SUBMANIFOLDS WITH PARALLEL RICCI TENSOR

By Yoshio Matsuyama

Let $\widetilde{M}^{n+p}(\widetilde{c})$ be a Riemannian (n+p)-manifold of constant sectional curvature \tilde{c} , which is called a *real space form*. If $\tilde{c}=0$, then $\tilde{M}^{n+p}(0)$ denotes the Euclidean (n+p)-space \mathbb{R}^{n+p} . If $\tilde{c}>0$ (resp. $\tilde{c}<0$), then $\widetilde{M}^{n+p}(\tilde{c})$ denotes the Euclidean (n+p)-sphere $S^{n+p}(\tilde{c})$ (resp. the hyperbolic (n+p)-space $H^{n+p}(\tilde{c})$) in R^{n+p+1} . We consider submanifolds isometrically immersed in a real space form. Ryan [5] showed: Let $M^n(n>2)$ be a hypersurface in $\widetilde{M}^{n+1}(\widetilde{c})$. If M is not of constant curvature \tilde{c} and if the Ricci tensor of M is parallel, then either M is locally isometric to the product $M_1^k \times M_2^{n-k}$, $0 \le k \le n$ (if $\tilde{c}=0$, then $k \ne 2$), or $\tilde{c}=0$ and the rank of the second fundamental form $A (=A_1)$ is equal to 2 everywhere. Here, M_1^k is a sphere of some radius contained in some Euclidean space R^{k+1} (resp. M_2^{n-k} is one in some Euclidean space perpendicular to R^{k+1}), except possibly one of M_i (i=1, 2) is a Euclidean space (this can only occur if $\tilde{c} \leq 0$, and k=0 or n if $\tilde{c}<0$ or a hyperbolic space with some negative curvature \bar{c} (this can only occur if $\tilde{c} < 0$). In order to prove the above result Ryan made use of the following remarkable result ([5]): let M^n be as above. If the mean curvature is constant, then the second fundamental form of M is parallel.

On the other hand, in [3], [4] the author proved:

THEOREM. Let M^n be an n(>2)-dimensional minimal Einstein submanifold in an (n+2)-dimensional space form $\tilde{M}^{n+2}(\tilde{c})$ with constant curvature \tilde{c} . Then the second fundamental form of M is parallel and that (1) if $\tilde{c} \leq 0$, then M is totally geodesic and that (2) if $\tilde{c} > 0$, then either M is totally geodesic or locally isometric to the product $S^m\left(\frac{1}{\sqrt{2\tilde{c}}}\right) \times S^m\left(\frac{1}{\sqrt{2\tilde{c}}}\right)$ (n=2m) of two spheres in totally geodesic $\tilde{M}^{n+1}(\tilde{c})$ in $\tilde{M}^{n+2}(\tilde{c})$ or the product $S^m\left(\frac{1}{\sqrt{3\tilde{c}}}\right) \times S^m\left(\frac{1}{\sqrt{3\tilde{c}}}\right) \times S^m\left(\frac{1}{\sqrt{3\tilde{c}}}\right)$ (n=3m) of three spheres in $\tilde{M}^{n+2}(\tilde{c})$.

In this paper we would like to prove the following:

THEOREM 1. Let M^n be an n(>2)-dimensional submanifold in $\widetilde{M}^{n+p}(\widetilde{c})$ with the parallel Ricci tensor. If the mean curvature normal H is parallel and the normal connection of M is trivial, then the second fundamental form of M is parallel and M is locally isometric to the product $M^{n_1} \times \cdots \times M^{n_l}$, $1 \le l \le p+1$, where each M^{n_i} is an n_i -dimensional sphere of some radius contained in some

Received November 27, 1987

Euclidean space N^{n_i+1} of dimension n_i+1 , $N^{n_i+1} \perp N^{n_j+1}$ for $i \neq j$, except possibly one of the M^{n_i} is a Euclidean space N^{n_i} (this can only occur if $\tilde{c} \leq 0$) or hyperbolic space $H^{n_i}(\tilde{c})$ with some negative curvature \tilde{c} (this can only occur if $\tilde{c} < 0$).

COROLLARY 2. Let M^n be an Einstein submanifold in $\widetilde{M}^{n+2}(\widetilde{c})$. If the mean curvature normal H is parallel, then the second fundamental form of M is parallel.

Remark 1. Let $f: M \to R^3$ be a surface of constant curvature $c \neq 0$, which is not contained in a sphere (See [1], p. 432). Embedd R^3 into R^4 and let u be a unit vector orthogonal to R^3 . Then $\tilde{f}: M \times R \to R^4$ which defined by $\tilde{f}(x, t) = f(x)+tu$ gives an example of hypersurfaces in R^4 with parallel Ricci tensor, of which the second fundamental tensor is not parallel. By this example, the assumption on the mean curvature vector in Theorem 1 is necessary. Also, the assumption on the normal connection in Theorem 1 is not necessary if p=2 and $H \neq 0$ (See [2], Lemma 7).

Remark 2. In $S^{5}(1)$ the product $S^{1}\left(\frac{1}{\sqrt{3}}\right) \times S^{1}\left(\frac{1}{\sqrt{3}}\right) \times S^{1}\left(\frac{1}{\sqrt{3}}\right)$ of three spheres is a minimal Einstein submanifold. In $S^{6}(1)$ the product $S^{2}\left(\frac{1}{\sqrt{2}}\right)$ $\times S^{1}\left(\frac{1}{2}\right) \times S^{1}\left(\frac{1}{2}\right)$ of three spheres is a minimal submanifold with the parallel Ricci tensor. In $S^{7}(1)$ the product $S^{2}\left(\frac{\sqrt{2}}{\sqrt{5}}\right) \times S^{2}\left(\frac{\sqrt{2}}{\sqrt{5}}\right) \times S^{1}\left(\frac{1}{\sqrt{5}}\right)$ of three spheres and the product $S^{1}\left(\frac{1}{2}\right) \times S^{1}\left(\frac{1}{2}\right) \times S^{1}\left(\frac{1}{2}\right) \times S^{1}\left(\frac{1}{2}\right)$ of four spheres are minimal submanifolds with the parallel Ricci tensor. And, these normal connections are trivial......(See [7]).

Finally, we would like to thank the referee for valuable comments.

1. Submanifolds.

Let f be an isometric immersion of a connected Riemannian *n*-manifold M^n into a real space form $\tilde{M}^{n+p}(\tilde{c})$ of constant curvature \tilde{c} . For all local formulas we may consider f as an imbedding and thus identify $x \in M$ with $f(x) \in \tilde{M}$. The tangent space $T_x M$ is identified with a subspace of the tangent space $T_x \tilde{M}$. The normal space T_x^{\pm} is the subspace of $T_x \tilde{M}$ consisting of all $X \in T_x \tilde{M}$ which are orthogonal to $T_x M$ with respect to the Riemannian metric g. Let ∇ (resp. $\tilde{\nabla}$) denote the covariant differentiation in M (resp. \tilde{M}), and D the covariant differentiation in the normal bundle.

With each $\xi \in T_x^{\perp}$ is associated a linear transformation of $T_x M$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of xand define $-A_{\xi}X$ to be the tangential component of $\tilde{\nabla}_x \xi$ for $X \in T_x M$. $A_{\xi}X$ depends only on ξ at x and X. Given an orthonormal basis ξ_1, \dots, ξ_p of T_x^{\perp} we write $A_{\alpha} = A_{\xi_{\alpha}}$ and call the A_{α} 's the second fundamental forms associated with ξ_1, \dots, ξ_p . If ξ_1, \dots, ξ_p are now orthonormal normal vector fields in a

YOSHIO MATSUYAMA

neighborhood U of x, they determine normal connection forms $s_{\alpha\beta}$ in U by

$$D_x \xi_\alpha = \sum_\beta s_{\alpha\beta}(X) \xi_\beta, \quad s_{\alpha\beta} + s_{\beta\alpha} = 0$$

for $X \in T_x M$. Let X and Y be tangent to M and ξ_1, \dots, ξ_p orthonormal normal vector fields. Then we have the following relationships (in this section Greek indices run from 1 to p) [3]:

(1.1)
$$\tilde{\nabla}_{X} Y = \nabla_{X} Y + \sigma(X, Y),$$
$$\sigma(X, Y) = \sum_{\alpha} g(A_{\alpha} X, Y) \xi_{\alpha}, \quad g(A_{\alpha} X, Y) = g(A_{\alpha} Y, X),$$

(1.2)
$$(\nabla_{X} A_{\alpha}) Y - \sum_{\beta} s_{\alpha\beta}(X) A_{\beta} Y = (\nabla_{Y} A_{\alpha}) X - \sum_{\beta} s_{\alpha\beta}(Y) A_{\beta} X$$

----Codazzi equation,

(1.3)
$$R^{N}(X, Y)\xi_{\alpha} = \sum_{\beta} g([A_{\alpha}, A_{\beta}]X, Y)\xi_{\beta},$$

(1.4)
$$Ric = (n-1)\tilde{c}I + \sum_{\alpha} (\operatorname{trace} A_{\alpha}) A_{\alpha} - \sum_{\alpha} A_{\alpha}^{2},$$

where σ is also called the second fundamental form of f, and \mathbb{R}^N , Ric and I denote the curvature tensor with respect to D, the Ricci tensor for M and the identity transformation of T_xM , respectively.

The mean curvature normal H is defined by

$$H = \sum_{\alpha} (\operatorname{trace} A_{\alpha}) \xi_{\alpha}$$
,

where the right side is independent of our choice of the orthonormal basis for T_x^{\perp} . An immersion is said to be *minimal* if its mean curvature normal vanishes identically, i.e., if trace $A_{\alpha}=0$ for all α .

2. Proofs of Theorem 1 and Corollary 2.

Let f be an isometric immersion of M^n into $\tilde{M}^{n+p}(\tilde{c})$ with the assumption of Theorem 1. From the results of [2], [6] and [7] we have only to prove that the second fundamental form of M is parallel.

If p=1, then the theorem follows from Proposition 5 of Ryan [5].

We may assume that $p \ge 2$. If $H \ne 0$ at x, then we can choose an orthonormal normal vector fields ξ_1, \dots, ξ_p defined in a neiborhood U of x such that $\xi_1 = \frac{H}{|H|}$. Then on U we have

(2.1) trace $A_1 = \text{constant}$ and trace $A_\beta = 0$, $2 \leq \beta \leq p$.

If M is minimal, then as we of course have for any α

trace
$$A_{\alpha} = 0$$
,

we may assume that (2.1) holds on M. Now since the normal connection is trivial, by continuity it is sufficient to prove that $\nabla A_{\alpha}=0$. In terms of (1.4)

246

we have

(1.4)'
$$Ric = (n-1)\tilde{c}I + \sum_{\alpha} (\operatorname{trace} A_{\alpha}) A_{\alpha} - \sum_{\alpha} A_{\alpha}^{2}.$$

Then from (2.1) we have

(2.2)
$$\sum_{\alpha} (\nabla A_{\alpha}) A_{\alpha} + \sum_{\alpha} A_{\alpha} (\nabla A_{\alpha}) - (\operatorname{trace} A_{1}) \nabla A_{1} = 0.$$

On the other hand, from the triviality of the normal connection, i.e., $A_{\beta}A_{\gamma} \equiv A_{\gamma}A_{\beta}$ for $1 \leq \beta$, $\gamma \leq p$ we have

(2.3)
$$(\nabla A_{\beta})A_{\gamma} + A_{\beta}(\nabla A_{\gamma}) - (\nabla A_{\gamma})A_{\beta} - A_{\gamma}(\nabla A_{\beta}) = 0.$$

Since A_{α} 's are also simultaneously parallelizable, we may consider $\lambda_i: T_x^{\perp} \rightarrow R$ so that

$$A_{\alpha} = \begin{bmatrix} \lambda_{1}(\xi_{\alpha}) & 0 \\ 0 & \ddots \\ 0 & \lambda_{n}(\xi_{\alpha}) \end{bmatrix}.$$

Moreover we can take an orthonormal frame $\{e_1, \dots, e_n\}$ of M such that $A_{\alpha}e_i = \lambda_i(\xi_{\alpha})e_i$. Theorem 1 is trivial when M^n is totally umblic. So we may assume that for some β , $A_{\beta} \neq \rho I$. Therefore we get $i \neq j$ such that $\lambda_i(\xi_{\beta}) \neq \lambda_j(\xi_{\beta})$. For simplicity, put $\lambda = \lambda_i$ and $\mu = \lambda_j$. Now, put $A_{\beta}X = \lambda(\xi_{\beta})X$, $A_{\gamma}X = \lambda(\xi_{\gamma})X$, $A_{\beta}Y = \mu(\xi_{\beta})Y$ and $A_{\gamma}Y = \mu(\xi_{\gamma})Y$, $\beta \neq \gamma$. Then from (2.2) we have

(2.4)
$$\sum_{\alpha} \lambda(\xi_{\alpha}) (\nabla_{Y} A_{\alpha}) X + \sum_{\alpha} A_{\alpha} (\nabla_{Y} A_{\alpha}) X - (\operatorname{trace} A_{1}) (\nabla_{Y} A_{1}) X = 0,$$

(2.5)
$$\sum_{\alpha} \mu(\xi_{\alpha}) (\nabla_{X} A_{\alpha}) Y + \sum_{\alpha} A_{\alpha} (\nabla_{X} A_{\alpha}) Y - (\operatorname{trace} A_{1}) (\nabla_{X} A_{1}) Y = 0.$$

Similarly, from (2.3) we have

(2.6)
$$\lambda(\xi_{\gamma})(\nabla_{Y}A_{\beta})X + A_{\beta}(\nabla_{Y}A_{\gamma})X - \lambda(\xi_{\beta})(\nabla_{Y}A_{\gamma})X - A_{\gamma}(\nabla_{Y}A_{\beta})X = 0,$$

(2.7)
$$\mu(\xi_{\gamma})(\nabla_{x}A_{\beta})Y + A_{\beta}(\nabla_{x}A_{\gamma})Y - \mu(\xi_{\beta})(\nabla_{x}A_{\gamma})Y - A_{\gamma}(\nabla_{x}A_{\beta})Y = 0.$$

Subtracting (2.5) from (2.4), using Codazzi equations (1.2), we have

(2.8)
$$\sum_{\alpha} (\lambda(\xi_{\alpha}) - \mu(\xi_{\alpha})) (\nabla_{X} A_{\alpha}) Y = 0.$$

Similarly, from (2.6) and (2.7) we have

$$(\boldsymbol{\lambda}(\boldsymbol{\xi}_{\boldsymbol{\gamma}}) - \boldsymbol{\mu}(\boldsymbol{\xi}_{\boldsymbol{\gamma}}))(\nabla_{\boldsymbol{X}}A_{\boldsymbol{\beta}})Y - (\boldsymbol{\lambda}(\boldsymbol{\xi}_{\boldsymbol{\beta}}) - \boldsymbol{\mu}(\boldsymbol{\xi}_{\boldsymbol{\beta}}))(\nabla_{\boldsymbol{X}}A_{\boldsymbol{\gamma}})Y = 0.$$

Since $\lambda(\xi_{\beta}) \neq \mu(\xi_{\beta})$ by the assumption, we get

(2.9)
$$(\nabla_{\mathbf{X}}A_{\gamma})Y = \frac{\lambda(\xi_{\gamma}) - \mu(\xi_{\gamma})}{\lambda(\xi_{\beta}) - \mu(\xi_{\beta})} (\nabla_{\mathbf{X}}A_{\beta})Y$$

for any γ . Substituting this into (2.8), we obtain

247

$$(2.10) \qquad (\nabla_{\mathcal{X}} A_{\beta}) Y = 0.$$

From (2.9), it follows $(\nabla_X A_\gamma)Y = 0$ for all γ .

This proves Theorem 1.

Next, we prove Corollary 2. Let M^n be an Einstein submanifold in $\tilde{M}^{n+2}(\tilde{c})$ with the parallel mean curvature normal H.

If $H \neq 0$ at x, then as in the above we choose an orthonormal normal vector fields ξ_1, ξ_2 defined in a neighborhood U of x such that $\xi_1 = \frac{H}{|H|}$. Now DH=0 implies $D\xi_1=0$ and hence $s_{12}=0$ in U. This implies U satisfies the assumption of Theorem 1. Hence the second fundamental form of M is parallel in U. If there exists a neighborhood V which satisfies $H\equiv 0$, then V holds the assumption of Theorem. Hence the second fundamental form of M is parallel in V. By continuity we obtain that the second fundamental form of M is parallel.

This proves Corollary 2.

References

- [1] M. BERGER AND B. GOSTIAUX, Géométrie différentielle: variétés, courbes et surfaces, Press Universitaires, de France, 1987.
- [2] J. ERBACHER, Isometric immersions of constant mean curvature and triviality of the normal connection, Nagoya Math. J. 45 (1971), 139-165.
- [3] Y. MATSUYAMA, On minimal Einstein submanifolds with codimension two, to appear.
- [4] Y. MATSUYAMA, Minimal Einstein submanifolds, to appear.
- [5] P.J. RYAN, Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251-259.
- [6] M. TAKEUCHI, Parallel submanifolds of space forms, Manifolds and Lie groups (Papers in honor of Y. Matsushima) edited by J. Hano, etc. Birkhäuser, 1981.
- K. YANO AND S. ISHIHARA, Submanifolds with parallel mean curvature vector, J. Differential Geom. 6 (1971), 95-118.

Department of Mathematics Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112, Japan