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THE CONDITION FOR AN APPROXIMATION OF POISSON
DISTRIBUTION TO BERNOULLI SUMS
IN MULTIVARIATE DISTRIBUTION

By KazuToMO KAWAMURA

§1. Summary.

K. Kawamura [1] has discussed that a condition is shown and it plays as
sufficient condition for an approximation of Poisson distribution to the sum of
Bernoulli sequences and he has investigated the structure of Poisson distribution
in multivariate case. C. Liu [2] also has discussed an approximation to the sum
of variable (non-identically distributed) Bernoulli sequences.

In this paper the converse assertion is discussed, that is, the condition is
essential for the approximation of Poisson distribution to the sum of independent
Bernoulli sequences in multivariate case. The notations and discussion will
prepare the break through in the case of variable Bernoulli sequences.

§2. Notations and definitions.

k=(ky, ks, =+, kn)
where coordinates k; (f=1, 2, .-, n) are non-negative integers,
0=, 0, ---, 0); zero-vector,
E,={0, 1}, E={0,1}*—0, i€E,,
#Fk ; the number of positive coordinates in a vector k.

An ordering for /€FE, in 3-dimensional case (n=3);

(0, 0, 0)=000 #1=0,
(1, 0, 0)=100
(0, 1, 0)=010 #i=1,
= 0, 0, 1)=001 2.1
1,1, 0=110
(1,0, H)=101 #i=2,
0, 1, 1)=011
1€, 1, H=111 #1=3.
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We use the ordering for /€ FE,, like above, in multivariate case, and also the
ordering for /E.

P(2): n-variate Poisson distribution

A=(A100, A010-0, *** » Aoor, *°* » A111) t 2" —1 dimensional parameter each coordi-
nate A, is non-negative parameter where suffix vectors £=100---0, 010 --- 0, ---,
00---01, ---, 11---1 are ordered by a given ordering like above (2.1). And also
we put

D=(Po0--0» D100y Porooy '+ » Dowors 5 Pipa): 2"-dimensional vector.

§3. Main result.

THEOREM 1. For given independent Bernoulli sequences Xi, X,, -, Xy each
having a distribution B(1, p), the sum X= % X has a binomial distribution B(N, p).
J=1
The distribution is expressed for k<{0,1, .-, N}

N! ;
P e ar 4B D
1€E)

Proof. See Kawamura [1].

THEOREM 2. Let X be a binomial distribution B(N, p) then we have for any
k=0
lim  P(X=k)=3 II pla;; &) 3.2

N > Cl i€k
Npi-2i;, i€E e

where p(a; ) is an univariate Poisson probability density.

Proof. See Kawamura [1].
In this paper we will show the fact that the limiting condition

“Np; —> 4; as N—> for i€ E”
is essential to the approximation.

THEOREM 3. For given independent Bernoulli sequence §X,, X, ---, Xy each
having a distribution B (1, p) if we assume that the sum X=X, has the property
of Poisson approximation :

lim P(X=k)=3 Tl plas; 2)  (R20) 3.3)

N -0 [C1 i€E
then we can derive the condition

“Np; —> A; as N—>co for ieE” 3.4)

Proof. Step 1) Defining #v is a number of positive components in the
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vector v (usually components of v are nonnegative integers).
If #£=0 then £=0=(0, 0, ---, 0). Put £=0 then in the left side of limiting

equation (3.3) becomes

— —_ aj— N
PA=0= 2 o dLpri=re -

i€Ey

Solution of [C,] with k=0 is simply expressed

N, =0,
a;=
0, i#0
for /€ E,, then we get
P(X=0)=pY,

and left side of (3.3) becomes

}iﬂ P(X=0)= }{1{2 py¥.
Solution of [C] with k=0 is also expressed

a;=0, for i€F
then right side of (3.3) becomes

> I plai; 4)= EEP(O; Zi):eXp{"ié)*i}-

[Cl ickE

Therefore, we get

lim p¥=exp{— 3 A}, 3.5)
N - i€k
where
Po=1— 2 .
i€k

lim {l— —J\Z%—m}zvzexp{—tgli}-

N-c0
Then we can conclude
Iim N3 p;=lim 3 Np;= 3 4;.
icE

N-w ic€E i€k

LEMMA. Under the condition of theorem 3, we have

N-w 1€E i€k

Step 2) In the case of £=(100 --- 0) the solution of [C,] with £=(100---0) is
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a,=0, 7#0, k for i€E,.
The solution of [C] is a@,=1 and a;=0 for i+ £k, /= FE then from (3.3)
Al,l_rg Npe pd'=p(1; lk)ieEl,'I#kP(O; A3)

then
lim N p, lim pY¥—'=2, IT exp{—2;}
N -»o0 N —oc0 icE
and us'ng (3.6) we can get
I\l’lm Npkzlk . (37)

In the same way, we get (3.7) for any k satisfying #k=1; that is, under the
condition of the theorem if k=F and #k=1 then we have

}viir.lN Pr=2As.

Step 3) Let us proceed to prove the conclusion (3.4) of theorem 3 that for

any k< E we have
Ilvim ]\’pkzlk >

by the induction of the number of positive components of 2 E : #k=r (1Zr<n).
In step 2 we have proved that the conclusion of the theorem is valid for r=1.
HYPOTHESIS OF THE INDUCTION. If we assume the conclusion also valid for
every r:r<r, where 1<7,<n, then we can prove the relation of (3.7) for »r=
ro+1, as follows and finish the induction.
Put k€E, #k=r,+1 then if we have to decompcse the vector 4 as followirg

k=71t 7+ - +7s (3.8)

where j,, j,, -*+, s are n-dimensional vectors and havirg nonnegative integral
components, S0 7y, js, ==+, 75=0 and 7y, 7., -+, 7s#0 are satisfied.

Let us define the relation of vectors V and O: V>0V =0 and V+0,
then the decomposed vectors must satisfy j,, s, «-+, 7s>0. If the vector % in
the left side of (3.3) is the sum of N independent Bernoulli vectors havirg a
distribution B(1, p) then we express a sequence of N observatiors:

k=71, 72y 0y 75y O, O, -, 020, (#k=r,+1).
I__N—_T_I

That is a decomposition of % is given by

k=j1+jet - +5s+0+0+ - +0. (3.9
TN
—S

The probability of an occurrznce of the decomposition is
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pjl pjz pjs Do Do

| FOSEE—
N—s
The combination for the decomposition satisfying (3.9) is

N!
111l 1(N=s)!

=NN—-1) - (N=s+1).
Therefore the probability of the decomposition having i, js, -+, 7s>0O becomes

NN=1) - (N=s+1)p;, bj, -+ b3, 5.

To calculate P(X=Fk) of (3.3) we have to summarize such probabilities for all
decompositions satisfying (3.9).

§=1 jrtigt tig=hk,
0<j1, 72,0 Jg51

NIN—1) -« (N=s+Dpy, pj, -+ Dj; Do ~° (3.10)

where 0=(0, 0, ---, 0) and 1=(, 1, ---, 1) are n-dimensional vectors. And from
the condition (3.3) of the theorem, the fact (3.6) in the lemma is already proved:

lim pY=exp{— X 4}

N —co i€k

and the hypothesis of the induction we have
lim P(X= k):ri Slim N p; (N—1)py, -+ (N—s+1)p;, lim p¥~*
m 2
=lim N p, lim p '+ & S22, &, exp{— J a4 G1D
§= i<

r+1
=[11m N e+ 2222]’12]‘2 2]'3:] exp {— ?EXI}
$= T
On the other hand, in the right side of (3.3) the solution of [C] with #k=r,+1
is expressed

ajl=a,~2= BN =aj3=l and ai=0 for l'¢]'1, ].2, e, ].s
where
Jitje+ - +7.=k and 0<j,, ja, -, Js=1.

And aj,, @;,, -+, a;, are consist with the numbers of the decomposed vectors.
15 J2y =5 Js in (3.8). In the right side of (3.3)

> I plas; A,

(C] icE
the solution of [C] is depending on the decomposition and we have a;=0 or 1
from kE. We have a;=1 if i€{j,, js, ---, s} of the decomposition and other-
wise a;=0 for ;€E. And we can check from (3.8) and k=E the decomposed
vectors 7y, j2, =+, Js are mutually different vectors.
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P(X=k)=23] H p(“u 5 Ril) II p0; A5

[Cc] i=1 1€E, i#jy, jg, ", Js

ﬁxjiexp{—z,-,.} M exp{—Aa}

Lec i=1 i€E, i#jy, Jo,"" Jg

Mk

)
-

S

where
Dec:{jll ]‘21 Ty ]s ]1+]2+ +]3—-k 0<]1§1 and 0<],, }

k

*

> T 45, T exp{—A;}
Cec ielk

§=1 =1

I

=2, exp{— 22 }+E > Hl,l exp{— 23 A} (3.12)

s=2 Dec i=1 i€k
Finally we can conclude by (3.11) and (3.12)
II}m Np,=2, for #k=r+1.

Now, we have finished the induction: the proof of the validity of (3.7) in the
theorem for every k satisfying #k=r+1. So we can conclude for any k: ksE
and #k=1,2, -, n

Ilvim Npkzlzk .

This is the conclusion of the theorem. m
These theorems have a variation theorem rather a mathematical one, that
is, summarizing Theorem 2 and 3 we conclude next theorem.

THEOREM 4. Necessary and sufficient condition for the convergence of p.g. f.
of B(N, p) to p.g.f. of P(A):

lim ( 3 pish)V= H exp{—2A;+4,s'} (3.13)
N oo 1€,
is
Ilvi_Ip Npi=2i for ek, (3.7)

That is the condition “Jym Np;=2; for i€E” (3.4) is essential for the con-
vergence of distribution.

§ 4. Bivariate case.

Let X;, X,, ---, Xy be a sequence of independent Bernoulli distribution
B, p) where p= (poo D10 Dor D11), PUZO and EPU—I (EZ} p=1)
1E€Ey

P(Xj=l.)=pi, €E,, for ]':1’ 2, -+, N.

Then from theorem 1 we have
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N N!
— b )= L poap Bp T4 O
O e N I IR @D
a+ +Tr+a=1%'
a,;.r.azo integer

where k=(ky, k)=0: ky, k:=0.

THEOREM 5. Let X, X, -+, Xy be an independent Bernoulli sequence then
we have

, N Qo Aot Aur?

lim P(3X=k)= 3 = Sptexp{—he—In—dil (42
NP!O:}IO j=1 ﬂrigzil [9 g 10!
%I’;’v(l)%:o'l?% B.1,820 intzeger

for every k=(ky, ky)=0.
Proof. See theorem 2.

THEOREM 6. Let X,, X, -+, Xy be an independent bivariate Bernoulli
sequence and we assume
2‘0ﬁ20172115
sy B!

B.7,020 integer

exp{—2Aw—Au—Au} 4.3)

N —c0

lim P( g X,=k)=

then we have Npyy— i, NPor—>4e1 and Np,,— 2y as N—oo.

Proof. See theorem 3.
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