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SELF-MAPS ON TWISTED EILENBERG-MACLANE SPACES

BY JESPER MICHAEL MΘLLER

1. Introduction.

To any (based) space X is associated the monoid (σ(X, *)) σ(X) of (based)
homotopy classes of (based) self-maps of X. This monoid contains as its group
of units the group (ε(X, *)) ε(X) of (based) homotopy classes of (based) homo-
topy equivalences of X.

Let π be any group, A a Z(ττ)-module, and denote by L:—L(A, ri), n>2y

the unique homotopy type with πx{L)—π, πn(L)=A, Ki(L)~0 for iΦl, n, that
realizes A as a πi(L)=π-module and has ^-invariant k—0^Hn+\π, A).

The purpose of this note is to determine σ(L, *) and σ(L) explicitly in
terms of group theoretic invariants, see Theorems 3.2 and 3.4.

The monoid σ(L, *), or rather its subgroup of units ε(L, *), has attracted
some interest in recent years [7], [9], [10], [1], [2] but as far as I know, no
explicit formula has been given, at least not in the case of a non-abelian
fundamental group.

Throughout this note, I use the notation of [8] : If (X, A) is a pair of
spaces, p: Y->B a fibration, and u : X-^Y a continuous map, then FU(X, A Y, B)
is the space, equipped with the compactly generated topology associated to the
compact-open topology, of all maps v: X-+Y such that υ\A—u\A and pv=pu.
An empty space in the A-entry or a one-point space in the 5-entry will be
omitted; thus e.g. F^X, * ; X) is the space of all based self-maps of X.

2. Strategy of proof.

Let ω: Eπ-^Bπ be a universal numerable principal π-bundle. Then Eπ is
a contractible free right ττ-sρace. Moreover, E and B are functors: For any
group endomorphism a: π->7r, denote by Ea: Eπ-^Eπ and Ba: Bπ->Bπ the
induced maps. Equip Eπ and Bπ with base points eQ&Eπ, bo—ωie^^Bπ fixed
by all the maps Ea and Ba, respectively.

Let π be any group and A a Z(τr)-module. Realize the Eilenberg-MacLane
space K(A, n), n ^ 2 , as a strictly associative //-space with strict unit 0&K(A, n).
Since A is a π-module, π acts from the left on K(A, n) by topological group
homeomorphisms. As a model for L(A, n), take the total space [5] of the
associated fibre bundle
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P
L(A, n)=EπXπK(A, n) —> Bπ.

Since Q^K(A, n)π, there is a section s given by s{eπ)—(e, 0)π,
In the following, I use the abbreviations E—Eπ, B~Bπ, K—K(A, n), and

L = L(A, n).
Let (βi(L * L)) 3 Ί ( L L) be the space of all (based) fibre maps of L i. e.

(based) maps U: L-+L such that pΰ—up for some (based) map u: B-+B. Then
there are pull back diagrams

fft(L L) *FX(L L) <ΞX{L, * ; L) > F1(L,*;L)

έ P

FX{B B) £ > FP(L B) F,{By * B) > FP(L} * B)

where p is post-composition and p pre-composition with p. Since p is a fibration
and p a weak homotopy equivalence [3], [6] the left hand vertical maps, ΰ—>u,
are fibrations and the inclusions £Fi(L L)cFi(L L) and 9Ί(L, * L)cFι(L, * L)
are weak homotopy equivalences and morphisms of topological monoids.
Consequently

(7(L)=^0£F1(L L), σ(L, *)=π:02
r

1(L, * L)

as monoids.
By composing, in the case of free maps, with the evaluation fibration

Fχ(B B)->B, we obtain a third fibration of the form

£Fx(L, *;L) — > 2Ί(L L) — > B

and thus σ(L)=σ(L, *)/π is known once σ(L, *) is known as a monoid with π-
action. But σ(L, *) is actually easily determined since each component of the
base space F^B, * B) is weakly contractible [3], [6] and the π-action will
follow from Lemma 2.1 below.

For any group element η <=ττ, ^eAut(π) will denote conjugation by
η, η(ζ)=ηζη'1 for ζeΞπ.

LEMMA 2.1. T/zere exist maps μ: ExE-^E and μ: ExB-^B such that
ωμ—μ{\Xώ) and

(1)

(2)

(3)

for all e, elf e2t

μ(eaη, e)-=(E(η

μfaη, E(rjY

fiieu e2η)

ΞE and η€Ξπ.

)e)η, μ{e, eoη)—eη

Λe2)=μ(elf e2)η

)=μ(eίf e2)η

Proof. Consider the maps
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μ : (EXeoπ)U(eQπXE) —> E

μf: (Exbo)U(eoπXB) —> B

given by β(e, eoη)=eη, β(eoη, e)=(E(η)e)η, μ\e, bo)=ω(e), and μ'(eoη, b)=B(f})b.
Note that β and μf are well defined and that ωμ=μ'(lXω). Equip ExB with
the free right π-action

(e, b)η=(eη, B(ηYιb) e^Ey b^B, ηϊΞπ.

Note that (Exbo)U(πXB) is a ττ-invariant subspace and μ' a π-invariant map.
Let μ be the map induced by μr on the orbits. Then the diagram

(EXπ)U(πXE) ^—^ E

| lXω / j o

(Exbo)\J(πXB) 1—> B

I
(ExB)/πZ)(Exbo\JπXB)/π

commutes and so does the induced diagram

π2((E,π)X(E,π)) — ^ — > π,{EXπ\JπXE)

= 1 d ϊ
π*((E,π)X(B,bo)) • πx{EXbQ\JπXB)

πx{{ExbQ\JπXB)/π)

where 33, 32, 3i denote boundary maps. The left hand vertical maps are all
isomorphisms and hence μ*dί is trivial. But the inclusion

is an epimorphism since

, π)X(B, bo))/π)^π1((Ef π)X(E, π))^πo

and thus μ*dx is the obstruction to extending μ. Hence μ extends to (EχB)/π.
Let now also μ denote an extension of μ. By covering space theory there

exists a (unique) based lift μ: ExE->E of μ(lχω) which extends the given life
β on (EXπ)VJ(πxE). It is not hard to see that μ has the properties (l)-(3). D

COROLLARY 2.2. The equivariant self-map on E given by e->(E(ζ)e)ζ, ζ e π ,
is π-homotopic to the identity map.

Proof. μ(eQζ, e)=(E(ζ)e)ζ, μ(eQ, e)—e, e0 and eoζ can be connected by a
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path. D

3. Construction of self-maps.

For any group G, let EndίG) denote the monoid (under composition) of
group endomorphisms of G. For αeEnd(π ), let

: φ(ζa)=a(ζ)φ(a)\

F0(E, e0 K)a={x : (E, e0) — > (K,

EndG4)Λ is viewed as a discrete space and F0(E, eo; K)a as a subspace of
F0(E, eo; K). Algebraically End(^4)« is an abelian group under pointwise
addition and Endπ(^4)=End(^4)i is also a monoid under composition of maps.

Consider the disjoint union

Σ(L *):= U HE, eQ K)axEnά(Λ)a.
αeEnd(.τ)

equipped with the product

(x, <p)a (u, ψ)β=(x°Eβ+φy, φψ)aβ

where a typical element of Σ ( £ , *) is denoted by (x, φ)a for

, eQ K)a.

This product is associative and (0, l)i is a unit element so ( Σ ( £ , *), •) is a
topological monoid.

Define a map F: Σ ( ^ , ^ - ^ ^ ( L , *; L) by the formula

^((*, ?>)βX(β, k)π)=(Ea(e), x(e)+φ{k))π

for (x, 0 α G 2 ( L , *), e^E, and ^eiΓ. (Since K(—, n) has a functorial con-
struction, we may confuse ^>eEnd(^)α with the induced map K(φ, n)—φ; +
refers to the //-space structure of K.)

LEMMA 3.1. F is a morphism of topological monoids and πo{F): πo*Σi(L, *)-»
πo^i(L, * ; L)=σ(L, *) is an isomorphism of monoids.

Proof. A direct verification shows that F respects the monoid structures.
As each component of FX(B, *; B) is weakly contractible and πo^

one of the fibrations of the preceeding section shows that, as a set,

πo$i{L, *; L)= \J π0FsoBaop(L, *; L, 5)

αeEnd(τr)

Furthermore, the restriction of τro(F),

— > π0FsoBaop(Lf *; L, 5)
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is bijective according to the split exact sequence of ([5], p. 4)

P
π<,Fs.Ba(B, *;L,B)τ± π0F,.Ba.p(L, * L, B)

11 p* 1 1 2 *
0 - ^ Hn{B a*A) ^ H\L a*A) —+ End(A)a - * 0

s*

combined with the facts that p : L->B classifies cohomology with local coefficients
[1] and ([4], Theorem 4.8.1) F0(E, eo; K)a=FSoBa(Bf *; L, B). D

A typical element of

, *)= \J Hn(B;a*A)xEnd(A)a
αeEnd(π)

will, by a slight abuse of notation, also be denoted by (x, φ)a where
x£ΞHn(B; a*A), and φtΞEnά(A)a. Note that if a, j8eEnd(π)and φ^Enά(A)aj

composition with φ induces a coefficient group homomorphism φ*: Hn(B; β*A)
->Hn(B;(aβrA).

An immediate corollary of Lemma 3.1 is

THEOREM 3.2. The monoid σ(L, *) of based homotopy classes of based self-
maps of L is isomorphic to

where (x, φ)a'(y, φ)β—{Bβ*(x)+<p*(y), <pψ)aβ. In particular, there exists a short
exact sequence

1 — > ExtS(Z, i4)>ιEndπ(i4) — > σ(L, *) — > End(τr) — > 1

of monoids.

The next goal is to describe the monoid of free maps σ(L).
For η^π and

, * ) , let

η(x, <ρ)a=(ηx, ηφ)ήct

this defines a left π-action on Σ(L, *) which doesn't respect the monoid struc-
ture, though. Indeed one easily verifies

PROPOSITION 3.3. Suppose (*, φ)a, (y, ^ G I K L , *) and η, ζ e π . Then

(η(x, φ)aΠUy, ψ)β)=ya(Q(a(Q-ίχoE(ζβ)+φy, φφ)aS

in the monoid Σ ( L , *).
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There is, however, an induced π-action on τr 0 Σ(£, *) given by

where η*: Hn(B; a*A)->Hn(B; (fja)*A) is the coefficient group homomorphism
induced by 37 e End 04)^. Since, in the situation of Proposition 3.3,

a(ζy1x(E(ζβXe)=x(E(ζβ)(e)ζ)

for any e^E, Corollary 2.2 implies that the formula

, φ)a)<ζ(y, ψ)β)=ηa(ζX(x, <p)a<y, φ)β)

does hold in the monoid 7Γ0Σ(£, *) of components. Hence the monoid struc-
ture on πo^(L, *) descends to one on the orbit set τr0Σ(£> *)/π.

THEOREM 3.4. The monoid σ{L) of free homotopy classes of free self maps
of L is isomorphic to τr 0 Σ(£, *)/ττ. In particular there exists a short exact
sequence of monoids

1 — > Extϊ(Z, A) xi Endπ(^)/Z —-> σ(L) — > End (τr)/Inn (π) — > 1

where Z={(0, <p)\<p(a)=za for some z^Z(π)}, Z(π) the center of π, and Inn(τr)
is the group of inner automorphisms of π.

Proof. Extend F to a 5-map

F

by the formula

F((elf (x, <p)a)π)((e, k)π)=(fi(elf Ea{e)), x{e)+ψ{k))π

where elf e<=E, (.τ, 0 α e Σ ( L , *), k^K, and μ is the //-space structure on E
from Lemma 2.1.

Note that F is well defined and that F((eu (x, <p)a)π) is really a fiber map.
F induces a map F* between the homotopy sequences of the two fibrations and
since F*: πo^ΣiL, *)->τro2

ri(L, *; L) is an isomorphism of monoids by Theorem
3.2, it follows that also

F*: πo(ExπΣ>(Lf * ) )=*oΣ(£, *)/π—>πo<Ξ1(L; L)=σ(L)

is an isomorphism of monoids.
The epimorphism πoΣ(L, *)/π—>End(τr)/Inn(τr) which takes π(x, ψ)a to a

has kernel equal to the orbit set of

/= \J Hn(B;a*A)xEnd(A)a
αelnn(π )
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and the epimorphism Hn(B; A)xEndπ(A)->I/π given by (x, φ)->π(x, ψ\ for

x£ΞHn(B; A), φϊΞEndπ(A), has kernel Z. D

Extraction of units yields

COROLLARY 3.5. The group e(L, *) is isomorphic to the set

\J Hn(B;a*A)xAut(A)a

αeAut(π)

equipped with the product of Theorem 3.2, ε(L)=β(L, *)/π, and there are short

exact sequences of groups

1 — > Ext~(Z, A)x A\xtπ(A) — > e(L, *) — > Aut(ττ) — > 1

1 — > ExtJ(Z, ^)xί Autπ(^l)/Z — > e ( i ) — > Out(π) — > 1

i^/i^r^ O u t ( π ) = A u t ( π ) / I n n ( π ) is the group of outer automorphisms of π.
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