SELF-MAPS ON TWISTED EILENBERG-MACLANE SPACES

By Jesper Michael Møller

1. Introduction.

To any (based) space X is associated the monoid $(\sigma(X, *)) \sigma(X)$ of (based) homotopy classes of (based) self-maps of X. This monoid contains as its group of units the group $(\varepsilon(X, *)) \varepsilon(X)$ of (based) homotopy classes of (based) homotopy equivalences of X.

Let π be any group, $A \neq Z(\pi)$ -module, and denote by $L := L(A, n), n \ge 2$, the unique homotopy type with $\pi_1(L) = \pi$, $\pi_n(L) = A$, $\pi_i(L) = 0$ for $i \ne 1$, n, that realizes A as a $\pi_1(L) = \pi$ -module and has k-invariant $k = 0 \in H^{n+1}(\pi, A)$.

The purpose of this note is to determine $\sigma(L, *)$ and $\sigma(L)$ explicitly in terms of group theoretic invariants, see Theorems 3.2 and 3.4.

The monoid $\sigma(L, *)$, or rather its subgroup of units $\varepsilon(L, *)$, has attracted some interest in recent years [7], [9], [10], [1], [2] but as far as I know, no explicit formula has been given, at least not in the case of a non-abelian fundamental group.

Throughout this note, I use the notation of [8]: If (X, A) is a pair of spaces, $p: Y \rightarrow B$ a fibration, and $u: X \rightarrow Y$ a continuous map, then $F_u(X, A; Y, B)$ is the space, equipped with the compactly generated topology associated to the compact-open topology, of all maps $v: X \rightarrow Y$ such that v | A = u | A and pv = pu. An empty space in the A-entry or a one-point space in the B-entry will be omitted; thus e.g. $F_i(X, *; X)$ is the space of all based self-maps of X.

2. Strategy of proof.

Let $\omega: E\pi \to B\pi$ be a universal numerable principal π -bundle. Then $E\pi$ is a contractible free right π -space. Moreover, E and B are functors: For any group endomorphism $\alpha: \pi \to \pi$, denote by $E\alpha: E\pi \to E\pi$ and $B\alpha: B\pi \to B\pi$ the induced maps. Equip $E\pi$ and $B\pi$ with base points $e_0 \in E\pi$, $b_0 = \omega(e_0) \in B\pi$ fixed by all the maps $E\alpha$ and $B\alpha$, respectively.

Let π be any group and A a $\mathbb{Z}(\pi)$ -module. Realize the Eilenberg-MacLane space K(A, n), $n \ge 2$, as a strictly associative H-space with strict unit $0 \in K(A, n)$. Since A is a π -module, π acts from the left on K(A, n) by topological group homeomorphisms. As a model for L(A, n), take the total space [5] of the associated fibre bundle

Received February 22, 1938

SELF-MAPS

$$L(A, n) = E\pi \times_{\pi} K(A, n) \xrightarrow{p} B\pi.$$

Since $0 \in K(A, n)^{\pi}$, there is a section s given by $s(e\pi) = (e, 0)\pi$, $e \in E\pi$.

In the following, I use the abbreviations $E = E\pi$, $B = B\pi$, K = K(A, n), and L = L(A, n).

Let $(\mathcal{F}_1(L; *; L)) \mathcal{F}_1(L; L)$ be the space of all (based) fibre maps of L; i.e. (based) maps $\bar{u}: L \to L$ such that $p\bar{u}=up$ for some (based) map $u: B \to B$. Then there are pull back diagrams

$$\begin{array}{cccc} \mathfrak{T}_{1}(L\,;\,L) & & \mathfrak{T}_{1}(L\,;\,L) & & \mathfrak{T}_{1}(L\,,\,*\,;\,L) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ F_{1}(B\,;\,B) & & & \bar{p} & & F_{p}(L\,;\,B) & & & F_{1}(B\,,\,*\,;\,B) & & & F_{p}(L\,,\,*\,;\,B) \end{array}$$

where \underline{p} is post-composition and \overline{p} pre-composition with p. Since \underline{p} is a fibration and \overline{p} a weak homotopy equivalence [3], [6] the left hand vertical maps, $\overline{u} \rightarrow u$, are fibrations and the inclusions $\mathcal{F}_1(L; L) \subset F_1(L; L)$ and $\mathcal{F}_1(L, *; L) \subset F_1(L, *; L)$ are weak homotopy equivalences and morphisms of topological monoids. Consequently

$$\sigma(L) = \pi_0 \mathcal{G}_1(L; L), \quad \sigma(L, *) = \pi_0 \mathcal{G}_1(L, *; L)$$

as monoids.

By composing, in the case of free maps, with the evaluation fibration $F_1(B; B) \rightarrow B$, we obtain a third fibration of the form

$$\mathcal{F}_1(L, *; L) \longrightarrow \mathcal{F}_1(L; L) \longrightarrow B$$

and thus $\sigma(L) = \sigma(L, *)/\pi$ is known once $\sigma(L, *)$ is known as a monoid with π -action. But $\sigma(L, *)$ is actually easily determined since each component of the base space $F_1(B, *; B)$ is weakly contractible [3], [6] and the π -action will follow from Lemma 2.1 below.

For any group element $\eta \in \pi$, $\overline{\eta} \in \operatorname{Aut}(\pi)$ will denote conjugation by η , $\overline{\eta}(\zeta) = \eta \zeta \eta^{-1}$ for $\zeta \in \pi$.

LEMMA 2.1. There exist maps $\bar{\mu}: E \times E \to E$ and $\mu: E \times B \to B$ such that $\omega \bar{\mu} = \mu(1 \times \omega)$ and

(1)
$$\bar{\mu}(e_0\eta, e) = (E(\bar{\eta})e)\eta, \ \bar{\mu}(e, e_0\eta) = e\eta$$

(2) $\bar{\mu}(e_1\eta, E(\bar{\eta})^{-1}e_2) = \bar{\mu}(e_1, e_2)\eta$

(3) $\bar{\mu}(e_1, e_2\eta) = \bar{\mu}(e_1, e_2)\eta$

for all $e, e_1, e_2 \in E$ and $\eta \in \pi$.

Proof. Consider the maps

JESPER MICHAEL MØLLER

$$\bar{\mu}: (E \times e_0 \pi) \cup (e_0 \pi \times E) \longrightarrow E$$
$$\mu': (E \times b_0) \cup (e_0 \pi \times B) \longrightarrow B$$

given by $\bar{\mu}(e, e_0\eta) = e\eta$, $\bar{\mu}(e_0\eta, e) = (E(\bar{\eta})e)\eta$, $\mu'(e, b_0) = \omega(e)$, and $\mu'(e_0\eta, b) = B(\bar{\eta})b$. Note that $\bar{\mu}$ and μ' are well defined and that $\omega \bar{\mu} = \mu'(1 \times \omega)$. Equip $E \times B$ with the free right π -action

$$(e, b)\eta = (e\eta, B(\bar{\eta})^{-1}b)$$
 $e \in E, b \in B, \eta \in \pi.$

Note that $(E \times b_0) \cup (\pi \times B)$ is a π -invariant subspace and μ' a π -invariant map. Let μ be the map induced by μ' on the orbits. Then the diagram

$$(E \times \pi) \cup (\pi \times E) \xrightarrow{\mu} E$$

$$\downarrow 1 \times \omega \qquad \downarrow \omega$$

$$(E \times b_0) \cup (\pi \times B) \xrightarrow{\mu'} B$$

$$\downarrow B$$

$$\downarrow (E \times B)/\pi \supset (E \times b_0 \cup \pi \times B)/\pi$$

commutes and so does the induced diagram

where ∂_3 , ∂_2 , ∂_1 denote boundary maps. The left hand vertical maps are all isomorphisms and hence $\mu_*\partial_1$ is trivial. But the inclusion

$$\pi_1((E \times b_0 \cup \pi \times B)/\pi) \longrightarrow \pi_1((E \times B)/\pi)$$

is an epimorphism since

$$\pi_1(((E, \pi) \times (B, b_0))/\pi) \cong \pi_1((E, \pi) \times (E, \pi)) \cong \pi_0(E \times \pi \cup \pi \times E) = 1$$

and thus $\mu_*\partial_1$ is the obstruction to extending μ . Hence μ extends to $(E \times B)/\pi$.

Let now also μ denote an extension of μ . By covering space theory there exists a (unique) based lift $\bar{\mu}: E \times E \to E$ of $\mu(1 \times \omega)$ which extends the given life $\bar{\mu}$ on $(E \times \pi) \cup (\pi \times E)$. It is not hard to see that $\bar{\mu}$ has the properties (1)-(3). \Box

COROLLARY 2.2. The equivariant self-map on E given by $e \rightarrow (E(\bar{\zeta})e)\zeta$, $\zeta \in \pi$, is π -homotopic to the identity map.

Proof. $\bar{\mu}(e_0\zeta, e) = (E(\bar{\zeta})e)\zeta$, $\bar{\mu}(e_0, e) = e$, e_0 and $e_0\zeta$ can be connected by a

SELF-MAPS

path. 🛛

3. Construction of self-maps.

For any group G, let End(G) denote the monoid (under composition) of group endomorphisms of G. For $\alpha \in End(\pi)$, let

$$\operatorname{End}(A)_{\alpha} = \{\varphi \in \operatorname{End}(A) \mid \forall \zeta \in \pi, \ a \in A : \varphi(\zeta a) = \alpha(\zeta)\varphi(a)\}$$
$$F_{0}(E, \ e_{0}; K)_{\alpha} = \{x : (E, \ e_{0}) \longrightarrow (K, \ 0) \mid \forall \zeta \in \pi, \ e \in E : x(e\zeta) = \alpha(\zeta)^{-1}x(e)\}$$

 $\operatorname{End}(A)_{\alpha}$ is viewed as a discrete space and $F_0(E, e_0; K)_{\alpha}$ as a subspace of $F_0(E, e_0; K)$. Algebraically $\operatorname{End}(A)_{\alpha}$ is an abelian group under pointwise addition and $\operatorname{End}_{\pi}(A) = \operatorname{End}(A)_1$ is also a monoid under composition of maps.

Consider the disjoint union

$$\sum (L;*) := \bigcup_{\alpha \in \operatorname{End}(\pi)} F_0(E, e_0; K)_{\alpha} \times \operatorname{End}(A)_{\alpha}.$$

equipped with the product

$$(x, \varphi)_{\alpha} \cdot (u, \psi)_{\beta} = (x \circ E\beta + \varphi y, \varphi \psi)_{\alpha\beta}$$

where a typical element of $\sum (L, *)$ is denoted by $(x, \varphi)_{\alpha}$ for

$$\alpha \in \operatorname{End}(\pi), \ \varphi \in \operatorname{End}(A)_{\alpha}, \ x \in F_0(E, e_0; K)_{\alpha}.$$

This product is associative and $(0, 1)_1$ is a unit element so $(\sum (L, *), \cdot)$ is a topological monoid.

Define a map $F: \sum (L, *) \rightarrow \mathcal{F}_1(L, *; L)$ by the formula

$$F((x, \varphi)_{\alpha})((e, k)\pi) = (E\alpha(e), x(e) + \varphi(k))\pi$$

for $(x, \varphi)_{\alpha} \in \sum (L, *)$, $e \in E$, and $k \in K$. (Since K(-, n) has a functorial construction, we may confuse $\varphi \in \text{End}(A)_{\alpha}$ with the induced map $K(\varphi, n) = \varphi$; + refers to the *H*-space structure of *K*.)

LEMMA 3.1. *F* is a morphism of topological monoids and $\pi_0(F): \pi_0 \sum (L, *) \rightarrow \pi_0 \mathcal{F}_1(L, *; L) = \sigma(L, *)$ is an isomorphism of monoids.

Proof. A direct verification shows that F respects the monoid structures. As each component of $F_1(B, *; B)$ is weakly contractible and $\pi_0 = \text{End}(\pi)$, one of the fibrations of the preceeding section shows that, as a set,

$$\pi_{0}\mathcal{F}_{1}(L, *; L) = \bigcup_{\alpha \in \operatorname{End}(\pi)} \pi_{0}F_{s \cdot B\alpha \cdot p}(L, *; L, B)$$

Furthermore, the restriction of $\pi_0(F)$,

$$\pi_0 F_0(E, e_0; K)_{\alpha} \times \operatorname{End}(A)_{\alpha} \longrightarrow \pi_0 F_{s \cdot B \alpha \cdot p}(L, *; L, B)$$

is bijective according to the split exact sequence of ([5], p. 4)

$$\pi_{0}F_{s\circ B\alpha}(B, *; L, B) \xrightarrow{\bar{p}} \pi_{0}F_{s\circ B\alpha\circ p}(L, *; L, B)$$

$$|| \qquad p^{*} \qquad || \qquad i^{*}$$

$$0 \longrightarrow \bar{H}^{n}(B; \alpha^{*}A) \xrightarrow{\overset{\rightarrow}{\longleftrightarrow}} \bar{H}^{n}(L; \alpha^{*}A) \xrightarrow{\longrightarrow} \operatorname{End}(A)_{\alpha} \longrightarrow 0$$

combined with the facts that $p: L \rightarrow B$ classifies cohomology with local coefficients [1] and ([4], Theorem 4.8.1) $F_0(E, e_0; K)_{\alpha} = F_{S,B\alpha}(B, *; L, B)$.

A typical element of

$$\pi_0 \sum (L, *) = \bigcup_{\alpha \in \operatorname{End}(\pi)} H^n(B; \alpha^*A) \times \operatorname{End}(A)_\alpha$$

will, by a slight abuse of notation, also be denoted by $(x, \varphi)_{\alpha}$ where $\alpha \in \text{End}(\pi)$, $x \in H^n(B; \alpha^*A)$, and $\varphi \in \text{End}(A)_{\alpha}$. Note that if $\alpha, \beta \in \text{End}(\pi)$ and $\varphi \in \text{End}(A)_{\alpha}$, composition with φ induces a coefficient group homomorphism $\varphi_*: H^n(B; \beta^*A)$ $\rightarrow H^n(B; (\alpha\beta)^*A).$

An immediate corollary of Lemma 3.1 is

THEOREM 3.2. The monoid $\sigma(L, *)$ of based homotopy classes of based selfmaps of L is isomorphic to

$$(\pi_0 \sum (L, *), \cdot)$$

where $(x, \varphi)_{\alpha} \cdot (y, \psi)_{\beta} = (B\beta^*(x) + \varphi_*(y), \varphi\psi)_{\alpha\beta}$. In particular, there exists a short exact sequence

$$1 \longrightarrow \operatorname{Ext}_{\pi}^{n}(Z, A) \rtimes \operatorname{End}_{\pi}(A) \longrightarrow \sigma(L, *) \longrightarrow \operatorname{End}(\pi) \longrightarrow 1$$

of monoids.

The next goal is to describe the monoid of free maps $\sigma(L)$. For $\eta \in \pi$ and

$$(x, \varphi)_{\alpha} \in \sum (L, *), \text{ let}$$

 $\eta(x, \varphi)_{\alpha} = (\eta x, \eta \varphi)_{\overline{\eta} \alpha}$

this defines a left π -action on $\sum (L, *)$ which doesn't respect the monoid structure, though. Indeed one easily verifies

PROPOSITION 3.3. Suppose $(x, \varphi)_{\alpha}, (y, \eta)_{\beta} \in \sum (L, *)$ and $\eta, \zeta \in \pi$. Then $(p(u, v)) (f(u, v)) = p q(f)(q(f)) = \frac{1}{2} q F(\overline{f} R)$ \$)_{α \$}

$$(\eta(x, \varphi)_{\alpha}) \cdot (\zeta(y, \varphi)_{\beta}) = \eta \alpha(\zeta)(\alpha(\zeta)^{-1}x \circ E(\zeta\beta) + \varphi y, \varphi \varphi)$$

in the monoid $\sum (L, *)$.

SELF-MAPS

There is, however, an induced π -action on $\pi_0 \sum (L, *)$ given by

$$\eta(x, \varphi)_{\alpha} = (\eta_*(x), \eta \varphi)_{\bar{\eta}\alpha}$$

where $\eta_*: H^n(B; \alpha^*A) \to H^n(B; (\bar{\eta}\alpha)^*A)$ is the coefficient group homomorphism induced by $\eta \in \text{End}(A)_{\bar{\eta}}$. Since, in the situation of Proposition 3.3,

$$\alpha(\boldsymbol{\zeta})^{-1} \boldsymbol{x}(E(\bar{\boldsymbol{\zeta}}\boldsymbol{\beta})(e) = \boldsymbol{x}(E(\bar{\boldsymbol{\zeta}}\boldsymbol{\beta})(e)\boldsymbol{\zeta})$$

for any $e \in E$, Corollary 2.2 implies that the formula

$$(\eta(x, \varphi)_{\alpha}) \cdot (\zeta(y, \psi)_{\beta}) = \eta \alpha(\zeta)((x, \varphi)_{\alpha} \cdot (y, \psi)_{\beta})$$

does hold in the monoid $\pi_0 \sum (L, *)$ of components. Hence the monoid structure on $\pi_0 \in (L, *)$ descends to one on the orbit set $\pi_0 \sum (L, *)/\pi$.

THEOREM 3.4. The monoid $\sigma(L)$ of free homotopy classes of free self maps of L is isomorphic to $\pi_0 \sum (L, *)/\pi$. In particular there exists a short exact sequence of monoids

$$1 \longrightarrow \operatorname{Ext}_{\pi}^{n}(Z, A) \rtimes \operatorname{End}_{\pi}(A)/Z \longrightarrow \sigma(L) \longrightarrow \operatorname{End}(\pi)/\operatorname{Inn}(\pi) \longrightarrow 1$$

where $Z = \{(0, \varphi) | \varphi(a) = za \text{ for some } z \in Z(\pi)\}$, $Z(\pi)$ the center of π , and $Inn(\pi)$ is the group of inner automorphisms of π .

Proof. Extend F to a B-map

$$E \times_{\pi} \Sigma(L, *) \xrightarrow{F} \mathcal{F}_{1}(L; L)$$

by the formula

$$F((e_1, (x, \varphi)_{\alpha})\pi)((e, k)\pi) = (\bar{\mu}(e_1, E\alpha(e)), x(e) + \varphi(k))\pi$$

where $e_1, e \in E$, $(x, \varphi)_{\alpha} \in \sum (L, *)$, $k \in K$, and $\overline{\mu}$ is the *H*-space structure on *E* from Lemma 2.1.

Note that F is well defined and that $F((e_1, (x, \varphi)_{\alpha})\pi)$ is really a fiber map. F induces a map F_* between the homotopy sequences of the two fibrations and since $F_*: \pi_0 \sum (L, *) \rightarrow \pi_0 \mathcal{F}_1(L, *; L)$ is an isomorphism of monoids by Theorem 3.2, it follows that also

$$F_*: \pi_0(E \times_{\pi} \Sigma(L, *)) = \pi_0 \Sigma(L, *)/\pi \longrightarrow \pi_0 \mathcal{F}_1(L; L) = \sigma(L)$$

is an isomorphism of monoids.

The epimorphism $\pi_0 \sum (L, *)/\pi \rightarrow \text{End}(\pi)/\text{Inn}(\pi)$ which takes $\pi(x, \varphi)_{\alpha}$ to α has kernel equal to the orbit set of

$$I = \bigcup_{\alpha \in \operatorname{Inn}(\pi)} H^n(B; \alpha^*A) \times \operatorname{End}(A)_{\alpha}$$

and the epimorphism $H^n(B; A) \rtimes \operatorname{End}_{\pi}(A) \to I/\pi$ given by $(x, \varphi) \to \pi(x, \varphi)_1$ for $x \in H^n(B; A)$, $\varphi \in \operatorname{End}_{\pi}(A)$, has kernel Z. \Box

Extraction of units yields

COROLLARY 3.5. The group $\varepsilon(L, *)$ is isomorphic to the set

$$\bigcup_{\alpha \in \operatorname{Aut}(\pi)} H^n(B; \alpha^*A) \times \operatorname{Aut}(A)_{\alpha}$$

equipped with the product of Theorem 3.2, $\varepsilon(L) = \varepsilon(L, *)/\pi$, and there are short exact sequences of groups

$$1 \longrightarrow \operatorname{Ext}_{\pi}^{n}(\boldsymbol{Z}, A) \rtimes \operatorname{Aut}_{\pi}(A) \longrightarrow \varepsilon(L, *) \longrightarrow \operatorname{Aut}(\pi) \longrightarrow 1$$
$$1 \longrightarrow \operatorname{Ext}_{\pi}^{n}(\boldsymbol{Z}, A) \rtimes \operatorname{Aut}_{\pi}(A)/Z \longrightarrow \varepsilon(L) \longrightarrow \operatorname{Out}(\pi) \longrightarrow 1$$

where $Out(\pi) = Aut(\pi)/Inn(\pi)$ is the group of outer automorphisms of π .

References

- [1] Y. ANDO AND K. YAMAGUCHI, On Homotopy Self-Equivalences of the Product A×B. Proc. Japan Acad. 58, Ser. A (1982), 323-325.
- [2] G. DIDIERJEAN, Homotopie de l'espace des équivalences d'homotopie fibrées. Ann. Inst. Fourier, Grenoble **35** (1985), 33-47.
- [3] D.H. GOTTLIEB, Covering transformations and universal fibrations. Illinois J. Math. 13 (1969), 432-437.
- [4] D. HUSEMOLLER, Fibre Bundles, Second Edition. Graduate Texts in Mathematics 20, Springer-Verlag, Berlin-Heidelberg-New York 1975.
- [5] J.F. McCLENDON, Obstruction Theory in Fiber Spaces. Math. Z. 120 (1971), 1-17.
- [6] J.M. Møller, Spaces of sections of Eilenberg-MacLane spaces. Pacific J. Math. 130 (1987), 171-186.
- [7] W. SHIH, On the group $\varepsilon(X)$ of homotopy equivalence maps. Bull. Amer. Math. Soc. 492 (1964), 361-365.
- [8] R. M. SWITZER, Counting elements in homotopy sets. Math. Z. 178 (1981), 527-554.
- [9] K. TSUKIYAMA, Note on self-maps inducing the identity automorphism of homotopy groups. Hiroshima Math. J. 5 (1975), 215-222.
- [10] K. TSUKIYAMA, Self-homotopy-equivalences of a space with two nonvanishing homotopy groups. Proc. Amer. Math. Soc. 79 (1980), 134-138.
- [11] G.W. WHITEHEAD, Elements of Homotopy Theory. Graduate Texts in Mathematics 61, Springer-Verlag, Berlin-Heidelberg-New York 1978.

MATHEMATICAL INSTITUTE UNIVERSITETSPARKEN 5 DK-2100 København ø Denmark