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SELF-MAPS ON TWISTED EILENBERG-MACLANE SPACES

By JESPER MICHAEL MOLLER

1. Introduction.

To any (based) space X is associated the monoid (¢(X, %)) ¢(X) of (based)
homotopy classes of (based) self-maps of X. This monoid contains as its group
of units the group (e(X, %)) e(X) of (based) homotopy classes of (based) homo-
topy equivalences of X.

Let = be any group, A a Z(z)-module, and denote by L:=L(A, n), n=2,
the unique homotopy type with =n,(L)=x, n,(L)=A, n,(L)=0 for i#1, n, that
realizes A as a m,(L)=n-module and has k-invariant k=0 H"* (x, A).

The purpose of this note is to determine o(L, *) and ¢(L) explicitly in
terms of group theoretic invariants, see Theorems 3.2 and 3.4.

The monoid ¢(L, *), or rather its subgroup of units (L, %), has attracted
some interest in recent years [7], [9], [10], (11, [2] but as far as I know, no
explicit formula has been given, at least not in the case of a non-abelian
fundamental group.

Throughout this note, I use the notation of [8]: If (X, A) is a pair of
spaces, p:Y—B a fibration, and u: X—Y a continuous map, then F (X, A;Y, B)
is the space, equipped with the compactly generated topology associated to the
compact-open topology, of all maps v: X—Y such that v|A=u|A and pv=7u.
An empty space in the A-entry or a one-point space in the B-entry will be
omitted ; thus e.g. Fi(X, »; X) is the space of all based self-maps of X.

2. Strategy of proof.

Let w: Ex—Bn be a universal numerable principal z-bundle. Then Ex is
a contractible free right m-space. Moreover, E and B are functors: For any
group endomorphism «:7—x, denote by Ea:Ern—Ern and Ba: Br—Br the
induced maps. Equip Ex and Br with base points e, Exn, by=w(e,)<Br fixed
by all the maps Ea and Ba, respectively.

Let = be any group and A a Z(z)-module. Realize the Eilenberg-MacLane
space K(A, n), n=2, as a strictly associative H-space with strict unit 0= K(A4, n).
Since A is a w-module, & acts from the left on K(A, n) by topological group
homeomorphisms. As a model for L(A, n), take the total space [5] of the
associated fibre bundle
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P
L(A, n)=EnX,K(A, n)—> Br.

Since 0= K(A, n)*, there is a section s given by s(er)=(e, O)x, e En.

In the following, I use the abbreviations E=FEr, B=Br, K=K(A, n), and
L=L(A, n).

Let (F(L ;=; L)) 9,(L; L) be the space of all (based) fibre maps of L ; i.e.
(based) maps #: L—L such that t#z=up for some (based) map u: B—B. Then
there are pull back diagrams

F(L; L)——— F(L; L) F(L, *; L)———— F(L, x; L)

P S S

F(B;B)—2 F(L;B)  F(B,+; Bl—2— Fy(L, +; B)

where p is post-composition and p pre-composition with p. Since p is a fibration
and p a weak homotopy equivalence [3], [6] the left hand vertical maps, #—u,
are fibrations and the inclusions ,(L ; L)YCF(L ; L)and &,(L, x; L)YCF\(L, ;L)
are weak homotopy equivalences and morphisms of topological monoids.
Consequently
o(L)=nF(L; L), o(L,x)=mF(L,*;L)

as monoids.

By composing, in the case of free maps, with the evaluation fibration
F,(B; B)»B, we obtain a third fibration of the form

F(L, *; L) —F(L; L)—> B

and thus ¢(L)=0¢(L, *x)/m is known once ¢(L, *) is known as a monoid with z-
action. But ¢(L, *) is actually easily determined since each component of the
base space Fy(B, x; B) is weakly contractible [3], [6] and the =-action will
follow from Lemma 2.1 below.

For any group element yn&xm, 7€Aut(z) will denote conjugation by

7, 7Q)=nEn~* for {=m.

LEMMA 2.1. There exist maps fi: EXE—E and p: EXB—B such that
of=u(1Xw) and

1 #lean, e)=(E(5)e)y, gle, esn)=en
2) flein, E()  er)=f(e,, e2)n
3) ey, exn)=/fle,, es)n

for all e, e;, e;€E and ner.

Proof. Consider the maps
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f:(EXeym)J(eet X E) —> E
¢ (EXb)\U(eor X B) —> B

given by f(e, e,p)=en, fiesn, e)=(E(7)e)y, ¢'(e, by)=w(e), and p'(eyn, b)=B(5)b.
Note that # and g’ are well defined and that wg=p'(1Xw). Equip EXB with
the free right m-action

(e, bn=(en, B(7)"'b)  e=E, beB, per.

Note that (EXb)\J(zx X B) is a m-invariant subspace and g’ a z-invariant map.
Let ¢ be the map induced by g’ on the orbits. Then the diagram

(Exm)U@XE) —F L, E
11><w , lco
(Exb)U(xxB) —* . B

}

(EXB)/nD(EXb\UrXB)/m
commutes and so does the induced diagram

2l(E, DX(E, 1) —% > m(ExaUrxE) —H s n(B)=1

El 0, l P w*l
m((E, T)X(B, b)) ———— m(EXb\JrXB) —=%—  x,(B)

=| |

2(E, )X (B, bo))/x) —2 s m(Exbyum X B)/m)

where 0, 0,, 0, denote boundary maps. The left hand vertical maps are all
isomorphisms and hence g0, is trivial. But the inclusion

T,((EXb\Ur X B)/m) —> m(EX B)/x)
is an epimorphism since
©,((E, m)X(B, b))/m)=m,(E, m)X(E, m))=r(EXTUrXE)=1

and thus p40, is the obstruction to extending p. Hence g extends to (EXB)/x.

Let now also ¢ denote an extension of p. By covering space theory there
exists a (unique) based lift 7: EXE—E of p(1Xw) which extends the given life
g on (EXm)U(rXE). It is not hard to see that & has the properties (1)-(3). O

COROLLARY 2.2. The equivariant self-map on E given by e—(EQ)e), &,
is w-homotopic to the identity map.

Proof. e, e)=(E®&)e), ey, e)=e, ¢, and el can be connected by a
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path. [J

3. Construction of self-maps.

For any group G, let End(G) denote the monoid (under composition) of
group endomorphisms of G. For a=End(x), let

End (A)e={pcEnd (A)|V{cr, ac A: pa)=al)¢(a)}
FyE, eo; K)a={x:(E, o) —> (K, 0)|V{Er, ecE: x(el)=a) ' x(e)}

End (A), is viewed as a discrete space and Fy(E, ¢,; K), as a subspace of

Fy(E, ¢y; K). Algebraically End(A), is an abelian group under pointwise

addition and End,(A)=End (A), is also a monoid under composition of maps.
Consider the disjoint union

D(Lyxi= A Fo(E, e0; K)o XEnd(A)a.

Exd(
equipped with the product
(%, Qla-(u, P)g=(xEB+¢Y, ¢P)ap
where a typical element of 33(L, ) is denoted by (x, ¢). for
acEnd(n), p=End(A)., x€F(E, eo; K)a.

This product is associative and (0, 1), is a unit element so (33(L, ), ) is a

topological monoid.
Define a map F: X (L, *)—%F,(L, *x; L) by the formula

F((x, @)a)(e, B)m)=(Eale), x(e)+@(k)x

for (x, p)a=X (L, %), eeE, and k=K. (Since K(—, n) has a functorial con-
struction, we may confuse p<End(A)., with the induced map K(p, n)=¢; +
refers to the H-space structure of K.)

LEMMA 3.1. F is a morphism of topological monoids and wi(F): m, 2(L, *)—
wod(L, *; L)=0a(L, *) is an isomorphism of monouds.

Proof. A direct verification shows that F respects the monoid structures.
As each component of F,(B, *; B) is weakly contractible and =,=End(x),
one of the fibrations of the preceeding section shows that, as a set,

7Tv'og:l(L: *3 L): U noFsoBaop(L) *3 L} B)

acEnd(n)
Furthermore, the restriction of z,(F),

woFy(E, eo; K)aXEnd(A)a —> #oFsepacp(L, *; L, B)
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is bijective according to the split exact sequence of ([5], p. 4)

”oFSoBa(Br *; L» B) To nBaop(Ly *5 Lv B)

_ “ p* _ ” i*
0— H™B;a*A) < H"(L; a*4) — End(A). — 0

s*

o |

combined with the facts that p: L— B classifies cohomology with local coefficients
[1] and ([4], Theorem 4.8.1) Fy(E, ey; K)a=Fs.po(B, *; L, B). O

A typical element of
(L, )= ) HYB;a*A)XEnd(A4)a
acEnd(n)
will, by a slight abuse of notation, also be denoted by (x, ¢). where a<End (z),
x€H™B; a*A), and p=End(A4),. Note that if @, B€End(x) and ¢&End (A),,
composition with ¢ induces a coefficient group homomorphism ¢4 : H*(B; g*A)

—H™B; (af)*A).
An immediate corollary of Lemma 3.1 is

THEOREM 3.2. The monoid a(L, %) of based homotopy classes of based self-
maps of L is isomorphic to

(”OZ(L: *)) ')

where (%, @)a*(y, P)g=(BB¥*(x)+¢x(¥), ¢P)as. In particular, there exists a short
exact Sequence

1 — Ext?(Z, A)XEnd,(A) — ¢(L, *) —> End(x) —> 1
of monoids.

The next goal is to describe the monoid of free maps a(L).
For ner and

(%, Pla€X (L, *), let

2%, Pla=(NX, NP)7a

this defines a left z-action on X} (L, %) which doesn’t respect the monoid struc-
ture, though. Indeed one easily verifies

PROPOSITION 3.3.  Suppose (x, ¢)a, (¥, N)g=X (L, *) and 7, {Exn. Then

(n(x, ©)a)- (3, )g)=na@)a@) x-ECB)+¢Y, ¢¢)as
wn the monoid (L, *).
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There is, however, an induced r-action on m,> (L, %) given by

9%, ©)a=(nx(x), NP);a

where 74: HB; a*A)—~H"(B; (Fa)*A) is the coefficient group homomorphism
induced by p=End(A4);. Since, in the situation of Proposition 3.3,

a@) ' x(EE€B)e)=x(EEP)e)X)
for any e=E, Corollary 2.2 implies that the formula

(n(x, ©)a) &y, P)a)=1alQ)(x, @)a* (¥, $)p)
does hold in the monoid #,> (L, *) of components. Hence the monoid struc-

ture on m,< (L, *) descends to one on the orbit set #,>} (L, *)/=.

THEOREM 3.4. The monoid o(L) of free homotopy classes of free self maps
of L is isomorphic to m,>3(L, *)/mn. In particular there exists a short exact
Sequence of monoids

1 — Ext™(Z, A)XEnd,(A)/Z —> ¢(L) —> End(z)/Inn(x) —> 1
where Z={(0, ¢)|p(a)=za for some z=Z(x)}, Z(w) the center of m, and Inn(x)
is the group of inner automorphisms of =.

Proof. Extend F to a B-map

F
EX:2(L, ) — F(L; L)
NS

B
by the formula

F((er, (x, @)a)m)(e, R)m)=(fi(e:, Eale)), x(e)+¢(k)m

where ¢,, ¢e€E, (x, 0).X(L, %), k€K, and j is the H-space structure on E
from Lemma 2.1.

Note that F is well defined and that F((e,, (x, ¢)o)m) is really a fiber map.
F induces a map Fyx between the homotopy sequences of the two fibrations and
since Fy: mox (L, ¥)—>mF,(L, *; L) is an isomorphism of monoids by Theorem
3.2, it follows that also

Fy:n(EX:2 (L, #)=m2 (L, )/t —> wF (L ; L)=a(L)

is an isomorphism of monoids.
The epimorphism 7,> (L, *)/r—End (x)/Inn(x) which takes =(x, @)« to «a
has kernel equal to the orbit set of
I= \J H™"B; a*A)XEnd(A).

aclnn(r)
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and the epimorphism H™(B; A)xEnd.(A)—1I/z given by (x, ¢)—n(x, ¢); for
xeH"(B; A), ¢=End,(A4), has kernel Z. [
Extraction of units yields

COROLLARY 3.5. The group e(L, %) is isomorphic to the set
H™B; a*A)X Aut(A)q

acAut(n)

equipped with the product of Theorem 3.2, e(L)=e(L, *)/m, and there are short
exact sequences of groups

1 — ExtMZ, A)xAut(A) —> &(L, *) —> Aut(z) —> 1
1 — Ext¥Z, A)xAut,(A)/Z —> &(L) —> Out(zx) —> 1

where Out(z)=Aut(z)/Inn(x) is the group of outer automorphisms of .
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