set $k_{1}(x)=$ $C G(x)-M$, where $G(x)=\int_{0}^{x} g(s) d s, C, M>0, x>0$, then we can prove the following corollary.

Corollary 1. Suppose that there exist constants $C, M>0$ such that

$$
F(x) \geqq h(C G(x)-M)+\frac{1}{C} \quad \text { for } \quad x \geqq 0
$$

then there exists a point $N \in Y^{-}$such that L_{N}^{-}does not cross C^{+}.
Lemma 2. If condition (i) is satisfied, and if we assume
(ii) $_{\mathrm{b}} h(y)$ is strictly increasing, and there exists a continuous non-increasing function $k_{1}(x)$ such that

$$
F(x)>h\left(-k_{1}(x)\right)
$$

and

$$
k_{1}(x)+\int_{0}^{x} \frac{g(s) d s}{F(s)-h\left(-k_{1}(s)\right)} \leqq M \quad \text { for } \quad x \geqq 0
$$

where M is a positive constant, then there exists a point $N \in Y^{-}$such that L_{N}^{-} does not cross C^{+}.

Proof. Let $y_{0}=M+k_{1}(0)$. Since $F(x)>h\left(-k_{1}(x)\right)$, so $k_{1}(0)>0$, and $y_{0}>0$. Set point $N=\left(0,-y_{0}\right)$. Suppose that the equation of the section of the curve L_{N}^{-}under C^{+}is $y=y(x)$. If $L_{\bar{N}}^{-}$intersects C^{+}, because on $C^{+} F(x)=h(y)$ and $y(0)=-y_{0}<-k_{1}(0)<F(0)=0$, so there must exist $\bar{x} \in(0, \infty)$ such that $y(\bar{x})=$ $-k_{1}(\bar{x})$, and $y(x)<-k_{1}(x), 0 \leqq x \leqq \bar{x}$. This implies that

$$
-k_{1}(\bar{x})=y(\bar{x})=-y_{0}+\int_{0}^{\bar{x}} \frac{g(s) d s}{F(s)-h(y(s))} .
$$

Thus we have,

$$
\begin{aligned}
0 & =-y_{0}+k_{1}(\bar{x})+\int_{0}^{\bar{x}} \frac{g(s) d s}{F(s)-h(y(s))} \\
& \leqq-y_{0}+k_{1}(\bar{x})+\int_{0}^{\bar{x}} \frac{g(s) d s}{F(s)-h\left(-k_{1}(s)\right)} \\
& \leqq-y_{0}+M \\
& =-k_{1}(0) .
\end{aligned}
$$

This is a contradiction, and the Lemma is proved.
Remark. If $h(y)$ is strictly increasing, then the condition (ii) ${ }_{\mathrm{b}}$ in Lemma 2 is necessary as well.

By Lemma 2, we can give concrete conditions on $h(y), F(x)$ and $g(x)$, sc long as a concrete function $k_{1}(x)$ is given. For example, if we set $k_{1}(x)=$ $-h^{-1}(-C)$, where C is a positive constant, then we can prove the following corollary.

Corollary 2. If there exist constants $M, C>0$ such that

$$
F(x)+C>0
$$

and

$$
\int_{0}^{x} \frac{g(s)}{F(s)+C} d s \leqq M \quad \text { for } \quad x \geqq 0
$$

then there exists a point $N \in Y^{-}$such that L_{N}^{-}does not intersect C^{+}.
Suppose that there exists a strictly increasing function $h_{1}(y)$ which satisfies the following condition

$$
\begin{equation*}
h(y) \geqq h_{1}(y) \quad \text { for } \quad y \geqq y_{1} \geqq 0 \tag{3}
\end{equation*}
$$

Let $e(x)=h_{1}^{-1}(F(x))$, and

$$
e^{+}(x)=\left\{\begin{array}{lll}
e(x) & \text { for } & e(x) \geqq y_{1} \\
y_{1} & \text { for } & e(x)<y_{1}
\end{array}\right.
$$

Let E^{+}denote the set $\left\{(x, y): x \leqq 0, y>e^{+}(x)\right\}$.
Lemma 3. $C^{-} \cap E^{+}=\varnothing$.
Proof. Let point $A(x, y) \in E^{+}$. If $F(x) \geqq h_{1}\left(y_{1}\right)$, since $y>e^{+}(x)=h_{1}^{-1}(F(x))$ $\geqq y_{1}$, so $h_{1}(y)>F(x)$ and hence $h(y) \geqq h_{1}(y)>F(x)$, thus $A \in C^{-}$.

If $F(x)<h_{1}\left(y_{1}\right)$, then $h_{1}^{-1}(F(x))<y_{1}$ and $e^{+}(x)=y_{1}$, since $y>y_{1}$, so $h(y) \geqq h_{1}(y)$
$\geqq h_{1}\left(y_{1}\right)>F(x)$, and $A \in C^{-}$.
Lemma 4. If $\lim _{y \rightarrow+\infty} h(y)=+\infty, \varlimsup_{x \rightarrow-\infty} F(x)=-a$, where $a>0$ is a constant, then there exist constants $b_{1}, b_{2}, b_{3}>0$ such that

$$
\begin{aligned}
& E_{1}\left\{(x, y): x<-b_{1}, y>-b_{2}\right\} \cap C^{-}=\varnothing \\
& E_{2}\left\{(x, y): 0 \geqq x \geqq-b_{1}, y \geqq b_{3}\right\} \cap C^{-}=\varnothing
\end{aligned}
$$

Proof. There exist numbers $b_{1}, b_{2}>0$ such that $F(x)<-a$, for $x<-b_{1}$ and $h(y)>-a$ for $y>-b_{2}$. Let a point $A_{1}\left(x_{1}, y_{1}\right) \in E_{1}\left\{(x, y): x<-b_{1}, y>-b_{2}\right\}$, then $h\left(y_{1}\right)>-a>F\left(x_{1}\right)$, so $A_{1}\left(x_{1}, y_{1}\right) \in C^{-}$.

There exists a number $b_{3}>0$ such that

$$
h(y)>\max _{0 \geq x \geq-b_{1}} F(x) \quad \text { for } \quad y>b_{3} .
$$

If the point $A_{2}\left(x_{2}, y_{2}\right) \in E_{2}$, then $h\left(y_{2}\right)>\max _{0 \geqq x \geq-b_{1}} F(x) \geqq F\left(x_{2}\right)$, so $A_{2} \bar{\in} C^{-}$.
Lemma 5. If the point $N \in E^{+}$, then the positive half-trajectory L_{N}^{+}passing through N must intersect Y^{+}.

Proof. From Lemma 3 it is clear that E^{+}is above C^{-}and that E^{+}is a connected set. Let the equation of L_{N}^{+}on the left plane is $(x(t), y(t))$. Since $y(t)$ strictly increases at t increases, and $x(t)$ is strictly increases when L_{N}^{+}is in E^{+}, we assert that L_{N}^{+}will not escape from the set $\left\{(x, y): x_{N} \leqq x \leqq 0, y_{N} \leqq y\right\}$, and that L_{N}^{+}must reach the set $E^{*}\left\{(x, y): x_{N} \leqq x \leqq 0, y^{*} \leqq y\right.$, where $\left.y^{*}=\inf _{x_{N} \leq x \leq 0} e(x)\right\}$. Onece L_{N}^{+}enters E^{*}, it will not leave E^{*} unless it cross Y^{+}. Because in E^{*} $x(t)$ and $y(t)$ are strictly increasing, so if L_{N}^{+}does not cross Y^{+}, we can prove that $x(t) \rightarrow a^{*} \leqq 0$ and $y(t) \rightarrow+\infty$ as $t \rightarrow+\infty$. But from the given conditions we have

$$
\frac{d y}{d x}=\frac{-g(x)}{h(y)-F(x)} .
$$

Since $x_{N} \leqq x \leqq 0$ along L_{N}^{+}, we have

$$
\lim _{t \rightarrow+\infty}\left|\frac{d y}{d x}\right| \leqq \frac{\left|g\left(a^{*}\right)\right|}{\lim _{y \rightarrow+\infty} h(y)}=0 .
$$

This is a contradiction.
Lemma 6. Under condition (i), if
(iii) $)_{\mathbf{a}}$ there exists a function $h_{1}(y)$ satisfying (3) and there exist a number $x_{0} \leqq 0$ and a continuously differentiable function $k_{2}(x)$ with negative derivative such that

$$
h\left(k_{2}(x)\right)+\frac{g(x)}{k_{2}^{\prime}(x)} \geqq F(x) \quad \text { for } \quad x<x_{0} \leqq 0
$$

$$
\lim _{x \rightarrow-\infty} k_{2}(x)>y_{1}, \quad \varliminf_{x \rightarrow-\infty}\left(h_{1}\left(k_{2}(x)\right)-F(x)\right)>0, \quad k_{2}\left(x_{0}\right)<0
$$

Then the positive half-trajectory L_{N}^{+}passing through $N\left(0,-y_{0}\right), 0>-y_{0} \geqq k_{2}\left(x_{0}\right)$, must cross C^{-}and next cross Y^{+}.

Proof. If L_{N}^{+}does not cross the line $x=x_{0}$, it must cross C^{-}and Y^{+}. If L_{N}^{+}cross the line $x=x_{0}$ at the point P, then $y_{P}>k_{2}\left(x_{0}\right)$. It is easy to see that $y=k_{2}(x)$ is a solution of the system

$$
\left\{\begin{aligned}
x^{\prime} & =h(y)-\left(h\left(k_{2}(x)\right)+\frac{g(x)}{k_{2}^{\prime}(x)}\right) \\
y^{\prime} & =-g(x)
\end{aligned}\right.
$$

From the comparison theorem, we can prove that L_{N}^{+}must be located above the curve $y=k_{2}(x)$ for $x \leqq x_{0}$. Since

$$
\varliminf_{x \rightarrow-\infty}\left(h_{1}\left(k_{2}(x)\right)-F(x)\right)>0
$$

L_{N}^{+}must enter in E^{+}when t is sufficiently large. By Lemma 5 , we can prove this Lemma.

By Lemma 6, we can give concrete conditions on $h(y), F(x)$ and $g(x)$, so long as concrete functions $k_{2}(x)$ and $h_{1}(y)$ are given. For example, if we set $h_{1}(y)=y / \lambda$ and $k_{2}(x)=C G(x)-M$ for $x \leqq 0$ with $M>0$ and $C=-1 / h(-M)$, we can prove the following corollary.

COROLLARY 3. If $h(y) \geqq y / \lambda, y \geqq 0, G(-\infty)=+\infty$ and there exists a number $M>0$ such that

$$
\begin{aligned}
& F(x) \leqq h\left(\frac{-G(x)}{h(-M)}-M\right)-h(-M) \quad \text { for } \quad x \leqq 0 \\
& \lim _{x \rightarrow-\infty}\left(\frac{-G(x)}{h(-M)}-\lambda F(x)\right)>M
\end{aligned}
$$

then the positive half-trajectory L_{N}^{+}passing through $N\left(0, x_{0}\right), 0>y_{0}>-M$, must cross C^{-}and Y^{+}.

Lemma 7. If
(iii) $\varlimsup_{\mathrm{b}} \varlimsup_{y \rightarrow-\infty} F(x)=-a<0$, where $a>0$ is a constant and $\lim _{y \rightarrow+\infty} h(y)=+\infty$, then the positive half-trajectory L_{N}^{+}passing through the point $N\left(0, y_{0}\right),-b \leqq y_{0}<0$, must intersect Y^{+}, where $b=-\sup _{y<0}\{h(y)=-a\}$.

Proof. From Lemma 4, there exist sets
and

$$
E_{1}\left\{(x, y): x<-b_{1}, y>-b_{2}\right\}
$$

$$
E_{2}\left\{(x, y):-b_{1} \leqq x<0, y>b_{3}\right\}
$$

such that $\left(E_{1} \cup E_{2}\right) \cap C^{-}=\varnothing$. It is easy to see from the proof of Lemma 4 that $-b_{2}>-b$. L_{N}^{+}will not cross the line $y=-b_{2}$ and $x=-b_{1}$. If L_{N}^{+}does not enter in E_{2} it must cross Y^{+}. If L_{N}^{+}enters in E_{2}, it will not escape from E_{2} before it cross Y^{+}, and from Lemma 5, it must cross Y^{+}.

Lemma 8. Suppose that the condition (i) holds, and one of the conditions (ii) $)_{\mathrm{a}}$ and (ii) ${ }_{\mathrm{b}}$ holds. If

$$
\begin{equation*}
\varlimsup_{x \rightarrow+\infty}(G(x)+F(x))=+\infty, \tag{iv}
\end{equation*}
$$

then the positive half-trajectory L_{N}^{+}passing through $N \in Y^{+}$must cross C^{+}and Y^{-}.

Proof. Suppose condition (i) and (ii) $)_{\mathrm{a}}$ hold. It follows from (ii) ${ }_{\mathrm{a}}$ that $F(x) \geqq A, A=\inf _{y \geqq k_{1}(0)} h(y)$. Let point $N_{1}=\left(0, k_{1}(0)\right)$. Since $L_{N_{1}}$ is located above the line $y=k_{1}(0)$ and under the curve $y=k_{1}(x)$ for $x>0$, so L_{N}^{+}must located under the line $y=y_{N}$ and above the line $y=k_{1}(0)$ before it escape from the right half plane.

Let the equation of L_{N}^{+}be $(x(t), y(t))$ with $x(0)=0, y(0)=y_{N}$. If $\varlimsup_{x \rightarrow+\infty} F(x)$ $=+\infty$, then there exists a number $x^{*}>0$ such that

$$
F\left(x^{*}\right)>\max _{k_{1}(0) \leq y \leqslant y_{N}} h(y) .
$$

Thus, L_{N}^{+}must be located on the left of the line $x=x^{*}$, because $x^{\prime}(t)=$ $h(y(t))-F(x(t))$. If L_{N}^{+}does not leave the region $R: 0<x<x^{*}, k_{1}(0)<y<y_{N}$, there must exist a singular point of (1) and this is impossible, so L_{N}^{+}must cross C^{+}and Y^{-}to leave the region R.

If $\overline{\lim }_{x \rightarrow+\infty} F(x)<+\infty$, then $G(+\infty)=+\infty$. Let us consider the equation

$$
\left\{\begin{array}{l}
x^{\prime}=h(y)-A \tag{4}\\
y^{\prime}=-g(x)
\end{array}\right.
$$

Let L^{*} denote the positive half-trajectory of (4) passing through the point N, and let $\left(x^{*}(t), y^{*}(t)\right)$ be the solution of L^{*}. By the comparison theorem, it is easy to see that L_{N}^{+}is located on the left of L^{*}. If L^{*} crosses C^{+}and Y^{-}, then so does L_{N}^{+}. If L^{*} does not cross Y^{-}and $x^{*}(t)$ is bounded for $x>0$, then L_{N}^{+}would stay in the region $R^{*}: 0 \leqq x \leqq x^{* *}, k_{1}(0) \leqq y \leqq y_{N}$, where $x^{* *}>0$ is a upper bound of $x^{*}(t)$, which implies that (1) has singular points in R^{*}. This is impossible.

If L^{*} does not cross Y^{-}and $x^{*}(t)$ is unbounded for $x>0$, then there are points $P_{k}, k=1,2, \cdots$, in L^{*} such that $x_{P_{k}} \rightarrow+\infty$. Since

$$
\frac{d y}{d x}=\frac{-g(x)}{h(y)-A}, \quad x>0,
$$

$$
\frac{d y}{d x} \leqq \frac{-g(x)}{\max _{k_{1}(0) \leq y \leq y_{N}} h(y)+A} \xlongequal{\text { def }} b^{*} g(x), \quad x>0,
$$

and it follows that

$$
y_{N}-y_{P_{k}}=\int_{x_{P_{k}}}^{0} \frac{d y}{d x} d x \geqq-b^{*} G\left(x_{P_{k}}\right) \rightarrow+\infty, \quad \text { as } \quad k \rightarrow+\infty .
$$

This is a contradiction.
If the condition (i) and (ii) ${ }_{\mathrm{b}}$ hold, the proof is similar.

3. The Main Results.

Theorem 1. Suppose that conditions (i), (iv), one of (ii) $)_{a}$, (ii) ${ }_{\mathbf{b}}$ and one of (iii) $\mathbf{a}_{\mathbf{a}}$ (iii) $)_{\mathrm{b}}$ hold. If
(v) $x F(x)<0$, for $0<|x| \ll 1$;
(vi) $k_{2}\left(x_{0}\right) \leqq k_{1}(0)$ when condition (iii) $)_{\mathrm{a}}$ holds, or $k_{2}\left(x_{0}\right)<-b$ when condition (iii) $)_{\mathrm{b}}$ holds; then (1) has at least one limit cycle.

Proof. The method of proof is to construct Poincare-Bendixson annular region. Consider $V(x, y)=G(x)+H(y)$, where $H(y)=\int_{0}^{y} h(\mathbf{s}) d s$. It is obvious that $V(x, y)$ is definite positive in a sufficiently small neighberhood of $(0,0)$, and we have

$$
V_{(1)}^{\prime}(x, y)=-g(x) F(x)>0 .
$$

Thus, for sufficiently small c, the trajectory of (1) starting from the point on closed curve $S_{0}: V(x, y)=c$ go out of the interior region of S_{0} at t increases. So we can take S_{0} as the interior boundary.

Next, let us construct the exterior boundary. Take point $A=\left(0, k_{2}\left(x_{0}\right)\right)$. From Lemma 1, 2, it follows that $L_{\bar{A}}^{-}$does not cross C^{+}and Y^{+}, and L_{A}^{+}must cross C^{-}, and then cross Y^{+}at point B. It is clear that $y_{B}>0$. By Lemma 6, L_{B}^{+}must cross C^{+}, and then cross Y^{-}at point C. According to the uniqueness of trajectory of (1), we have $y_{C}>y_{A}$. We can take the closed curve $\overparen{A B C} \cup \overline{C A}$ as the exterior boundary. The theorem is proved.

Theorem 2. If

$$
\begin{aligned}
& 1^{\circ} . \quad x g(x)>0, x \neq 0, y h(y)>0, y \neq 0, x F(x)<0 \text { for } 0<|x| \ll 1 ; \\
& 2^{\circ} . \quad F(x) \geqq h(C G(x)-M)+\frac{1}{C} \text { for } x \leqq x_{0}<0 \text { and } x \geqq 0, C, M>0 ; \\
& 3^{\circ} . \quad \frac{h(y)}{y} \geqq \frac{1}{\lambda}, y \neq 0, \lambda>0, G(-\infty)=+\infty, \lim _{x \rightarrow-\infty}(C G(x)-F(x))>M ; \\
& 4^{\circ} . \quad \lim _{x \rightarrow+\infty}(G(x)+F(x))=+\infty ;
\end{aligned}
$$

then (1) has at least one limit cycle.
This theorem follows from Corollary 1,2 and Theorem 1 immediately. Suppose the strictly increasing function $h_{2}(y)$ satisfies the condition

$$
\begin{equation*}
h(y) \leqq h_{2}(y) \quad \text { for } \quad 0 \leqq y_{1} \leqq y . \tag{5}
\end{equation*}
$$

Let the function $y=Q_{2}(x)$ be the inverse function of

$$
x=a^{-1} \int_{0}^{y} h_{2}(s) d s, \quad \text { where } a>0 \text { is a parameter. }
$$

It is easy to see that

$$
\begin{equation*}
a^{-1} h_{2}\left(Q_{2}(G(x))=\frac{g(x)}{\frac{d}{d x} Q_{2}(G(x))}=\frac{1}{Q_{2}^{\prime}(G(x))} .\right. \tag{6}
\end{equation*}
$$

Lemma 9. If $h_{2}(y)$ satisfies the condition (5), and

$$
\begin{equation*}
F(x) \geqq\left(1+a^{-1}\right) h_{2}\left(Q_{2}(G(x)) \quad \text { for } \quad x \geqq x_{1} \geqq 0,\right. \tag{7}
\end{equation*}
$$

then there exists a point $N \in Y^{-}$such that the negative half-trajectory $L_{\bar{N}}^{-}$of (1) passing through N does not intersect C^{+}.

Proof. From (6) (7) we have

$$
\begin{align*}
F(x) & \geqq h_{2}\left(Q_{2}(G(x))\right)+a^{-1} h_{2}\left(Q_{2}(G(x))\right) \\
& =h_{2}\left(Q_{2}(G(x))\right)+\frac{g(x)}{\frac{d}{d x} Q_{2}(G(x))} . \tag{8}
\end{align*}
$$

Since $\varlimsup_{y \rightarrow+\infty} h(y)=+\infty$, so $\lim _{y \rightarrow+\infty} h_{2}(y)=+\infty$. There exists a number $M>0$ such that

$$
h_{2}(y) \geqq \max _{0 \leqq y \leqq y_{1}} h(y) \quad \text { for } \quad y \geqq M
$$

Now we will prove

$$
\begin{equation*}
h_{2}\left(Q_{2}(G(x))\right) \geqq h\left(Q_{2}(G(x))-M\right) . \tag{9}
\end{equation*}
$$

If $Q_{2}(G(x))-M \leqq 0$, then $h_{2}\left(Q_{2}(G(x))\right)>0 \geqq h\left(Q_{2}(G(x))-M\right)$. If $Q_{2}(G(x))-M$ $\geqq y_{1}$, then

$$
h_{2}\left(Q_{2}(G(x))\right) \geqq h_{2}\left(Q_{2}(G(x))-M\right) \geqq h\left(Q_{2}(G(x))-M\right) .
$$

If $0<Q_{2}(G(x))-M<y_{1}, M<Q_{2}(G(x))<M+y_{1}$,

$$
h_{2}\left(Q_{2}(G(x))\right)>h_{2}(M) \geqq \max _{0 \leq y \leq y_{1}} h(y) \geqq h\left(Q_{2}(G(x))-M\right) .
$$

Thus, (9) holds. From (8) and (9) we have

$$
F(x) \geqq h\left(Q_{2}(G(x))-M\right)+\frac{g(x)}{\frac{d}{d x}\left(Q_{2}(G(x))-M\right)} .
$$

By Lemma 1 we can compleat the proof.
Corollary 4. If condition (i) holds and there exist positive constants α_{1}, β_{1}, x_{1}, y_{1} such that

$$
\begin{aligned}
& h(y) \leqq \alpha_{1} y^{\beta_{1}} \quad \text { for } \quad y \geqq y_{1}>0, \\
& F(x) \geqq a_{1} G^{\beta_{1} /\left(1+\beta_{1}\right)}(x) \quad \text { for } \quad x \geqq x_{1}>0,
\end{aligned}
$$

where

$$
a_{1}=\left(1+\beta_{1}\right)\left(\frac{1+\beta_{1}}{\beta_{1}}\right)^{\beta_{1} /\left(1+\beta_{1}\right)} \alpha_{1}^{1 /\left(1+\beta_{1}\right)},
$$

then there exists a point $N \in Y^{-}$such that the negative half-trajectory $L_{\bar{N}}$ does not intersect C^{+}.

Proof. Taking $h_{2}(y)=\alpha_{1} y^{\beta_{1}}, a=\frac{1}{\beta_{1}}$, it is easy to verify that

$$
Q_{2}(x)=\left(\frac{1+\beta_{1}}{\beta_{1}}\right)^{1 /\left(1+\beta_{1}\right)} \alpha_{1}^{-1 /\left(1+\beta_{1}\right)} x^{1 /\left(1+\beta_{1}\right)},
$$

and

$$
\begin{aligned}
\left(1+a^{-1}\right) h_{2}\left(Q_{2}(G(x))\right. & =\left(1+\beta_{1}\right) \alpha_{1}\left(\frac{1+\beta_{1}}{\beta_{1}}\right)^{\beta_{1} /\left(1+\beta_{1}\right)} \alpha_{1}^{-\beta_{1} /\left(1+\beta_{1}\right)} G^{\beta_{1} /\left(1+\beta_{1}\right)}(x) \\
& =a_{1} G^{\beta_{1} /\left(1+\beta_{1}\right)}(x) .
\end{aligned}
$$

Hence, the corollary is proved from Lemma 9.
Suppose the strictly increasing function $h_{1}(y)$ satisfies the condition (3) and $h_{1}(+\infty)=+\infty$. Let the function $y=Q_{1}(x)$ be the inverse function of $x=a^{-1} \int_{0}^{y} h_{1}(s) d s$. It is easy to see that

$$
a^{-1} h_{1}\left(Q_{1}(G(x))=\frac{g(x)}{\frac{d}{d x} Q_{1}(G(x))}=\frac{1}{Q_{1}^{\prime}(G(x))} .\right.
$$

Lemma 10. If $h_{1}(y)$ satisfies the condition (3), and

$$
\begin{aligned}
& F(x) \leqq\left(1+a^{-1}\right) h_{1}\left(Q_{1}(G(x))\right) \quad \text { for } \quad x<x_{0} \leqq 0, \\
& \varlimsup_{x \rightarrow-\infty}(-F(x)+G(x))=+\infty,
\end{aligned}
$$

then the positive half-trajectory L_{N}^{+}with $N \in Y^{-}$must cross C^{-}and Y^{+}.

Proof. If $\overline{\lim }_{x \rightarrow-\infty} F(x)=-\infty$, the Lemma can be proved by Lemma 7. If $\overline{\lim }_{x \rightarrow-\infty} F(x)=c>-\infty$, then $G(-\infty)=+\infty$ and for any $M>0$ there exists a $\bar{x}_{0}<x_{0}$ such that

$$
\begin{aligned}
F(x) & \leqq h_{1}\left(Q_{1}(G(x))-M\right)+a^{-1} h_{1}\left(Q_{1}(G(x))\right) \\
& =h_{1}\left(Q_{1}(G(x))-M\right)+\frac{g(x)}{\frac{d}{d x}\left(Q_{1}(G(x))\right)} \\
& \leqq h\left(Q_{1}(G(x))-M\right)+\frac{g(x)}{\frac{d}{d x}\left(Q_{1}(G(x))-M\right)} \quad \text { for } \quad x<\bar{x}_{0}<x_{0} \leqq 0 .
\end{aligned}
$$

Taking $k_{2}(x)=Q_{1}(G(x))-M$, we have

$$
\lim _{x \rightarrow-\infty}\left(h_{1}\left(k_{2}(x)\right)-F(x)\right)>0,
$$

so from Lemma 6, this Lemma is proved.
Corollary 5. Under condition (i), if $\overline{\lim }_{x \rightarrow-\infty}(-F(x)+G(x))=+\infty$ and there exist constants $\alpha_{2}, \beta_{2}, y_{1}, x_{2}>0$ such that

$$
\begin{aligned}
& h(y) \geqq \alpha_{2} y^{\beta_{2}} \quad \text { for } \quad y \geqq y_{1}>0, \\
& F(x) \leqq b_{1} G^{\beta_{2} /\left(1+\beta_{2}\right)}(x) \quad \text { for } \quad x \leqq-x_{2} \leqq 0
\end{aligned}
$$

where

$$
b_{1}=\left(1+\beta_{2}\right)\left(\frac{1+\beta_{2}}{\beta_{2}}\right)^{\beta_{2} /\left(1+\beta_{2}\right)} \alpha_{2}^{1 /\left(1+\beta_{2}\right)} ;
$$

then the positive half-trajectory L_{N}^{+}passing through any point $N \in Y^{-}$must cross C^{-}and Y^{+}.

The following Theorem follows from Lemma 8, 9 and 10.
Theorem 3. If
1°. $x g(x)>0, x \neq 0, y h(y)>0, y \neq 0, x F(x)<0$ for $0<|x| \ll 1$;
2°. there exist strictly increasing function $h_{1}(y), h_{2}(y)$ such that

$$
h_{2}(y) \geqq h(y) \geqq h_{1}(y) \quad \text { for } \quad 0 \leqq y_{1} \leqq y ;
$$

3. $\quad F(x) \leqq\left(1+a_{1}^{-1}\right) h_{1}\left(Q_{1}(G(x))\right)$ for $x \leqq x_{1} \leqq 0$,

$$
F(x) \geqq\left(1+a_{2}^{-1}\right) h_{2}\left(Q_{2}(G(x))\right) \quad \text { for } \quad x \geqq x_{2} \geqq 0 \text {; }
$$

4. $\overline{\lim }_{x \rightarrow \infty}(F(x) \operatorname{sgn} x+G(x))=+\infty$;
then (1) has at least one limit cycle.

Corollary 6. If
1°. $x g(x)>0, x \neq 0, y h(y)>0, y \neq 0, x F(x)<0$ for $0<|x| \ll 1$;
2°. $\varlimsup_{x \rightarrow \infty}(F(x) \operatorname{sgn} x+G(x))=+\infty$;
3°. there exist positive constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, y_{1}, x_{1}, x_{2}$ such that

$$
\begin{array}{cll}
\alpha_{1} y^{\beta_{1}} \geqq h(y) \geqq \alpha_{2} y^{\beta_{2}} & \text { for } & y \geqq y_{1} \geqq 0, \\
F(x) \geqq a_{1} G^{\beta_{1} /\left(1+\beta_{1}\right)}(x) & \text { for } & 0 \leqq x_{1} \leqq x, \\
F(x) \leqq a_{2} G^{\beta_{2} /\left(1+\beta_{2}\right)}(x) & \text { for } & 0 \geqq-x_{2} \geqq x,
\end{array}
$$

where

$$
a_{\imath}=\left(1+\beta_{\imath}\right)\left(\frac{1+\beta_{2}}{\beta_{2}}\right)^{\beta_{i} /\left(1+\beta_{2}\right)} \alpha_{\imath}^{1 /\left(1+\beta_{i}\right)}, \quad i=1,2 ;
$$

then (1) has at least one limit cycle.

References

[1] J.R. Graef, On the Generalized Liénard Equation with Negative Damping, J. Differential Equations 12 (1972), 34-62.
[2] G. Villari, On the existence of periodic solutions for Liénard's equations, Nonl. Anal., Th. Meth. Appl. 7 (1983), 71-78.
[3] G. Villari, On the Qualitative Behaviour of Solutions of Liénard Equations, J. Diff. Eqs. 67 (1987), 269-277.
[4] G. Villari, Periodic Solutions of the Liénard Equations with One Sided Growth Restrictions, J. Diff. Eqs. 67 (1987), 278-293.
[5] Zhou Yurong, Existence and Uniqueness of Limiting Cycle of Equations $x^{\prime}=$ $\varphi(y)-F(x), y^{\prime}=-g(x)$, and its Existence of Two and only Two Limiting Cycle, Chin. Ann. of Math. 3(1) 1982, 89-102.
[6] Wang Xian, The Existence of Limit Cycles for a Class of Liénard Equations, Chin. Ann. of Math. 4A(6) 1983, 724-730.
[7] Zhu Deming, Existence of the Limit Cycle and Global Behavior of the Solutions of Liénard Equation, Chin. Ann. of Math. 7A (5) 1986, 536-546.

Mathematics Department
Northeast Normal University
Changchun, Jilin
People's Republic of China

[^0]: * Supported by the National Natural Science Foundation of China

 Received December 18, 1987, Revised August 10, 1988

