ON THE KOBAYASHI AND CARATHÉODORY DISTANCES OF BOUNDED SYMMETRIC DOMAINS

By Yoshihisa Kubota

1. Let U denote the unit disk in the complex plane C and let ρ be the Poincaré distance in U. ρ is given by

$$\rho(z, w) = \frac{1}{2} \log \frac{1 + \left| \frac{z - w}{1 - \overline{w}z} \right|}{1 - \left| \frac{z - w}{1 - \overline{w}z} \right|} \qquad (z, w \in U).$$

Since any automorphism ϕ of U with $\phi(w)=0$ is given by

$$\phi(z) = e^{i\theta} \frac{z - w}{1 - \overline{w}z}$$

with some $\theta \in \mathbf{R}$, the distance ρ is also represented in the following:

$$\rho(z, w) = \inf \left\{ \frac{1}{2} \log \frac{1+r}{1-r} : 0 < r < 1 \text{ and } rU \ni \phi(z) \text{ for some} \right.$$
$$\phi \in \operatorname{Aut}(U) \text{ with } \phi(w) = 0 \right\},$$

where Aut(U) denotes the group of automorphisms of U and rU denotes the set $\{z \in C : |z| < r\}$. Furthermore, we have

$$\{z \in U: \rho(0, z) < \alpha\} = rU, \qquad r = \frac{e^{2\alpha} - 1}{e^{2\alpha} + 1}.$$

In this note we show that the Kobayashi-Carathéodory distance of a bounded symmetric domain has the same property. (It is known that, for a bounded symmetric domain, the Kobayashi distance and the Carathéodory distance coincide [3]). Namely, let D be a bounded symmetric domain given in a canonical realization in the complex N-space C^N , and let k_D be the Kobayashi-Carathéodory distance of D. Then we get

$$\begin{aligned} k_D(z, w) &= \inf \left\{ \frac{1}{2} \log \frac{1+r}{1-r} : 0 < r < 1 \text{ and } rD \ni \phi(z) \text{ for some} \\ \phi &\in \operatorname{Aut}(D) \text{ with } \phi(w) = 0 \right\}, \end{aligned}$$

Received May 12, 1988, Revised July 8, 1988

and

$$\{z \in D: k_D(0, z) < \alpha\} = rD, \quad r = \frac{e^{2\alpha} - 1}{e^{2\alpha} + 1},$$

where Aut(D) denotes the group of automorphisms of D and rD denotes the set $\{rz: z \in D\}$ in \mathbb{C}^{N} .

2. In this section we consider domains D in C^N satisfying the following conditions:

- (a) D is homogeneous,
- (b) D is bounded,

(c) D is convex and contains the origin 0.

The following facts follow from (b) and (c).

- (i) If 0 < r < 1, then \overline{rD} is a compact subset of D.
- (ii) If $0 < r_1 < r_2 < 1$, then $\overline{r_1 D} \subset r_2 D$.

(iii) If K is a compact subset of D, then $K \subseteq rD$ for some r with 0 < r < 1. Here \overline{rD} denotes the closure of rD in \mathbb{C}^{N} .

(a) and (iii) enable us to introduce the functions $d_w^D: D \to [0, \infty)$ (where $w \in D$) and $d_D: D \times D \to [0, \infty)$;

$$d_w^D(z) = \inf \left\{ \frac{1}{2} \log \frac{1+r}{1-r} : 0 < r < 1 \text{ and } rD \ni \phi(z) \text{ for some} \right.$$
$$\phi \in \operatorname{Aut}(D) \text{ with } \phi(w) = 0 \right\},$$

 $d_{D}(z, w) = \min\{d_{w}^{D}(z), d_{z}^{D}(w)\}.$

We note that, for the unit disk U in C, we have

$$d_w^U(z) = d_z^U(w) = d_U(z, w) = \rho(z, w)$$
 (z, w $\in U$).

PROPOSITION 1. The functions d_w^D and d_D have the following properties:

(1) $d_w^D(z) \ge 0$, and $d_w^D(z) = 0$ implies z = w; $d_D(z, w) \ge 0$, and $d_D(z, w) = 0$ implies z = w.

(2) $d_D(z, w) = d_D(w, z)$.

(3) If $z \to \partial D$, then $d_w^D(z) \to \infty$, $d_z^D(w) \to \infty$ and $d_D(z, w) \to \infty$, where ∂D denotes the boundary of D.

(4) If $\psi \in \operatorname{Aut}(D)$, then $d_{\psi(w)}^{D}(\psi(z)) = d_{w}^{D}(z)$ and $d_{D}(\psi(z), \psi(w)) = d_{D}(z, w)$.

(5) If $w \in D$ and $\alpha > 0$, then

$$\{z \in D: d_w^D(z) < \alpha\} = \bigcup_{\psi \in \operatorname{Aut}(D), \psi(0) = w} \psi(rD), \qquad r = \frac{e^{2\alpha} - 1}{e^{2\alpha} + 1}.$$

Proof. (2), (4) and (5) are immediate consequences of the definitions of d_w^p and d_p .

42

To prove (1) let z and w be distinct points in D. Suppose there exists a sequence $\{\phi_n\}$ of elements of Aut(D) such that $\phi_n(w)=0$ for all n and $\phi_n(z)\rightarrow 0$ as $n\rightarrow\infty$. Since D is bounded, $\{\phi_n\}$ is a normal family. Hence we may suppose that $\{\phi_n\}$ converges, uniformly on every compact subset of D, to a holomorphic mapping $\psi: D\rightarrow C^N$. Since $\psi(w)=\lim_{n\to\infty}\phi_n(w)=0\in D$, $\psi(D)\not\subset\partial D$ and so $\psi\in$ Aut(D) ([5] p.78). Thus we are led to a contradiction that $0=\psi(z)\neq\psi(w)=0$. Hence there exists a positive number δ such that $\delta B_N \not\supseteq \phi(z)$ for all $\phi\in$ Aut(D) with $\phi(w)=0$. Here B_N denotes the unit ball in C^N . Since D is bounded, $\delta B_N \supset r_o D$ for some r_o with $0 < r_o < 1$. Now it follows from (ii) that $d_w^D(z) \ge \frac{1}{2} \log \frac{1+r_o}{1-r_o} > 0$, and (1) follows.

Next we prove (3). Suppose that there exists a positive number α such that, for any compact subset K of D, there is a point $z \notin K$ with $d_z^D(w) < \alpha$. Then we can choose a sequence $\{z^{(n)}\}$ of points in D such that $\{z^{(n)}\}$ tends to a boundary point ζ and such that $d_z^D(w) < \alpha$ for all n. By the definition of $d_z^D(w)(w)$, we can choose sequences $\{r_n\}$ and $\{\phi_n\}$ such that

$$0 < r_n < 1, \qquad \frac{1}{2} \log \frac{1+r_n}{1-r_n} < \alpha$$

and

$$\phi_n \in \operatorname{Aut}(D)$$
, $\phi_n(z^{(n)}) = 0$, $\phi_n(w) \in r_n D$.

Since $\{\phi_n^{-1}\}$ is a normal family and since $\phi_n(w) \in \overline{rD}$ where $r = (e^{2\alpha} - 1)/(e^{2\alpha} + 1)$, we may assume that $\{\phi_n^{-1}\}$ converges, uniformly on every compact subset of D, to a holomorphic mapping $\psi: D \to \mathbb{C}^N$ and that $\phi_n(w) \to w^* \in \overline{rD}$. Hence we have

$$\|\psi(w^*) - w\| \leq \|\psi(w^*) - \psi(\phi_n(w))\| + \|\psi(\phi_n(w)) - \phi_n^{-1}(\phi_n(w))\| \longrightarrow 0 \quad \text{as } n \to \infty,$$

where $\| \|$ denotes the euclidean norm in \mathbb{C}^N , then $\phi(w^*)=w$. This implies that $\psi \in \operatorname{Aut}(D)$ ([5] p. 78). But this contradicts that $\psi(0)=\lim_{n\to\infty}\phi_n^{-1}(0)=\lim_{n\to\infty}z^{(n)}=\zeta\in\partial D$. Thus we conclude that $d_z^D(w)\to\infty$ if $z\to\partial D$. Similarly we can prove that $d_w^D(z)\to\infty$ if $z\to\partial D$.

The function d_D may not satisfy the triangle inequality. Following Kobayashi [2], we introduce \tilde{d}_D by setting

$$\tilde{d}_D(z, w) = \inf \sum_{j=0}^{k-1} d_D(z^{(j)}, z^{(j+1)}),$$

where the infimum is taken over all finite sequences $\{z^{(0)}, z^{(1)}, \dots, z^{(k)}\}$ with $z^{(0)}=z$ and $z^{(k)}=w$. Then \tilde{d}_D is a pseudodistance on D.

Next we consider domains D which satisfy conditions (a), (b), (c) and an additional condition

(d) D is circular.

The following lemma tells us that $d_w^D(z)$ decreases under holomorphic mappings:

LEMMA 1. Let D_1 and D_2 be domains in C^{N_1} and C^{N_2} , respectively, which

satisfy conditions (a) \sim (d). If $F: D_1 \rightarrow D_2$ is a holomorphic mapping, then

$$d_{F^2(w)}^{D_2}(F(z)) \leq d_w^{D_1}(z) \qquad (z, w \in D_1).$$

Proof. We shall first prove the inequality

$$d_{\vartheta}^{D_2}(G(z)) \leq d_{\vartheta}^{D_1}(z) \qquad (z \in D_1)$$

for a holomorphic mapping $G: D_1 \rightarrow D_2$ with G(0)=0. Let $z \in D_1$ and $d_0^{D_1}(z) < \alpha$. Then there exists an r, 0 < r < 1, such that $\frac{1}{2}\log \frac{1+r}{1-r} < \alpha$ and $rD_1 \ni \phi(z)$ for some $\phi \in \operatorname{Aut}(D_1)$ with $\phi(0)=0$. Put $H=G \circ \phi^{-1}$. Since $H: D_1 \rightarrow D_2$ is a holomorphic mapping with H(0)=0 and since D_1 and D_2 satisfy conditions (b) \sim (d), we have $H(rD_1) \subset rD_2$ ([6] p. 161). Hence $G(z)=H(\phi(z)) \in rD_2$, and therefore $d_0^{D_2}(G(z)) < \alpha$. Thus we have

$$d_0^{D_2}(G(z)) \leq d_0^{D_1}(z) \quad (z \in D_1).$$

From this inequality we have, for any z, $w \in D_1$,

$$d_{F^{2}(w)}^{D_{2}}(F(z)) = d_{0}^{D_{2}}((\phi_{2} \circ F \circ \phi_{1}^{-1})(\phi_{1}(z))) \leq d_{0}^{D_{1}}(\phi_{1}(z)) = d_{w}^{D_{1}}(z)$$

by taking $\phi_1 \in \operatorname{Aut}(D_1)$ and $\phi_2 \in \operatorname{Aut}(D_2)$ with $\phi_1(w) = 0$, $\phi_2(F(w)) = 0$.

If D is a domain in \mathbb{C}^N which is holomorphically equivalent to a domain \tilde{D} (i.e. there is a biholomorphic mapping of D onto \tilde{D}) satisfying conditions (a)~(d), we define d_w^D by

$$d_w^D(z) = d_{\psi(w)}^{\tilde{D}}(\psi(z)),$$

where ψ is a biholomorphic mapping of D onto \tilde{D} . Note that this definition does not depend on choices of \tilde{D} and ψ . (It follows from Lemma 1). Hence we can also define d_D and \tilde{d}_D for D. The functions d_w^D and d_D have properties $(1)\sim(4)$ in Proposition 1. Further the following proposition is an immediate consequence of Lemma 1.

PROPOSITION 2. Let D_1 and D_2 be domains in \mathbb{C}^{N_1} and \mathbb{C}^{N_2} , respectively, which are holomorphically equivalent to domains satisfying conditions (a)~(d). If $F: D_1 \rightarrow D_2$ is a holomorphic mapping, then

and

$$d_{F^2(w)}^{D_2}(F(z)) \leq d_w^{D_1}(z) \qquad (z, w \in D_1)$$

$$d_{D_2}(F(z), F(w)) \leq d_{D_1}(z, w)$$
 (z, $w \in D_1$).

Let k_D and c_D denote the Kobayashi pseudodistance and the Carathéodory pseudodistance of D, respectively. If D is holomorphically equivalent to a domain satisfying conditions (a) \sim (d), then it follows from Proposition 2 that

$$c_{D} \leq d_{D} \leq k_{D}.$$

44

3. We shall now turn our attention to bounded symmetric domains. It is known that every bounded symmetric domain is holomorphically equivalent to a domain in \mathbb{C}^N satisfying (a)~(d) [4]. (Conversely, every domain in \mathbb{C}^N satisfying conditions (a), (c), (d) is symmetric). Hence d_w^D , d_D and \tilde{d}_D are defined on bounded symmetric domains D. In this section we shall show that, for a bounded symmetric domain D, d_w^D , d_D and \tilde{d}_D coincide with k_D and c_D . Our proof will follow Kobayashi's argument ([3] p. 52) which was used to prove that $k_D = c_D$ for bounded symmetric domains D.

LEMMA 2. Let U^N be the unit polydisk in C^N . Then

$$d_w^{U^N}(z) = d_z^{U^N}(w) = \max\{\rho(z_j, w_j) : j = 1, \dots, N\},\$$

where $z=(z_1, \cdots, z_N)$ and $w=(w_1, \cdots, w_N)$.

Proof. Let $z^* = (z_1^*, \dots, z_N^*)$ and $w^* = (w_1^*, \dots, w_N^*)$ be points in U^N and let $d_{w^*}^{U^N}(z^*) < \alpha$. Then $\frac{1}{2} \log \frac{1+r}{1-r} < \alpha$ and $rU^N \ni \phi(z^*)$ for some r, 0 < r < 1, and for some $\phi \in \operatorname{Aut}(U^N)$ with $\phi(w^*) = 0$. Now ϕ has a form

$$\phi(z) = (\phi_1(z_{p(1)}), \dots, \phi_N(z_{p(N)})), \qquad z = (z_1, \dots, z_N)$$

$$\phi_j(\zeta) = \varepsilon_j \frac{\zeta - w_{p(j)}^*}{1 - w_{p(j)}^* \zeta} \qquad (j = 1, \dots, N; \zeta \in U),$$

where $\varepsilon_j \in C$, $|\varepsilon_j| = 1$ and p is a permutation of the integers from 1 to N ([5] p. 68). Since $\phi_j \in \operatorname{Aut}(U)$, $\phi_j(w_{p(j)}^*) = 0$ and $\phi_j(z_{p(j)}^*) \in rU$, we have

$$\rho(z_{j}^{*}, w_{j}^{*}) = d_{w_{j}^{*}}^{U}(z_{j}^{*}) \leq \frac{1}{2} \log \frac{1+r}{1-r} < \alpha \qquad (j=1, \cdots, N).$$

Since α was arbitrary, we have

$$\max\{\rho(z_{j}^{*}, w_{j}^{*}): j=1, \cdots, N\} \leq d_{w^{*}}^{U^{N}}(z^{*}).$$

To prove the inequality in the opposite direction, let $\rho(z_j^*, w_j^*) < \alpha$ for all *j*. Then we can choose an r, 0 < r < 1, and $\phi_j \in \operatorname{Aut}(U), j=1, \dots, N$, such that $\frac{1}{2} \log \frac{1+r}{1-r} < \alpha$ and $\phi_j(z_j^*) \in rU$ and $\phi_j(w_j^*) = 0$. Put

$$\phi(z) = (\phi_1(z_1), \dots, \phi_N(z_N)), \quad z = (z_1, \dots, z_N).$$

Then ϕ is an element of Aut (U^N) satisfying $\phi(w^*)=0$ and $\phi(z^*)\in rU^N$. Hence

$$d_{w^*}^{U^N}(z^*) \leq \frac{1}{2} \log \frac{1+r}{1-r} < \alpha$$
.

Thus we obtain that

 $d_{w^*}^{UN}(z^*) = \max\{\rho(z_j^*, w_j^*): j=1, \dots, N\}.$

Since $\rho(z_j^*, w_j^*) = \rho(w_j^*, z_j^*)$, we have also

$$d_{w^*}^{U^N}(z^*) = d_{z^*}^{U^N}(w^*)$$

THEOREM 1. If D is a bounded symmetric domain in C^N , then

$$k_D(z, w) = c_D(z, w) = d_w^D(z)$$
 $(z, w \in D).$

Proof. It is known that D is holomorphically equivalent to a domain D^* which has the following properties:

- (a) $D^* \cap C^1 = U^1$ and $D^* \subset U^N$,
- (β) for any z^* , $w^* \in D^*$, there exists a $\phi \in \operatorname{Aut}(D^*)$ such that $\phi(w^*)=0$ and $\phi(z^*)=\zeta=(\zeta_1, \dots, \zeta_l, 0, \dots, 0)$ where $|\zeta_j|<1, j=1, \dots, l$.

Here *l* is the rank of *D*. Since the injections $U^{l} \rightarrow D^{*}$ and $D^{*} \rightarrow U^{N}$ are distancedecreasing (by Proposition 2), we have

$$d_0^{U^N}(\boldsymbol{\zeta}) \leq d_0^{D^\bullet}(\boldsymbol{\zeta}) \leq d_0^{U^l}(\boldsymbol{\zeta}')$$

where $\zeta = (\zeta', 0''), \zeta' = (\zeta_1, \dots, \zeta_l), 0'' = (0, \dots, 0)$. From Lemma 2 we have

$$d_0^{U^N}(\zeta) = d_0^{U^l}(\zeta') = \max\{\rho(\zeta_j, 0) : j = 1, \dots, l\},\$$

and then we obtain

$$d_0^{D^*}(\zeta) = \max\{\rho(\zeta_j, 0) : j=1, \dots, l\}.$$

It is also known that

$$k_{D^{\bullet}}(\zeta, 0) = c_{D^{\bullet}}(\zeta, 0) = \max\{\rho(\zeta_j, 0) : j = 1, \dots, l\}$$

([3] p. 52). Hence it follows from (β) that, for z^* , $w^* \in D^*$,

$$d_{w^{\bullet}}^{D^{\bullet}}(z^{*}) = k_{D^{\bullet}}(z^{*}, w^{*}) = c_{D^{\bullet}}(z^{*}, w^{*}).$$

This implies that

$$d_w^D(z) = k_D(z, w) = c_D(z, w)$$
 (z, w $\in D$).

COROLLARY 1. If D is a bounded symmetric domain in C^N , then

$$d_D(z, w) = d_D(z, w) = d_w^D(z) = d_z^D(w)$$
 (z, $w \in D$).

Every bounded symmetric domain in C^N is holomorphically equivalent to a domain D in C^N which satisfies conditions (a) \sim (d) and

(e) the isotropy group K of 0 in Aut(D) acts by complex linear transformations.

We shall call such a domain D a domain given in a canonical realization. The following is an immediate consequence of Theorem 1 and (5) in Proposition 1.

46

THEOREM 2. Let D be a bounded symmetric domain given in a canonical realization in \mathbb{C}^{N} . Then

$$k_D(z, w) = \inf \left\{ \frac{1}{2} \log \frac{1+r}{1-r} : 0 < r < 1 \text{ and } rD \ni \phi(z) \text{ for some} \right.$$
$$\phi \in \operatorname{Aut}(D) \text{ with } \phi(w) = 0 \right\}$$

and

$$\{z \in D: k_D(0, z) < \alpha\} = rD, \quad r = \frac{e^{2\alpha} - 1}{e^{2\alpha} + 1}.$$

COROLLARY 2. Let D be a bounded symmetric domain given in a canonical realization in \mathbb{C}^N and let $w \in \partial D$. If $0 \leq t_1 < t_2 < t_3 < 1$, then

$$k_D(t_1w, t_3w) = k_D(t_1w, t_2w) + k_D(t_2w, t_3w).$$

Proof. We shall first show that

$$k_D(sw, tw) = k_D(0, tw) - k_D(0, sw)$$

for 0 < s < t < 1. Since D satisfies conditions (c) and (d), $\{\zeta w : \zeta \in C, |\zeta| < 1\} \subset D$. Hence

$$f_w(\boldsymbol{\zeta}) = \boldsymbol{\zeta} w$$

is a holomorphic mapping of U into D, and so

$$k_{D}(sw, tw) \leq k_{U}(s, t) = \frac{1}{2} \log \frac{1 + \frac{t-s}{1-st}}{1 - \frac{t-s}{1-st}} = \frac{1}{2} \log \frac{1+t}{1-t} - \frac{1}{2} \log \frac{1+s}{1-s}$$
$$= k_{D}(0, tw) - k_{D}(0, sw)$$

by Theorem 2. But the triangle inequality yields

$$k_D(sw, tw) \ge k_D(0, tw) - k_D(0, sw).$$

Thus we obtain the equality

$$k_D(sw, tw) = k_D(0, tw) - k_D(0, sw)$$
 (0

Using this equality we have, for $0 \leq t_1 < t_2 < t_3 < 1$,

$$k_{D}(t_{1}w, t_{3}w) = k_{D}(0, t_{3}w) - k_{D}(0, t_{1}w)$$

= { k_{D}(0, t_{3}w) - k_{D}(0, t_{2}w) } + { k_{D}(0, t_{2}w) - k_{D}(0, t_{1}w) }
= k_{D}(t_{2}w, t_{3}w) + k_{D}(t_{1}w, t_{2}w).

References

- [1] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press. New York, 1962.
- [2] S. KOBAYASHI, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 460-480.
- [3] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [4] A. KORÁNYI AND J.A. WOLF, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
- [5] R. NARASIMHAN, Several Complex Variables, University of Chicago Press, Chicago, 1971.
- [6] W. RUDIN, Function Theory in the Unit Ball of Cⁿ, Die Grundlehren der Math, Wissenschaften, Bd. 241, Springer-Verlag, Berlin, 1980.

DEPARTMENT OF MATHEMATICS Tokyo Gakugei University Koganei-shi, Tokyo 184, Japan