S. KODANI KODAI MATH. J. 11 (1988), 300-305

AN ESTIMATE ON THE VOLUME OF METRIC BALLS

By Shigeru Kodani

1. Introduction.

Let M be a complete Riemannian manifold of dimension n. We denote by i(M) the injectivity radius of M, by B(p, r) the metric ball in M of radius $r \leq i(M)$ centered at $p \in M$ and by vol (B(p, r)) the volume of B(p, r). Furthermore we denote by $\alpha(n)$ the volume of the round sphere S^n of sectional curvature 1. M. Berger and J. Kazdan [3] showed that if M is closed then the volume vol (M) of M satisfies

(1)
$$\operatorname{vol}(M) \ge \alpha(n)(i(M)/\pi)^n$$
,

where the equality holds if and only if M is a round sphere of constant sectional curvature $(\pi/i(M))^2$. Later, C.B. Croke [6] showed that if M is closed then for $r \in [0, i(M)]$,

(2) Ave vol
$$(B(x, r)) \ge \alpha(n)(r/\pi)^n$$
.

Here the equality holds if and only if r=i(M) and M is a round sphere. Here Ave f(x), for any function f on M, means $\frac{1}{\operatorname{vol}(M)} \int_{M} f(x) dx$. But it is believed that for any point $p \in M$ and for $r \in [0, i(M)]$,

(3)
$$\operatorname{vol}(B(p, r)) \ge \alpha(n)(r/\pi)^n$$
.

Here the equality holds if and only if r=i(M), B(p, i(M))=M and M is a round sphere. As partial results on this problem, not sharp lower bounds are already known ([1], [2] for n=2, 3 and [4] for all n). And under some restriction on the metric form, a sharp one is obtained by C. B. Croke [5]. Especially C. B. Croke [4] showed the following remarkable inequality,

(4)
$$\operatorname{vol}(B(p, r)) \ge \left[\frac{\pi \alpha(n-1)}{n\alpha(n)}\right]^n \alpha(n) \left[\frac{r}{\pi}\right]^n.$$

Here

(5)
$$\left[\frac{\pi\alpha(n-1)}{n\alpha(n)}\right]^n \approx \left[\frac{\pi}{2n}\right]^{n/2}, \qquad n \to \infty.$$

Received March 24, 1988

In this paper, we will improve the Croke's constant under an additional curvature condition on the metric balls.

2. Result.

Let k be the infimum of the sectional curvature of the metric ball B(p, r) in a complete Riemannian manifolds M. If the radius r is not greater than the injectivity radius i(M) of M, then by Myers' theorem (cf. [7]), we see $k \leq (\pi/r)^2$, and by maximal diameter theorem (cf. [7]), the equality holds if and only if r=i(M), M=B(p, i(M)) and M is a round sphere. Our result is the following.

THEOREM. Let B(p, r) be a metric ball of radius r centered at p in a complete Riemannian manifold M. Let k be the infimum of the sectional curvature of the metric ball B(p, r). Then, for $r \leq i(M)$, there exist an increasing function $f: [-\infty, (\pi/r)^2] \rightarrow [0, 1]$ such that

$$f((\pi/r)^2) = 1$$
, $f(0) > (2/3)^n$, $f(-\infty) = 0$

and

(6)
$$\operatorname{vol}(B(p, r)) \ge \frac{(n+3)}{6(n+1)} f(k) \alpha(n) \left[\frac{r}{\pi}\right]^n.$$

Before we prove the theorem, we need some definitions. For $x \in B(p, r)$, put

$$E(x, r) = \exp_x^{-1}(B(x, r) \cap B(p, r)),$$

and define vol(E(x, r)) as the euclidiean volume in the tangent space T_xM at x. As a special case of the inequality in theorem A of [6], we get

(7)
$$\operatorname{Ave}_{x \in B(p, r)} \operatorname{vol} (B(x, r) \cap B(p, r)) \geq \frac{(n+3)\alpha(n)}{6(n+1)\pi^n \beta(n)} \cdot \operatorname{Ave}_{x \in B(p, r)} \operatorname{vol} (E(x, r)),$$

where $\beta(n)$ is the volume of the standard disk of radius 1 in Euclidiean space \mathbb{R}^n . Evidently,

(8)
$$\operatorname{vol} (B(p, r)) \ge \operatorname{Ave}_{x \in B(p, r)} \operatorname{vol} (B(x, r) \cap B(p, r)).$$

Let M_k be an *n*-dimensional simply connected space form of sectional curvature k and $B_k(q, r)$ be a metric ball in M_k at $q \in M_k$. Then the following lemma holds.

LEMMA. For all
$$p \in M$$
, $q \in M_x$ and $0 < r \leq i(M)$,

(9)
$$\operatorname{Ave}_{x \in B(p,r)} \operatorname{vol} \left(E(x, r) \right) \ge \operatorname{Ave}_{y \in B_k(q,r)} \operatorname{vol} \left(E_k(y, r) \right).$$

SHIGERU KODANI

Proof. Fix an isometry $I_p: T_pB(p, r) \rightarrow T_qB_k(q, r)$. For $x \in B(p, r)$, we put $y = \exp_q \circ I_p \circ \exp_p^{-1}(x)$ and put $s = d(p, x) = d_k(q, y)$, where $d(d_k, \operatorname{resp.})$ is the distance on $B(p, r)(B_k(q, r), \operatorname{resp.})$. Then we get an isometry $I_x = \tau_q^y \circ I_p \circ \tau_x^p$: $T_xB(p, r) \rightarrow T_yB_k(q, r)$, where τ_x^x , is the parallel translation from $T_{x'}M$ to T_xM . For a unit vector $v \in T_xM$, let l(v) denote the length of the geodesic segment γ_v emanating from x with the velocity vector $\dot{r}(0) = v$ and hitting the boundary of $B(p, r) \cap B(x, r)$ at $\gamma_v(l(v))$. Similarly for $v' = I_x(v) \in T_yM$, we define $\gamma_{v'} \subset B(q, r)$ and l(v').

Let $\xi_x \subset B(p, r)$ ($\xi_y \subset B_k(q, r)$, resp.) be the distance minimizing geodesic segment from p (q, resp.) to x (y, resp.). Since I_x is isometry, we see

$$\langle v, -\dot{\xi}_x(s) \rangle = \langle v', -\dot{\xi}_y(s) \rangle.$$

By Toponogov's triangle comparison theorem (cf. [7]), we obtain

 $d(p, \gamma_v(t)) \leq d_k(q, \gamma_{v'}(t)),$

for all $0 \le t \le \min(l(v), l(v'))$. Therefore if l(v) < r then γ_v hits the boundary of B(p, r), and so,

 $d(p, \gamma_v(l(v))) = d_k(q, \gamma_{v'}(l(v'))) = r.$

On the other hand, if l(v)=r then $l(v') \le r = l(v)$. Therefore we always find

$$(10) l(v) \ge l(v'),$$

and so,

(11)
$$\operatorname{vol}(E(x, r)) = \int_{0}^{l(v)} \int_{S^{n-1}} r^{n-1} dr dv = \int_{S^{n-1}} \frac{l(v)^{n}}{n} dv$$
$$\geq \int_{S^{n-1}} \frac{l(v')^{n}}{n} dv' = \operatorname{vol}(E_{k}(y, r)) := V(r) \, .$$

Evidently, $dV/ds(s) = \dot{V}(s) < 0$.

By Bishop's inequality (cf. [8]), we have, for $0 \le s \le s' \le r$,

(12)
$$\frac{\operatorname{vol}(B(p, s))}{\operatorname{vol}(B(p, s'))} \ge \frac{\operatorname{vol}(B_k(q, s))}{\operatorname{vol}(B_k(q, s'))},$$

and by (11), we get

$$\begin{aligned} \operatorname{Ave}_{x \in B(p,r)} \operatorname{vol}\left(E(x,r)\right) &= \frac{\int_{B(p,r)} \operatorname{vol}\left(E(x,r)\right) dx}{\operatorname{vol}\left(B(p,r)\right)} \geq \frac{\int_{0}^{r} \int_{\partial B(p,s)} V(s) ds dx}{\operatorname{vol}\left(B(p,r)\right)} \\ &= \frac{\int_{0}^{r} \operatorname{vol}\left(\partial B(p,s)\right) V(s) ds}{\operatorname{vol}\left(B(p,r)\right)} \\ &\geq \left[\frac{\operatorname{vol}\left(B(p,s)\right) V(s)}{\operatorname{vol}\left(B(p,r)\right)}\right]_{0}^{r} - \frac{\int_{0}^{r} \operatorname{vol}\left(B(p,s)\right) \dot{V}(s) ds}{\operatorname{vol}\left(B(p,r)\right)} \end{aligned}$$

302

VOLUME OF METRIC BALLS

$$\geq \left[\frac{\operatorname{vol}(B_k(q, s))V(s)}{\operatorname{vol}(B_k(q, r))}\right]_0^r - \frac{\int_0^r \operatorname{vol}(B_k(q, s))\dot{V}(s)ds}{\operatorname{vol}(B_k(q, r))}$$

= $\operatorname{Ave}_{y \in B_k(q, r)} \operatorname{vol}(E_k(y, r)).$ q. e. d.

Proof of Theorem. Put

$$f(k) = \frac{1}{\beta(n)r^n} \operatorname{Ave}_{y \in B_k(q,r)} \operatorname{vol} \left(E_k(y, r) \right).$$

We can easily verify that f is strictly increasing and $f(\pi/r)^2=1$, $f(-\infty)=0$. By combining (7) with (8) and (9), we get (6). f(0) is calculated as follows:

$$f(0) = \frac{1}{\beta(n)} \operatorname{Ave}_{y \in B_0(q, 1)} \operatorname{vol} (E_0(y, 1))$$

= $\frac{1}{\beta(n)^2} \int_0^1 \alpha(n-1)r^{n-1} 2 \int_{r/2}^1 \beta(n-1)(1-s^2)^{n-1/2} ds dr$
= $\frac{2\alpha(n-1)\beta(n-1)}{\beta(n)^2} \left\{ \int_0^1 r^{n-1} \int_{1/2}^1 (1-s^2)^{n-1/2} ds dr + \int_0^1 r^{n-1} \int_{r/2}^{1/2} (1-s^2)^{n-1/2} ds dr \right\}.$

Here we have

$$\int_0^1 r^{n-1} \int_{1/2}^1 (1-s^2)^{n-1/2} ds dr = \frac{1}{n} \int_0^{\pi/3} \sin^n \vartheta d\vartheta \,.$$

By Fubini's theorem, we have

$$\int_{0}^{1} r^{n-1} \int_{r/2}^{1/2} (1-s^{2})^{n-1/2} ds dr = \int_{0}^{1/2} (1-s^{2})^{n-1/2} \int_{0}^{2s} r^{n-1} dr ds$$

$$= \frac{1}{n} \int_{0}^{1/2} (1-s^{2})^{n-1/2} (2s)^{n} ds$$

$$= \frac{1}{n} \int_{\pi/3}^{\pi/2} (2\sin\vartheta\cos\vartheta)^{n} d\vartheta$$

$$= \frac{1}{2n} \int_{2\pi/3}^{\pi} \sin^{n}\vartheta d\vartheta = \frac{1}{2n} \int_{0}^{\pi/3} \sin^{n}\vartheta d\vartheta.$$

Hence, we get

$$f(0) = \frac{3n}{n-1} \frac{\alpha(n-2)}{\alpha(n-1)} \int_{0}^{\pi/3} \sin^{n} \vartheta d\,\vartheta$$

> $\frac{3n}{n-1} \frac{\alpha(n-2)}{\alpha(n-1)} \left\{ \frac{1}{\alpha(n)} \frac{\alpha(n+1)}{2} \left(\frac{2\pi/3}{\pi} \right)^{n+1} \right\} = \left(\frac{2}{3} \right)^{n},$

SHIGERU KODANI

where we have used the relations

 $n\beta(n)=\alpha(n-1)$, $\alpha(n+2)=2\pi\alpha(n)/(n+1)$,

and replaced the volume of the spherical cup of radius $\pi/3$ in the unit (n+1)sphere by the volume of the hemisphere of (n+1)-dimensional round sphere with diameter $2\pi/3$. q. e. d.

Remark. Put

Table 1.		
n	$c_1(n)$	$c_3(n)$
2	. 616849	. 1234568
3	. 296296	.0740741
4	. 120394	.0460905
5	. 043151	. 0292638
6	.013989	.0188125
7	4.17219×10^{-3}	.0121933
10	7.45077 $ imes 10^{-5}$	3.41576×10^{-3}
15	3.48113 $\times 10^{-8}$	4. 28182×10^{-4}
•••	•••	•••
$n \rightarrow +\infty$	$\approx \left[\frac{\pi}{2n}\right]^{n/2}$	$\approx \frac{1}{6} \left[\frac{2}{3} \right]^n$

Fig. 2.

$$c_{1}(n) = \left[\frac{\pi\alpha(n-1)}{n\alpha(n)}\right]^{n}, \qquad c_{2}(n, k) = \frac{(n+3)}{6(n+1)}f(k),$$
$$c_{3}(n) = \frac{(n+3)}{6(n+1)} \left(\frac{2}{3}\right)^{n}.$$

Then we have $c_2(n, 0) > c_3(n)$. Now we give the explicit values of $c_1(n)$ and $c_3(n)$ in Table 1. From this table, we can observe that if the sectional curvature k of the metric ball is positive then, for $n \ge 6$, our constant $c_2(n, k)$ is better than Croke's constant $c_1(n)$ (See also Fig. 2.).

References

- [1] M. BERGER, Some relations between volume, injectivity radius, and convexity radius in Riemannian manifolds. Differential Geometry and relativity (Cahen, Flato, Eds.), D. Reidel, Dordrecht-Boston, 1976.
- [2] M. BERGER, Volume et rayon d'injectivite dans les varietes riemanniennes de dimension 3, Osaka J. Math. 14 (1977), 191-200.
- [3] M. BERGER AND J.L. KAZDAN, A Sturm-Liouville inequality with applications to an isoperimetric inequality for volume in terms of injectivity radius, and to Wiedersehen manifolds, in General inequalities 2 (Proceedings of Second International Conference on General Inequalities, 1978), E.F. Beckenbach (ed.), ISNM47, 367-377, Basel, Birkhauser 1980.
- [4] C.B. CROKE, Some isoperimetric inequalities and Eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), 419-535.
- [5] C.B. CROKE, On the volume of metric balls, Proc. Amer. Math. Soc. 88 (1983), 660-664.
- [6] C.B. CROKE, Curvature free volume estimates, Invent. math. 76 (1984), 515-521.
- [7] J. CHEEGER AND D. EBIN, Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam, Oxford, (1975).
- [8] R. BISHOP AND R. CRITTENDEN, Geometry of manifolds, Academic Press, New York, 1964.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro Tokyo 152, Japan