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Abstract

The purpose of this paper is to study several classes of semi-Kaehlerian submani-
folds of an indefinite complex space form.

Introduction.

An indefinite Kaehlerian manifold of constant holomorphic sectional curva-
ture is called an indefinite complex space form. Montiel and Romero [9] inves-
tigated indefinite complex Einstein hypersurfaces of an indefinite complex space
forms and showed that totally geodesic indefinite complex hypersurfaces Pί(c'),
C?, H"(—cf) and an indefinite complex quadric Qf are those examples. Ikawa,
Romero and one of present authors [6] have also shown that by using an
indefinite Segre imbedding there exists a product of complex hyperbolic spaces
which becomes an example of space-like Einstein-Kaehlerian submanifolds of an
indefinite complex hyperbolic space.

Recently, concerning with the study of Calabi's classification [5] for Kaeh-
lerian imbeddings of complex space forms into complex space forms, Romero
[18] and Umehara [21] have independently found that there exists a strongly
full holomorphic isometric immersion of indefinite complex space forms into
indefinite complex space forms.

From this point of view the purpose of this paper is to study several
classes of complete semi-Kaehlerian submanifolds of an indefinite complex space
form M#nc'\

In the first section, the brief summary of indefinite complex submanifolds
of an indefinite Kaehlerian manifold are recalled.

The examples of space-like complex Einstein submanifolds of indefinite
complex space forms are given in § 2. § 3 is devoted to the study of the space-
like complex submanifolds with constant scalar curvature of M%+P(c'). In
particular, by estimating the scalar curvature and by using Nishikawa's theorem
[12], we shall characterize space-like Einstein submanifolds in the case of c'<0.
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In § 4, by developing of Omori's theorem [13] one shows that complete
complex submanifolds with constant scalar curvature of Mn+P(c'), c'>0, are
Einstein if the Ricci tensor and any shape operator is commutative. In § 5 we
confine our attention to the indefinite complex space forms Mfflic'), c'φO. By
virtue of an example in § 2 the local version of Romero's [18] and Umehara's
[21] results can be treated. In general, the shape operator of indefinite complex
hypersurfaces of M"ί+t(c') is not necessarily diagonalizable. Thus § 6 is devoted
to the investigation of proper indefinite complex Einstein hypersurfaces of
Mf+t(c'), which is the local version of Montiel and Romero [9].

It has been proved by Ryan [19] that the complex hypersurface of complex
space forms Mn+1(c'), c'φQ, which satisfies RS=0 is Einstein. On the other
hand, Takahashi [20] has shown that it is cylindrical in the case of complex
Eucidean space Cn+1. In §7 we shall show that there exist many indefinite
complex hypersurfaces of an indefinite complex Euclidean space CfiV satisfying
RS=0 which are not Einstein and not cylindrical.

1. Indefinite complex submanifolds.

This section is concerned with indefinite complex submanifolds of an
indefinite Kaehlerian manifold. Let Mf be an (n + £)-dimensional connected
Kaehlerian manifold of index 2(s+t) (n^2, Q<^s<n, O^t£p) and let M be an
72-dimensional connected indefinite complex submanifold of index 2s of Mf. Let
M be an indefinite Kaehlerian submanifold of M'. We choose a local unitary
frame field {EΛ} = {Elf ••• , En+P} on a neighborhood of Mr in such a way that,
restricted to M, Elf ••- , En are tangent to M and the others are normal to M.
Here and in the sequel the following convention on the range of indices are used
throughout this paper, unless otherwise stated:

A, B, ••• =1, ••• , n, n + 1, ••• , n + p,

i, j, ••• = 1 , ••• , n,

x
y
 y

f
 ... = n + l, ... , n + p.

With respect to the frame field, let {ωA} = {ωif ωy} be its dual frame field.
Then the Kaehlerian metric tensor gf of Mf is given by g'=2 Σ £A<0A®<OA>
The connection forms on M' are denoted by ωAB. The canonical forms ωA and
the connection forms ωAB of the ambient space satisfy the structure equations

(1.1) dωA+Σι εBθ)ABAωB=0, ωAB+ώBA=0,

(1.2) dωΛB+Σ εc<θAcΛωCB=Ω'AB, Ω'AB=Σ>

where Ωr

AB (resp. R''ABCD) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor R') on M'.

Restricting these forms to the submanifold M, we have
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(1.3)

and the induced indefinite Kaehlerian meric g of index 2s of M is given by
^ = 2 Σ δ;<ϋ;(8)ίϋ;. Then {Ej} is a local unitary frame field with respect to this
metric and {ωj} is a local dual field due to {Ej}, which consists of complex-
valued 1-forms of type (1, 0) on M. Moreover ω1} ••• , ωn, ώίy ••• , ωn are linear
independent, and they are cannonical forms on M. It follows from (1.3) and
the Cartan lemma that the exterior derivatives of (1.3) give rise to

(1.4) ωxι=Σ> SjhfjCOj, hϊj=hfi.

The quadratic form Σ εiε3εxh^ωi®ωj®E x with values in the normal bundle is
called the second fundamental form of the submanifold M. From the structure
equations of Mf it follows that the structure equations for M are similarly
given by

(1.5) dωt+Σ Sj^ΛωpO, ωίj+ώjι=Q,

(1.6) dωij+Σ ekωik/\ωkJ—Ωlj, ΩιJ=Σι

where ΩXJ (resp. R-ιjkϊ) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor R) on M. Moreover, the following
relationships are defined:

(1.7) dωxy + Σι εtωxgAωzy = Ωxy, Ωxy = Σ, ZhSiRxykKOkAaJt,

where Ωxy is called the normal curvature form of M. For the Riemannian
curvature tensors R and R/ of M and Mr respectively, it follows from (1.4)
and (1.6) that we have the Gauss equation

(1.8) Rϊjki^R'ϊjki-Σεxhfrhϊt.

The components of the Ricci tensor 5 and the scalar curvature r of M are
given by

(1.9) S tj=

(1.10) r = 2

where (A*j)8=Σ ekεxhfkh
x

kJ and /z 2=Σ εk(hk-k)\
The indefinite Kaehlerian manifold M is said to be Einstein, if the Ricci

tensor 5 is given by

(1.11) SιJ=rεiδiJ/2n.

The components Rijkim and Rijkϊm (resp. Stjk and Sιjk) of the covariant deri-
vative of the Riemannian curvature tensor R (resp. the Ricci tensor S) are
defined by
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Σ £m(Rljkim(Um+RijkimO)m) = dRijki — ̂ j Sm(Rmjki<i>mi

+ Rϊmkϊ<*>mj+ Rϊjmϊ<t*mk

Σ εk(Stjkωk+Sljkώk)=dStj—Σ

The second Bianchi formula is given by

(1.12) Rϊjkim—Rϊjmϊk ,

and hence we have

(1.13) Stj* = S*j<=

where dr=*Σ εj(rj<ϋj-\-rjώj).

Now, the components &%* and /if,* of the covariant derivative of the second
fundamental form of M are given by

hιjkθ)k)—dh*j—^Σι sk(hkj(θkί+hik<θki)+Σ εyh\3ωxy.

Then, substituting dhfj in this definition into the exterior derivative of (1.4),
we have

(1.14) hΐjk — hμk — hikj, h^jk — — Rfχχjk'

Similarly the components hϊjkι and h{jkι of the covariant derivative of h{jk

can be defined by

+Hεyh
v

ijkωxy,

and the simple calculation gives rise to

(1.15)

A plane section P of the tangent space TXM of M at any point x is said
to be non-degenerate, provided that gx\TxM is non-degenerate. It is easily
seen that P is non-degenerate if and only if it has a basis {u, v) such that
g(u, u)g(v, v)—g(u, v)2φ0, and a holomorphic plane spanned by u and Ju is
non-degenerate if and only if it contains some v with g(v, v)φθ. The sectional
curvature of the non-degenerate holomorphic plane P spanned by u and Ju is
called the holomorphic sectional curvature, which is denoted by H{P)—H{u). The
indefinite Kaehlerian manifold M is said to be of constant holomorphic sectional
curvature if its holomorphic sectional curvature H(P) is constant for all P and
for all points of M. Then M is called an indefinite complex space form, which
is denoted by M?(c), provided that it is of constant holomorphic sectional
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curvature c, of complex dimension n and of index 2s. The standard models of
indefinite complex space forms are the following three kinds which are given
by Barros and Romero [3] and Wolf [22]: the indefinite complex Euclidean
space C?, the indefinite complex projective space PfC or the indefinite complex
hyperbolic space HfC, according as c=0, c>0 or <:<0. For an integer s
(0<s<n) it is seen by [3] and [22] that they are only complete, simply con-
nected and connected indefinite complex space forms of dimension n and of
index 2s.

Now, the Riemannian curvature tensor Rijkι of Mt(c) is given by

In particular, let the ambient space be an indefinite complex space form
of constant holomorphic sectional curvature cf. Then we get

(1.16) Rh

(1.17) St3

(1.18) hx

jkl-

Functions hA and A2 are denoted by /z 4 =Σ SiSj{htif(hji)2 and J 4 2 = Σ εxεyAy

xAx

y,
where Ay

x=Σ> ε*εA*A> Then, by means of (1.18), the Laplacian Ah2 of the
function h2 is given by

(1.19) Ahi=(n+2)cfh2/2-(2hi+Ai)+Σ ^^μkh
x

ιjkh
x

Jk.

2. Examples of space-like complex Einstein hypersurfaces.

We give here some examples of space-like complex Einstein submanifolds
of an indefinite complex space form.

Example 2.1. The indefinite Euclidean space Cn is a totally geodesic com-
plex hypersurface of C?+1 in a natural way.

Example 2.2 [9]. For an indefinite complex projective space P?+1(c), if
{zu •••, 2«, 2rβ+i, •••, zn+2} is the usual homogeneous coordinate system of Pf+1(c),
then for each j fixed, the equation z ; = 0 defines a totally geodesic complex
hypersurface identifiable with Pf(c) or P*-ι{c), according as s + l ^ / ^ n + 2 or
l ^ y ^ s . This means that Pn(c') is a totally geodesic hypersurface of P?+1(c').
Taking into account that H^—c') is obtained from Pl-S{cf) reversing the sign
of its indefinite Kaehlerian metric, the previous discussion shows that Hf(-c')
is a totally geodesic complex hypersurface of both Hf+\—c') and HfH(—c').
Thus Hn(—c') becomes a space-like complex hypersurface of H^\—cf).
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Example 2.3 [9]. Let Qf be an indefinite complex hypersurface of P?+1(c')
defined by the equation

in the homogeneous coordinate system of P?+1(c'). Then Qf is a complete
complex hypersurface of index 2s, and moreover, in the similar way to
Kobayashi and Nomizu [7], Chapter 11, Example 10.6 it is Einstein and then
the Ricci tensor S satisfies S=nc'g/2. Then Qf can be also considered as an
indefinite complex Einstein hypersurface of Hί+K—c') Namely, the complex
quadric Qn is a space-like hypersurface of H?+\—c') and the scalar curvature
r is given by r= — n2c/.

Example 2.4 [6]. For the homogeneous coordinate systems {zlf ••• , z8,
z*+i, '" , Zn+i) of P?(c') and {wly •••, wt, ω ί + 1, •••, wm+1} of Pf(c'), a mapping
/ of Pΐ(c')XPT(c') into P%tf;A,»(c') with N(n, m)=n+m+nm, R{n,m,s,t)

= s(m—t)+t(n — s)+s-\-t is defined by

f(z, w)=(zawu, zrwxy zbwy, zswv)

where

a, b, — =1, •••, s; r, s, ••• =s+l, •••, n + 1,

x, 3;, ••• =1, •••, t; u, v, ••• =H-1, •••, m+1.

Then / is a well defined holomorphic mapping and it is seen by Barros and
Romero [3] that / is also an isometric imbedding, which is called an indefinite
Segre imbedding. In particular, if s=f=O, then / is a classical Segre imbedding
(the second author and Takagi [11]). By using that the indefinite complex
hyperbolic space H^(—cf) is obtained by the changing the indefinite Kaehlerian
metric of Pn-s(c') by its negative, another indefinite Segre imbedding

is given, where S(n, m, s, t)=(n — s)(m—t)+st+s+t. In particular, for s=t—O
we have a holomorphic isometric imbedding / of a product of complex hyper-
bolic spaces Hn(—c/)xHm(—c') into an indefinite complex hyperbolic space

Example 2.5 [18]. Let f:M~^Ms{cf) be a holomorphic isometric immersion
of an indefinite Kaehlerian manifold M into a complete and simply connected
indefinite complex space form M%{c'\ Then / is said to be strongly full if
/(M) is not contained in an autoparallel complex submanifold of M%(c'). It is
seen in [18] that P?(c) admits a strongly full holomorphic isometric immersion

into Ps(C) if and only if c'=kc for some positive integer k, N—V1^ j — 1

and 5=Σ^Y 1 ) / 2 ] - 1 (2/+|)( n - ^ί2;^ 2 ί~ 1 ) i f s > 0 ' K* + 1V2] d e n o t ί n g t h e
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greatest integer less than or equal to (& + l)/2, and S = 0 if s=0.
Changing the indefinite Kaehlerian metric of PJ(c) by its opposite, we

have that there exists a strongly full holomorphic isometric immersion of
Hn(-c) into Hg,ψri,%(-kc), where S'(n, k)=N(n, k)-S(n, n, k) and S(n, n, k)

l t i s s e e n t h a t N(w, 2)-n = S'(n, 2) = n(n + l)/2 and

3. Space-like submanifolds.

This section is concerned with space-like submanifolds with constant scalar
curvature of an indefinite complex space form. Let M be a space-like sub-
manifold of an indefinite complex space form M'=M%+P(c'). First of all, the
Laplacian of the square length h2 of the second fundamental form is estimated.
Since M is space-like, the matrix {(hjk)2) is a negative semi-definite Hermitian
one, whose eigenvalues λ/ are non-positive real valued functions on M. On
the other hand, the matrix (Ay

x) is by definition a positive semi-definite
Hermitian one, whose eigenvalues are denoted by λx. Then λx are non-negative
and we have

(-h^h,=Σxλx^{-h2f/n,
(3.1)

Since the Laplacian Ah2 of h2 is given by (1.19), we have

Ah2^{np(n+2)c'h2-2(n+2p)h2

2\/2np,

where the equality holds true if and only if

λj=λ, λx=μ for any indices j and x

and hjk are parallel. This means that for a non-negative function / defined by
— h2 the following inequality

(3.2) Af^{np(n+2)c'f+2(n+2p)f2}/2np.

On the other hand, the square of the norm of a tensor

gives rise to an inequality

where the equality holds true if and only if M is of constant holomorphic
curvature. From this result it follows that

(3.3) Af^{n+2){n(n+l)c'f+Af2}/2n{n+l).
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As a direct consequence of these estimates, one finds the following

PROPOSITION 3.1. Let M be a space-like complex submanifold with constant
scalar curvature of M/^=M^+P(c/).
(1) // c'2^0, then M is totally geodesic,
(2) // c'<0 and r^n\n + p+l)c''/(n+2p), then M' is Einstein, r=n\n+p+l)c'

/(nJr2p) and the second fundamental form is parallel.
(3) // cf<0 and r^n(n + l)c'/2, then M is a complex space form Mn{c'/2) and

Proof. Since the scalar curvature r is constant, it turns out that / is also
constant and hence by (3.2) we get

which means that the first and second assertions are trivial.
The last one is easily derived from (3.3). In this case, the matrix (Ay

x)
has at most two distinct eigenvalues 0 and — c'/2. Since the trace Ax of the
above matrix is given by i 4 i = Σ εxAx

x=h2, we have h2=c/s/2} where s denotes
the multiplicity of —c'/2, from which it follows that s=n(n + l)/2. q. e. d.

Remark. Examples of space-like Einstein-Kaehlerian submanifolds of an
indefinite complex space form M'=M%+P(c'), c'<0, are given in § 2 :

(1) M=Qn of H«+P{c'), />=1, r = n V .
(2) M=Hn(c'/2) of H%+P(c'), />
(3) M=Hn/\c')xHn/2(c') of Hl

It was proved in [2] that a complete space-like complex submanifold of
M'=M%+P(c'), c'^0, is totally geodesic. However, in the case where c'<0,
Example 2.5 shows that there are many complete not Einstein space-like submani-
folds. One proves here the following

THEOREM 3.2. Let M be a complete space-like complex submanifold of Mr—
Mζ+P(c'), c'<0.
(1) // r^n\n + p+l)c'/(n+2p), then M is Einstein, r=n\n + p + l)c'/{n+2p)

and the second fundamental form is parallel.
(2) // r^n(n + ϊ)c'/2, then M is an indefinite complex space form Mn(c'/2) and

In order to Theorem 3.2, the following theorem due to Nishikawa [12] is
needed.

THEOREM (Nishikawa). Let N be a complete Riemanman manifold whose
Ricci curvature is bounded from below and let f be a non-negative function. If
it satisfies
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where k is a positive constant, then f vanishes identically on N.

Proof of Theorem 3.2. The first assertion is only proved. The other is
verified by the same method. Since the right hand side of (3.2) is non-nega-
tive, the conclusion is trivial by the maximal principle if M is compact.

Now, M is assumed to be non-compact and complete. For the function /
defined by —h2 and the negative number b defined by np(n+2)c'/2(n-\-2p) the
assumption of the scalar curvature implies that f^—b>0. Hence a function
F on M defined by f+b satisfies

where k=(n+2p)/np. Accordingly, the theorem due to Nishikawa yields that
F vanishes identically on M.

This completes the proof.

COROLLARY 3.3. Let M be a complete space-like complex submanifold of

M'=MJ+ 2 J(O, c'<0.
(1) // every Ricci curvature of M is greater than or equal to n(n + p+l)c'

/2(n+2p), then M is Einstein.
(2) // every Ricci curvature of M is greater than or equal to (tt + l)c'/4, then M

is a complex space form Mn(c'/2).

4. Complex submanifolds.

This section is devoted to the investigation of complete complex submani-
folds with constant scalar curvature of M'=Mn+p(c'). Let M be an n-dimen-
sional complex submanifold of Mf. The components Stjkι and Stjki of the
covariant derivative of Stjk are expressed by

(4.1) S (Sιjkιωι+Sijkiωί)—dSljk — Σι (Sljkωli+Sukώij+Sljlωlk).

By the exterior differentiation of the definition of Stjk and by taking account
of (4.1) the Ricci formula for the Ricci tensor S is given as follows:

(4.2) Sl]kl-Siyik

Assume that the scalar curvature r of M is constant. Since we have
=0 by (1.13), it follows from (4.2) that we have

On the other hand, by combining the relation Σ!ιSJkSk]~r2/4n = hi—
together with the above equation, the following one
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(4.3) A(h4-ht*/n)=nc'(h4-hS/n)+2 Σ hftthftJhJtKft

is derived. Then we can prove the following

THEOREM 4.1. Let M be a complete complex submanifold with constant scalar
curvature of M'=Mn+p(c'), c'>0. If the Ricci tensor and any shape operator is
commutative, then M is Einstein.

Remark. In the case where M is compact, Theorem 4.1 is proved by Kon

[8].

In order to Theorem 4.1, the following theorem due to Omori [13] for the
estimate of the Laplacian of the function of class C2 is needed. This is slightly
different from the original one.

THEOREM (Omori). Let N be a complete Riemannian manifold whose Ricci
curvature is bounded from below and let F be a function of class C2 on N. If F is
bounded from below, then for any point p and any ε>0 there exists a point q
such that

(4.4) |gradF(<7)|<ε, AF(q)>-ε, F(q)£F(p).

Proof of Theorem 4.1. A function / is defined by

/ = A 4 - λ 2 Y n .

Then it follows from (3.1) that / is non-negative and the equality holds true
if and only if all eigenvalues of the Hermitian matrix (hJk)

2 are equal. By
(4.3) and the assumption of the theorem we have

(4.5) Af^nc'f,

where the equality holds true if and only if Stj*=O for any indices. For any
positive constant a, a function F defined by l / ( / + α ) 1 / 2 is smooth and bounded.
On the other hand, the Ricci curvature of M is given by

and since the scalar curvature is constant, h2=H λj is also constant. By (3.1)
we have h^h2

2 and hence hA is bounded from above. Hence all eigenvalues
λ3 are bounded from above by a positive number R, which implies that the
Ricci curvature is greater than or equal to

This means that the theorem due to Omori can be applied to the function F.
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For any point p and for any ε>0 there exists a point q at which F satisfies
(4.4). It follows from these properties that we have

ε{3ε+2F(q)}>F(qyAf(q)^0

by the direct calculation. When ε tends to 0, the left hand side converges to
0, because the function F is bounded. For a convergent sequence {εm} such
that

ε m -+0 (ro->0),

there exists a point sequence {qm} so that the sequence {εm(3εm+2F(qm)\ con-
verges to 0 by taking a subsequence if necessary, and hence we have

(4.6) F(?

On the other hand, by the definition of F it yields

Accordingly the function F is bounded from below by the positive constant,
from which together with the above relation we have

(4.7) Δ/(?m)->0.

Then (4.5) implies that the sequence {f(gm)} converges to 0 and hence the
sequence {F(qm)} converges to α~1/2. On the other hand, since we have

for the fixed point p by (4.4), the point is the maximal one of F and hence

f(p)=0 for any point p.

This completes the proof.

Remark. The theorem due to Nishikawa stated in § 3 can be verified using
the estimate of the Laplacian of the distance function from a point by Yau [23].
However the above proof suggests another one of Nishikawa's theorem. Namely,
it is sufficient if the property (4.7) is derived under the assumption .(4.6). For
any positive number ε there is an integer NQ such that for any m>Nowe have

which implies that the sequence {f(qm)\ is bounded and hence F is bounded
from below by a positive constant. It turns out that (4.7) holds true.

Complex hypersurfaces of Mf—Mn+\cf) are next considered. Assume that
the scalar curvature r is constant. Then (4.3) is simplified as
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On the other hand, since we have

Σ hrsihrsj=-c'{h2dij+2(hlj)
2}/2+{2(hty+h2(hlj)

2},

because of the constant scalar curvature and (1.18), the above equation is
reduced to

Ahi=c/{(n-2)h4-2h2

2}+2(2h6+h2hi))

where h6=Σ {hjff{hrs)2{hs]f. For eigenvalues λ3 of the Hermitian matrix (hjk)2,
the function Λ6 is given by Σ U / and hence we have h^h2hjn. Thus we have

(4.8) Ah^cXn-±)hι+2(n+2)h2hJn,

provided that c'<:0. By means of this inequality, the following theorem for
complex hypersurfaces is proved.

THEOREM 4.2. Let M be a complete complex hypersurface of M'=M n + 1 (c')-
// the scalar curvature of M is constant, then the following statements hold true:
(1) // c '^0, then M is totally geodesic or S=ncfg/2, the latter case arising only

when c'>Q.
(2) // c '<0 and if n^4, then M is totally geodesic.

Proof. The case where c'>0 is a direct consequence of Theorem 4.1. The
others are concluded by (4.8) and the same procedure of the proof of Theorem 4.1.

5. Indefinite complex space forms.

Extending Calabi's classification [5] for Kaehlerian imbeddings of complete
simply connected complex space forms into complete and simply connected
complex space forms, Romero [18] and Umehara [21] proved recently the
indefinite version independently. In this section the local version of Romero
and Umehara's result is treated. The following two results are proved.

THEOREM 5.1. Let Af=M?(c) be an n-dimensional indefinite complex space

form immersed in M'=M?+t

p(c').

(1) // c'φ0t then c'=kc and n + />^(n"£ *) —1 for some positive integer k.

(2) If c'=0 if and only if c=0.

PROPOSITION 5.2. Let M—M^(c) be an n-dimensional indefinite complex space
form immersed in M'=Mftt

p(c'), c'φO and t=p.
(1) // c'>0, then c'—c {i.e. M is totally geodesic in M').
(2) // c'<0, then c'—c or 2c, the first case arising only when M is totally

geodesic and the other arising only when s=0.
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By the similar direct calculation to that in the local version of Calabi's
result by the second author and Ogiue [10], we can obtain the following

LEMMA 5.3.

Σ εxh*b l l - εlk

for all kφl,

for k=l,

where Σ r denotes the summation on all permutations τ with respect to indices

From the second equation of the above lemma we have

(5.1)

where j u •••, j a are distinct indices among ilf •••, ik+1. Using (5.1) we prove

LEMMA 5.4. (1) // c'Φΰ, then there exists a positive integer k such that
c'=kc.
(2) c'=0 if and only if c=0.

Proof. For any positive integer m, we put ί m = ( W ΐ m ) — ( w + 1). Then

there exists an integer m such that p<pm. Let H—{Hμ

λ) be a matrix of order
pm defined by

Lfx-n —

Aflt2 for

hfr.,m for pm

Hμ

x=0 for p<λ<pm,

and let Hr—{εχHμ

λ) be a matrix of order pm. By choosing the integer m,
these two matrices are both singular. On the other hand, we have from (5.1)

_ / Σ βxAfiAδ
H'l

0 Σ

0

and hence at least one entry of the diagonal of the above matrix must be equal
to zero, from which together with (5.1) it follows that there exists an integer
k so that if c'φO, then c'=kc.

The second assertion is trivial by the above argument. q. e. d.
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Remark. In Theorem 5.1 (2), we do not know whether the submanifold
M=Ms(c) is totally geodesic or not.

LEMMA 5.5. // there is a positive integer k such that c'—kc, then p^pk

The proof is derived in the proof of Lemma 5.4.

Let M=Mΐ(c) be a complex submanifold of M ' = M ? ί t

p ( O , CφO. In par-
ticular, suppose that t=p. Then it follows from (5.1) that we have

(5.2) -Σ hUhU^YlUW-rcXε^klβ*,
k+i k+i

because of εx— — 1 for any index x. By the values of k in (5.2) the following
relations are given:

(c/~c)(c/-2c)(c/-3c)£0f

By a simple calculation Proposition 5.2 is concluded.

Remark. Example 2.5 gives an example of Proposition 5.2.

6. Indefinite Einstein hypersurfaces.

Indefinite Einstein hypersurfaces of M'—M™+i(c') is said to be proper, if
the shape operator is diagonalizable. By means of the rigidity theorem of
complex submanifolds of an indefinite complex space form, Montiel and Romero
[9] proved the following

THEOREM. (1) The proper complete simply connected indefinite complex
Einstein hypersurfaces of P?+Kc) are only Pf(c) with t=0, 1 and Qn with t=Q.
(2) In Hϊ#(c) they are only Hf(c) with t=Q, 1 and Qn with t=l.
(3) In Cfti they are only C? with f=0, 1.

This section is concerned with the local version of the above theorem. We
prove here the following

THEOREM 6.1. Let M be an indefinite complex Einstein hypersurface of
Mfΐl(c'). If M is proper, then M is totally geodesic or S=nc'g/2, the latter
arising only when c>0 and t=0 or c<0 and ί = l .
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Proof. Differentiating (Λtj)
2 exteriorly twice, we get

Σ εεr(hιrkihrj+htrkhrji)=1O,

where ε=εn+i, which implies h2hljki=0. Accordingly, it follows from this
equation and (1.18) that

(6.1) h2(nc'-2h2)(εkhιjδkl + εihjkδίι + εjhkίδjι)=0.

Since M is proper, the second fundamental form htJ is given by εiViδij and
hence we have h2=ε Σ b i l 2 . It means that h2 is non-positive or non-negative
according as ε = —1 or ε = l and h2=Q holds true if and only if M is totally
geodesic.

Suppose that h2—ncfj2. If c'>0, then h2>0 and hence we have ε—1 and
f=0. On the other hand, if c'<0, then /z2<0 and hence e= —1 and t=l. Of
course, the condition h2—ncf/2 is equivalent to

In the case where h2φ0 or nc'/2, the equation (6.1) gives

which yields that htJ=0. Thus M is totally geodesic and one concludes the
proof.

7. Indefinite complex hypersurfaces with RR=0.

This section is concerned with indefinite complex hypersurfaces with the
Nomizu condition RR=0 of an indefinite complex Euclidean space Mf=C^t-
Namely, it satisfies

R(X, Y)R=0

for any vector fields X and Y tangent to M. It turns out that the Nomizu
condition implies RS=0 and moreover it is seen in [2] that in an indefinite
hypersurface of an indefinite complex space form M/=M^t

ί(c/) if c'Φΰ and if
M satisfies RS=Q, then M is Einstein.

Now, suppose that M is an indefinite complex submanifold satisfying the
condition RS=0 of M%if(cf). It is seen that the condition RS=0 is equivalent to

and, combining (4.2) together with (1.16) and (1.17), we have

In particular, in an indefinite complex hypersurface of CUt, we have
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(7.2) hik{hnγ-hn{hikγ^y

where we put (hjky=Σl εrεsεhJrhrshsk, which implies that

{hjkf—fhjk for a function / on M,

if the set consisting of points of M at which the function h2 is zero is measure
zero. Under this hypothesis it follows that the equation (7.1) is equivalent to
(7.2).

Remark, Taking account of (7.1), we remark here that if c'>0 and if a
space-like complex submanifold M satisfies RS=0, then it is seen in [2] that
M is Einstein.

A complex hypersurface M of index 2s of Cfft1 is said to be cylindrical, if
M is a product manifold of C2"1 and a complex curve in C% orthogonal to C1~X

in Cίίί (a+b=s+t). It is evident that a cylinder M of index 2s of C?H
satisfies (7.2), and hence it satisfies the condition RS=Q, but it is not necessarily
Einstein.

Remark. An example given in [1] is a complete indefinite complex hyper-
surface of C2

s

n+1 which is Ricci-flat. Accordingly it satisfies RS=0 but it is not
cylindrical. This is shown later. In a definite version, Takahashi [20] proved
that the cylindrical hypersurface is the only complex hypersurface of C n + 1

satisfying the condition RS=0. However, as mentioned above, the property
can not be extended in an indefinite Euclidean space.

In connection with cylindrical indefinite hypersurfaces, one poses the prob-
lem that "do there exist indefinite complex hypersurfaces satisfying RS=0 of
Cfit which are not Einstein and not cylindrical?"

In order to settle this problem affirmatively, an indefinite hypersurface
satisfying the Nomizu condition of M/=C?ίt

1 is considered. Let M be an
indefinite complex hypersurface of an indefinite complex Euclidean space
M/—Cfίt1- By the twice exterior differentiation of the Riemannian curvature
tensor R the Ricci formula for R is as follows:

Rljklmn Rϊjkinm

— Σ Zr{-~RnrrιrιRfjkiJrRnm3fRιrkl-\-RnmkrRϊ3rϊ RnrrirϊRljk?)

Taking account of the Gauss equation, we have

(7.3) {(λ«02A»i + (*mΐ)2λnl}λ,*H^

which implies following two equations:

(7.4) hikChjLy
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(7.5) h2(htJγ=hthtJ.

Making use of these results, one proves the following

PROPOSITION 7.1. Let M be an indefinite complex hyper surf ace of M /=C?ί ί

1 .
Then M satisfies

R(X, Y)R=0 for any vector fields X and Y

if and only if

(7.6) htjhkι=hikhn or (At;-)2=0.

Proof. Since the condition RR=0 is equivalent to (7.3), it is trivial that
(7.6) is the sufficient condition for RR=0.

Conversely, combining the equation (7.3) together with (7.4) and (7.5), we
have

(7.7) hA(hmlfh

and hence

(7.8) hiiht\htjhkι+hiιhjk)-2hthikhjl}=Q.

As the above equation holds true for any indices i, j , k and /, we have

(7.9) h4(h2

2+2ht)(hιjhkl-hikhjι)=0.

Suppose that there is a point x at which A4=0. When the point satisfies
h2φ0, (7.5) implies (hljy=0 and hence it follows from (7.3) that we have

a contradiction. In this case, (7.7) implies (Azj)
4=0 and when we put i—l (7.3)

is reduced to

Thus we have (A^)3—0 and hence (hjk)2=Q. This completes the proof.

In a (2n+l)-dimensional complex manifold C2n+1 with the standard basis,
a Hermitian form F is defined by

F(Z, w)= — ΣaZaWa + ΣιχZχWχ + Σ>j*Zj*Wj*+Z2n+ιϊV27i + l,

where α = l , •••, s; x=s+l, •••, n and j*=n+j and z=(za> zxt zj*, z2n+i)=:

(ZA> z2n+i), w—(wA, ẑ 2n+i) are in C2n+1. The scalar product defined by the real
part ReFis an indefinite Riemannian metric of index 2s on C 2 n + 1 and
(C 2 n + 1 , Re F) is a flat indefinite complex space form, which is denoted by CΓ+ 1.
Let hj be holomorphic functions of C into C. For the complex coordinate
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system (2^,2^+1) of C2

s

n+1, let M—M\n{h3\ c3) be the complex hypersurface of
C2

s

n+1 given by the equation

for any complex number c3. Then it is seen in [1] that a vector £ at a point

Z=(ZA, <?2n+i) defined by

is normal to M at zf and each M2

s

n(h3 c3) is a complete complex hypersurface
of index In of C2

s

n+1 if | c α | ^ l for any a. Furthermore, it is holomorphically
diffeomorphic to C2n. The second fundamental form is also given by

hl3=δi3hτ"/\ξ\, At, =cA,Λ

hί*j*=cι

2δίJhι"/\ξ\ .

This means that it turns out that the first equation of (7.6) holds true, which

implies that M=M2

s

n(h3; c3) satisfies the Nomizu condition RR=0. Thus one

finds

PROPOSITION 7.2. There exist many indefinite complex hypersurfaces of Cfn+1

for any s with RR=0 which is not Einstein and not cylindrical.
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