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Abstract

The purpose of this paper is to study several classes of semi-Kaehlerian submani-
folds of an indefinite complex space form.

Introduction.

An indefinite Kaehlerian manifold of constant holomorphic sectional curva-
ture is called an indefinite complex space form. Montiel and Romero [9] inves-
tigated indefinite complex Einstein hypersurfaces of an indefinite complex space
forms and showed that totally geodesic indefinite complex hypersurfaces P?(c’),

?, HX—c’) and an indefinite complex quadric Q¥ are those examples. lkawa,
Romero and one of present authors [6] have also shown that by using an
indefinite Segre imbedding there exists a product of complex hyperbolic spaces
which becomes an example of space-like Einstein-Kaehlerian submanifolds of an
indefinite complex hyperbolic space.

Recently, concerning with the study of Calabi’s classification [5] for Kaeh-
lerian imbeddings of complex space forms into complex space forms, Romero
[18] and Umehara [21] have independently found that there exists a strongly
full holomorphic isometric immersion of indefinite complex space forms into
indefinite complex space forms.

From this point of view the purpose of this paper is to study several
classes of complete semi-Kaehlerian submanifolds of an indefinite complex space
form MPHP(c’).

In the first section, the brief summary of indefinite complex submanifolds
of an indefinite Kaehlerian manifold are recalled.

The examples of space-like complex Einstein submanifolds of indefinite
complex space forms are given in §2. §3 is devoted to the study of the space-
like complex submanifolds with constant scalar curvature of MZ%*?(¢’). In
particular, by estimating the scalar curvature and by using Nishikawa’s theorem
[12], we shall characterize space-like Einstein submanifolds in the case of ¢’<0.
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In §4, by developing of Omori’s theorem [13] one shows that complete
complex submanifolds with constant scalar curvature of M™*?(¢’), ¢’>0, are
Einstein if the Ricci tensor and any shape operator is commutative. In §5 we
confine our attention to the indefinite complex space forms MZP(c’), ¢’#0. By
virtue of an example in §2 the local version of Romero’s [18] and Umehara’s
[21] results can be treated. In general, the shape operator of indefinite complex
hypersurfaces of MX#(c’) is not necessarily diagonalizable. Thus §6 is devoted
to the investigation of proper indefinite complex Einstein hypersurfaces of
M™c”), which is the local version of Montiel and Romero [9].

It has been proved by Ryan [19] that the complex hypersurface of complex
space forms M"*'(¢’), ¢’+#0, which satisfies RS=0 is Einstein. On the other
hand, Takahashi [20] has shown that it is cylindrical in the case of complex
Eucidean space C"*!. In §7 we shall show that there exist many indefinite
complex hypersurfaces of an indefinite complex Euclidean space CX} satisfying
RS=0 which are not Einstein and not cylindrical.

1. Indefinite complex submanifolds.

This section is concerned with indefinite complex submanifolds of an
indefinite Kaehlerian manifold. Let M’ be an (n+ p)-dimensional connected
Kaehlerian manifold of index 2(s+t) (n=2, 0<s<n, 0<t<p) and let M be an
n-dimensional connected indefinite complex submanifold of index 2s of M’. Let
M be an indefinite Kaehlerian submanifold of M’. We choose a local unitary
frame field {E }={E,, .-, En+p} on a neighborhood of M’ in such a way that,
restricted to M, E,, ---, E, are tangent to M and the others are normal to M.
Here and in the sequel the following convention on the range of indices are used
throughout this paper, unless otherwise stated:

A; Br :1’ e, N, n+]-» Tty n+p’
i, 7, :1, e, n,
Xy Y,y oo :n+11 Tty n+p-

With respect to the frame field, let {w,}={w:, w,} be its dual frame field.
Then the Kaehlerian metric tensor g’ of M’ is given by g'=22 €,0,Q0y4.
The connection forms on M’ are denoted by w,z. The canonical forms w, and
the connection forms w,z of the ambient space satisfy the structure equations

(1.1 dws+3 ep0ipNwp=0, w p+55,=0,
(1.2) dwp+3 ecwsc Nwep=2 45, $2'45=2 €cepR’ z5c50c/\@p,

where 2’45 (resp. R’ipcp) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor R’) on M’.
Restricting these forms to the submanifold M, we have
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(1.3) w,=0

and the induced indefinite Kaehlerian meric g of index 2s of M is given by
g=23 ¢;0,Qw;. Then {E,} is a local unitary frame field with respect to this
metric and {w;} is a local dual field due to {E;}, which consists of complex-
valued 1-forms of type (1, 0) on M. Moreover w,, -+, @,, @,, -+, @, are linear
independent, and they are cannonical forms on M. It follows from (1.3) and
the Cartan lemma that the exterior derivatives of (1.3) give rise to

(1.4) Wz =2 &h30;, hi=hj;.

The quadratic form 3 e;¢,6,A%50,Q0,QF, with values in the normal bundle is
called the second fundamental form of the submanifold M. From the structure
equations of M’ it follows that the structure equations for M are similarly
given by

(15) dwl—l-Z}ejw“/\wj:O, coij+5jz=0,
(16) dwij—l_z e,,a)ik/\wkagu, Q“'—_—Z eksLR;jkzwk/\cB,,

where £,, (resp. R;;;;) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor R) on M. Moreover, the following
relationships are defined:

(17) dw:cy"_z szwzz/\a)zy:‘sz » szIZ 8k$lRiykiwk/\al »

where 2., is called the normal curvature form of M. For the Riemannian
curvature tensors R and R’ of M and M’ respectively, it follows from (1.4)
and (1.6) that we have the Gauss equation

(1.8) Rijni=R'ijni—3 e.hHh%,.

The components of the Ricci tensor S and the scalar curvature » of M are
given by

(1.9) Sii=3 xR juni—3 e,6:h 507,

(1.10) r=23 ;e R 5505 —2h,,

where (h.,j)*=3 ere.hihf, and hy=3 ex(hes )
The indefinite Kaehlerian manifold M is said to be Einstein, if the Ricci
tensor S is given by

(1.11) Su=redi,/2n.

The components R;jzim and R;j.im (resp. S,;, and S,7;) of the covariant deri-
vative of the Riemannian curvature tensor R (resp. the Ricci tensor S) are
defined by
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2 en(Rijrin@n~t Rijrin®@n)=dRijpi— 2 en(Rajsi@m.
+ Rinei@nj+ Rijmi@nie+ Rijen@mi),
2 (Si52@r S8 0:)=AdS:1i— 3 €4(Srj@ri+ Sis®r,).
The second Bianchi formula is given by
(1.12) Rijpim=Rismir,
and hence we have
(1.13) Ss=Si;=3 &, Rjist, 7,=23 €xSsss,

where dr=73) ¢;(r;jw;+7;@;).
Now, the components i¥;, and h¥; of the covariant derivative of the second
fundamental form of M are given by

> Sk(hfjkwk+hfj55k)=dhfj—2 €k(hfjmu+hfkwkj)+2 Eyhzy;wzy .

Then, substituting dhf, in this definition into the exterior derivative of (1.4),
we have

(1.14) hie=hfix=h%;, hiz=—R'zji.

Similarly the components hf;,, and h¥;,; of the covariant derivative of hZ,
can be defined by

2 eyt hini@)=dhi;— 2 &i(hijrwu+hio+hio )
+2 eyhljnwsy,
and the simple calculation gives rise to
hfjkz=hfjlk ’

(1.15)
hfjlzi—hfjik':z er(RzkiFhfj“l‘Rikﬁhfr)—E €yR£ykih§’;-

A plane section P of the tangent space T,M of M at any point x is said
to be non-degenerate, provided that g,|T,.M is non-degenerate. It is easily
seen that P is non-degenerate if and only if it has a basis {u, v} such that
g(u, u)g, v)—g(u, v)*+0, and a holomorphic plane spanned by u and Ju is
non-degenerate if and only if it contains some v with g(v, v)#0. The sectional
curvature of the non-degenerate holomorphic plane P spanned by u and ju is
called the holomorphic sectional curvature, which is denoted by H(P)=H(u). The
indefinite Kaehlerian manifold M is said to be of constant holomorphic sectional
curvature if its holomorphic sectional curvature H(P) is constant for all P and
for all points of M. Then M is called an indefinite complex space form, which
is denoted by M%7(c), provided that it is of constant holomorphic sectional
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curvature ¢, of complex dimension n and of index 2s. The standard models of
indefinite complex space forms are the following three kinds which are given
by Barros and Romero [3] and Wolf [22]: the indefinite complex Euclidean
space C?, the indefinite complex projective space P?C or the indefinite complex
hyperbolic space H}C, according as ¢=0, ¢>0 or ¢<0. For an integer s
(0<s<n) it is seen by [3] and [22] that they are only complete, simply con-
nected and connected indefinite complex space forms of dimension »n and of
index 2s.
Now, the Riemannian curvature tensor R;;,; of M¥(c) is given by

Rijri=ce;64(0:;04,+0,40,0)/2.

In particular, let the ambient space be an indefinite complex space form ML P(c)
of constant holomorphic sectional curvature ¢’. Then we get

(1.16) ijki’——5,5151:(51'15“+5ik5jz)/2’—2 Exhjxk}—lfl ,
(1.17) Szi:(n+1)6’515i1/2—(h1f)2r
(1.18) hfjlzi:C’(ekhfjakl+5ihfk5il+€jhkz1,5jl)/2

—>€ rEy(hfih}”k‘f‘ hfjh;?i'F hfkh?;)ﬁgt .

Functions 4, and A, are denoted by h,=2 &:¢,(h.;)h)? and A,= e6,4,7ALY,
where A,*=3] e;6;h%hY,. Then, by means of (1.18), the Laplacian Ah, of the
function A, is given by

(1.19) Aho=(n+2)c"hs/2—2hs+ As)+ 3 €r8:856hEuhE e

2. Examples of space-like complex Einstein hypersurfaces.

We give here some examples of space-like complex Einstein submanifolds
of an indefinite complex space form.

Example 2.1. The indefinite Euclidean space C™ is a totally geodesic com-
plex hypersurface of CP*! in a natural way.

Example 2.2 [9]. For an indefinite complex projective space P?*!(c), if
{z1, =+, Zs, Zs+1, ***, Zn+2} 1S the usual homogeneous coordinate system of P7*(c),
then for each ; fixed, the equation z,=0 defines a totally geodesic complex
hypersurface identifiable with PZI(c) or P} ,(c), according as s+1=<;<n-+2 or
1<7<s. This means that P"(¢’) is a totally geodesic hypersurface of P}*+'(c’).
Taking into account that H?(—c¢’) is obtained from P%_,(c’) reversing the sign
of its indefinite Kaehlerian metric, the previous discussion shows that H}(—c’)
is a totally geodesic complex hypersurface of both H}*'(—c¢’) and HX(—c¢’).
Thus H"(—c’) becomes a space-like complex hypersurface of H?+!(—c’).
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Example 2.3 [9]. Let QF be an indefinite complex hypersurface of P?+*(c’)
defined by the equation

- 2‘::!212’*'27:&2«#1212:0

in the homogeneous coordinate system of P?+(¢’). Then Q7 is a complete
complex hypersurface of index 2s, and moreover, in the similar way to
Kobayashi and Nomizu [7], Chapter 11, Example 10.6 it is Einstein and then
the Ricci tensor S satisfies S=nc’g/2. Then Q¥ can be also considered as an
indefinite complex Einstein hypersurface of HZ!(—c’). Namely, the complex
quadric Q™ is a space-like hypersurface of H?*'(—¢’) and the scalar curvature
v is given by r=—n?¢’.

Example 2.4 [6]. For the homogeneous coordinate systems {z,, ---, z,,
Zst1, 0y Zner} Of PR(¢’) and {wy, -, w,, @psy, -, W} of PP(¢’), a mapping
f of PcYXPMc') into PESRM™ ,(¢’) with N(n, m)y=n+m-+nm, R(n, m, s, t)
=s(m—t)+t(n—s)+s-+t is defined by

[z, W)= (2aWy, 2, Wa, ZoWy, ZsWy)

where
a, b’ “ee :_-1’ e, S5 ¥, S, e :S+1, TN n.*..l’
X, y’ oo :1’ e, t; U, Uy +o° :t+1, CEEIN m_.l_l_

Then f is a well defined holomorphic mapping and it is seen by Barros and
Romero [3] that f is also an isometric imbedding, which is called an indefinite
Segre imbedding. In particular, if s=t=0, then f is a classical Segre imbedding
(the second author and Takagi [117). By using that the indefinite complex
hyperbolic space H?(—c¢’) is obtained by the changing the indefinite Kaehlerian
metric of P?_,(c¢’) by its negative, another indefinite Segre imbedding

frHN = )XHPM (=)= HEG s o(—¢)

is given, where S(n, m, s, )=(n—s)m—1t)+st+s+{. In particular, for s=¢=0
we have a holomorphic isometric imbedding f of a product of complex hyper-
bolic spaces H™(—c’)XH™(—c') into an indefinite complex hyperbolic space
H™(=c').

Example 2.5 [18]. Let f: M—MZ(c’) be a holomorphic isometric immersion
of an indefinite Kaehlerian manifold M into a complete and simply connected
indefinite complex space form MZ¥(¢’). Then f is said to be strongly full if
f(M) is not contained in an autoparallel complex submanifold of M§(c’). It is
seen in [18] that P?(c) admits a strongly full holomorphic isometric immersion
into PJ(c¢’) if and only if ¢’=kc for some positive integer %, N:("'}e—k>—1

and S=¢mo(3] f{)("—gj’gﬁ{*) if $>0, [(k+1)/2] denoting the
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greatest integer less than or equal to (k+1)/2, and S=0 if s=0.

Changing the indefinite Kaehlerian metric of PZ7(c) by its opposite, we
have that there exists a strongly full holomorphic isometric immersion of
H™(—c) into HY®&R(—kc), where S’(n, k)=N(n, k)—S(n, n, k) and S(n, n, k)

=252:'>/21-1(§]T:_21]'). It is seen that N(n,2)—n=S(n, 2)=n(n+1)/2 and
N(n, B)—n>S'(n, k) if k>2.

3. Space-like submanifolds.

This section is concerned with space-like submanifolds with constant scalar
curvature of an indefinite complex space form. Let M be a space-like sub-
manifold of an indefinite complex space form M’=M2*?(c’). First of all, the
Laplacian of the square length A, of the second fundamental form is estimated.
Since M is space-like, the matrix ((h;;)?) is a negative semi-definite Hermitian
one, whose eigenvalues A, are non-positive real valued functions on M. On
the other hand, the matrix (A4,%) is by definition a positive semi-definite
Hermitian one, whose eigenvalues are denoted by 4,. Then 1, are non-negative
and we have

(—h’Z2hi=2:4."Z(—h,)*/n,
hzzzAFZJIZ(EMx)z/ﬁ:hzz/ﬁ .

Since the Laplacian Ak, of h, is given by (1.19), we have

(GRY)

Ahy<{np(n+2)c’hy,—2(n+2p)h,*}/2np,
where the equality holds true if and only if
A,=4, A;=p for any indices j and x

and A% are parallel. This means that for a non-negative function f defined by
—h, the following inequality

(3.2) Afz{np(n+2)c’ f+2(n+2p)f*}/2np.

On the other hand, the square of the norm of a tensor
SHezhfhfi—ha(0:;0k+0::05)/n(n+1)}
gives rise to an inequality
Ap =2k /n(n+1),

where the equality holds true if and only if M is of constant holomorphic
curvature. From this result it follows that

(3.3) Afzm+2){n(n+1)c’f+4f*}/2n(n+1).
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As a direct consequence of these estimates, one finds the following

PROPOSITION 3.1. Let M be a space-like complex submanifold with constant

scalar curvature of M’'=M7%+?(c’).

(1) If ¢’=0, then M is totally geodesic.

(2) If ¢’<0 and r=n*(n+p+1)c’/(n+2p), then M is Einstein, r=n*(n+p+1)c’
/(n+2p) and the second fundamental form is parallel.

3) If ¢’<0 and r=n(n+1)c’/2, then M is a complex space form M™(c’/2) and
p=n(n+1)/2.

Proof. Since the scalar curvature » is constant, it turns out that f is also
constant and hence by (3.2) we get

np(n+2)c’f+2(n+2p)f*<0,

which means that the first and second assertions are trivial.

The last one is easily derived from (3.3). In this case, the matrix (4,%)
has at most two distinct eigenvalues 0 and —c¢’/2. Since the trace A; of the
above matrix is given by A;,=> e, A,*=h,, we have h,=c’s/2, where s denotes
the multiplicity of —c¢’/2, from which it follows that s=n(n+1)/2. q.e.d.

Remark. Examples of space-like Einstein-Kaehlerian submanifolds of an
indefinite complex space form M’=M2+?(¢’), ¢’<0, are given in §2:

(1) M=Q" of Hy*?(¢’), p=1, r=n?c’.
(2) M=H™c’/2) of HE*?(c"), p=n(n+1)/2, r=n(n+1)’/2.
) M=H""*")XH""?(c’) of H2*?(c’), p=n*/4, r={n(n+1)—2p}c".

It was proved in [2] that a complete space-like complex submanifold of

'=Mz*P(c¢’), ¢’=0, is totally geodesic. However, in the case where ¢’<0,

Example 2.5 shows that there are many complete not Einstein space-like submani-
folds. One proves here the following

THEOREM 3.2. Let M be a complete space-like complex submanifold of M’'=

Mz+2(e”), ¢’<0.

(1) If rzn*(n+p+1Dc’/(n+2p), then M is Einstein, r=n*n+p+1)c’/(n+2p)
and the second fundamental form is parallel.

@) If r=zn(n+1)c’/2, then M is an indefinite complex space form M™c’/2) and
p=zn(n+1)/2.

In order to Theorem 3.2, the following theorem due to Nishikawa [12] is
needed.

THEOREM (Nishikawa). Let N be a complete Riemanman manifold whose
Ricci curvature is bounded from below and let f be a non-negative function. If
it satisfies
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Afzkf?,
where k 1s a positive constant, then f vanishes identically on N.

Proof of Theorem 3.2. The first assertion is only proved. The other is
verified by the same method. Since the right hand side of (3.2) is non-nega-
tive, the conclusion is trivial by the maximal principle if M is compact.

Now, M is assumed to be non-compact and complete. For the function f
defined by —h, and the negative number b defined by np(n-+2)c’/2(n+2p) the
assumption of the scalar curvature implies that f=—5b>0. Hence a function
F on M defined by f-+b satisfies

AFZkRF(F—b)zkF?,

where k=(n+2p)/np. Accordingly, the theorem due to Nishikawa yields that
F vanishes identically on M.
This completes the proof.

COROLLARY 3.3. Let M be a complete space-like complex submanifold of

M’'=Mz*?(c"), ¢'<0.

(1) If every Ricci curvature of M is greater than or equal to n(n-+p-+1)c’
/2(n+2p), then M is Einstein.

(2) If every Ricci curvature of M is greater than or equal to (n+1)c’/4, then M
is a complex space form M™(c’/2).

4. Complex submanifolds.

This section is devoted to the investigation of complete complex submani-
folds with constant scalar curvature of M’=M"*?(¢’). Let M be an n-dimen-
sional complex submanifold of M’. The components S,j,; and S,;.; of the
covariant derivative of S,;, are expressed by

4.1) 2 (S50 F+Si5210)=d S5 — 2 (S1;:@15+Si12@1;+Si50:1) .

By the exterior differentiation of the definition of S,;, and by taking account
of (4.1) the Ricci formula for the Ricci tensor S is given as follows:

(4.2) Sz}ki"sw‘zk=2(RZkﬁSr;"—RZkerﬁ)-

Assume that the scalar curvature » of M is constant. Since we have
> S;7:=0 by (1.13), it follows from (4.2) that we have

ASk;=2 (Sk T'Sri_ Rik erir-)
=c'(2nS,j—103)/4A—D{(h 47 'S 5— hERESsr} .

On the other hand, by combining the relation 3S;;S.;—7*/4n=h,—h’/n
together with the above equation, the following one
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4.3) Alhy—ht/n)=nc'(hy—hs*/n)+2 2 hfsih-;"sjh}’zﬁfz
— 3 (hES7;—Sis hH)(h$:Ss;— Sish &)™
is derived. Then we can prove the following

THEOREM 4.1. Let M be a complete complex submani fold with constant scalar
curvature of M'=M"*?(¢’), ¢’>0. If the Ricci tensor and any shape operator is
commutative, then M is Einstein.

Remark. In the case where M is compact, Theorem 4.1 is proved by Kon

[81.

In order to Theorem 4.1, the following theorem due to Omori [13] for the
estimate of the Laplacian of the function of class C? is needed. This is slightly

different from the original one.

THEOREM (Omori). Let N be a complete Riemannian manifold whose Ricci
curvature ts bounded from below and let F be a function of class C* on N. If F is
bounded from below, then for any point p and any e>0 there exists a point q
such that

4.4) lgrad F(g)| <e, AF(g)>—e, F(Q)<F(p).

Proof of Theorem 4.1. A function f is defined by
f:h4—hzz/n .

Then it follows from (3.1) that f is non-negative and the equality holds true
if and only if all eigenvalues of the Hermitian matrix (h;,)* are equal. By
(4.3) and the assumption of the theorem we have

4.5 Afznc'f,

where the equality holds true if and only if S,;,=0 for any indices. For any
positive constant a, a function F defined by 1/(f+a)'? is smooth and bounded.
On the other hand, the Ricci curvature of M is given by

Siyp={(n4+1)c’/2~2;}0;»,

and since the scalar curvature is constant, h,=2>) 1, is also constant. By (3.1)
we have h,<h,® and hence h, is bounded from above. Hence all eigenvalues
A, are bounded from above by a positive number R, which implies that the
Ricci curvature is greater than or equal to

{(n+1)c’/2—R}.

This means that the theorem due to Omori can be applied to the function F.
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For any point p and for any >0 there exists a point ¢ at which F satisfies
(4.4). It follows from these properties that we have

e{3e+2F(q)} > F(q)'Af(9)=0

by the direct calculation. When ¢ tends to 0, the left hand side converges to
0, because the function F is bounded. For a convergent sequence {¢,} such

that
en—0 (m—0),

there exists a point sequence {g,} so that the sequence {e,(3e,+2F(g.)} con-
verges to 0 by taking a subsequence if necessary, and hence we have

(4.6) F(gn)'Af(gm)—0.
On the other hand, by the definition of F it yields
F=1/(f+a)"*=1/(hs—h;*/n+a)'*
=1/{(n—1h’/n+a}'”.

Accordingly the function F is bounded from below by the positive constant,
from which together with the above relation we have

4.7 Af(gm)—0.

Then (4.5) implies that the sequence {f(g.)} converges to 0 and hence the
sequence {F(g,)} converges to a~*/2. On the other hand, since we have

Flgn)SF(p)<a™'®
for the fixed point p by (4.4), the point is the maximal one of F and hence
f(p)=0 for any point p.
This completes the proof.

Remark. The theorem due to Nishikawa stated in § 3 can be verified using
the estimate of the Laplacian of the distance function from a point by Yau [23].
However the above proof suggests another one of Nishikawa’s theorem. Namely,
it is sufficient if the property (4.7) is derived under the assumption (4.6). For
any positive number ¢ there is an integer N, such that for any m=N, we have

e(f+a)(gn)>Af(gm)Zkf*(gn),

which implies that the sequence {f(¢»)} is bounded and hence F is bounded
from below by a positive constant. It turns out that (4.7) holds true.

Complex hypersurfaces of M’'=M "*‘(c}) are next considered. Assume that
the scalar curvature » is constant. Then (4.3) is simplified as
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Ahy=nc"(hy—h2/n)+2 3 (hojlhyrshors.
On the other hand, since we have
3 hrsibrs == {hadis+ 205} /24 (2(h05) 4 ho(hoi)P)

because of the constant scalar curvature and (1.18), the above equation is
reduced to

Ahy=c'{(n—2)hy—2h,*} +2(2hs+ hohy),

where hg=3] (h;7)%(h.5)%(hs;)?. For eigenvalues 2, of the Hermitian matrix (A;z)?,
the function k¢ is given by 3 4,° and hence we have hg=h,h,/n. Thus we have

4.8) Ahyzc'(n—4)h+2(n+2)hhy/n,

provided that ¢’<0. By means of this inequality, the following theorem for
complex hypersurfaces is proved.

THEOREM 4.2. Let M be a complete complex hypersurface of M'=M"*+Y(c’).
If the scalar curvature of M 1is constant, then the following statements hold true:
(1) If ¢'=0, then M is totally geodesic or S=nc'g/2, the latter case arising only
when ¢’ >0.
(2) If ¢’<0 and if n<4, then M is totally geodesic.

Proof. The case where ¢’>0 is a direct consequence of Theorem 4.1. The
others are concluded by (4.8) and the same procedure of the proof of Theorem 4.1.

5. Indefinite complex space forms.

Extending Calabi’s classification [5] for Kaehlerian imbeddings of complete
simply connected complex space forms into complete and simply connected
complex space forms, Romero [18] and Umehara [21] proved recently the
indefinite version independently. In this section the local version of Romero
and Umehara’s result is treated. The following two results are proved.

THEOREM 5.1. Let M=M%(c) be an n-dimensional indefinite complex space
form immersed in M'=M?>P(c’).
() If ¢'+#0, then ¢'=kc and n—l—pg("zk)—l for some positive integer k.
(2) If ¢’=0 if and only if c¢=0.

PROPOSITION 5.2. Let M=MZ%(c) be an n-dimensional indefinite complex space
form immersed in M'=MP(c"), ¢'+0 and t=p.
(1) If ¢'>0, then ¢'=c (i.e. M is totally geodesic in M’).
(2) If ¢’<0, then ¢'=c or 2c, the first case arising only when M 7is totally
geodesic and the other arising only when s=0.
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By the similar direct calculation to that in the local version of Calabi’s
result by the second author and Ogiue [10], we can obtain the following

LeEMmMA 5.3,
0 for all k+#1,
2 Ezhfl...lkﬁfr.‘“: Hf;% C’-‘T’C)Ell BRI 21‘57(1‘1)]1 ar(ik)lk/zk_‘
for k=,

where 33, denotes the summation on all permutations t© with respect to wndices
PTI98

From the second equation of the above lemma we have
(5.1) D eahfpapy Miaps,
=TTkaa(c’—re)(e; )" o (6,,) e Diaan, /2%, ny+ - +na=k+1,
where j,, :-, j, are distinct indices among iy, -+, 7,+;. Using (5.1) we prove

LEMMA 54. (1) If ¢’#0, then there exists a positive integer k such that
¢’'=ke.
(2) ¢’=0if and only if ¢=0.

Proof. For any positive integer m, we put pm=("j;lm)—(n+1). Then

there exists an integer m such that p<p,. Let H=(HF‘) be a matrix of order
pm defined by

hi.,  for p<p,, i,<is,
HE =1\ hiyy,  for po<p=ps, 12650,

R, 10T Pt <t Py 5 Zia S o S,
H,=0 for p<iZpn,

and let H'=(e;H,*) be a matrix of order p,. By choosing the integer m,
these two matrices are both singular. On the other hand, we have from (5.1)

2 Ethlﬁﬁ 0 )
0 Seshiahin

m m

tH_]'{‘/:<

and hence at least one entry of the diagonal of the above matrix must be equal
to zero, from which together with (5.1) it follows that there exists an integer
k so that if ¢’#0, then ¢’=kec.

The second assertion is trivial by the above argument. q.e.d.
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Remark. In Theorem 5.1 (2), we do not know whether the submanifold
M=M1¥c) is totally geodesic or not.

LEMMA 5.5. If there is a positive integer k such that c¢’=kec, then p=p,
:("'};k>~(n+1).

The proof is derived in the proof of Lemma 5.4.

Let M=M}(c) be a complex submanifold of M’'=M?(c’), ¢’#0. In par-
ticular, suppose that t=p. Then it follows from (5.1) that we have
(5.2) — 23 hfahfa =TTk’ —re)(e) k1 /2%,
P

because of ¢,=—1 for any index x. By the values of % in (5.2) the following
relations are given:

(c’'—c)=0,

ei(c’—c)c’'—2¢)=0,
(¢’—c)c’—2¢)(c’—3¢)<0,

By a simple calculation Proposition 5.2 is concluded.

Remark. Example 2.5 gives an example of Proposition 5.2.

6. Indefinite Einstein hypersurfaces.

Indefinite Einstein hypersurfaces of M’'=MZ}(c’) is said to be proper, if
the shape operator is diagonalizable. By means of the rigidity theorem of
complex submanifolds of an indefinite complex space form, Montiel and Romero
[9] proved the following

THEOREM. (1) The proper complete simply connected indefinite complex
Einstein hypersurfaces of PXc) are only P¥c) with t=0, 1 and Q™ with t=0.
(2) In HYc) they are only H?(c) with t=0, 1 and Q™ with t=1.

(3) In C}} they are only C? with t=0, 1.

This section is concerned with the local version of the above theorem. We
prove here the following

THEOREM 6.1. Let M be an indefinite complex Einstein hypersurface of
MENce"). If M is proper, then M is totally geodesic or S=nc'g/2, the latter
avising only when ¢>0 and t=0 or ¢<0 and t=1.



SEMI-KAEHLERIAN SUBMANIFOLDS 339
Proof. Differentiating (h,;)? exteriorly twice, we get
2 eeT(hlrkz}-lTj-'_h’erEle):O )

where ¢=e¢,+,, which implies hsh,;,;=0. Accordingly, it follows from this
equation and (1.18) that

(6.1) ho(ne’ —2h;)(erh.j0r+e:hjr0i+€;h4:05,)=0.

Since M is proper, the second fundamental form #h,, is given by e&;v;0;, and
hence we have h,=e >}|v;|% It means that h, is non-positive or non-negative
according as e=—1 or e=1 and h,=0 holds true if and only if M is totally

geodesic.

Suppose that h,=nc’/2. If ¢’>0, then h,>0 and hence we have =1 and
t=0. On the other hand, if ¢’<0, then 4,<0 and hence e=—1 and t=1. Of
course, the condition h,=nc’/2 is equivalent to

51;=nc’ei5ij/2.

In the case where h,#0 or nc’/2, the equation (6.1) gives
skhzjakl+5ihjk5il+5jhki5jl:0,

which yields that #,,=0. Thus M is totally geodesic and one concludes the
proof.

7. Indefinite complex hypersurfaces with RR=0.

This section is concerned with indefinite complex hypersurfaces with the
Nomizu condition RR=0 of an indefinite complex Euclidean space M’'=CZ}.
Namely, it satisfies

R(X,Y)R=0

for any vector fields X and Y tangent to M. It turns out that the Nomizu
condition implies RS=0 and moreover it is seen in [2] that in an indefinite
hypersurface of an indefinite complex space form M’=M%c’) if ¢’+0 and if
M satisfies RS=0, then M is Einstein.

Now, suppose that M is an indefinite complex submanifold satisfying the
condition RS=0 of MZ'P(c’). It is seen that the condition RS=0 is equivalent to

Siiei—S:;1.=0,
and, combining (4.2) together with (1.16) and (1.17), we have
7.1 cl(siailski—skakjsii)/z—z ersr(hfkﬁfrsri—hl';cr}-l}‘tlsif)zo-

In particular, in an indefinite complex hypersurface of CX!, we have
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(7.2) haa(hj)—hj(hi)=0,

where we put (h;;)*=3 e,e,eh,,h,shs,, Which implies that
(hji)*=fhj, for a function f on M,

if the set consisting of points of M at which the function A, is zero is measure
zero. Under this hypothesis it follows that the equation (7.1) is equivalent to
(7.2).

Remark. Taking account of (7.1), we remark here that if ¢/>0 and if a
space-like complex submanifold M satisfies RS=0, then it is seen in [2] that
M is Einstein.

A complex hypersurface M of index 2s of CZ}! is said to be cylindrical, if
M is a product manifold of C2~! and a complex curve in C} orthogonal to CZ!
in Ct (a+b=s+t). It is evident that a cylinder M of index 2s of CZ?}
satisfies (7.2), and hence it satisfies the condition RS=0, but it is not necessarily
Einstein.

Remark. An example given in [1] is a complete indefinite complex hyper-
surface of C2**! which is Ricci-flat. Accordingly it satisfies RS=0 but it is not
cylindrical. This is shown later. In a definite version, Takahashi [20] proved
that the cylindrical hypersurface is the only complex hypersurface of C"+!
satisfying the condition RS=0. However, as mentioned above, the property
can not be extended in an indefinite Euclidean space.

In connection with cylindrical indefinite hypersurfaces, one poses the prob-
lem that “do there exist indefinite complex hypersurfaces satisfying RS=0 of

n+l which are not Einstein and not cylindrical ?”

In order to settle this problem affirmatively, an indefinite hypersurface
satisfying the Nomizu condition of M’=C?}} is considered. Let M be an
indefinite complex hypersurface of an indefinite complex Euclidean space
M’=C?}. By the twice exterior differentiation of the Riemannian curvature

tensor R the Ricci formula for R is as follows:

Rijeimn— Rijeinm

=2 e(—RamriR7jri+ Ramjr Rirsi+ Ramer Rijri— Ramri Rijer).
Taking account of the Gauss equation, we have
(7.3) {(hm Rt (Bl At hse— (R en) Pomj+(Ra) hmi } hit=0,
which implies following two equations:

(7.4) Rin(hp)'=(his)’hy,
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(7.5) ha(ha)*=hih.,.

Making use of these results, one proves the following
PROPOSITION 7.1. Let M be an indefinite complex hypersurface of M’'=CH}.
Then M satisfies
R(X, Y)R=0 for any vector fields X and Y
if and only if
(7.6) hzjhk[:hikhjl or (h”‘)2=0.

Proof. Since the condition RR=0 is equivalent to (7.3), it is trivial that
(7.6) is the sufficient condition for RR=0.

Conversely, combining the equation (7.3) together with (7.4) and (7.5), we
have

(77) h2{<hmi)zﬁni+(hmi)zﬁnl}_Z(hmﬁ)4;l-il=0;
and hence
(7.8) hal b (Roshpi+hahj)—2hshinh ;i } =0,

As the above equation holds true for any indices 7, j, 2 and /, we have

(7-9) h4(h22+2h4)(hzjhkz“hikhﬂ):0-

Suppose that there is a point x at which A,=0. When the point satisfies
h,#0, (7.5) implies (4,,)*=0 and hence it follows from (7.3) that we have

{(hm*(hai)*+(hni) (ha1)*} (hj5)'=0,

a contradiction. In this case, (7.7) implies (k,;*=0 and when we put 1=/ (7.3)
is reduced to

(hwi)*Chig*+(h i) (hig)?— (R mi)*hi=0.
Thus we have (h;,)*=0 and hence (h;;)*=0. This completes the proof.

In a (2n+1)-dimensional complex manifold C?"+' with the standard basis,
a Hermitian form F is defined by

Fz, w)=—3302Wa+ 22250 o+ 242410 js+ 220 41W2n 41,

where a=1, :--,s; x=s+1, -, n and j¥*=n+4; and z=(z,, 2z, Zj, Zon+1)=
(24, Zan+1), W=(Wy4, Wyn+;) are in C?**!, The scalar product defined by the real
part Re Fis an indefinite Riemannian metric of index 2s on C?**' and
(C*"*' Re F) is a flat indefinite complex space form, which is denoted by C%**!,
Let h, be holomorphic functions of C into C. For the complex coordinate
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system (Z4, Zan+1) Of C¥**1) let M=M?2"(h,; c;) be the complex hypersurface of
C%*+1 given by the equation

22n+1=E hj(Zj‘f‘CjZ]*), ]*:]+n

for any complex number ¢,. Then it is seen in [1] that a vector & at a point
2=(z4, Z32+1) defined by

5=(f_la’, —“E.r/y —C-aﬁa*/; _C-.zh-:c*,; 1)

is normal to M at z, and each M2*(h,;c,) is a complete complex hypersurface
of index 2n of C2"*!' if |c,|=1 for any a. Furthermore, it is holomorphically
diffeomorphic to C?*". The second fundamental form is also given by

h,=08i;h." /1€, hus=cibi;h." /€],
hi*;zci5i1h:”/|5] , hi*j*zczzaijht”/lé! .

This means that it turns out that the first equation of (7.6) holds true, which
implies that M=M?%"(h,;c,) satisfies the Nomizu condition RR=0. Thus one

finds

PROPOSITION 7.2. There exist many indefinite complex hypersur faces of C3"*
for any s with RR=0 which is not Einstein and not cylindrical.
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