ON THE EXISTENCE OF LIMIT CYCLES OF THE EQUATION $x' = h(y) - F(x), y' = -g(x)^*$

BY KE WANG

1. Introduction.

Owing to their theoretical and practical importance, the Liénard equations have attracted much attention in recent years, in particular, for theory of periodic solutions, see [1-7].

In this paper, we consider the existence of limit cycles of the system

$$\begin{cases} x'=h(y)-F(x)\\ y'=-g(x), \end{cases}$$
(1)

which is little more general than the Liénard equation. We assume that F, G, $h: \mathbb{R} \to \mathbb{R}$ are continuous functions and satisfy the property of uniqueness for the solutions to the Cauchy problems associated to the system (1), and xg(x)>0 for every $x \neq 0$, yh(y)>0 for every $y\neq 0$. Without loss of generality, we also assume F(0)=0. We obtained some new results. The theorems of this paper generalized some results in [5] and [7].

Let Y^+ , Y^- , C^+ , C^- denote the sets $\{(x, y): y \ge 0, x=0\}$, $\{(x, y): y \le 0, x=0\}$, $\{(x, y): h(y)=F(x), x>0\}$ and $\{(x, y): h(y)=F(x), x<0\}$, respectively.

2. Technical Preliminaries.

LEMMA 1. If we assume

(i)
$$\overline{\lim}_{y \to \infty} h(y) = +\infty$$
, and $\lim_{y \to \infty} h(y) = -\infty$,

then the sufficient and necessary condition that there exists a point $N \in Y^-$ such that the negative half-trajectory L_N^- passing through point N does not intersect C^+ is

(ii)_a there exists a continuously differentiable function $k_1(x)$ defined on $(0, \infty)$ with positive derivative such that

$$F(x) \ge h(k_1(x)) + \frac{g(x)}{k_1'(x)} \quad for \quad x > 0.$$

^{*} Supported by the National Natural Science Foundation of China Received December 18, 1987, Revised August 10, 1988

LIMIT CYCLES

Proof. If the condition $(ii)_a$ holds, let us consider the system

$$\begin{cases} x' = h(y) - \left(h(k_1(x)) + \frac{g(x)}{k_1'(x)}\right) \\ y' = -g(x). \end{cases}$$
(2)

It is easy to see that $y=k_1(x)$ is a solution of (2). From the comparison theorem, it follows that the solution of (1) passing through the point $N=(0, k_1(0))$ is under the curve $y=k_1(x)$, so it will not cross C^+ .

If there exists a point $N \in Y^-$ such that L_N^- does not intersect C^+ . We can suppose the equation of L_N^- is $y = k_1(x)$. It is easy to see that $k_1(x)$ is continuously differentiable and its derivative is positive. We have

$$F(x) = h(k_1(x)) + \frac{g(x)}{k_1'(x)}.$$

Thus the Lemma is proved.

By Lemma 1, we can give concrete conditions on h(y), F(x) and g(x), so long as a concrete function $k_1(x)$ is given. For example, if we set $k_1(x) = CG(x) - M$, where $G(x) = \int_0^x g(s) ds$, C, M > 0, x > 0, then we can prove the following corollary.

COROLLARY 1. Suppose that there exist constants C, M>0 such that

$$F(x) \ge h(CG(x) - M) + \frac{1}{C} \quad for \quad x \ge 0,$$

then there exists a point $N \in Y^-$ such that L_N^- does not cross C^+ .

LEMMA 2. If condition (i) is satisfied, and if we assume

 $(ii)_b$ h(y) is strictly increasing, and there exists a continuous non-increasing function $k_1(x)$ such that

$$F(x) > h(-k_1(x))$$

and

$$k_1(x) + \int_0^x \frac{g(s)ds}{F(s) - h(-k_1(s))} \le M$$
 for $x \ge 0$,

where M is a positive constant, then there exists a point $N \in Y^-$ such that L_N^- does not cross C^+ .

Proof. Let $y_0 = M + k_1(0)$. Since $F(x) > h(-k_1(x))$, so $k_1(0) > 0$, and $y_0 > 0$. Set point $N=(0, -y_0)$. Suppose that the equation of the section of the curve L_N^- under C^+ is y=y(x). If L_N^- intersects C^+ , because on $C^+F(x)=h(y)$ and $y(0)=-y_0<-k_1(0)< F(0)=0$, so there must exist $\bar{x} \in (0, \infty)$ such that $y(\bar{x})=-k_1(\bar{x})$, and $y(x)<-k_1(x)$, $0 \le x \le \bar{x}$. This implies that KE WANG

$$-k_{1}(\bar{x}) = y(\bar{x}) = -y_{0} + \int_{0}^{\bar{x}} \frac{g(s)ds}{F(s) - h(y(s))}.$$

Thus we have,

$$0 = -y_0 + k_1(\bar{x}) + \int_0^{\bar{x}} \frac{g(s)ds}{F(s) - h(y(s))}$$

$$\leq -y_0 + k_1(\bar{x}) + \int_0^{\bar{x}} \frac{g(s)ds}{F(s) - h(-k_1(s))}$$

$$\leq -y_0 + M$$

$$= -k_1(0).$$

This is a contradiction, and the Lemma is proved.

Remark. If h(y) is strictly increasing, then the condition (ii)_b in Lemma 2 is necessary as well.

By Lemma 2, we can give concrete conditions on h(y), F(x) and g(x), so long as a concrete function $k_1(x)$ is given. For example, if we set $k_1(x) = -h^{-1}(-C)$, where C is a positive constant, then we can prove the following corollary.

COROLLARY 2. If there exist constants M, C > 0 such that

$$F(x)+C>0$$

and

$$\int_{0}^{x} \frac{g(s)}{F(s)+C} ds \leq M \quad for \quad x \geq 0,$$

then there exists a point $N \in Y^-$ such that L_N^- does not intersect C^+ .

Suppose that there exists a strictly increasing function $h_1(y)$ which satisfies the following condition

$$h(y) \ge h_1(y) \quad \text{for} \quad y \ge y_1 \ge 0. \tag{3}$$

Let $e(x) = h_1^{-1}(F(x))$, and

$$e^{+}(x) = \begin{cases} e(x) & \text{for } e(x) \ge y_1 \\ y_1 & \text{for } e(x) < y_1 \end{cases}$$

Let E^+ denote the set $\{(x, y): x \leq 0, y > e^+(x)\}$.

Lemma 3. $C^- \cap E^+ = \emptyset$.

Proof. Let point $A(x, y) \in E^+$. If $F(x) \ge h_1(y_1)$, since $y > e^+(x) = h_1^{-1}(F(x))$ $\ge y_1$, so $h_1(y) > F(x)$ and hence $h(y) \ge h_1(y) > F(x)$, thus $A \equiv C^-$.

If $F(x) < h_1(y_1)$, then $h_1^{-1}(F(x)) < y_1$ and $e^+(x) = y_1$, since $y > y_1$, so $h(y) \ge h_1(y)$

 $\geq h_1(y_1) > F(x)$, and $A \equiv C^-$.

LEMMA 4. If $\lim_{y \to +\infty} h(y) = +\infty$, $\lim_{x \to -\infty} F(x) = -a$, where a > 0 is a constant, then there exist constants b_1 , b_2 , $b_3 > 0$ such that

$$E_1\{(x, y): x < -b_1, y > -b_2\} \cap C^- = \emptyset,$$

$$E_2\{(x, y): 0 \ge x \ge -b_1, y \ge b_3\} \cap C^- = \emptyset.$$

Proof. There exist numbers $b_1, b_2>0$ such that F(x)<-a, for $x<-b_1$ and h(y)>-a for $y>-b_2$. Let a point $A_1(x_1, y_1)\in E_1\{(x, y): x<-b_1, y>-b_2\}$, then $h(y_1)>-a>F(x_1)$, so $A_1(x_1, y_1)\in C^-$.

There exists a number $b_3 > 0$ such that

$$h(y) > \max_{0 \ge x \ge -b_1} F(x)$$
 for $y > b_3$.

If the point $A_2(x_2, y_2) \in E_2$, then $h(y_2) > \max_{\substack{0 \ge x \ge -b_1}} F(x) \ge F(x_2)$, so $A_2 \in C^-$.

LEMMA 5. If the point $N \in E^+$, then the positive half-trajectory L_N^+ passing through N must intersect Y^+ .

Proof. From Lemma 3 it is clear that E^+ is above C^- and that E^+ is a connected set. Let the equation of L_N^+ on the left plane is (x(t), y(t)). Since y(t) strictly increases at t increases, and x(t) is strictly increases when L_N^+ is in E^+ , we assert that L_N^+ will not escape from the set $\{(x, y): x_N \le x \le 0, y_N \le y\}$, and that L_N^+ must reach the set $E^*\{(x, y): x_N \le x \le 0, y^* \le y$, where $y^* = \inf_{x_N \le x \le 0} e(x)\}$. Onece L_N^+ enters E^* , it will not leave E^* unless it cross Y^+ . Because in E^* x(t) and y(t) are strictly increasing, so if L_N^+ does not cross Y^+ , we can prove that $x(t) \rightarrow a^* \le 0$ and $y(t) \rightarrow +\infty$ as $t \rightarrow +\infty$. But from the given conditions we have

$$\frac{dy}{dx} = \frac{-g(x)}{h(y) - F(x)}$$

Since $x_N \leq x \leq 0$ along L_N^+ , we have

$$\lim_{t \to +\infty} \left| \frac{dy}{dx} \right| \leq \frac{|g(a^*)|}{\lim_{y \to +\infty} h(y)} = 0.$$

This is a contradiction.

LEMMA 6. Under condition (i), if

(iii)_a there exists a function $h_1(y)$ satisfying (3) and there exist a number $x_0 \leq 0$ and a continuously differentiable function $k_2(x)$ with negative derivative such that

$$h(k_2(x)) + \frac{g(x)}{k'_2(x)} \ge F(x)$$
 for $x < x_0 \le 0$,

$$\lim_{x \to -\infty} k_2(x) > y_1, \quad \lim_{x \to -\infty} (h_1(k_2(x)) - F(x)) > 0, \quad k_2(x_0) < 0.$$

Then the positive half-trajectory L_N^+ passing through $N(0, -y_0)$, $0 > -y_0 \ge k_2(x_0)$, must cross C^- and next cross Y^+ .

Proof. If L_N^+ does not cross the line $x = x_0$, it must cross C^- and Y^+ . If L_N^+ cross the line $x = x_0$ at the point *P*, then $y_P > k_2(x_0)$. It is easy to see that $y = k_2(x)$ is a solution of the system

$$\begin{cases} x' = h(y) - \left(h(k_2(x)) + \frac{g(x)}{k'_2(x)}\right) \\ y' = -g(x). \end{cases}$$

From the comparison theorem, we can prove that L_N^+ must be located above the curve $y = k_2(x)$ for $x \le x_0$. Since

$$\lim_{x\to-\infty}(h_1(k_2(x))-F(x))>0,$$

 L_N^+ must enter in E^+ when t is sufficiently large. By Lemma 5, we can prove this Lemma.

By Lemma 6, we can give concrete conditions on h(y), F(x) and g(x), so long as concrete functions $k_2(x)$ and $h_1(y)$ are given. For example, if we set $h_1(y)=y/\lambda$ and $k_2(x)=CG(x)-M$ for $x\leq 0$ with M>0 and C=-1/h(-M), we can prove the following corollary.

COROLLARY 3. If $h(y) \ge y/\lambda$, $y \ge 0$, $G(-\infty) = +\infty$ and there exists a number M > 0 such that

$$F(x) \leq h \left(\frac{-G(x)}{h(-M)} - M \right) - h(-M) \quad \text{for} \quad x \leq 0$$

$$\lim_{x \to \infty} \left(\frac{-G(x)}{h(-M)} - \lambda F(x) \right) > M,$$

then the positive half-trajectory L_N^+ passing through $N(0, x_0), 0 > y_0 > -M$, must cross C^- and Y^+ .

LEMMA 7. If (iii)_b $\lim_{\substack{y \to -\infty \\ y \to -\infty}} F(x) = -a < 0$, where a > 0 is a constant and $\lim_{\substack{y \to +\infty \\ y \to -\infty}} h(y) = +\infty$, then the positive half-trajectory L_N^+ passing through the point $N(0, y_0), -b \le y_0 < 0$, must intersect Y^+ , where $b = -\sup_{\substack{y < 0 \\ y < 0}} \{h(y) = -a\}$.

Proof. From Lemma 4, there exist sets

and
$$E_1\{(x, y): x < -b_1, y > -b_2\},$$
$$E_2\{(x, y): -b_1 \le x < 0, y > b_3\},$$

such that $(E_1 \cup E_2) \cap C^- = \emptyset$. It is easy to see from the proof of Lemma 4 that $-b_2 > -b$. L_N^+ will not cross the line $y = -b_2$ and $x = -b_1$. If L_N^+ does not enter in E_2 it must cross Y^+ . If L_N^+ enters in E_2 , it will not escape from E_2 before it cross Y^+ , and from Lemma 5, it must cross Y^+ .

LEMMA 8. Suppose that the condition (i) holds, and one of the conditions (ii)_a and (ii)_b holds. If

(iv)
$$\overline{\lim_{x \to +\infty}} (G(x) + F(x)) = +\infty,$$

then the positive half-trajectory L_N^+ passing through $N \in Y^+$ must cross C^+ and Y^- .

Proof. Suppose condition (i) and (ii)_a hold. It follows from (ii)_a that $F(x) \ge A$, $A = \inf_{y \ge k_1(0)} h(y)$. Let point $N_1 = (0, k_1(0))$. Since $L_{N_1}^-$ is located above the line $y = k_1(0)$ and under the curve $y = k_1(x)$ for x > 0, so L_N^+ must located under the line $y = y_N$ and above the line $y = k_1(0)$ before it escape from the right half plane.

Let the equation of L_N^+ be (x(t), y(t)) with $x(0)=0, y(0)=y_N$. If $\lim_{x\to+\infty} F(x) = +\infty$, then there exists a number $x^*>0$ such that

$$F(x^*) > \max_{k_1(0) \le y \le y_N} h(y).$$

Thus, L_N^+ must be located on the left of the line $x=x^*$, because x'(t)=h(y(t))-F(x(t)). If L_N^+ does not leave the region $R: 0 < x < x^*$, $k_1(0) < y < y_N$, there must exist a singular point of (1) and this is impossible, so L_N^+ must cross C^+ and Y^- to leave the region R.

If $\lim F(x) < +\infty$, then $G(+\infty) = +\infty$. Let us consider the equation

$$\begin{cases} x'=h(y)-A, \\ y'=-g(x). \end{cases}$$
(4)

Let L^* denote the positive half-trajectory of (4) passing through the point N, and let $(x^*(t), y^*(t))$ be the solution of L^* . By the comparison theorem, it is easy to see that L_N^+ is located on the left of L^* . If L^* crosses C^+ and Y^- , then so does L_N^+ . If L^* does not cross Y^- and $x^*(t)$ is bounded for x > 0, then L_N^+ would stay in the region $R^*: 0 \le x \le x^{**}$, $k_1(0) \le y \le y_N$, where $x^{**} > 0$ is a upper bound of $x^*(t)$, which implies that (1) has singular points in R^* . This is impossible.

If L^* does not cross Y^- and $x^*(t)$ is unbounded for x>0, then there are points P_k , $k=1, 2, \cdots$, in L^* such that $x_{P_k} \to +\infty$. Since

$$\frac{dy}{dx} = \frac{-g(x)}{h(y) - A}, \quad x > 0,$$

KE WANG

$$\frac{dy}{dx} \leq \frac{-g(x)}{\max_{k_1(0) \leq y \leq y_N} h(y) + A} \underline{\det} b^* g(x), \quad x > 0,$$

and it follows that

$$y_N - y_{P_k} = \int_{x_{P_k}}^0 \frac{dy}{dx} dx \ge -b^* G(x_{P_k}) \to +\infty$$
, as $k \to +\infty$.

This is a contradiction.

If the condition (i) and $(ii)_b$ hold, the proof is similar.

3. The Main Results.

THEOREM 1. Suppose that conditions (i), (iv), one of (ii)_a, (ii)_b and one of (iii)_a, (iii)_b hold. If

(v) xF(x) < 0, for $0 < |x| \ll 1$;

(vi) $k_2(x_0) \leq k_1(0)$ when condition (iii)_a holds, or $k_2(x_0) < -b$ when condition (iii)_b holds; then (1) has at least one limit cycle.

Proof. The method of proof is to construct Poincare-Bendixson annular region. Consider V(x, y) = G(x) + H(y), where $H(y) = \int_0^y h(s) ds$. It is obvious that V(x, y) is definite positive in a sufficiently small neighborhood of (0, 0), and we have

$$V'_{(1)}(x, y) = -g(x)F(x) > 0.$$

Thus, for sufficiently small c, the trajectory of (1) starting from the point on closed curve $S_0: V(x, y)=c$ go out of the interior region of S_0 at t increases. So we can take S_0 as the interior boundary.

Next, let us construct the exterior boundary. Take point $A=(0, k_2(x_0))$. From Lemma 1, 2, it follows that L_A^- does not cross C^+ and Y^+ , and L_A^+ must cross C^- , and then cross Y^+ at point B. It is clear that $y_B>0$. By Lemma 6, L_B^+ must cross C^+ , and then cross Y^- at point C. According to the uniqueness of trajectory of (1), we have $y_C > y_A$. We can take the closed curve $\widehat{ABC} \cup \overline{CA}$ as the exterior boundary. The theorem is proved.

THEOREM 2. If

1°.
$$xg(x)>0, x\neq 0, yh(y)>0, y\neq 0, xF(x)<0 \text{ for } 0<|x|\ll 1;$$

2°. $F(x)\geq h(CG(x)-M)+\frac{1}{C} \text{ for } x\leq x_0<0 \text{ and } x\geq 0, C, M>0;$
3°. $\frac{h(y)}{y}\geq \frac{1}{\lambda}, y\neq 0, \lambda>0, G(-\infty)=+\infty, \lim_{x\to -\infty} (CG(x)-F(x))>M;$
4°. $\lim_{x\to +\infty} (G(x)+F(x))=+\infty;$

then (1) has at least one limit cycle.

This theorem follows from Corollary 1, 2 and Theorem 1 immediately. Suppose the strictly increasing function $h_2(y)$ satisfies the condition

$$h(y) \leq h_2(y) \quad \text{for} \quad 0 \leq y_1 \leq y. \tag{5}$$

Let the function $y=Q_2(x)$ be the inverse function of

$$x=a^{-1}\int_{0}^{y}h_{2}(s)ds$$
, where $a>0$ is a parameter.

It is easy to see that

$$a^{-1}h_2(Q_2(G(x))) = \frac{g(x)}{\frac{d}{dx}Q_2(G(x))} = \frac{1}{Q_2'(G(x))}.$$
 (6)

LEMMA 9. If $h_2(y)$ satisfies the condition (5), and

$$F(x) \ge (1+a^{-1})h_2(Q_2(G(x)))$$
 for $x \ge x_1 \ge 0$, (7)

then there exists a point $N \in Y^-$ such that the negative half-trajectory L_N^- of (1) passing through N does not intersect C^+ .

Proof. From (6) (7) we have

$$F(x) \ge h_2(Q_2(G(x))) + a^{-1}h_2(Q_2(G(x)))$$

= $h_2(Q_2(G(x))) + \frac{g(x)}{\frac{d}{dx}Q_2(G(x))}$. (8)

Since $\lim_{y \to +\infty} h(y) = +\infty$, so $\lim_{y \to +\infty} h_2(y) = +\infty$. There exists a number M > 0 such that

$$h_2(y) \ge \max_{0 \le y \le y_1} h(y) \quad \text{for} \quad y \ge M.$$

Now we will prove

$$h_2(Q_2(G(x))) \ge h(Q_2(G(x)) - M).$$
 (9)

If $Q_2(G(x)) - M \leq 0$, then $h_2(Q_2(G(x))) > 0 \geq h(Q_2(G(x)) - M)$. If $Q_2(G(x)) - M \geq y_1$, then

$$h_2(Q_2(G(x))) \ge h_2(Q_2(G(x)) - M) \ge h(Q_2(G(x)) - M).$$

If
$$0 < Q_2(G(x)) - M < y_1, M < Q_2(G(x)) < M + y_1,$$

 $h_2(Q_2(G(x))) > h_2(M) \ge \max_{0 \le y \le y_1} h(y) \ge h(Q_2(G(x)) - M).$

Thus, (9) holds. From (8) and (9) we have

KE WANG

$$F(x) \ge h(Q_2(G(x)) - M) + \frac{g(x)}{\frac{d}{dx}(Q_2(G(x)) - M)}$$

By Lemma 1 we can compleat the proof.

COROLLARY 4. If condition (i) holds and there exist positive constants α_1 , β_1 , x_1 , y_1 such that

$$h(y) \leq \alpha_1 y^{\beta_1} \quad for \quad y \geq y_1 > 0,$$

$$F(x) \geq a_1 G^{\beta_1/(1+\beta_1)}(x) \quad for \quad x \geq x_1 > 0.$$

where

$$a_1 = (1+\beta_1) \left(\frac{1+\beta_1}{\beta_1}\right)^{\beta_1/(1+\beta_1)} \alpha_1^{1/(1+\beta_1)}$$

then there exists a point $N \in Y^-$ such that the negative half-trajectory L_N^- does not intersect C^+ .

Proof. Taking
$$h_2(y) = \alpha_1 y^{\beta_1}$$
, $a = \frac{1}{\beta_1}$, it is easy to verify that

$$Q_2(x) = \left(\frac{1+\beta_1}{\beta_1}\right)^{1/(1+\beta_1)} \alpha_1^{-1/(1+\beta_1)} x^{1/(1+\beta_1)}$$
,

and

$$(1+a^{-1})h_2(Q_2(G(x))=(1+\beta_1)\alpha_1\left(\frac{1+\beta_1}{\beta_1}\right)^{\beta_1/(1+\beta_1)}\alpha_1^{-\beta_1/(1+\beta_1)}G^{\beta_1/(1+\beta_1)}(x)$$
$$=a_1G^{\beta_1/(1+\beta_1)}(x).$$

Hence, the corollary is proved from Lemma 9.

Suppose the strictly increasing function $h_1(y)$ satisfies the condition (3) and $h_1(+\infty) = +\infty$. Let the function $y = Q_1(x)$ be the inverse function of $x = a^{-1} \int_0^y h_1(s) ds$. It is easy to see that

$$a^{-1}h_1(Q_1(G(x))) = \frac{g(x)}{\frac{d}{dx}Q_1(G(x))} = \frac{1}{Q_1'(G(x))}.$$

LEMMA 10. If $h_1(y)$ satisfies the condition (3), and

$$F(x) \leq (1 + a^{-1})h_1(Q_1(G(x))) \quad for \quad x < x_0 \leq 0$$

$$\lim_{x \to -\infty} (-F(x) + G(x)) = +\infty,$$

then the positive half-trajectory L_N^+ with $N \in Y^-$ must cross C^- and Y^+ .

Proof. If $\overline{\lim_{x \to -\infty}} F(x) = -\infty$, the Lemma can be proved by Lemma 7. If $\overline{\lim_{x \to -\infty}} F(x) = c > -\infty$, then $G(-\infty) = +\infty$ and for any M > 0 there exists a $\bar{x}_0 < x_0$ such that

$$F(x) \leq h_1(Q_1(G(x)) - M) + a^{-1}h_1(Q_1(G(x)))$$

= $h_1(Q_1(G(x)) - M) + \frac{g(x)}{\frac{d}{dx}(Q_1(G(x)))}$
 $\leq h(Q_1(G(x)) - M) + \frac{g(x)}{\frac{d}{dx}(Q_1(G(x)) - M)}$ for $x < \bar{x}_0 < x_0 \leq 0$.

Taking $k_2(x) = Q_1(G(x)) - M$, we have

$$\lim_{x \to -\infty} (h_1(k_2(x)) - F(x)) > 0,$$

so from Lemma 6, this Lemma is proved.

COROLLARY 5. Under condition (i), if $\lim_{x \to \infty} (-F(x)+G(x)) = +\infty$ and there exist constants α_2 , β_2 , y_1 , $x_2 > 0$ such that

$$\begin{aligned} h(y) &\geq \alpha_2 y^{\beta_2} \quad for \quad y \geq y_1 > 0, \\ F(x) &\leq b_1 G^{\beta_2/(1+\beta_2)}(x) \quad for \quad x \leq -x_2 \leq 0, \end{aligned}$$

where

$$b_1 = (1+\beta_2) \left(\frac{1+\beta_2}{\beta_2}\right)^{\beta_2/(1+\beta_2)} \alpha_2^{1/(1+\beta_2)};$$

then the positive half-trajectory L_N^+ passing through any point $N \in Y^-$ must cross C^- and Y^+ .

The following Theorem follows from Lemma 8, 9 and 10.

THEOREM 3. If

- 1°. $xg(x)>0, x\neq 0, yh(y)>0, y\neq 0, xF(x)<0$ for $0<|x|\ll 1$;
- 2°. there exist strictly increasing function $h_1(y)$, $h_2(y)$ such that $h_2(y) \ge h(y) \ge h_1(y)$ for $0 \le y_1 \le y$;
- 3°. $F(x) \leq (1+a_1^{-1})h_1(Q_1(G(x)))$ for $x \leq x_1 \leq 0$, $F(x) \geq (1+a_2^{-1})h_2(Q_2(G(x)))$ for $x \geq x_2 \geq 0$;
- 4°. $\overline{\lim_{x\to\infty}}(F(x)\operatorname{sgn} x+G(x))=+\infty$;

then (1) has at least one limit cycle.

COROLLARY 6. If

- 1°. $xg(x)>0, x\neq 0, yh(y)>0, y\neq 0, xF(x)<0 \text{ for } 0<|x|\ll 1;$
- 2°. $\overline{\lim}_{x\to\infty} (F(x)\operatorname{sgn} x + G(x)) = +\infty;$
- 3°. there exist positive constants α_1 , α_2 , β_1 , β_2 , y_1 , x_1 , x_2 such that

$$\begin{aligned} &\alpha_1 y^{\beta_1} \ge h(y) \ge \alpha_2 y^{\beta_2} & for \quad y \ge y_1 \ge 0, \\ &F(x) \ge a_1 G^{\beta_1/(1+\beta_1)}(x) & for \quad 0 \le x_1 \le x, \\ &F(x) \le a_2 G^{\beta_2/(1+\beta_2)}(x) & for \quad 0 \ge -x_2 \ge x, \end{aligned}$$

where

$$a_{i}=(1+\beta_{i})\left(\frac{1+\beta_{i}}{\beta_{i}}\right)^{\beta_{i}/(1+\beta_{i})}\alpha_{i}^{1/(1+\beta_{i})}, \quad i=1, 2;$$

then (1) has at least one limit cycle.

References

- J. R. GRAEF, On the Generalized Liénard Equation with Negative Damping, J. Differential Equations 12 (1972), 34-62.
- [2] G. VILLARI, On the existence of periodic solutions for Liénard's equations, Nonl. Anal., Th. Meth. Appl. 7 (1983), 71-78.
- [3] G. VILLARI, On the Qualitative Behaviour of Solutions of Liénard Equations, J. Diff. Eqs. 67 (1987), 269-277.
- [4] G. VILLARI, Periodic Solutions of the Liénard Equations with One Sided Growth Restrictions, J. Diff. Eqs. 67 (1987), 278-293.
- [5] ZHOU YURONG, Existence and Uniqueness of Limiting Cycle of Equations $x'= \varphi(y) F(x)$, y'=-g(x), and its Existence of Two and only Two Limiting Cycle, Chin. Ann. of Math. 3(1) 1982, 89-102.
- [6] WANG XIAN, The Existence of Limit Cycles for a Class of Liénard Equations, Chin. Ann. of Math. 4A(6) 1983, 724-730.
- [7] ZHU DEMING, Existence of the Limit Cycle and Global Behavior of the Solutions of Liénard Equation, Chin. Ann. of Math. 7A(5) 1986, 536-546.

MATHEMATICS DEPARTMENT NORTHEAST NORMAL UNIVERSITY CHANGCHUN, JILIN PEOPLE'S REPUBLIC OF CHINA