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RELATIONS AMONG SMOOTH KERVAIRE CLASSES

AND SMOOTH INVOLUTIONS ON HOMOTOPY SPHERES

BY YASUHIKO KITADA

§ 1. Introduction and statement of results.

In [9], Rourke and Sullivan defined classes K,ι+2^Hit+2(G/PL, Z/2) that
are characterized by the property that for a normal map / : M-^G/PL of a
closed PL manifold M, the Kervaire obstruction of / is given by the formula

(1.1) c(/)=<F(M) 2 /*(Σ K<t+2), [M]>,

where V(M)=l^Γvί(M)+υ2(M)+ ••• is the total Wu class of M.
Let k4ι+zίΞHu+2(G/O, Z/2) be the image of K4ι+2 by the map H*(G/PL, Z/2)

-+H*(G/O, Z/2) which is induced by the natural map G/O-+G/PL. We shall
call k4ι+2 the smooth Kervaire class. The work of Brumfiel, Madsen and
Milgram [1] gives fundamental properties concerning the smooth Kervaire
classes.

In this paper we shall first prove the following theorem which gives an
interesting relation between two smooth Kervaire classes in different dimensions.

THEOREM A. Let r and s be integers that satisfy r > s ^ 2 . Then we have
the relation

The formula (1.1) involves Kervaire classes of various degrees. So one
might hope to obtain some information about the Kervaire obstructions for
certain manifolds in the smooth category if one uses this relation. In fact, as
an application of Theorem A, we can show

THEOREM B. Let n be a positive integer such that n + 1 zs not a power of 2
and let m be a non-negative integer with m^2n. Then the Kervaire obstruction
map

c : [_s2m+lxP*n-2m+\ G/O~]->Z/2

is trivial.
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Theorem B has a geometric meaning which we shall now explain. Let
/ : Mn->Nn be an equivariant map between smooth manifolds with involutions.
We shall say that / is Msovariant if / is isovariant (i.e. / preserves the
isotropy groups at each point) and in addition if / can be regarded as an
equivariant vector bundle map inducing a linear isomorphism in each fiber of
the normal bundle around the fixed point sets. A smooth involution on a
homotopy sphere is called almost linear if the fixed point set is diffeomorphic
to the standard sphere. Theorem B implies that the surgery obstruction map

is trivial. Then using the surgery theory with πι—Z/2, we obtain the following
corollary.

COROLLARY C. If n+1 IS not a power of 2 then there does not exist an
orientation reversing almost linear smooth involution on the Kervaire sphere of
dimension 4n + l which is t-isovariantly homotopy equivalent to a linear involution
on the standard sphere.

In brief, Corollary C means that an orientation reversing involution on the
Kervaire sphere does not admit a " good " isovariant linear model. We shall
consider now two special cases. The first one is the involution (Wίn+1, T3)
studied in [3]. According to Corollary C above, this involution is not Msovari-
antly homotopy equivalent to a linear involution L on the standard sphere S 4 n + 1

with Fix(L)=S 2 n although it is equivariantly homotopy equivalent to the linear
involution (S 4 n + 1, L) and more than that it is even equivariantly normally
cobordant to the linear involution (Siΐl+1, L). To be precise, there arises a
homotopical obstruction \_czn+u hn+i] to the existence of a ί-isovariant map from
(Wίn+1, T8) to (S 4 n + 1, L). The second interesting case arises when w=0, that
is, when the dimension of the fixed point set is zero. In this case (1.2) says
that the obstruction map

c : tPin+1Xl/Pin+1XdI, G/0~\->Z/2

is zero. From the surgery exact sequence of Wall [11], Theorem 10.8, this is
equivalent to saying that the action of the Wall group LAn+2(Z/2, +)^Z/2 on
the set of equivalence classes of homotopy smoothings /zS(P4n+1) is non-trivial.
This action corresponds to taking the connected sum of P 4 n + 1 with the homotopy
spheres bounding parallelizable manifolds and making an appropriate homotopy
equivalence to Pin+1. But since any orientation preserving self homotopy equiv-
alence of Pin+1 is homotopic to the identity, we do not have to consider the
homotopy classes of maps to P 4 n + 1 in homotopy smoothings. Thus we have
obtained

COROLLARY D. The connected sum of the real projective space P 4 n + 1 with
the Kervaire sphere is not diffeomorphic to P 4 n + 1 when 4n+4 is not a power of 2.
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Corollary D gives an answer to the problem of [2], p. 427, originally due
to W. Browder (see also [4], p. 95). We shall now state the notations which
will be used in this paper. All homology and cohomology coefficients are Z/2
and binomial coefficients are considered mod 2. Let Q(S°)=lim ΩnSn and let

! be the subspace of degree 1 maps S00-^00. The natural map
i: SG-+G/O induces an epimorphism in homology [7] and hence a mono-
morphism in cohomology. So we may identify H*(G/O) with a subalgebra of
H*(SG). Q(S°) is an infinite loop space with respect to the loop sum operation
denoted by * and let Qι be the Dyer-Lashof homology operation for the loop
sum. G/O is an infinite loop space whose //-space structure corresponds to the
Whitney sum operation. The map i above is an infinite loop map for the com-
position operation on SG. For details on these facts, see [1], [5], [6] and [7],

The program of this paper is as follows: in § 2 we shall recall some basic
facts of the cohomology and homology of SG and develop some additional
properties which will be used later. In § 3, we shall prove Theorem A which
requires a manipulation of mod 2 binomial coefficients. In § 4, we shall show
how Theorem A can be applied to the triviality of the obstruction map stated
in Theorem B.

§2. Homology and Steenrod operations on H*(SG).

Let / = ( * i , h, ~ ,in) be a sequence of non-negative integers. We shall
write Q1 or sometimes Q(I) in place of the operation Qι* ••• Qln. We say that
/ or Q1 is allowable if ij£2ιJ+1 holds for / = 1 , ••• , n-1. The length of /, /(/)
is the number of integers contained in / and we define its excess e(I) to be

7 1 - 1

Σ (tj—2iJ+1)
Jrin—ιι — ι2— ••• — in.

As to the Pontrjagin ring structure of SG, the following result is well known.

THEOREM 2.1 ([6], [7]). The Pontrjagin ring of SG with respect to the
composition product is given by

(g)P{Q 7 [ l]*[ l-2 n ] |/ allowable, / (/ )=n^2,

where E (resp. P) is an exterior (resp. polynomial) algebra over Z/2 on given
generators.

We shall denote the element Q ι[l]*[—1] by ex which coincides with the
image of Pι by the natural map

Pι —> SO(i+l) —> SO —> SG.
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Since the natural map i* : H*(SG)->H*(G/O) is surjective ([7]), the dual map
i*: H*(G/O)->H*(SG) is injective. So we may identify kiι+2 with its image

Let ψ:H*(Q(S°))-+H*(Q(S°))(g>H*(Q(S0)) be the diagonal map. Then we
have

(2.1) X'(y*z)=*Σχίy*χί'y

where φ(x)=Σ xV£)x" ([7]). Here the dot "•" stands for the composition

product which is often omitted.
The following formulas will be used in what follows:

(May's formula [5])

(2.2) QaWy=^Qa+t(x'Sqtty)),
t

where Sqι* is the Kronecker dual of the Steenrod square.
(Dual May's formula [5])

(2.3) Qa(x)=ΣQa+tLΪ]'ΆSq%x,
t

where 1 is the canonical anti-automorphism of the Steenrod algebra ([10], Π §4).
(Cartan formula)

(2.4) (

(Adem relation)

(2.5) QaQ\x)='Σ(t~b~1)Qa+b-tQKx).
t \ 2t—a /

(Nishida relation [8])

(2.6) Sq%

Let *:SGxSG-*SG be the //-space structure defined by (x, y)->x*y*[—ϊ]
used in [1], where [—1] denotes a fixed map of degree —1 considered as an
element of Q(S°). This defines a product

* : H*(SG)®H*(SG) —•» H*(SG)

and a cohomology coproduct

0* : H*(SG) — > H*(SG)®H*(SG).

The following theorem is one of the main results of [1].

THEOREM 2.2. (1) £41+2=0 unless 4z+4 is a power of 2.
(2) // n = 2 >-2 then
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where the summation runs over s+t=n, s, t>0 and σ{wt) is the homology suspen-
sion of the Stiefel-Whitney class Wt^H\BSG).
(3) σ(wι) is primitive for both composition and loop products.
(4) < & 2 t - 2 , e a * e b > = l if and only if a + b = 2 ι — 2 and ( k 2 ι - 2 , e x * ••• * e l n > = 0 if n ^ 3 .

DEFINITION ([5]). Let 3), be the set of X(ΞH*(Q(S°)J) having degree / such

that x*[l—/] is composition decomposable in H*(SG). Put £D=@3)j. Let S

denote the ideal of positive dimensional elements of H*(Q(S°)).

THEOREM 2.3 (Madsen [4]).

(1) J*J*JCUZ), (S*S)-SCL2) and
(2) Qa(

As an easy application of (2.1), given x, y<=H*(SG), we have

χi*χί'*y+Σϊ χΊy'j*χί*y'J',

where
' and

Since J*J*J(Z£) by Theorem 2.3, we have

LEMMA 2.4. Let x, y^H*(SG) then

We shall next determine the values of k2ι-2 on the elements that include
the algebra generators of H*(SG).

LEMMA 2.5. Let a, b be positive integers with aJrb—2r—2 for some r. Then
we have

Proof. Let jc=eα = θ α [ l ] * [ - l ] , :y=0 6 =Q 6 [13*[-l] and apply Lemma 2.4,
then we have

Σ eteb*ea-t+ Σ eaej*eb-j
0<i<a 0<<6

mod .01. By the primitivity of the smooth Kervaire classes ([1], Lemma 3.2),
k2r~2 vanishes on 3)x. It also vanishes on eae$*ey by Theorem 2.2 (2) and (3).
Therefore by Theorem 2.2 (4) we get the assertion.
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LEMMA 2.6.

Proof. We may put %(S?)*<?δ[l]=Σ etQ
b~t[l'], where εt<=Z/2 and Sg

1 + Sg1+Sg2+ •••. Then from the Nishida relation (2.6), we have

=Sq* Σ
t

= Σ Σ ^ " 1 ) . ^ - [ 1 ] .

This gives us a system of equations for ε4:

X i f m = = 0

0 if m = l , - , &.

This linear equation has a unique solution since the matrix of coefficients is

triangular with non-zero diagonal entries. We can easily check that the solu-

tion is given by εt=( ~J~ V which can be verified by the equality ([6], 6.20):

a — b—l\ ,., ^ ,N

) ( l f a > b )

(if fl^ft). •

L E M M A 2.7. L<?ί <3α<3& ^ allowable and a, b>0. Then

<k2r-2, ρ α Q δ [ l ]* [-3]>- l

holds if and only if a~b—2r~1 — l.

Proof. We may assume that a+b—2r—2. By (2.3) and Lemma 2.6, we
have

QaQbm = Σ (b^)Qa+ίm - Q'-'m.
ι=o \ I /

Let 2 denote the coefficient of tβ in the formal power series ( l+ί) f t eZ/2[[ί]]

It is an easy exercise to see that ( Λ ) — Λ~~ when a>β^0. Hence by

Lemma 2.5, we have

δ /h-\-i\ & Γ — f t — l l

α2r-2, cβ(?»[i]*[-3]>= Σ ΓT )= Σ

=sum of the coefficients of 1, t, ••• , ί& in
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Γ-6-2] /26+l\
=L b r v b )•

This is nonzero mod 2 if and only if 6+1 is a power of 2 (see Lemma 3.1). By
allowability of I=(a, b), we have b<a^2b. Hence the above expression is
nonzero if and only if b=2r~1—1. •

PROPOSITION 2.8. The values of k2r-2 on the algebra generators in Theorem
2.1 are given as follows:
CD α 2 r- 2 , <? '[ i ]*[-i]>=o,
(2) <k2r-2, ί? ί (? < [ l ]*[-3]>=l *•/ and only if i=2r-χ-\, and
(3) Let I=(iu - , ί n ) be allowable, then <k2r-2, ζ ) 7 [ l ] * [ l - 2 n ] > = 0 if n>2 or

n = 2 and e(I)>0.

Proof. (1) is immediate since Q ί[l]*[—1] comes from an element of H*(SO).
We have already shown (2) in Lemma 2.7. We have also shown (3) in case
n=l{I)—2 in Lemma 2.7. So we assume that n ^ 3 . We start with the case
n=3. As we have seen in the proofs of Lemma 2.5 and Lemma 2.7, QbQc[Y]
belongs to S*3 mod S>. From Theorem 2.3 (2), QaQbQc[l~] belongs to S). Thus
by induction on n, we can prove that Q 7 [ l ]e iD if /(/)^3. Since k2r-2 vanishes
on composition decomposables, the assertion follows. •

Note that in Proposition 2.8, (3) we did not require e(I)>0 when n>2.

% 3. Proof of Theorem A.

Before we begin the proof, we shall make a short study on mod 2 binomial

coefficients. By the mod 2 binomial coefficient ( ? ) we mean the coefficient of

tb of the polynomial ( l + ί ) α e Z / 2 [ ί ] . If either a or b is negative we set ( j ) = 0

by convention. Let a be a non-negative integer. Then α has a unique expres-
sion α = S fl*2*, where ατ—0 or 1. We shall call this expression the 2-adic

expansion of α.

LEMMA 3.1 ([10], 1.2.6). Let α=Σ>di2ι and ί ) = Σ W be the 2-adic expan-
sions of a and b. Then we have

In other words, for non-negative integers a and b, we have ( ? ) — 0 if and only

if there exists i such that at=0 and 6^=1.

The following property is immediate, but is useful in calculations.
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LEMMA 3.2. The mod 2 binomial coefficients are characterized by the follow-
ing properties:

/ 0 \ /2a\ /a\ ( 2a \ Λ / 2 α f l \ / α \

(o)=1 U = U λ U+iH (2b Hb) and

Using Lemma 3.2 we can prove the following lemma by induction on n.

/On 1 I j \

L E M M A 3.3. (1) ( 9/ ) ΐS nonzero if and only if i—2n—23 for some j

(2) (orc_Λ>_ 7 * s n o n z e r o ιf and o n h if ι—2n—23—\ for some j ( O ^ y ^ n — 1).
Let {Ij}j=i,...,r be a set of n-tuples Ij=(ilf •••,/n) of positive integers not

necessarily allowable. Then by repeated use of (2.5) we can express the sum
Σ Q(Ij)D-l as a sum of allowable terms as in S O(Λ)[1] I n this case we say

that S 0(^)[ l ] contains (each of) Q(Λ)[1]. The proof of the following lemma
is not difficult in principle, but requires a tedious arithmetic of mod 2 binomial
coefficients.

LEMMA 3.4. Let QaQb be allowable with b>0. If r ^ s ^ 2 then
Sg2J-2Sgls-1QaQb[l'] contains Q2r~1-1Q'ιr-1-ι[_Y] if and only if a=2r-1+2s~1-l and

Proof. By counting degrees we must have a-\-b=2r+2s~1Jt2s~2—2. So we
may write fl=27-1+2s"1-l+i and b=2r~ι+2s-2-l-t for some t. Then the
allowability of QaQb implies 3ί^2 r~1—1. Using the Adem and Nishida relations
we have

where

2 r " 1 + 2 — a —

p / k-2r-ι-2s~2+t+i+j \
\2k-2r-ι+2s-2+ι-(t+i+jy'

jc=2 r - χ —2 s - 2 —l+ί+2+y and ^ = 2 r - 1 + 2 ' - 2 — 1 —

The first summation Σ ' runs over i and j satisfying
and Σ " is over /, j and k such that 3(ί+2+y)^2 r-1+2 s-1+2 s-2 and
-2 s" 2-l+if+2+y. Here we may assume that 0 ^ ^ 2 s " 2 and 0^y^2 s"3 for
otherwise A or C vanishes. For brevity of notation, we shall write u in place
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of Q2r-1-1Q2r~1-1ll"]. If we can show that u is contained in Σ ' + Σ " if and
only if t=0, then the proof is complete. The proof is divided into several
cases according to the values of r and s.
Case s=2: In this case we may assume that j=Q and i=0 or 1. So in the
second summation Σ " , we have 3t^2r~ι which contradicts to the allowability
condition. Therefore there are no terms in Σ " Suppose u is contained in Σ '
as ABCDQxQy[Y], then we have t+i+j=2s-2=l, where / = 0 and we see from

Lemma 3.3 (1) that , 4 = ( 2 r ~ 1 ~ 1 ~ H ) is nonzero if and only if t^2r~1-2q for

some q<r—l. So if r=2, we must have #—0, t=l or q=l, t—0. But the
case t=l contradicts to the allowability. Thus we must have t=0. When
r>2, we have t=2T~1—2q for some q<r—l. If q^r—2, we again get contra-
diction to the allowability. So we must have q—r—1 and t=0. Actually when
t=0, u is contained in Σ ' for i=l. Hence u is contained in Σ ' if and only if
ί=0.
Case 5 = 3 : When r=s=3, we can directly verify that u is contained only in
Stf*S<7*<?7ζ?5[l]. So we may assume that r > 3 . Suppose that Σ ' contains u,
for some i and j , then we have t+i+j=2s~2=2. C and D are always nonzero
for O^/^l . If y = l then B is nonzero if and only if ί=0 and ί = l . But then

(Or-1\

4 ) = 0 s m c e r>3. Therefore u does not appear as a term with

(Or-i 1-4-A
2̂  ) is nonzero if and only if

t—0 from Lemma 3.3 (1) and the allowability condition. So Σ ' contains u if
and only if t=0. We shall check if u is contained in Σ " If u is contained
in Σ / r for some i, j and jfe, then we must have k=2r~1—1. £ is nonzero if
and only if t+i+j-3=2r-1-2q—l (0^q^r-2) by Lemma 3.3 (2). Then we
have t^2T~2—1, which contradicts to the allowability. So Σ " does not contain w.
Case r=s>4: Suppose Σ r contains u, then we have ί+/+y=2*" 2 . D is always

nonzero and C=( o s - ^ _ 9 / i s nonzero if and only if y=0 or 2q (q<^s—3) by a
/9r-1-l_9? 1\

variation of Lemma 3.3 (1). When j—2q, we see that B=l J is non-

(O S - l 1 I f\

2*+1+2t ) i s n o n z e r o if a n c i o n l y if

ί = 2 s " 2 - 2 9 since 2s-2-2q+1+l£t£2s-2-2q. If ^ < s - 3 then we have t^2s~3-{-2s-\
which contradicts to the allowability. So we must have q=s—3, ί=2 s ~ 3 and u
is contained in Σ r On the other hand, when y=0, 5 is nonzero and

is nonzero if and only if t=2s~1-2c (c^s—1). By allowability

we must have c — s—1 and ί=0. Thus we have seen that Σ ' contains w if and
only if t—Q or 2S~3. Next we turn to Σ ^ If Σ 7 / contains u for some 2, y and
k, then we have &=2 S - 1 -1 and £ is nonzero if and only if t+iJ\-j=2s'1+2s'2-2q

(0^q<s—2) from Lemma 3.3 (2). Suppose q<s—2, then we have t^2s~2 since
we can assume that z+j<L2s~2+2s~\ but it contradicts to the allowability.
Therefore we have q—s—2, that is, t+t+j=2s-\ Then D is always nonzero
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and C = ( 2*-8—2"; ) i s n o n z e r o i f a n d o n l y if j=2* (d^s—3). 5 is non-
zero if and only if 0<^i<L2d—1 or z=2s~2. However if f^2d—1 then we have
t^2s~ι —2d+1+1^2s"2 and this contradicts to the allowability. If ι=2'~ 2 then
we have t—2s~2—2d and d must be equal to s—3 since if d<s—3, we have
ί^2 s ~ 3 +2 s " 4 contradicting to the allowability. When d = s—3, we have ί = 2 s " 3

and A is nonzero. Thus in this case, Σ " contains w if and only if t—2s~%.
But when t=2s~s, as we have seen, u is contained both in Σ ' and in Σ "
canceling each other. Therefore u appears in Σ ' + Σ " if and only if f=0.
Case r > s ^ 4 : We try to obtain the condition under which Σ ' contains u. We

(or-i 1 -*\

2s"2—2 / *s n o n z e r o

if and only if / = 0 or 29 (0^#^s—3). When / = 2 ? , 5 is nonzero if and only

(o r - l I I 4\

25+1-f 2t ) i s n o n z e r o i f a n d o n l y i f ί = 0 B u t t n i s i s impossible
since then we have t+i^2q—1 which contradicts to ί4-2=:2s~2—2Q. When / = 0

( Or-I 1 _J_f\

Of ) is nonzero if and
only if ί=2 r~ 1—2 d with d£r—l. If d < r — 1 then we have contradiction to the
allowability. Therefore d—r—l and ί=0. Lastly we must check that u is
not contained in Σ " . Suppose u is contained in Σ " then we have k=27"1—1.
£ is nonzero if and only if ί + f + y = 2 r - 1 + 2 s " 2 - 2 c (c<Lr—2). But this contradicts
to the allowability since i<,2s~2 and /^2S~3. •

LEMMA 3.5. Lβί r ^ s ^ 2 αnJ swί/wse ίAαί Qα(5δ (ft>0) /s allowable. Then
-'QoQXH contains ρ2r-2+2S-i_1(?2r-2+2S-2_1[1]

Proof. We shall only prove the case when r>s. The case r—s can be
shown similarly. We shall again divide the proof into several cases. As in
the proof of the preceding lemma, we shall put u=Q2r~2+2S~ι-ιQ*r~2+2S~2-ι[Y\
for brevity of notation. Also we may put α=2 r~1-f2 s-1—1+ί and b=2r'ί+2s-2

-l-t for some t. Then the allowability of QaQb implies that 3 ^ 2 r " 1 - l .
From the Adem and Nishida relations we have

where

= /t+i+j-2r-1-2s

ϊ and 3;=2r-1-f-2ίf-2—l

Here the first summation Σ r is over / satisfying 3(t+i)^2r—1 and the second
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summation Σ " is over /, / such that 3(t+i)^2r and 2/^2 s"1—l+t+1.

Case s = 2 : If Σ ' contains w = (?2r~2+1<52r~2[l], then we must have ί+z=2 r - 2 for

• j is nonzero only if 2=0 or 2r~2. But *=0 contradicts to

the allowability. Hence we get i=2r~2, t=Q and then A is surely non-zero.
This happens if and only if β=2 r ~ 1 +l and b—2r~ι. Secondly if the term u

appears in Σ"> we must have j—2r~2. Then C — (^ΛZ.ιL(f^f) i s nonzero if

and only if f+*=2 r - 1 -2 β (q^r-3) by Lemma 3.3 (2). Then B

is nonzero only if i<Ξ,2q. This contradicts to the allowability since then we

have ί = 2 r - 1 - 2 3 - ^ 2 r - 1 - 2 9 + 1 ^ 2 r - 1 - 2 r - 2 = 2 r - 2 . Thus u does not appear in Σ " .

Case s>2: We first consider the case when Σ ' contains u as the term

ABQXQV[Y]. Then we must have t+i=2r~\ jβ= =^2 r- 2+2 s- 2-l^ . g n o n z e r o ^

and only if 0 ^ ^ 2 s ~ 2 - l (i.e. 2 r - 2 -2 s - 2 +1^^2 r - 2 ) or /=2 r " 2 (i.e. ί=0). By

Lemma 3.3 (1), A=(?Sl^t

1+t) is nonzero if and only if t^2s-ι-2q (q^s-1).

Suppose 2 r - 2 - 2 s - 2 + 1 ^ ^ 2 r " 2 , then we have s=r-l and q£r~A. But then we
have /2>2r-3-f2r~4. This contradicts to the allowability. Therefore we must
have t—0 (i.e. 2=2r"2), and then A is nonzero. We shall next see that Σ "
does not contain u. If u is contained in Σ" , then we must have y=2r~2+2s~2—1

and by Lemma 3.3 (2), C ^ ^ ΐ ^ l f Γ ^ )) is nonzero if and only if t+t=2r-ί-2c

(c^r-3) . But AΦO implies that ^ 2 r ' 2 . If c ^ r - 4 then we have ί^2 r- 3+2 r- 4.
This contradicts to the allowability. Therefore we have c=r—3, t-\-i—2r~2+2r~3,

three cases and see that in each case, Σ " does not contain u.
Case r—l—s>2\ We find that B is nonzero if and only if i<^2r~2 — l. A is
nonzero if and only if t—2r~2—2P (p^r—3) from a slightly modified version of
Lemma 3.3 (1). If p<r—4 then we get contradiction to the allowability. But
when p=r—3, we have z'=2r~2 and B vanishes.
Case r - 2 = s > 2 : A is nonzero if and only if t=2r~2jr2r-z-2p (p<r-2) from
Lemma 3.3 (1). And when p<r—2, we have contradiction to the allowability.

Thus we have ^ 2 r ~ 3 and z=2r~2. In this case B^^^?^ 4 ~ 1 ) vanishes.

Case r - 3 ^ s > 2 : A is nonzero if and only if t=2r~3+2s-ι-2p (p<s-l). Then
we have /=:2 r - 2 -2 s - 1 +2 2 ? ^2 r - 2 -2 r - 4 >2 r - 3 +2 s - 2 -l . Therefore B vanishes. •

LEMMA 3.6. Let QaQb be allowable (6>0) and r > s ^ 2 . Then the following
two statements are equivalent.

(A) Sqt'Sql8'1 "- Sqζ-'Q^'ίU contains Q*- 1- 1© 8 '- 1- 1^].
(B) Sqt~2Sqt-1QaQbm contains <?2 r-1- iρ ί r-1-1[l].

Proof. Consider the following auxiliary statements:
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(C) Sq%sSg%s+1i " Sqζ-'Q^ai contains <?« -i<?«-1+«-«-i[i].
(De) Sq$Sq$+1 - Sq$-1QaQblϊ] contains Q«-*+*-i-iQ*'-*+*-*-i[χ
(E) α = 2 r - 1 + 2 β - 1 - l and 6=2 r - 1 +2 - 2 - l .

By Lemma 3.4, (A) is equivalent to (C). (C) is nothing but (D,). Then by
Lemma 3.5, (Ds) is equivalent to (Dt) for all t. (Dr-i) is equivalent to (E) by
Lemma 3.5. Again by Lemma 3.4, (E) is equivalent to (B). •

Having established these preparations we are now in a position to prove
Theorem A.

Proof of Theorem A:
The smooth Kervaire class k2ι is primitive and so is the class SqJ(k2ι). So

in order to prove the assertion of Theorem A, we have only to check that
under the Kronecker pairing with the Pontrjagin ring generators of H*(SG),

(1) Sq*'1 ... Sq^Sq^iku-t)

and

(2) Sq^Sq*"*^-*)

have the same values. Suppose I=(ilt •••,in) is allowable and let x = Q7[l]*[l—2n~]
be the Pontrjagin ring generator. When nφ2, (1) and (2) have values 0 on x
by Proposition 2.8, when we note that

3

Therefore Theorem A is proved if we can show that

for all allowable QaQb (b>0). But this is what we have shown in Lemma 2.7
and Lemma 3.6.

§ 4. Proof of Theorem B.

In order to apply the Rourke-Sullivan formula (1.1) for the Kervaire invari-
ant, we have to compute the Wu classes of real projective spaces. To facilitate
the calculations, we make the following definitions.

DEFINITION. Let φ(t)=l+t-ht2-\- ••• +1 2 3+ ••• be a formal power series with
coefficients in Z/2. The coefficient of tb in the α-fold product (φ(t))a is denoted
by {a, b}. When a or b is negative we set {a, b) = 0 by convention.
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DEFINITION. Let N be a non-negative integer. Then N has a unique
expression

7V=2ei+2e2+ ••• +2e«,

with 05j£i<£2< ••• <es, which we call the ascending 2-adic expansion of N.
When TV is not zero, ex the 2-order of N is denoted by ord2(Λ0 If N=0, the
ascending 2-adic expansion is vacuous (5=0), and we set ord2(0)= + w.

Let η be the Hopf line bundle over the real projective space PN. Then
the tangent bundle of PN is stably isomorphic to (N+l)η and the total Wu
class of PN is given by

V(PN)=(φ(x))N+1 = Tι{N+l, i)x\

where x is the generator of H\PN).
We can easily prove the following lemma using the fact that the formal

power series φ(x) has the property φ(x)2—φ(x2).

L E M M A 4.1. {a, b} is characterized by the following properties

{0, 0} = {l, 0 } = l , {2a, 2b}=^{a, b), {2a, 2 ^ + l } = 0 , {2α + l, 26} = {α + l, b) and

T h e l e m m a b e l o w g i v e s a c r i t e r i o n for d e t e r m i n i n g t h e v a l u e of {a, b}.

L E M M A 4.2. Let a, b be positive and ^ = 2 l l + 2 * 2 + ••• +2Xs be the ascending
2-adic expansion of b. Then {a, b} is nonzero if and only if a can be written as

a — a1

Jra2

Jr ••• +as+as+1,

where au a2, ••• , as+1 satisfy

Q<aj^2ιJ and aJ+1=0 m o d 2 ^ + 1 0 = 1 , ••• , s ) .

In particular, if the 2-order of a is greater than that of b then {a, 6}=0 holds.

Proof. The proof proceeds by induction on μ(b)=max{i\2ι^b}. If b is
even b~2bf (zΊ>0), then we have {a, b} = {a'+ε, b'} where a=2a'+ε (ε—0 or
1) by Lemma 4.1. By the inductive assumption, this is nonzero if and only if
af has an expression

such that

0 < α ; ^ 2 ^ " 1 and a'J+1=0 mod2^ 0 = 1, •••, s),

since μ(b')<μ(b). Then we have the desired expression

a=(2ai-ε)+2a'2-\ \-2a'g+2a'8+i.
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If b is odd b=2br+l (*Ί=0), then {a, b] is nonzero only if a is odd and in this
case {a, &} = {(α —1)/2, b'} by Lemma 4.1. This is nonzero if and only if there
is an expression

with

0<α;^2V-1 and a'J+ι=0 mod2^ (;=2, — , s),

since μ(b')<μ(b). Then we have the expression for a:

a=l+2a£-f ••• +2flί+2αί+ 1,

and the induction is complete. •

Hereafter we shall assume that n is a positive integer such that n-f-1 is
not a power of 2. Then n+1 has the ascending 2-adic expansion

(4.1) w+l=2ei-f 2e*-f ••• +2e* (s^2).

Using the criterion of Lemma 4.2, we can prove the following by elementary
calculations.

LEMMA 4.3. {2n+2—2\ n+l—2j} is nonzero if and only if one of the fol-
lowing conditions is satisfied.

(1) z<#i and j—i or βι.
(2) /=^i and j=et or ez.
(3) i~e8+l and j—ex.

Proof of Theorem B:
Let f: SZm+ίxPin-2m+1->G/O be a smooth normal map and the smooth

Kervaire class of dimension 2ι—2 pulls back to

where xeiHl(Pin-2M) and 3,G//2m+1(52m+1) are generators. When 2 ι - 2 >
An— 27n+l we set 3<=0 and when 2 ι—2<2?n+l we set ε t =0. Then by the
Rourke-Sullivan formula (1.1), the Kervaire invariant for / is given by

(4.2) c(/)= Σ εt{2n + l - m , 7t-hl-2 ι~2}.

We shall use the ascending 2-adic expansion (4.1) of n + l in this proof. Let e
be the 2-order of m+1, then m+1 can be written ra+1—2em' where m/ is odd.
Case m / = l : From (4.2) we have

c(/)= Σ

Then by Lemma 4.3, we have
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εe+2+^+2 if e<eif

Se1+2+£e2+2 if e=elt

ε β l + 2 if e=es+l and

0 otherwise.

*(/)=

If e<βίf we have

f*(ka)=δe+2(l®xa)+εe+2(y®xa')>

where α = 2 e + 2 - 2 , a'=a-(2m+l)=2e+1-l, b=2e^+2~2 and b'=b>-(2m+l)

r = 2 e i + 2 - 2 e + 1 - l . By Theorem A, we have

Sq2«1+1 .- Sq2e+1Sq2ef*(ka)=Sq2e+1Sq2ef*(kb).

This shows that ε e + 2 = ε e i + 2 and hence c(f) vanishes.
If e=elf we can show that εei+2=εe2+2 in a similar way. If e=es+l, then

we have ε e i + 2 = 0 since 2ei+ 2—2e + 1<0. Thus the proof for m'—l is complete.
Case m ' > l : The Kervaire invariant is given by

where /*(^2t- 2)=^l®^ 2 i- 2+£ t3;(8)x 2 l- 2 m- 3. εt vanishes for 2*-2<2m+l. In
particular, when i=e+2, we have ε e + 2 =0 since 2 e + 2 <3 2 e + 1 ^2 e + 1 m / =2m+2.
And when i>e+2, by Theorem A, we have

On the other hand we have

c 2β+ic 2«/*/i, N /2 ι-2m+2e-3\/2 ι-2m-3

where c—2x—2m+2e+1+2e—3. The two binomial coefficients in the above ex-
pression are nonzero since in the 2-adic expansion of 2ι—2m—3, the coefficient
of 2e is 1 and that of 2e+1 is zero. Thus the proof is complete if we can show
that

First we consider the case when 2 ι—2<2n + l. Then since e^i—3, we have

Secondly we assume that 2n+1^2ι—2^4n-f-2, that is, i=es+2. In this case
we find that {2n+2-2 em /, n + l-2ι~2} is nonzero only if ord 2(2n+2-2 em /)^^i.
This means that e^eu Then we have
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